Sample records for hard metal grinders

  1. Inorganic particulates in pneumoconiotic lungs of hard metal grinders.

    PubMed Central

    Rüttner, J R; Spycher, M A; Stolkin, I

    1987-01-01

    Data from the analysis of lung dust in 16 metal grinders who had been exposed to hard metals between five and 44 years is reported. The mean latent time between the first exposure and analysis in biopsy or necropsy specimens was 33.6 years. Mineralogical and elementary analysis by a variety of techniques showed small or trace amounts of hard metal in all lungs. Many specimens, however, did not contain all hard metal components, cobalt, for example, being detected in four cases only. All the lungs contained quartz and silicates and in most of the necropsy cases carborundum and corundum could also be shown. Histologically no specific pattern was found. The appearances included mixed dust nodular pneumoconiosis, diffuse interstitial lung fibrosis, and foreign body and sarcoid like granulomatous changes. In view of the mixed dust exposure of the hard metal grinders and the variable histological appearance we think that the term "mixed dust pneumoconiosis in hard metal grinders" is more appropriate than "hard metal lung" to describe this condition. PMID:3676118

  2. Biodetection grinder

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1973-01-01

    A biodetection grinder for sampling aerospace materials for microorganisms without killing them was constructed. The device employs a shearing action to generate controllable sized particles with a minimum of energy input. Tests were conducted on materials ranging from soft plastics to hard rocks.

  3. Biodetection grinder

    NASA Technical Reports Server (NTRS)

    Shaia, C. D.; Jones, G. H.

    1971-01-01

    Work on a biodetection grinder is summarized. It includes development of the prototype grinder, second generation grinder, and the production version of the grinder. Tests showed the particle size distribution was satisfactory and biological evaluation confirmed the tests.

  4. Pedestal Grinder.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the pedestal grinder for use at the postsecondary level. The first of eight sections defines 14 important terms. The second section outlines 16 rules for safe use of the pedestal grinder. The third section covers grinding wheels for five different types of materials. The fourth section…

  5. Machine Shop. Module 7: Grinders. Instructor's Guide.

    ERIC Educational Resources Information Center

    Nobles, Jack; Gage, Mel

    This document consists of materials for an eight-unit course on the following topics: (1) grinder safety and types of grinders; (2) surface grinder accessories and equipment maintenance; (3) surface grinder preparation and set-up; (4) surface grinding flat and angular surfaces; (5) cylindrical grinding; (6) tool and cutter safety; (7) tool and…

  6. Monitoring of chromium and nickel in biological fluids of grinders grinding stainless steel.

    PubMed

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2007-04-01

    concentrations found in whole blood, plasma and red cells were approximately the same as those found in the unexposed controls and among TIG SS welders, while the urinary levels were somewhat higher, but still lower than in the welders applying other welding techniques. The mean levels of Ni in the urine of grinders were higher than those of welders, except for SS welders welding the MIG/MAG-method. SS Grinding seems not to contribute significantly to the uptake of Cr, which may be explained by the fact that most of Cr in the air is present in the metallic (0-valent) or trivalent form, and hardly any as Cr(VI), and therefore hardly being taken up in the airways. The grinders' uptake of Ni seems to take place to the same extent as in SS welders.

  7. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  8. Processing woody biomass with a modified horizontal grinder

    Treesearch

    Dana Mitchell; John Klepac

    2008-01-01

    This study documents the production rate and cost of producing woody biomass chips for use in a power plant. The power plant has specific raw material handling requirements. Output from a 3-knife chipper, a tub grinder, and a horizontal grinder was considered. None of the samples from these machines met the specifications needed. A horizontal grinder was modified to...

  9. The image acquisition system design of floor grinder

    NASA Astrophysics Data System (ADS)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  10. Analysis and optimization of dynamic model of eccentric shaft grinder

    NASA Astrophysics Data System (ADS)

    Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying

    2018-04-01

    Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.

  11. Credit PSR. The interior of the grinder room appears as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The interior of the grinder room appears as seen looking southeast (148°), showing the remaining grinder equipment in the building. Note the blow-out wall in the background, and the water sprinkler head positioned over the hopper. The hopper top is connected to the dust receiver in the adjacent room. The blow-out wall is constructed to relieve pressure easily should an explosion occur, thus minimizing damage to the rest of the building structure. The floor has a conductive coating which dissipates static electrical charges that might otherwise cause fires - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA

  12. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  13. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  14. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  15. The history of articulators: the wonderful world of "grinders," Part 2.

    PubMed

    Starcke, Edgar N; Engelmeier, Robert L

    2012-04-01

    This is the second article in a three-part series on the history of denture grinding devices. The first article reviewed the earliest attempts to mechanically grind the occlusion of artificial teeth from the manipulation of simple articulators to very elaborate and complex machines powered by hand cranks. This article explores motor-driven grinders, most driven by way of a belt-driven pulley powered by an external source. A few were self-contained; that is, the motor was mounted on the grinder base. There were basically two types of grinders: those with cast holders for mounting processed dentures and those with provisions for using articulators for that purpose. © 2012 by the American College of Prosthodontists.

  16. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  17. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  18. The under sink garbage grinder: a friendly technology for the environment.

    PubMed

    Bolzonella, D; Pavan, P; Battistoni, P; Cecchi, F

    2003-03-01

    The use of garbage grinders is not a usual practice in Europe, but it is in other countries around the world (e.g., North America, Japan and Australia). Sometimes, garbage grinders are accused of producing problems in sewers and wastewater treatment plants and are prohibited by environmental protection laws. In this study, the different impacts determined by the use of this technology were considered to show the positive impacts of its use. In particular, it was shown that garbage grinders enable the disposal of household organic wastes with advantages for the wastewater treatment processes because of an increase in the carbon/nutrients ratio in the wastewater. This is particularly important for biological nutrients removal processes. Daily specific contributions for person equivalent (PE) due to organic waste disposal through garbage grinders were found to be equal to 75 gCODPE(-1) d(-1) for carbon (as COD), 2.5 gNPE(-1) d(-1) for nitrogen and 0.25 gPPE(-1) d(-1) for phosphorous, respectively. Those determined a value of 30 for the COD/N ratio. Moreover, no problems with solids settling in sewers were noted. These results were extensively compared with literature data. The economical balance showed that the use of garbage grinders allowed a global saving of some 17 Euro year(-1) for a three people family. Important benefits are also gained from an environmental point of view (e.g, organic wastes disposal nutrients removal in wastewater treatment and increase in biogas production with energy reclamation).

  19. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  20. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.

    2016-01-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  1. Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing

    2017-05-01

    Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.

  2. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  3. 33 CFR 151.75 - Grinders or comminuters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.75 Grinders or...

  4. 33 CFR 151.75 - Grinders or comminuters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.75 Grinders or...

  5. 33 CFR 151.75 - Grinders or comminuters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.75 Grinders or...

  6. 33 CFR 151.75 - Grinders or comminuters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.75 Grinders or...

  7. 33 CFR 151.75 - Grinders or comminuters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.75 Grinders or...

  8. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  9. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  10. The Influence of Processing Soil With a Coffee Grinder on Soil Classification

    DTIC Science & Technology

    2015-01-20

    shaker, sieves , coffee grinder, plastic limit tool, bowls, spatulas, and scoops. To classify soils, a dry sieve analysis is performed, as is a Plastic...processed with the coffee grinder for 90 seconds as described above. Sieve analysis using the wet preparation method was used to test and classify the soils...one 90 second cycle of Elevator Soil Figure 3: The blades after three 90 second cycles of Elevator Soil 71Page 4.2 Ottawa Sand Dry Sieve Analysis

  11. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    NASA Astrophysics Data System (ADS)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  12. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  13. Standard surface grinder for precision machining of thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.

    1967-01-01

    Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.

  14. A deformation mechanism of hard metal surrounded by soft metal during roll forming

    PubMed Central

    YU, Hailiang; TIEU, A. Kiet; LU, Cheng; LIU, Xiong; GODBOLE, Ajit; LI, Huijun; KONG, Charlie; QIN, Qinghua

    2014-01-01

    It is interesting to imagine what would happen when a mixture of soft-boiled eggs and stones is deformed together. A foil made of pure Ti is stronger than that made of Cu. When a composite Cu/Ti foil deforms, the harder Ti will penetrate into the softer Cu in the convex shapes according to previously reported results. In this paper, we describe the fabrication of multilayer Cu/Ti foils by the roll bonding technique and report our observations. The experimental results lead us to propose a new deformation mechanism for a hard metal surrounded by a soft metal during rolling of a laminated foil, particularly when the thickness of hard metal foil (Ti, 25 μm) is much less than that of the soft metal foil (Cu, 300 μm). Transmission Electron Microscope (TEM) imaging results show that the hard metal penetrates into the soft metal in the form of concave protrusions. Finite element simulations of the rolling process of a Cu/Ti/Cu composite foil are described. Finally, we focus on an analysis of the deformation mechanism of Ti foils and its effects on grain refinement, and propose a grain refinement mechanism from the inside to the outside of the laminates during rolling. PMID:24853192

  15. Performing in-feed type centerless grinding process on a surface grinder

    NASA Astrophysics Data System (ADS)

    Xu, W.; Wu, Y.; Sato, T.; Lin, W.

    2011-01-01

    In our previous study, a new centerless grinding method using surface grinder was proposed. In this method, centerless grinding operations are performed by installing a compact centerless grinding unit, consisting mainly of an ultrasonic elliptic-vibration shoe, a blade and their respective holders, on the worktable of a surface grinder. During grinding, the cylindrical workpiece is held on the ultrasonic shoe and the blade, and its rotational motion is controlled by the elliptic motion of the shoe end-face. An actual unit had been produced and its performance in tangential-feed type centerless grinding using a surface grinder had been confirmed in the previous workd. In this paper, the performance of the grinding unit in in-feed centerless grinding operation was confirmed, and the effects of the main process parameter, i.e., eccentric angle, on the workpiece roundness was investigated experimentally. The obtained results showed that: (1) the centerless grinding unit performed well in in-feed type centerless grinding; (2) the eccentric angle affects roundness significantly, and its optimal angle is 6°; (3) the workpiece roundness can be further improved by varying the eccentric angle during grinding, and the final roundness reached 0.65 μm after grinding as the eccentric angle varied from 9° to 6° and to 3°.

  16. 18. Interior detail, drill press and grinder, Machine Shop, Roundhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Interior detail, drill press and grinder, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to east (135mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  17. 19. Interior detail, grinder and drill press, Machine Shop, Roundhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior detail, grinder and drill press, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (135mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  18. Performing in-feed type centerless grinding process on a surface grinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, W.; Wu, Y.; Sato, T.

    2011-01-17

    In our previous study, a new centerless grinding method using surface grinder was proposed. In this method, centerless grinding operations are performed by installing a compact centerless grinding unit, consisting mainly of an ultrasonic elliptic-vibration shoe, a blade and their respective holders, on the worktable of a surface grinder. During grinding, the cylindrical workpiece is held on the ultrasonic shoe and the blade, and its rotational motion is controlled by the elliptic motion of the shoe end-face. An actual unit had been produced and its performance in tangential-feed type centerless grinding using a surface grinder had been confirmed in themore » previous workd. In this paper, the performance of the grinding unit in in-feed centerless grinding operation was confirmed, and the effects of the main process parameter, i.e., eccentric angle, on the workpiece roundness was investigated experimentally. The obtained results showed that: (1) the centerless grinding unit performed well in in-feed type centerless grinding; (2) the eccentric angle affects roundness significantly, and its optimal angle is 6 deg.; (3) the workpiece roundness can be further improved by varying the eccentric angle during grinding, and the final roundness reached 0.65 {mu}m after grinding as the eccentric angle varied from 9 deg. to 6 deg. and to 3 deg.« less

  19. 36. INTERIOR VIEW, NORTON GRINDER, TYPES USED TO GRIND ROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. INTERIOR VIEW, NORTON GRINDER, TYPE-S USED TO GRIND ROUGH EDGES OFF THE FORGED TOOLS; NOTE OPERATOR IS FINISH GRINDING BLADE END OF A POST HOLE DIGGER AND TAMPING BAR - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  20. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    PubMed Central

    Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H.

    2012-01-01

    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds. PMID:22919393

  1. Production Machine Shop Employment Competencies. Part Two: Saws, Drills, and Grinders.

    ERIC Educational Resources Information Center

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the second of four topic areas: saws, drills, and grinders. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will…

  2. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  3. Active monitoring as cognitive control of grinders design

    NASA Astrophysics Data System (ADS)

    Flizikowski, Jozef B.; Mrozinski, Adam; Tomporowski, Andrzej

    2017-03-01

    A general monitoring methodology applicable to plastics recyclates grinding processes development for energy engineering, has been presented in this work. The method includes two beings: mathematical aiding an invention and working of a novelty. The common set is composed of characteristics, structure, relationships of knowledge about states and transformations, effectiveness and progress of the devices and machinery engineering, e.g. breaking up in the energy-materials recycling process. This innovations theory is identified by the valuation, estimation, testing and creative archiving the elaborated character and structure of the invention and grinders construction development.

  4. Laboratory studies on the tribology of hard bearing hip prostheses: ceramic on ceramic and metal on metal.

    PubMed

    Vassiliou, K; Scholes, S C; Unsworth, A

    2007-01-01

    Total hip replacements offer relief to a great many patients every year around the world. With an expected service life of around 25 years on most devices, and with younger and younger patients undergoing this surgery, it is of great importance to understand the mechanisms of their function. Tribological testing of both conventional and hard bearing joint combinations have been conducted in many centres throughout the world, and, after being initially abandoned owing to premature failures, hard bearing combinations have been revisited as viable options for joint replacements. Improved design, manufacturing procedures, and material compositions have led to improved performance over first-generation designs in both metal-on-metal and ceramic-on-ceramic hip prostheses. This paper offers a review of the work conducted in an attempt to highlight the most important factors affecting joint performance and tribology of hard bearing combinations. The tribological performance of these joints is superior to that of conventional metal- or ceramic-on-polymer designs.

  5. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  6. Penetrating head injury from angle grinder: A cautionary tale.

    PubMed

    Senthilkumaran, S; Balamurgan, N; Arthanari, K; Thirumalaikolundusubramanian, P

    2010-01-01

    Penetrating cranial injury is a potentially life-threatening condition. Injuries resulting from the use of angle grinders are numerous and cause high-velocity penetrating cranial injuries. We present a series of two penetrating head injuries associated with improper use of angle grinder, which resulted in shattering of disc into high velocity missiles with reference to management and prevention. One of those hit on the forehead of the operator and the other on the occipital region of the co-worker at a distance of five meters. The pathophysiological consequence of penetrating head injuries depends on the kinetic energy and trajectory of the object. In the nearby healthcare center the impacted broken disc was removed without realising the consequences and the wound was packed. As the conscious level declined in both, they were referred. CT brain revealed fracture in skull and changes in the brain in both. Expeditious removal of the penetrating foreign body and focal debridement of the scalp, skull, dura, and involved parenchyma and Watertight dural closure were carried out. The most important thing is not to remove the impacted foreign body at the site of accident. Craniectomy around the foreign body, debridement and removal of foreign body without zigzag motion are needed. Removal should be done following original direction of projectile injury. The neurological sequelae following the non missile penetrating head injuries are determined by the severity and location of initial injury as well as the rapidity of the exploration and fastidious debridement.

  7. Extension of the Vane Pump-Grinder Technology to Manufacture Finely Dispersed Meat Batters.

    PubMed

    Irmscher, Stefan B; Gibis, Monika; Herrmann, Kurt; Oechsle, Anja Maria; Kohlus, Reinhard; Weiss, Jochen

    2016-03-01

    A vane pump-grinder system was extended to enable the manufacture of finely dispersed emulsion-type sausages by constructing and attaching a high-shear homogenizer at the outlet. We hypothesized that the dispersing capabilities of the extended system may be improved to the point of facilitating meat-fat emulsification due to an overall increased volumetric energy input EV . Coarsely ground raw material mixtures were processed to yield meat batters at varying volume flow rates (10 to 60 L/min) and rotational rotor speeds of the homogenizer nrotor (1000 to 3400 rpm). The normalized torques acting on pump, grinder, and homogenizer motors were recorded and unit power consumptions were calculated. The structure of the manufactured meat batters and sausages were analyzed via image analysis. Key physicochemical properties of unheated and heated batters, that is, texture, water-binding, color, and solubilized protein were determined. The mean diameter d10 of the visible lean meat particles varied between 352 and 406 μm whereas the mean volume-surface diameter d32 varied between 603 and 796 μm. The lightness L* ranged from 66.2 to 70.7 and correlated with the volumetric energy input and product structure. By contrast, varying process parameters did not impact color values a* (approximately 11) and b* (approximately 8). Interestingly, water-binding and protein solubilization were not affected. An exponential process-structure relationship was identified allowing manufacturers to predict product properties as a function of applied process parameters. Raw material mixtures can be continuously comminuted, emulsified, and subsequently filled into casings using an extended vane pump-grinder. © 2016 Institute of Food Technologists®

  8. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands.

    PubMed

    Kopittke, Peter M; Menzies, Neal W; Wang, Peng; McKenna, Brigid A; Wehr, J Bernhard; Lombi, Enzo; Kinraide, Thomas B; Blamey, F Pax C

    2014-02-01

    Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms. © 2013 SETAC.

  9. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder

    Treesearch

    Chuanshuang Hu; Yu Zhao; Kecheng Li; J.Y. Zhu; Roland Gleisner

    2015-01-01

    The fibrillation of a bleached kraft eucalyptus pulp was investigated by means of a laboratory-scale disk grinder for the production of cellulose nanofibrils (CNF), while the parameters disk rotating speed, solid loading, and fibrillation duration were varied. The cumulative energy consumption was monitored during fibrillation. The degree of polymerization (DP) and...

  10. Application of hard sphere perturbation theory for thermodynamics of model liquid metals

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-06-01

    Hard sphere perturbation theory (HSPT) has contributed toward the fundamental understanding of dense fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general, and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density. To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than one-component plasma (OCP) for alkali metals and polyvalent metals. We are thus able to provide insight into the long standing observation that a OCP is a better reference system than a HS for alkali metals.

  11. Combined effect of smoking habits and occupational exposure to hard metal on total IgE antibodies.

    PubMed

    Shirakawa, T; Kusaka, Y; Morimoto, K

    1992-06-01

    A survey was made within a population of workers (n = 706) exposed to hard metal dust (an alloy including cobalt), an agent known to cause occupational allergy. Twenty-seven (4 percent) of 733 workers were eliminated from consideration in this study because of atopic status identified prior to starting work in the plant. Using a Phadebas PRIST, the subjects' total IgE levels were determined and related to their smoking and exposure status. Nonexposed male smokers (n = 135) had a higher geometric mean IgE level (39.7 IU/ml) than did nonexposed subjects who had never smoked (33.1 IU/ml; n = 99); those with a higher Brinkman index (greater than 300), a smoking index obtained by multiplying the number of cigarettes per day by the duration of smoking in years, had significantly (p less than 0.05) decreased IgE levels. Although ex-smokers (n = 72) had a higher geometric mean IgE level (73.3 IU/ml) than did those who had never smoked, their serum IgE level declined with age since the time they quit smoking, regardless of their hard metal exposure status. Hard metal (cobalt) exposure may play a significant role as an adjuvant in the production of total IgE. A multivariate analysis demonstrated that hard metal exposure and a smoking habit together arithmetically (p less than 0.05) increased total IgE levels. These two factors may be preventable risk factors for occupational allergy in hard metal workers.

  12. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and

  13. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE PAGES

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    2017-10-26

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and

  14. Metal oxide multilayer hard mask system for 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  15. Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons

    Treesearch

    Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone

    2012-01-01

    We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...

  16. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity.

    PubMed

    Yim, Jin Hee; Kim, Kyoung W; Kim, Sang D

    2006-11-02

    In this study, the effect of hardness on the combined outcome of metal mixtures was investigated using Daphnia magna. The toxic unit (TU) was calculated using modified LC(50) values based on the hardness (i.e., LC(50-soft) and LC(50-hard)). From a bioassay test, the degree of sensitivity to hardness on the toxicity changes was in the order: Cdhard test solution was replaced with a soft test solution. In mixture toxicity tests, the difference in the test solution hardness was found to clearly cause different toxicities, as determined by the TU calculated by the LC(50-hard), using the toxicity of a standard culture medium as the reference. That is, approximately four to five times higher toxicity was observed in soft (i.e., 44+/-4 mg/L as CaCO(3)) rather than hard water (i.e., 150+/-10mg/L as CaCO(3)) test solutions. In the tests where the modified reference toxicity values (i.e., LC(50-soft) and LC(50-hard) for soft and hard test solution, respectively) obtained from the individual metal toxicity tests with different hardness were used to calculate the TU, the results showed very similar D. magna toxicities to those of the TU from the mixture of soft and hard test solutions, regardless of the hardness. According to the toxicity results of the mixture, the aquatic toxic effects of the acid mine drainage (AMD) collected from mine areas that contained metal mixtures were investigated using Daphnia magna and the modified LC(50) value of the TU hardness function calculated for varying solution hardness. The results of the biological WET test closely matched our overall prediction, with significant correlation, having a p-value of 0.513 in one way ANOVA test (n=19). Therefore, this study revealed that the predicted toxicity of the metal mixture agreed well with the biological toxicity test when the modified LC(50) value was employed as the basis of hardness in the TU calculation.

  17. Structural and electronic properties of OsB2 : A hard metallic material

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  18. Hard metal lung disease: a case series.

    PubMed

    Mizutani, Rafael Futoshi; Terra-Filho, Mário; Lima, Evelise; Freitas, Carolina Salim Gonçalves; Chate, Rodrigo Caruso; Kairalla, Ronaldo Adib; Carvalho-Oliveira, Regiani; Santos, Ubiratan Paula

    2016-01-01

    To describe diagnostic and treatment aspects of hard metal lung disease (HMLD) and to review the current literature on the topic. This was a retrospective study based on the medical records of patients treated at the Occupational Respiratory Diseases Clinic of the Instituto do Coração, in the city of São Paulo, Brazil, between 2010 and 2013. Of 320 patients treated during the study period, 5 (1.56%) were diagnosed with HMLD. All of those 5 patients were male (mean age, 42.0 ± 13.6 years; mean duration of exposure to hard metals, 11.4 ± 8.0 years). Occupational histories were taken, after which the patients underwent clinical evaluation, chest HRCT, pulmonary function tests, bronchoscopy, BAL, and lung biopsy. Restrictive lung disease was found in all subjects. The most common chest HRCT finding was ground glass opacities (in 80%). In 4 patients, BALF revealed multinucleated giant cells. In 3 patients, lung biopsy revealed giant cell interstitial pneumonia. One patient was diagnosed with desquamative interstitial pneumonia associated with cellular bronchiolitis, and another was diagnosed with a hypersensitivity pneumonitis pattern. All patients were withdrawn from exposure and treated with corticosteroid. Clinical improvement occurred in 2 patients, whereas the disease progressed in 3. Although HMLD is a rare entity, it should always be included in the differential diagnosis of respiratory dysfunction in workers with a high occupational risk of exposure to hard metal particles. A relevant history (clinical and occupational) accompanied by chest HRCT and BAL findings suggestive of the disease might be sufficient for the diagnosis. Descrever aspectos relacionados ao diagnóstico e tratamento de pacientes com doença pulmonar por metal duro (DPMD) e realizar uma revisão da literatura. Estudo retrospectivo dos prontuários médicos de pacientes atendidos no Serviço de Doenças Respiratórias Ocupacionais do Instituto do Coração, localizado na cidade de S

  19. Universal Tool Grinder Operator Instructor's Guide. Part of Single-Tool Skills Program Machine Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Curriculum Development.

    The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…

  20. Electrochemical removal of metallic implants from Technovit 9100 New embedded hard and soft tissues prior to histological sectioning.

    PubMed

    Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank

    2013-11-01

    Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.

  1. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    NASA Astrophysics Data System (ADS)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  2. Assessment of vibration produced by the grinders used in the shipbuilding industry of Korea.

    PubMed

    Park, Hee-Sok; Yim, Sang-Hyuk

    2007-04-01

    The objective of this study is to estimate the prevalence of finger blanching among the workers in a shipyard of Korea using the dose-response relationship suggested by ISO 5349. The characteristics of vibration exposure produced by six types of grinders were investigated. Vibration measurement was made under the real work conditions. Exposure time was estimated by questionnaire and direct observation. In addition, cold provocation tests were performed, and the results from the tests were compared with the estimated prevalence. As a result, 4 hour-energy-equivalent frequency-weighted accelerations of the finishing grinding (FG) and the prepainting grinding (PG) jobs were 6.23 m/s(2) and 13.39 m/s(2), respectively. The mean exposure time for holding the grinders was 4.64 h per day. Using the ISO 5349 method, it was predicted that after exposure to vibration for 10.79 yr, about a half of the FG workers could develop finger blanching. For the PG workers, the corresponding predicted latency was 5.02 yr. A discrepancy was found between the results from the ISO relationship and those from the cold provocation tests. A linear regression model was suggested employing vibration acceleration and vibration exposure time as explanatory variables for vascular dysfunction.

  3. Comparison of tungsten carbide and stainless steel ball bearings for grinding single maize kernels in a reciprocating grinder

    USDA-ARS?s Scientific Manuscript database

    Reciprocating grinders can grind single maize kernels by shaking the kernel in a vial with a ball bearing. This process results in a grind quality that is not satisfactory for many experiments. Tungesten carbide ball bearings are nearly twice as dense as steel, so we compared their grinding performa...

  4. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  5. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE PAGES

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...

    2017-01-05

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  6. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.

    PubMed Central

    Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A

    1995-01-01

    OBJECTIVES--The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). RESULTS--No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. CONCLUSION--These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological). PMID:8535492

  7. Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness.

    PubMed

    Saglam, Dilek; Atli, Gülüzar; Canli, Mustafa

    2013-06-01

    Hardness is one of the most important factors in water chemistry as it affects fish physiology and metal toxicity. The aim of this study was to investigate osmoregulatory responses in the Nile tilapia Oreochromis niloticus exposed to copper and cadmium (1.0μg/mL) in soft water (SW) (hardness 80mg CaCO3/L and conductivity 1.77mS/cm) and hard water (HW) (hardness 320mg CaCO3/L and conductivity 5.80mS/cm) for 0, 1, 7 and 14 days. Following the exposures, Na(+)/K(+)-ATPase activity, ion and Cu levels in the gill, kidney and intestine were measured. There was no fish mortality within 14 days, except Cu exposure in SW which killed all fish between 8 and 12 days. Generally, Na(+)/K(+)-ATPase activity was altered by both metal exposures in the gill and kidney as it increased in HW condition, but decreased in SW condition. There were also alterations in Na(+)/K(+)-ATPase activity in the intestine as its activity generally decreased. Data, in general, showed that Cd was more effective on Na(+)/K(+)-ATPase activity comparing to Cu. However, ion levels altered mainly in the kidney and intestine. Tissue metal accumulation was higher in fish tissues from SW condition comparing to HW condition. Data represented here showed that the effects of metals differed in differing water hardness. This suggests that special attention should be paid to the water chemistry when natural monitoring studies are carried out. This study also suggests that the response of osmoregulation system of fish may be a sensitive indicator under stressful conditions in different natural waters. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal

    NASA Astrophysics Data System (ADS)

    Kushkhov, Kh. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.

    2010-08-01

    Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.

  9. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    PubMed

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  10. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  11. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  12. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  13. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  14. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    NASA Astrophysics Data System (ADS)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  15. Obsidianus lapis rugosity and hardness determination: fibre laser craftsmanship

    NASA Astrophysics Data System (ADS)

    Aguilar-Morales, A. I.; Velazquez-Gonzalez, J. S.; Marrujo-García, S.; Reyes-Sanchez, J. I.; Alvarez-Chávez, J. A.

    2014-05-01

    Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México there are different kinds of obsidianus lapis according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually obtaining a variety of shapes. Laser processing of natural stones is a relatively new topic. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final, characterization will be included in the presentation.

  16. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.R., E-mail: raymix@aliyun.com

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB regionmore » had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.« less

  17. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  18. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  19. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  20. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  1. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  2. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  3. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  4. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  5. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  6. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  7. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  8. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  9. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  10. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  11. Femtosecond ablation applied to deep-drilling of hard metals

    NASA Astrophysics Data System (ADS)

    Bruneau, Sebastien; Hermann, Joerg; Dumitru, Gabriel; Sentis, Marc L.

    2004-09-01

    Mechanisms responsible for the limitation of the aspect ratio obtained by deep drilling of hard metals are investigated in the present work. Cemented carbide targets have been irradiated with laser pulses of 100 fs duration and 100 μJ maximum energy delivered by a Ti:sapphire laser system. The experiments are carried out in different gas environments (vacuum, air, helium up to atmospheric pressure) with incident laser fluences ranging from 1 to 20 Jcm-2. During deep drilling, the laser-induced ablation plume is characterized by means of in-situ plasma diagnostics. Fast imaging is used to observe the expansion behavior of the plasma plume whereas time- and space-resolved emission spectroscopy is employed to analyze the plasma composition. After irradiation, the laser-produced craters were examined by optical microscopy. A correlation between the ablation plume characteristics and the morphological changes of the mciro-holes is established. The results indicate that nanoclusters, that present a significant part of the ablated material, are responsbile for the alteration of the crater shape in the high laser fluence regime.

  12. Effective hard x-ray spectrum of a tabletop Mather-type plasma focus optimized for flash radiography of metallic objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raspa, V.; Moreno, C.; Sigaut, L.

    The effective spectrum of the hard x-ray output of a Mather-type tabletop plasma focus device was determined from attenuation data on metallic samples using commercial radiographic film coupled to a Gd{sub 2}O{sub 2}S:Tb phosphor intensifier screen. It was found that the radiation has relevant spectral components in the 40-150 keV range, with a single maximum around 60-80 keV. The radiation output allows for 50 ns resolution, good contrast, and introspective imaging of metallic objects even through metallic walls. A numerical estimation of the induced voltage on the focus during the compressional stage is briefly discussed.

  13. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    NASA Astrophysics Data System (ADS)

    Wu, Weite; Tsai, C. H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.

  14. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  15. How to estimate hardness of crystals on a pocket calculator

    NASA Astrophysics Data System (ADS)

    Šimůnek, Antonín

    2007-05-01

    A generalization of the semiempirical microscopic model of hardness is presented and applied to currently studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC, RuB2 , ReB2 , OsB2 , IrN2 , PtN2 , and OsN2 crystals in various structural phases is predicted. It is found that none of the transition metal crystals is superhard, i.e., with hardness greater than 40GPa . The presented method provides materials researchers with a practical tool in the search for new hard materials.

  16. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  17. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process

    NASA Astrophysics Data System (ADS)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.

    2017-09-01

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.

  18. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2018-01-01

    The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.

  19. New Insights into Hard Phases of CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L. D.

    2012-01-01

    The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M23C6-type (M=Cr, Mo, Co) and M6C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ~100 nm fine grains. The nanosized grains were identified to be mostly of M23C6 type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M23C6 structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ~15.7 GPa, while the M23C6 carbides in the wrought alloy were twice as hard (~30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo. PMID:22659365

  20. Process for casting hard-faced, lightweight camshafts and other cylindrical products

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.; Wilson, Rick D.

    1996-01-01

    A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when the molten base metal solidifies.

  1. Enhancing wear resistance of working bodies of grinder through lining crushed material

    NASA Astrophysics Data System (ADS)

    Romanovich, A. A.; Annenko, D. M.; Romanovich, M. A.; Apukhtina, I. V.

    2018-03-01

    The article presents the analysis of directions of increasing wear resistance of working surfaces of rolls. A technical solution developed at the level of the invention is proposed, which is simple to implement in production conditions and which makes it possible to protect the roll surface from heavy wear due to surfacing of wear-resistant mesh material, cells of which are filling with grinding material in the process of work. Retaining them enables one to protect the roll surface from wear. The paper dwells on conditions of pressing materials in cells of eccentric rolls on the working surface with a grid of rectangular shape. The paper presents an equation for calculation of the cell dimension that provides the lining of the working surface by a mill material with respect to its properties. The article presents results of comparative studies on the grinding process of a press roller grinder (PRG) between rolls with and without a fusion-bonded mesh. It is clarified that the lining of rolls working surface slightly reduces the quality of the grinding, since the material thickness in the cell is small and has a finely divided and compacted structure with high strength.

  2. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  3. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Tsai, C.H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential ({Delta} T). These characteristics correlate with greater hot cracking susceptibilitymore » of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundaries.« less

  4. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lu; Nie, Zhihua

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less

  5. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    PubMed Central

    Wahab, Hassan A.; Noordin, M. Y.; Izman, S.

    2013-01-01

    Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models. PMID:23997678

  6. A Novel Approach to Hardness Testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; West, Harvey A.

    1996-01-01

    This paper gives a description of the application of a simple rebound time measuring device and relates the determination of relative hardness of a variety of common engineering metals. A relation between rebound time and hardness will be sought. The effect of geometry and surface condition will also be discussed in order to acquaint the student with the problems associated with this type of method.

  7. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  8. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE PAGES

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...

    2017-06-05

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  9. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  10. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  11. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    PubMed

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  12. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods

    PubMed Central

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783

  13. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    PubMed

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  14. In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombaert, Nooemi; Lison, Dominique; Van Hummelen, Paul

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profilemore » of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNF{alpha}), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.« less

  15. Epidemiologic survey of vibration syndrome among riveters, chippers and grinders in the railroad system of the People's Republic of China.

    PubMed

    Yu, Z S; Chao, H; Qiao, L; Qian, D S; Ye, Y H

    1986-08-01

    Vibration syndrome caused by hand-held vibrating tools in 14 locomotive and rolling stock plants in four regions of the People's Republic of China (south, north, middlewest, and northeast) and the influence of climatic factors on its prevalence rate were studied. For 1,028 male workers (705 riveters, 284 chippers, and 39 grinders), the prevalence rate of the syndrome was 13.4% and for a reference group of 256 workers it was 1.6%. The prevalence rate of white finger in the four regions differed and was higher in northeast and north China than in south and middlewest China. This finding suggests that cold climate and humidity may be causative factors of the vibration syndrome.

  16. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  17. Rugosity and hardness determination in obsidianus lapis for the design of an Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Alvarez-Chavez, J. A.; Aguilar-Morales, A. I.; Perez-Sanchez, G. G.; Morales-Ramirez, A. J.

    2015-01-01

    Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently, it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México, there are different kinds of obsidianus lapis which are classified according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually for obtaining a variety of shapes. Laser processing of natural stones is a relatively new area. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and by considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final characterization will be included in the presentation.

  18. Improvement of hot-carrier and radiation hardnesses in metal-oxide-nitride-oxide semiconductor devices by irradiation-then-anneal treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Liao, K.S.; Hwu, J.G.

    The hardnesses of hot-carrier and radiation of metal-oxide nitride-oxide semiconductor (MONOS) devices can be improved by the irradiation-then-anneal (ITA) treatments. Each treatment includes an irradiation of Co-60 with a total dose of 1M rads(SiO[sub 2]) and an anneal in N[sub 2] at 400 C for 10 min successively. This improvement can be explained by the release of SiO[sub 2]/Si interfacial strain.

  19. Effect of magneto rheological damper on tool vibration during hard turning

    NASA Astrophysics Data System (ADS)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  20. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  1. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  2. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  3. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    PubMed Central

    Tash, Mahmoud M.; Mahmoud, Essam R. I.

    2016-01-01

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature. PMID:28773564

  4. Surface texture and hardness of dental alloys processed by alternative technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  5. Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka?

    PubMed Central

    Jayasumana, Channa; Gunatilake, Sarath; Senanayake, Priyantha

    2014-01-01

    The current chronic kidney disease epidemic, the major health issue in the rice paddy farming areas in Sri Lanka has been the subject of many scientific and political debates over the last decade. Although there is no agreement among scientists about the etiology of the disease, a majority of them has concluded that this is a toxic nephropathy. None of the hypotheses put forward so far could explain coherently the totality of clinical, biochemical, histopathological findings, and the unique geographical distribution of the disease and its appearance in the mid-1990s. A strong association between the consumption of hard water and the occurrence of this special kidney disease has been observed, but the relationship has not been explained consistently. Here, we have hypothesized the association of using glyphosate, the most widely used herbicide in the disease endemic area and its unique metal chelating properties. The possible role played by glyphosate-metal complexes in this epidemic has not been given any serious consideration by investigators for the last two decades. Furthermore, it may explain similar kidney disease epidemics observed in Andra Pradesh (India) and Central America. Although glyphosate alone does not cause an epidemic of chronic kidney disease, it seems to have acquired the ability to destroy the renal tissues of thousands of farmers when it forms complexes with a localized geo environmental factor (hardness) and nephrotoxic metals. PMID:24562182

  6. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  7. Formative research to explore the acceptability and use of infant food grinders for the promotion of animal source foods and micronutrient powders in rural Peru.

    PubMed

    Creed-Kanashiro, Hilary; Wasser, Heather M; Bartolini, Rosario; Goya, Cecilia; Bentley, Margaret E

    2018-04-02

    According to global recommendations, quality diets for complementary feeding (CF) should include a diversity of foods including vitamin A-rich fruits and vegetables and sources of high-quality proteins and essential nutrients, particularly animal-source foods (ASF). A key barrier to feeding ASF surrounds beliefs that the preparation of foods of a thicker consistency may cause problems of digestion, "heaviness" or stomach problems, swallowing, and choking. The objective of this study was to explore, through systematic formative research, the acceptability, use, and feasibility of a simple technology, commercial infant food grinders, in two rural Peruvian settings where there is delayed and low consumption of complementary foods of a thick consistency, including ASF. Phase I explored the barriers, constraints, and opportunities related to the provision of foods of a thicker consistency with a focus on ASF. Phase II encompassed household behavioural trials with mothers and infants to assess the acceptability and use of the grinders in the home setting, using key concepts and messages developed from the information obtained during Phase I. The technology was highly acceptable, used by the majority of mothers (87.8%), and led to changes in cultural perceptions, facilitating increased feeding of appropriate textures (thick purees), ASF, and multimicronutrient powders. Energy, protein, and micronutrient intakes were all significantly greater after the household behavioural trials. This simple technology, paired with systematic formative research to appropriately promote its use across cultures, may have a significant effect on improving CF practices globally, particularly for young infants beginning CF at 6 months. © 2018 John Wiley & Sons Ltd.

  8. Automatic Tension Adjuster For Flexible-Shaft Grinder

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1990-01-01

    Flexible shaft of grinding tool automatically maintained in tension by air pressure. Probelike tool bent to reach hard-to-reach areas for grinding and polishing. Unless shaft held in tension, however, it rubs against its sheath, overheating and wearing out quickly. By taking up slack in flexible cable, tension adjuster reduces friction and enables tool to operate more efficiently, in addition to lengthening operating life.

  9. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  10. LC and ferromagnetic resonance in soft/hard magnetic microwires

    NASA Astrophysics Data System (ADS)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  11. Influence of photoactivation method and mold for restoration on the Knoop hardness of resin composite restorations.

    PubMed

    Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho

    2013-09-01

    The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.

  12. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  13. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  14. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  15. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  16. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  17. Designing superhard metals: The case of low borides

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun

    2018-04-01

    The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.

  18. Occurrence of cohesion of metals during combined plastic deformation

    NASA Technical Reports Server (NTRS)

    Aynbinder, S. G.; Klokova, E. F.

    1980-01-01

    Experiments were conducted to study the cohesion of metals with surface films of varying thickness and hardness. It was established that the deformation necessary for the occurrence of cohesion is determined by the correlation of mechanical properties of the films and the base metal. The greater the relative hardness of the film the lower the deformation necessary for the occurrence of cohesion. The films are as plastic as the base metal prevent cohesion, since in this case it is impossible for sections of metal to appear that are free of contaminants. The physical perculiarities of metals that determine their capability for coalescence under conditions of dry friction are the relative hardness and plasticity of the oxide films formed on their surface under atmospheric conditions.

  19. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  20. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2017-01-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  1. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness.

    PubMed

    Ayyıldız, Simel; Soylu, Elif Hilal; Ide, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-11-01

    The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with

  2. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

    PubMed Central

    Soylu, Elif Hilal; İde, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-01-01

    PURPOSE The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). CONCLUSION After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic

  3. A new, bright and hard aluminum surface produced by anodization

    NASA Astrophysics Data System (ADS)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  4. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  5. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  6. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  7. Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides

    NASA Astrophysics Data System (ADS)

    Kaner, Richard

    2013-06-01

    The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).

  8. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwestern streams, USA

    USGS Publications Warehouse

    Maret, T.R.; Cain, D.J.; MacCoy, D.E.; Short, T.M.

    2003-01-01

    Benthic macroinvertebrate assemblages, environmental variables, and associated mine density were evaluated during the summer of 2000 at 18 reference and test sites in the Coeur d'Alene and St. Regis River basins, northwestern USA as part of the US Geological Survey's National Water-Quality Assessment Program. Concentrations of Cd, Pb, and Zn in water and (or) streambed sediment at test sites in basins where production mine density was ???0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than concentrations at reference sites. Zn and Pb were identified as the primary contaminants in water and streambed sediment, respectively. These metal concentrations often exceeded acute Ambient Water Quality Criteria for aquatic life and the National Oceanic and Atmospheric Administration Probable Effect Level for streambed sediment. Regression analysis identified significant correlations between production mine density in each basin and Zn concentrations in water and Pb in streambed sediment (r2 = 0.69 and 0.65, p < 0.01). Metal concentrations in caddisfly tissue, used to verify site-specific exposures of benthos, also were highest at sites downstream from intensive mining. Benthic invertebrate taxa richness and densities were lower at sites downstream than upstream of areas of intensive hard-rock mining and associated metal enrichment. Benthic invertebrate metrics that were most effective in discriminating changes in assemblage structure between reference and mining sites were total number of taxa, number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, and densities of total individuals, EPT individuals, and metal-sensitive Ephemeroptera individuals.

  9. Amputations

    MedlinePlus

    ... powered and non-powered conveyors, printing presses, roll-forming and roll- bending machines, food slicers, meat grinders, ... processing machines, paper products machines, woodworking machines, metal-forming machines, and meat slicers. How can I get ...

  10. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  11. Cyclic Hardness Test PHYBALCHT: A New Short-Time Procedure to Estimate Fatigue Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar

    Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.

  12. Beyond the bed: effects of metal contamination on recruitment to bedded sediments and overlying substrata.

    PubMed

    Hill, Nicole A; Simpson, Stuart L; Johnston, Emma L

    2013-02-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  14. Spin-on metal oxide materials with high etch selectivity and wet strippability

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  15. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN

    DOE PAGES

    Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; ...

    2015-11-09

    Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is muchmore » stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.« less

  16. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fan, Meng; Liu, Yanhui

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approachingmore » that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important

  17. Incomplete sanitation of a meat grinder and ingestion of raw ground beef: contributing factors to a large outbreak of Salmonella typhimurium infection.

    PubMed

    Roels, T H; Frazak, P A; Kazmierczak, J J; Mackenzie, W R; Proctor, M E; Kurzynski, T A; Davis, J P

    1997-10-01

    Consumers in the United States continue to eat raw or undercooked foods of animal origin despite public health warnings following several well-publicized outbreaks. We investigated an outbreak of Salmonella serotype Typhimurium infection in 158 patients in Wisconsin during the 1994 Christmas holiday period. To determine the vehicle and source of the outbreak, we conducted cohort and case-control studies, and environmental investigations in butcher shop A. Eating raw ground beef purchased from butcher shop A was the only item significantly associated with illness [cohort study: relative risk = 5.8, 95% confidence interval (CI) = 1.5-21.8; case control study: odds ratio = 46.2, 95% CI = 3.8-2751]. Inadequate cleaning and sanitization of the meat grinder in butcher shop A likely resulted in sustained contamination of ground beef during an 8-day interval. Consumer education, coupled with hazard reduction efforts at multiple stages in the food processing chain, will continue to play an important role in the control of foodborne illness.

  18. Incomplete sanitation of a meat grinder and ingestion of raw ground beef: contributing factors to a large outbreak of Salmonella typhimurium infection.

    PubMed Central

    Roels, T. H.; Frazak, P. A.; Kazmierczak, J. J.; Mackenzie, W. R.; Proctor, M. E.; Kurzynski, T. A.; Davis, J. P.

    1997-01-01

    Consumers in the United States continue to eat raw or undercooked foods of animal origin despite public health warnings following several well-publicized outbreaks. We investigated an outbreak of Salmonella serotype Typhimurium infection in 158 patients in Wisconsin during the 1994 Christmas holiday period. To determine the vehicle and source of the outbreak, we conducted cohort and case-control studies, and environmental investigations in butcher shop A. Eating raw ground beef purchased from butcher shop A was the only item significantly associated with illness [cohort study: relative risk = 5.8, 95% confidence interval (CI) = 1.5-21.8; case control study: odds ratio = 46.2, 95% CI = 3.8-2751]. Inadequate cleaning and sanitization of the meat grinder in butcher shop A likely resulted in sustained contamination of ground beef during an 8-day interval. Consumer education, coupled with hazard reduction efforts at multiple stages in the food processing chain, will continue to play an important role in the control of foodborne illness. PMID:9363010

  19. Spin-on metal oxide materials for N7 and beyond patterning applications

    NASA Astrophysics Data System (ADS)

    Mannaert, G.; Altamirano-Sanchez, E.; Hopf, T.; Sebaai, F.; Lorant, C.; Petermann, C.; Hong, S.-E.; Mullen, S.; Wolfer, E.; Mckenzie, D.; Yao, H.; Rahman, D.; Cho, J.-Y.; Padmanaban, M.; Piumi, D.

    2017-04-01

    There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.

  20. Metallic Scaffolds for Bone Regeneration

    PubMed Central

    Alvarez, Kelly; Nakajima, Hideo

    2009-01-01

    Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.

  1. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  2. Highly crystalline inverse opal transition metal oxides via a combined assembly of soft and hard chemistries.

    PubMed

    Orilall, M Christopher; Abrams, Neal M; Lee, Jinwoo; DiSalvo, Francis J; Wiesner, Ulrich

    2008-07-16

    A combined assembly of soft and hard chemistries is employed to generate highly crystalline three-dimensionally ordered macroporous (3DOM) niobia (Nb2O5) and titania (TiO2) structures by colloidal crystal templating. Polystyrene spheres with sp2 hybridized carbon are used in a reverse-template infiltration technique based on the aqueous liquid phase deposition of the metal oxide in the interstitial spaces of a colloidal assembly. Heating under inert atmosphere as high as 900 degrees C converts the polymer into sturdy carbon that acts as a scaffold and keeps the macropores open while the oxides crystallize. Using X-ray diffraction it is demonstrated that for both oxides this approach leads to highly crystalline materials while heat treatments to lower temperatures commonly used for polymer colloidal templating, in particular for niobia, results in only weakly crystallized materials. Furthermore it is demonstrated that heat treatment directly to higher temperatures without generating the carbon scaffold leads to a collapse of the macrostructure. The approach should in principle be applicable to other 3DOM materials that require heat treatments to higher temperatures.

  3. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Liu, Qing; Chen, Weilun; Wan, Min; Li, Xiaocheng; Wang, Lili; Xue, Lihong; Zhang, Wuxing

    2018-02-01

    Porous hard carbons are synthesized via carbonizing lotus stems with naturally hierarchical structures. The hard carbon carbonized at 1400 °C (LS1400) delivers a total capacity 350 mAh g-1 in the current density of 100 mA g-1 and a plateau capacity of 250 mAh g-1. Even cycled at 100 mA g-1 after 450 cycles, the capacity still retains 94%. Further investigation shows that the sodium storage of LS carbons involves Na+ adsorption in the defect sites, Na+ insertion and Na metal deposition in the closed pores. However, the Na metal deposition in closed pores mainly contribute to the plateau capacity, leading to the excellent sodium storage performance of LS1400 with a large closed pore ratio of 66%. The results show that the intrinsic structure of natural biomass can inspire us to design hard carbon with large closed pore ratio as excellent anode for sodium ion batteries.

  4. Clean Metal Finishing Alternatives

    DTIC Science & Technology

    2006-05-01

    Cr, must heat treat for hardness 4 4 Trivalent chrome Trivalent plating chemistry Varying success, some must be brush plate 3 3 Alloy plating...metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition/ Alloying (ESD/ ESA) Microarc welding Localized repair of non...Alternatives to chromate conversion coatings Al TriChrome Pretreatment (TCP)* – AnoChem TCP, Aluminescent, TCP-HF Trivalent Cr3+ conversion with Zr

  5. EVALUATING THE ROLE OF ION COMPOSITION ON THE TOXICITY OF COPPER TO CERIODAPHNIA DUBIA IN VERY HARD WATERS

    EPA Science Inventory

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States. - - - Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g. alkalinity ...

  6. First-principles modeling of hardness in transition-metal diborides

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund

    2009-07-01

    Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.

  7. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  8. Designing Superhard Materials by Incorporating Boron Into Heavy Transition Metals

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Li, Anhu; Zhao, Jianzhi; Zhang, Wenqing

    First-principles calculations on the incompressibility, elasticity and hardness of the Os, OsB2, Re, and ReB2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re, which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB2 and OsB2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.

  9. Substantiation of the ratio of the sample thickness to the indentation depth in hardness measurements

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu.; Terent'ev, E. V.; Demidov, A. N.

    2016-12-01

    The depths to which plastic deformation occurs under ball indentation of a steel plate at various loads is determined. It is established that the ratio of the depth that plastic deformation reaches to the indentation depth is constant (approximately 15) independently of the indentation load. This finding allows us to conclude that this ratio should be held no less than 15 in hardness measurements. Experiments demonstrate that the lower the hardness of the metal substrate, the larger the decrease in the measured hardness when the ratio is lower than 15.

  10. Evaluation of the Various Drying Methods on Surface Hardness of Type IV Dental Stone

    PubMed Central

    Sudhakar, A; Srivatsa, G; Shetty, Rohit; Rajeswari, C L; Manvi, Supriya

    2015-01-01

    Background: Studies regarding the effect of various methods to increase the surface hardness of Type IV dental stone are not conclusive. Therefore, this study was carried out to evaluate the effect of air drying, micro oven drying and die hardener on surface hardness of Type IV dental stone. Materials and Methods: A standard metal die was fabricated; polyvinyl siloxane impression material was used to make the molds of metal die. A total of 120 specimens were obtained from two different die stones and were grouped as Group A (kalrock) and Group B (pearl stone), and were subjected to air drying for 24 h, micro oven drying and application of die hardener. These models were then subjected to surface hardness testing using the knoop hardness instrument. The obtained data were subjected to statistical analysis. Results: The hardness of Group A specimens was 64 ± 0.54 Knoop hardness number (KHN) after application of die hardener, 60.47 ± 0.41 KHN after 24 h air drying, 58.2 ± 0.88 after microwave oven drying and 24.6 ± 0.4 after 1 h air drying. The hardness of Group B specimens was 45.59 ± 0.63 KHN after application of die hardener, 40.2 ± 0.63 KHN after 24 h air drying, 38.28 ± 0.55 KHN after microwave oven drying and 19.91 ± 0.64 KHN after 1 h air drying. Conclusion: Group A showed better results than Group B at all times. Application of the die hardener showed highest hardness values followed in the order by 24 h air drying, microwave oven drying and 1 h air drying in both groups. The study showed that air drying the dies for 24 h followed by application of a single layer of the die hardener produced the best surface hardness and is recommended to be followed in practice. PMID:26124610

  11. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  12. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  13. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  14. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    PubMed

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  15. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    NASA Astrophysics Data System (ADS)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  16. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  17. CHARACTERIZATION OF METAL BENZOTRIAZOLES AND RELATED POLYMERS

    EPA Science Inventory

    Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons...

  18. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  19. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  20. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  1. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  2. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  3. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  4. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  5. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    PubMed

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  6. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  7. [Analysis of 2 patients with occupational hard mental lung disease].

    PubMed

    Ding, Bangmei; Ding, Lu; Yu, Bin; Fan, Cunhua; Han, Lei; Hu, Jinmei; Zhu, Baoli

    2015-01-01

    We sought to master the clinical characteristics and prognosis of hard mental lung disease, improving this disease's diagnosis and treatment quality. We recruited two suspected patients with hard mental lung disease and collected their occupational history, examination results of occupational health, and past medical records. By virtue of laboratory tests, high Kv chest radiography, CT and HRCT of chest, fiberoptic bronchoscopy and ECG examination, diagnostic report was synthesized respectively by respiratory physicians and pathologist from three different agencies. Then the report was submitted to diagnosis organizations of occupational disease, and diagnostic conclusion of occupational disease was drawn after discussion by at least three diagnosticians of occupational disease. We found that both of the two suspected patients were exposed to dusts of hard metal, and length of exposure service ranged from 8 to 9 years. Clinical manifestations were dominated by dry cough, wheezing after activities, and pathological manifestation was characteristic giant cell interstitial pneumonia. The prognosis and outcome of the disease were different. According to exact occupational exposure history, clinical manifestations, combined with the results of high Kv chest radiography, CT of chest and pathological manifestation, it can be diagnosed with hard mental lung disease.

  8. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  9. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  10. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.

    PubMed

    Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K

    2003-10-01

    One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.

  11. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less

  12. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    PubMed

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  13. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  14. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    PubMed Central

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  15. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  16. Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L

    NASA Astrophysics Data System (ADS)

    Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman

    2018-04-01

    One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.

  17. Microindentation hardness testing of coatings: techniques and interpretation of data

    NASA Astrophysics Data System (ADS)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  18. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    PubMed

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  19. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    PubMed Central

    Feige, Katja; dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-01-01

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr6+) electrolyte with a reduced chromium trioxide (CrO3) content, both without solid additives and (c) with the addition of fullerene (C60) nanoparticles; and (d) a trivalent chromium (Cr3+) electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23–40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect. PMID:29261128

  20. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  1. A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness

    PubMed Central

    Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.

    2014-01-01

    Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043

  2. The Parameterisation of Metal Centred Redox Couples

    DTIC Science & Technology

    1992-05-29

    of any ligand in the Series is independent of the metal ion to which it is attached, and 2) The contribution of a set of n uigands is additive, i.e...otherwise it would not work, or would have many exceptions. One may expect, for example, that the sequence of EL(L) values for a soft metal ion ...such as Cr(O) would surely be different than for a hard metal ion such as Ta(V), L~e. the old idea that soft Uganda prefer to bind to soft metal ions

  3. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  4. Surface roughness analysis after laser assisted machining of hard to cut materials

    NASA Astrophysics Data System (ADS)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  5. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  6. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base.

    PubMed

    Abou-Hussein, Azza A A; Linert, Wolfgang

    2012-09-01

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit

  7. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    NASA Astrophysics Data System (ADS)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  8. Metal boot permits fabrication of hermetically sealed splices in metal sheathed instrumentation cables

    NASA Technical Reports Server (NTRS)

    Chambers, G.

    1966-01-01

    Metal boot splices hard sheathed instrumentation cables used with high temperature strain gages and thermocouples. Silver brazing the conductors together, hermetically seals the splice. This boot is a highly reliable sealed splice which is equally effective at cryogenic temperatures, high temperatures, nuclear environments, and combinations of the above.

  9. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  10. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  11. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  12. Determinants explaining the variability of hand-transmitted vibration emissions from two different work tasks: grinding and cutting using angle grinders.

    PubMed

    Liljelind, Ingrid; Pettersson, Hans; Nilsson, Leif; Wahlström, Jens; Toomingas, Allan; Lundström, Ronnie; Burström, Lage

    2013-10-01

    There are numerous factors including physical, biomechanical, and individual that influence exposure to hand-transmitted vibration (HTV) and cause variability in the exposure measurements. Knowledge of exposure variability and determinants of exposure could be used to improve working conditions. We performed a quasi-experimental study, where operators performed routine work tasks in order to obtain estimates of the variance components and to evaluate the effect of determinants, such as machine-wheel combinations and individual operator characteristics. Two pre-defined simulated work tasks were performed by 11 operators: removal of a weld puddle of mild steel and cutting of a square steel pipe. In both tasks, four angle grinders were used, two running on compressed air and two electrically driven. Two brands of both grinding and cutting wheels were used. Each operator performed both tasks twice in a random order with each grinder and wheel and the time to complete each task was recorded. Vibration emission values were collected and the wheel wear was measured as loss of weight. Operators' characteristics collected were as follows: age, body height and weight, length and volume of their hands, maximum hand grip force, and length of work experience with grinding machines (years). The tasks were also performed by one operator who used four machines of the same brand. Mixed and random effects models were used in the statistical evaluation. The statistical evaluation was performed for grinding and cutting separately and we used a measure referring to the sum of the 1-s r.m.s. average frequency-weighted acceleration over time for completing the work task (a(sa)). Within each work task, there was a significant effect as a result of the determinants 'the machine used', 'wheel wear', and 'time taken to complete the task'. For cutting, 'the brand of wheel' used also had a significant effect. More than 90% of the inherent variability in the data was explained by the

  13. Evaluating the role of ion composition on the toxicity of copper to Ceriodaphnia dubia in very hard waters.

    PubMed

    Gensemer, Robert W; Naddy, Rami B; Stubblefield, William A; Hockett, J Russell; Santore, Robert; Paquin, Paul

    2002-09-01

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States over the range of 25-400 mgl(-1) (as CaCO(3)). However, waters in the arid west of the US frequently exceed 400 mgl(-1) hardness, and the applicability of hardness-toxicity relationships in these waters is unknown. Acute toxicity tests with Ceriodaphnia dubia were conducted at hardness levels ranging from approximately 300 to 1,200 mgl(-1) using reconstituted waters that mimic two natural waters with elevated hardness: (1) alkaline desert southwest streams (Las Vegas Wash, NV), and (2) low alkalinity waters from a CaSO(4)-treated mining effluent in Colorado. The moderately-alkaline EPA synthetic hard water was also included for comparison. Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g., alkalinity or other correlated factors). The hardness equations used in regulatory criteria, therefore, may not provide an accurate level of protection against copper toxicity in all types of very hard waters. However, the mechanistic Biotic ligand model generally predicted copper toxicity within +/-2X of observed EC(50) values, and thus may be more useful than hardness for modifying water quality criteria.

  14. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  15. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  16. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization.

    PubMed

    Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei

    2012-10-01

    A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Induction slag reduction process for purifying metals

    DOEpatents

    Traut, Davis E.; Fisher, II, George T.; Hansen, Dennis A.

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  18. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Fong, Dillon D.; Herbert, F. William

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  19. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE PAGES

    Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...

    2018-04-17

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  20. Correlation of impression removal force with elastomeric impression material rigidity and hardness.

    PubMed

    Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob

    2013-07-01

    Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p

  1. Does hard insertion and space improve shock absorption ability of mouthguard?

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Handa, Jun; Naitoh, Kaoru; Kurokawa, Katsuhide; Shibusawa, Mami; Nakajima, Kazunori; Kawamura, Shintaro

    2006-04-01

    Mouthguards are expected to reduce sports-related orofacial injuries. Numerous studies have been conduced to improve the shock absorption ability of mouthguards using air cells, sorbothane, metal wire, or hard material insertion. Most of these were shown to be effective; however, the result of each study has not been applied to clinical use. The aim of this study was to develop mouthguards that have sufficient prevention ability and ease of clinical application with focus on a hard insertion and space. Ethylene vinyl acetate (EVA) mouthguard blank used was Drufosoft and the acrylic resin was Biolon (Dreve-Dentamid GMBH, Unna, Germany). Three types of mouthguard samples tested were constructed by means of a Dreve Drufomat (Type SO, Dreve-Dentamid) air pressure machine: the first was a conventional laminated type of EVA mouthguard material; the second was a three layer type with acrylic resin inner layer (hard-insertion); the third was the same as the second but with space that does not come into contact with tooth surfaces (hard + space). As a control, without any mouthguard condition (NOMG) was measured. A pendulum type impact testing machine with interchangeable impact object (steel ball and baseball) and dental study model (D17FE-NC.7PS, Nissin, Tokyo, Japan) with the strain gages (KFG-1-120-D171-11N30C2: Kyowa, Tokyo, Japan) applied to teeth and the accelerometer to the dentition (AS-A YG-2768 100G, Kyowa) were used to measure transmitted forces. Statistical analysis (anova, P < 0.01) showed significant differences among four conditions of NOMG and three different mouthguards in both objects and sensor. About acceleration: in a steel ball which was a harder impact object, shock absorption ability of about 40% was shown with conventional EVA and hard-insertion and about 50% with hard + space. In a baseball that was softer compared with steel ball, a decrease rate is smaller, reduction (EVA = approximately 4%, hard-insertion = approximately 12%, hard + space

  2. Effects of lifestyle on micronuclei frequency in human lymphocytes in Japanese hard-metal workers.

    PubMed

    Huang, Peixin; Huang, Bin; Weng, Huachun; Nakayama, Kunio; Morimoto, Kanehisa

    2009-04-01

    The risks of cardiovascular disease, cancer, and other major causes of mortality are largely attributable to lifestyle factors such as smoking, alcohol drinking, hours of working and sleeping, physical activity, diet, and stress. Earlier studies have suggested that an unhealthy lifestyle is also associated with increased lymphocyte sensitivity to mutagens, oxidative DNA damage level, and leukocyte DNA damage. In order to explore the genotoxicity of unhealthy lifestyle, we evaluated the effect of overall lifestyle as well as some individual lifestyle factors on micronuclei (MN) frequency in cultured human lymphocytes. The study was conducted among 208 healthy adult (19 to 59 years) male Japanese hard-metal workers. The subjects were divided into groups according to their self-reported good, moderate, and poor lifestyles based on their responses to a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, sleeping hours, working hours, physical exercise, eating breakfast, balanced nutrition, and mental stress), the presence or absence of each of which was summed to obtain a health practice index (HPI: range 0-8). Peripheral blood was taken and the cytokinesis-block micronuclei (CBMN) assay was performed. Total lifestyle quality as measured by the HPI was strongly negatively associated with MN frequency in cultured human lymphocytes (p<0.01). Nutritional imbalance, lack of regular exercise (<2 times per week), insufficient sleep (< or =6 h per day), and overtime working (> or =9 h per day) each contributed significantly to higher MN frequency (all p<0.05). In the smoker group, a significantly higher MN frequency was only found in heavy smokers (p<0.05). On the other hand, mental stress, eating breakfast, and alcohol drinking had no effect on MN frequency. Taken together, these findings indicate that poor lifestyle habits significantly increase MN frequency in human lymphocytes.

  3. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  4. Chemistry of carcinogenic metals.

    PubMed Central

    Martell, A E

    1981-01-01

    The periodic distribution of known and suspected carcinogenic metal ions is described, and the chemical behavior of various types of metal ions is explained in terms of the general theory of hard and soft acids and bases. The chelate effect is elucidated, and the relatively high stability of metal chelates in very dilute solutions is discussed. The concepts employed for the chelate effect are extended to explain the high stabilities of macrocyclic and cryptate complexes. Procedures for the use of equilibrium data to determine the speciation of metal ions and complexes under varying solution conditions are described. Methods for assessing the interferences by hydrogen ion, competing metal ions, hydrolysis, and precipitation are explained, and are applied to systems containing iron(III) chelates of fourteen chelating agents designed for effective binding of the ferric ion. The donor groups available for the building up of multidentate ligands are presented, and the ways in which they may be combined to achieve high affinity and selectivity for certain types of metal ions are explained. PMID:6791915

  5. First-principles calculation of entropy for liquid metals.

    PubMed

    Desjarlais, Michael P

    2013-12-01

    We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.

  6. First-principles calculation of entropy for liquid metals

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael P.

    2013-12-01

    We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.

  7. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  8. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    PubMed

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  9. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  10. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  11. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  12. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskoković, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials

  13. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  14. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  15. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  16. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  17. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGES

    Zou, Yongtao; Li, Qiang; Qi, Xintong; ...

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (T C) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower T C have been addressed by themore » weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  18. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    DOEpatents

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  19. Evidence for a Hard Ionizing Spectrum from a z = 6.11 Stellar Population

    NASA Astrophysics Data System (ADS)

    Mainali, Ramesh; Kollmeier, Juna A.; Stark, Daniel P.; Simcoe, Robert A.; Walth, Gregory; Newman, Andrew B.; Miller, Daniel R.

    2017-02-01

    We present the Magellan/FIRE detection of highly ionized C IV λ1550 and O III]λ1666 in a deep infrared spectrum of the z = 6.11 gravitationally lensed low-mass galaxy RXC J2248.7-4431-ID3, which has previously known Lyα. No corresponding emission is detected at the expected location of He II λ1640. The upper limit on He II, paired with detection of O III] and C IV, constrains possible ionization scenarios. Production of C IV and O III] requires ionizing photons of 2.5-3.5 Ryd, but once in that state their multiplet emission is powered by collisional excitation at lower energies (˜0.5 Ryd). As a pure recombination line, He II emission is powered by 4 Ryd ionizing photons. The data therefore require a spectrum with significant power at 3.5 Ryd but a rapid drop toward 4.0 Ryd. This hard spectrum with a steep drop is characteristic of low-metallicity stellar populations, and less consistent with soft AGN excitation, which features more 4 Ryd photons and hence higher He II flux. The conclusions based on ratios of metal line detections to helium non-detection are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing handful of reionization-era galaxies with UV emission line ratios distinct from the general z=2{--}3 population in a way that suggests hard ionizing spectra that do not necessarily originate in AGNs.

  20. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple

  1. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  2. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    PubMed

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  3. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  4. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  5. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  6. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  7. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  8. A bi-prism interferometer for hard x-ray photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakovic, A.F.; Siddons, D.; Stein, A.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  9. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  10. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  11. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  12. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  13. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  14. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  15. Evaluation and comparison of the levels of occupational exposure to cobalt during dry and/or wet hard metal sharpening. Environmental and biological monitoring.

    PubMed

    Imbrogno, P; Alborghetti, F

    1994-06-30

    To investigate risks to hard metal tool sharpeners, 80 factories in the Lombardia Region (North Italy) were selected and examined. The scope of the survey consisted of verifying and quantifying that risk, so as to be able to control it and reduce it as far as is possible. We singled out a group of 12 factories, comprising approximately 750 workers 60 of whom were exposed to cobalt, in which operations such as sharpening with diamond grinding stones are normally carried out. In those factories, the risk was quantified by determining the concentration of cobalt in dust, collected by means of personal and fixed samplers (23 measurements) during sharpening operations. The station had no local ventilation device; sharpening is mainly performed wet and has been found to present a greater risk than those where sharpening is exclusively performed dry. Results were confirmed by biological monitoring which showed the presence of cobalt excreted in exposed workers' urine collected at the end of the work shift.

  16. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  17. Determination of Pesticide Dermal Transfer to Operators & Agricultural Workers through Contact with Sprayed Hard Surfaces.

    PubMed

    Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Charistou, Agathi N; Gerritsen-Ebben, Rianda; Glass, C Richard; Machera, Kyriaki

    2018-05-20

    In the present study, the dermal transfer rate of pesticides to agricultural workers occurring via contact with sprayed hard surfaces was investigated. Cotton gloves were used as dosimeters to collect residues from hard surfaces contaminated by pesticides in greenhouses. Dosimeters, either dry or moistened, were in contact with wood, metal and plastic surfaces previously sprayed. The experimental approach applied mimicked the typical hand contact. Moistened cotton gloves were used to simulate hand moisture from dew/condensation or rainfall. The effect of total duration of contact on the final hand exposure via transfer was investigated. The higher duration contact tested (50-sec) resulted in the higher transfer rates for metal and plastic surfaces; no such effect was noted in case of the wood surface. The pesticide amount transferred from the metal and plastic surfaces to wet gloves was greater than the one transferred to dry gloves. Such trend was not observed for the wood surface. Transfer rates varied from 0.46-77.62% and 0.17-16.90% for wet and dry samples, respectively. The current study has generated new data to quantify the proportion of pesticide deposits dislodged from three different non-crop surfaces when in contact with dry or wet gloves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  19. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  20. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Ali, Abdel-Hamid A. M.; Hamed, Mohamed A.; Abd El-Azim, Hoda

    2011-03-01

    Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za'farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha'b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha'b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.

  1. Hardness, elastic, and electronic properties of chromium monoboride

    DOE PAGES

    Han, Lei; Wang, Shanmin; Zhu, Jinlong; ...

    2015-06-03

    Here, we report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shearmore » deformation.« less

  2. Effect of Nickel Contents on the Microstructure and Mechanical Properties for Low-Carbon Bainitic Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong

    2017-05-01

    Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.

  3. Quantitative 3D imaging of yeast by hard X-ray tomography.

    PubMed

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  4. No Difference in Reoperations at 2 Years Between Ceramic-on-metal and Metal-on-metal THA: A Randomized Trial.

    PubMed

    Engh, C Anderson; Sritulanondha, Supatra; Korczak, Abigail; Whalen, Terrence David; Naudie, Douglas D R; McCalden, Richard W; MacDonald, Steven J

    2016-02-01

    Hard-on-hard bearings for total hip arthroplasty continue to warrant analysis even though crosslinked polyethylene is performing very well. Ceramic-on-metal (CoM) has low in vitro wear and did well in an early clinical trial. We report on a prospective, randomized, multicenter investigational device trial comparing CoM with metal-on-metal (MoM). (1) Is there a difference in the number or type of revisions comparing CoM with MoM? (2) Are cobalt and chromium metal levels different for CoM and MoM THA? Between August 2005 and October 2006, of 1015 patients screened, 390 patients were enrolled at 11 centers and randomized to 194 CoM and 196 MoM bearings. There was no difference in the preoperative patient demographics between the study groups. Mean followup was 50 months (range, 22-75 months). Seventy-two patients from two centers had metal level analysis. With the numbers available, there was no difference in the proportion of patients undergoing revisions between the MoM and the CoM cohorts (MOM: 3% [six of 196]; COM: 1.5% [three of 194]; p = 0.50). Four MoM revisions were unrelated to the bearing surface. Two had bearing surface-related reoperations, one for an aseptic lymphocyte-dominated vasculitis-associated lesion and one for elevated metal levels with acetabular malposition. None of the CoM revisions were related to the bearing surface. The metal level analysis revealed that in contrast to the CoM, the MoM bearing group had increasing values of erythrocyte and serum cobalt from 1 to 5 years (CoM erythrocyte 0.45-0.55 ppb, p = 0.11 and CoM serum 0.88-0.85, p = 0.55, and MoM erythrocyte 0.32-0.51 ppb, p < 0.01 and MoM serum 0.65-1.01 ppb, p < 0.01). In addition, the MoM cobalt levels in erythrocytes and serum at 5 years were more variable than at 1 year (erythrocyte interquartile range [IQR], 0.26-0.44 to 0.31-1.21 ppb and serum IQR, 0.42-0.80 to 0.64-2.20 ppb, p < 0.02 for both). Although both bearings performed well at short-term followup, the CoM bearing group

  5. Grinding tool for making hemispherical bores in hard materials

    DOEpatents

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  6. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  7. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  8. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    PubMed

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  10. The effect of hard water scale buildup and water treatment on residential water heater performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbert, S.G.; Stickford, G.H.; Newman, D.C.

    Conventional gas and electric storage-type residential water heaters were operated at four different U.S. cities under accelerated test conditions to measure the effect of scale buildup on efficiency and to assess the benefits and limitations of common water treatment methods. The four selected test sites had hard water supplied with expected scale-forming tendencies and were located in Columbus, OH; Lisle, IL; Roswell, NM; and Marshall, MN. The main conclusions are as follows. After 60 lbs (27 kg) of scale buildup at two of the test sites (representing an estimated 20 years of equivalent scale buildup), the efficiency of the gasmore » water heaters gradually declined about 5%, while that of the electric water heaters remained constant. However, the buildup of scale in the electric heaters caused the electric heating element to fail periodically, and in the gas-fired heaters, it caused the tank metal temperatures near the burner to operate hotter. Treated water (either softened, softened plus polyphosphate, or hard plus polyphosphate) effectively reduced scale buildup and tended to reduce the corrosion rates of the metal test coupons in hot water.« less

  11. Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.

    PubMed

    Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros

    2005-11-01

    Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.

  12. Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    NASA Astrophysics Data System (ADS)

    Marini, C. D.; Fatchurrohman, N.

    2018-04-01

    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement.

  13. Calcium and magnesium content in hard tissues of rats under condition of subchronic lead intoxication.

    PubMed

    Todorovic, Tatjana; Vujanovic, Dragana; Dozic, Ivan; Petkovic-Curcin, Aleksandra

    2008-03-01

    Lead manifests toxic effects in almost all organs and tissues, especially in: the nervous system, hematopoietic system, kidney and liver. This metal has a special affinity for deposition in hard tissue, i.e., bones and teeth. It is generally believed that the main mechanism of its toxicity relies on its interaction with bioelements, especially with Ca and Mg. This article analyses the influence of Pb poisoning on Ca and Mg content in hard tissues, (mandible, femur, teeth and skull) of female and young rats. Experiments were carried out on 60 female rats, AO breed, and on 80 of their young rats (offspring). Female rats were divided into three groups: the first one was a control group, the second one received 100 mg/kg Pb2+ kg b.wt. per day in drinking water, the third one received 30 mg/kg Pb(2+) kg b.wt. per day in drinking water. Young rats (offspring) were divided into the same respective three groups. Lead, calcium and magnesium content in hard tissues (mandible, femur, teeth-incisors and skull) was determined by flame atomic absorption spectrophotometry in mineralized samples. There was a statistically significant Pb deposition in all analyzed female and young rat hard tissues. Ca and Mg contents were significantly reduced in all female and young rat hard tissues. These results show that Pb poisoning causes a significant reduction in Ca and Mg content in animal hard tissues, which is probably the consequence of competitive antagonism between Pb and Ca and Mg.

  14. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  15. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  16. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  17. A Study on Effect of Graphite Particles on Tensile, Hardness and Machinability of Aluminium 8011 Matrix Material

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.

    2016-09-01

    Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.

  18. Assessment of the hazard posed by metal forms in water and sediments.

    PubMed

    Wojtkowska, Małgorzata; Bogacki, Jan; Witeska, Anna

    2016-05-01

    This study aimed to describe the prevalence heavy metals (Zn, Cu, Pb, and Cd) forms in the ecosystem of the Utrata river in order to determine the mobile forms and bioavailability of metals. To extract the dissolved forms of metals in the water of the Utrata PHREEQC2 geochemical speciation model was used. The river waters show a high percentage of mobile and eco-toxic forms of Zn, Cu and Pb. The percentage of carbonate forms for all the studied metals was low (<1%). The content of carbonates in the water and the prevailing physical and chemical conditions (pH, hardness, alkalinity) reduce the share of toxic metal forms, which precipitate as hardly soluble carbonate salts of Zn, Cu, Cd and Pb. Cu in the water in 90% of cases appeared in the form of hydroxyl compounds. To identify the forms of metal occurrence in the sediments Tessier's sequential extraction was used, allowing to assay bound metals in five fractions (ion exchange, carbonate, adsorption, organic, residual), whose nature and bioavailability varies in aquatic environments. The study has shown a large share of metals in labile and bioavailable forms. The speciation analysis revealed an absolute dominance of the organic fraction in the binding of Cu and Pb. Potent affinity for this fraction was also exhibited by Cd. The rations of exchangeable Zn and Cu forms in the sediments were similar. Both these metals had the lowest share in the most mobile ion exchange fraction. Copyright © 2016. Published by Elsevier B.V.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, L.G.; Brink, E.W.; Checko, P.J.

    In a 3-month period, three men who had worked for 5 to 19 years as welders or grinders of steel castings in a foundry acquired pneumonia caused by Acinetobacter calcoaceticus variety anitratus serotype 7J. Two of the men died, and postmortem examination showed mixed-dust pneumoconiosis with iron particles in the lungs. A calcoaceticus variety anitratus serotype 7J was isolated from the air in the foundry but the source was not found. The prevalence of antibody titers of 64 or greater to the 7J strain was significantly higher among foundry workers (15%) than among community controls (2%) (p less than 0.01).more » Sampling showed that the concentrations of total and metallic particles (especially iron) and of free silica in air inhaled by welders and grinders at the foundry frequently exceeded acceptable levels. These findings suggest that chronic exposure to such particles may increase susceptibility to infection by this organism, which rarely affects healthy people.« less

  20. Mesoporous metallic rhodium nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke

    2017-05-01

    Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.

  1. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  2. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  3. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  4. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  5. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  6. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  7. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  8. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  9. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  10. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    PubMed

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  11. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    PubMed Central

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  12. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  13. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  14. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  15. Janka hardness using nonstandard specimens

    Treesearch

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  16. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    PubMed Central

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-01-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888

  17. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    NASA Astrophysics Data System (ADS)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  18. Angle-Dependent Magnetoresistance in Organic Metals

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen J.; Singleton, John

    1996-12-01

    Recent experimental studies of the angle-dependent magnetoresistance in various organic metals have been remarkably successful in elucidating the nature of the low-temperature ground state and providing information about the Fermi surface shape which is hard or impossible to obtain using other techniques. We review various theoretical approaches to describe angel-dependent magnetoresistance and a number of important experimental results which have been obtained.

  19. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  20. Experimental study on internal cooling system in hard turning of HCWCI using CBN tools

    NASA Astrophysics Data System (ADS)

    Ravi, A. M.; Murigendrappa, S. M.

    2018-04-01

    In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.

  1. Study of irradiation damage induced by He2+ ion irradiation in Ni62Ta38 metallic glass and W metal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonan; Mei, Xianxiu; Zhang, Qi; Li, Xiaona; Wang, Yingmin; Wang, Younian

    2017-09-01

    Metallic glasses are considered to possess good resistant against irradiation due to their inherent structural long-range disorder and a lack of grain boundaries. The He2+ with an energy of 300 keV was used to irradiate Ni62Ta38 binary metallic glass to investigate its resistance against the irradiation, and the irradiated behaviour of the metallic glass was compared with that of W metal. The irradiation fluence range over 2.0 × 1017 ions/cm2-1.6 × 1018 ions/cm2. The TEM results show that nanocrystals of μ-NiTa phase and Ni2Ta phase appeared in Ni62Ta38 metallic glass under the irradiation fluence of 1.6 × 1018 ions/cm2. The SEM results show that the surfaces of Ni62Ta38 metallic glasses maintained flat and smooth, whereas a large area of blisters with peeling formed on the surface of W metal at the irradiation fluence of 1.0 × 1018 ions/cm2. It indicates that the critical irradiation fluence of surface breakage of the Ni62Ta38 metallic glass is higher than that of W metal. After the irradiation, stress was generated in the surface layer of W metal, leading to the increase of the hardness of W metal.

  2. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    PubMed

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented

  3. Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica.

    PubMed

    Li, Zheng; Zeng, Hua Chun

    2014-04-16

    Metal-organic frameworks (MOFs) are a class of fascinating supramolecular soft matters but with relatively weak mechanical strength. To enforce MOF materials for practical applications, one possible way seems to be transforming them into harder composites with a stronger secondary phase. Apparently, such a reinforcing phase must possess larger porosity for ionic or molecular species to travel into or out of MOFs without altering their pristine physicochemical properties. Herein we report a general synthetic approach to coat microporous MOFs and their derivatives with an enforcing shell of mesoporous silica (mSiO2). Four well-known MOFs (ZIF-8, ZIF-7, UiO-66, and HKUST-1), representing two important families of MOFs, have served as a core phase in nanocomposite products. We show that significant enhancement in mechanical properties (hardness and toughness) can indeed be achieved with this "armoring approach". Excellent accessibility of the mSiO2-wrapped MOFs and their metal-containing nanocomposites has also been demonstrated with catalytic reduction of 4-nitrophenol.

  4. Experimental Investigation of White Layer formation in Hard Turning

    NASA Astrophysics Data System (ADS)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  5. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  6. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  7. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  8. Self-healing multiphase polymers via dynamic metal-ligand interactions.

    PubMed

    Mozhdehi, Davoud; Ayala, Sergio; Cromwell, Olivia R; Guan, Zhibin

    2014-11-19

    A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention.

  9. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  10. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    NASA Astrophysics Data System (ADS)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  11. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  12. [Lung disorders due to metals].

    PubMed

    Rüegger, M

    1995-03-11

    Though metals represent the largest group of elements they rather rarely cause respiratory diseases. This article will therefore review the most important ones caused by inhaled dusts of metals and some of their inorganic compounds, but leaving aside silicosis and silicatosis as well as iatrogenically induced metal pneumopathies. Among toxic inflammatory diseases metal fume fever, an influenza-like condition caused by zinc oxide, ranks as the commonest. Activities such as oxi-acetylene cutting and welding of zinc covered metal pieces account for about 90% of all cases compensated in Switzerland. Due to the non-recurrent character of this type of work, the typical waning of symptoms while exposure is going on has become seldom. Toxic pneumonia caused by inhaled metal fumes occurs rather seldom. However, serious cases have been reported where soldiers were exposed to zinc chloride from smoke bombs. The existence and extent of chronic airflow limitation due to occupational exposure to metallic dusts have not been widely examined but are to be assumed when there is poor occupational hygiene. Concerning asthma, there are at least four metals and several of their compounds which have been proven to cause variable airway narrowing, namely chromium, nickel, platinum and cobalt (the latter as hardmetal). Platinum complex salts (chloro-compounds) are very potent sensitizers leading to a notable prevalence of asthma among exposed workforces. Nevertheless, there have been no such cases in Switzerland for more than ten years. Hard-metal not only causes asthma but also an alveolitis-like interstitial lung disease progressing to fibrosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Multidisciplinary emergent removal of a metal penoscrotal constriction device.

    PubMed

    Nason, G J; Abdelsadek, A H; Foran, A T; O'Malley, K J

    2017-03-10

    Strangulation of the genital organs is a rare presentation to the emergency department which requires urgent intervention to avoid long term complications. Penoscrotal constriction devices are either used for autoerotic stimulus or to increase sexual performance by maintaining an erection for a longer period. We report a case of a man who presented with penile strangulation following the application of a titanium penoscrotal constriction ring during sexual intercourse seven hours previously. The Fire Brigade department attended with an electric operated angle grinder to facilitate removal of the ring as standard medical equipment (orthopaedic saws, bolt and bone cutters) were insufficient. Fully functional recovery was achieved.

  15. Hard-Core Unemployment: A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Cameron, Colin, Comp.; Menon, Anila Bhatt, Comp.

    This annotated bibliography contains references to various films, articles, and books on the subject of hard-core unemployment, and is divided into the following sections: (1) The Sociology of the Hard-Core Milieu, (2) Training Programs, (3) Business and the Hard-Core, (4) Citations of Miscellaneous References on Hard-Core Unemployment, (5)…

  16. Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Li, De-E.; Hong, You-Li; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia; Gao, Kun; Zhou, Hong-Zhang; Wu, Zi-Yu

    2013-07-01

    A penetrating view of the three-dimensional nanostructure of female spermatheca and male flagellum in the species Aleochara verna is obtained with 100-nm resolution using a hard X-ray microscope, which provides a fast noninvasive imaging technology for insect morphology. Through introducing Zernike phase contrast and heavy metal staining, images taken at 8 keV displayed sufficient contrast for observing nanoscale fine structures, such as the spermatheca cochleate duct and the subapex of the flagellum, which have some implications for the study of the sperm transfer process and genital evolution in insects. This work shows that both the spatial resolution and the contrast characteristic of hard X-ray microscopy are quite promising for insect morphology studies and, particularly, provide an attractive alternative to the destructive techniques used for investigating internal soft tissues.

  17. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  18. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  19. Lateral gradients of phases, residual stress and hardness in a laser heated Ti0.52Al0.48N coating on hard metal

    PubMed Central

    Bartosik, M.; Daniel, R.; Zhang, Z.; Deluca, M.; Ecker, W.; Stefenelli, M.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J.

    2012-01-01

    The influence of a local thermal treatment on the properties of Ti–Al–N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC–Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti–Al–N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about − 200 to 500 MPa down to a depth of 6 μm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC–Co substrate was performed in the range of 25–1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure–property relationships in complex materials. PMID:23471140

  20. Improving hardness and toughness of boride composites based on aluminum magnesium boride

    NASA Astrophysics Data System (ADS)

    Peters, Justin Steven

    The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB14--TiB2 composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB 14--60 vol% TiB2 approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB14 and TiB 2 phases. AlMgB14 is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB2 is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800°C are often required to achieve near full density articles. The AlMgB14--TiB2 composites can achieve 99% density from hotpressing at 1400°C. This is mostly due to the preparation of powders by a high-energy milling technique known as mechanical alloying. The resulting fine powders have

  1. Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder

    NASA Astrophysics Data System (ADS)

    Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.

    2017-12-01

    Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.

  2. Production and mechanical properties of Al-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.

    2016-11-01

    The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.

  3. Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Long, B.; Dai, Y.

    2008-06-01

    In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 μm. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.

  4. The production and tribology of hard facing coatings for agricultural applications

    NASA Astrophysics Data System (ADS)

    Roffey, Paul

    Abrasive wear is a significant issue in many industries but is of particular significance in agriculture. This research is being carried out due to the demand for a hard wearing, economical coating for use in the agricultural industry.A primary objective has been to review and develop an in depth understanding of the type of wear suffered by metal shares in agricultural soils. The affect of soil properties and abrasive wear environments on the amount of wear that occurs, and the way in which material properties can be used to reduce or prevent this has also been investigated. A review of the diverse range of soil properties, such as the mineral content, moisture content, soils strengths has been carried out in order to create an appropriate wear test procedure.The coatings developed for testing were modifications to an existing powder metallurgy coating. The modifications were made by the addition of selected hard phases to the powder prior to sintering. The resulting materials were characterised in terms of sinterability, hardness and abrasive wear resistance. Prior to commencing this work little or no data existed on the wear performance of the pre-existing coating. Wear resistance has been measured using a fixed ball micro-scale abrasive wear test (also known as the ball-cratering wear test) with SiC and SiO2 abrasives and also using a modified version of the ASTM G65 abrasive wear test which allowed testing in dry and wet modes. Limited field trials were performed to determine the abrasive wear resistance in real soil. Results from wear testing have determined that the optimum modification to the coating can improve performance compared to the unmodified coating.Detailed scanning electron microscopy (SEM) has been performed on the wear scars and has revealed the resultant wear mechanisms and role that the hard phase additions play in improving the wear resistance. The influence of the hard phase addition on the microstructure has also been studied.The wear

  5. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.

    PubMed

    Yang, Jingxin; Guo, Jason L; Mikos, Antonios G; He, Chunyan; Cheng, Guang

    2018-06-04

    In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.

  6. Warren G. Harding and the Press.

    ERIC Educational Resources Information Center

    Whitaker, W. Richard

    There are many parallels between the Richard M. Nixon administration and Warren G. Harding's term: both Republicans, both touched by scandal, and both having a unique relationship with the press. But in Harding's case the relationship was a positive one. One of Harding's first official acts as president was to restore the regular White House news…

  7. Primary cementless total hip arthroplasty with second-generation metal-on-metal bearings: a concise follow-up, at a minimum of seventeen years, of a previous report.

    PubMed

    Lass, R; Grübl, A; Kolb, A; Domayer, S; Csuk, C; Kubista, B; Giurea, A; Windhager, R

    2014-03-05

    Second-generation, metal-on-metal bearings were introduced in 1988, to reduce wear and avoid polyethylene particle-induced osteolysis from total hip arthroplasty. In 2007, we reported the long-term results of ninety-eight patients (105 hips) who underwent primary cementless total hip arthroplasty involving the use of a prosthesis with a high-carbide-concentration, metal-on-metal articulating surface between November 1992 and May 1994. The present study gives an update on this patient cohort. At a minimum of seventeen years postoperatively, forty-nine patients (fifty-two hips) were available for follow-up examination. We retrospectively evaluated clinical and radiographic results as well as serum metal concentration. The mean patient age at the time of the index arthroplasty was fifty-six years. Three cups (6% of the hips) and one stem (2% of the hips) were revised because of aseptic loosening of the implants combined with focal osteolysis. At the time of the latest follow-up evaluation, the mean Harris hip score was 88.8 points, and the mean University of California Los Angeles (UCLA) activity score was 6.7 points. The cumulative rate of implant survival, with aseptic failure as the end point, was 93.0% at 18.8 years. The median serum cobalt concentration in patients whose hip implant was the only source of cobalt was 0.70 μg/L (range, 0.4 to 5.1 μg/L), showing no increase in the value as noted at a minimum of ten years of follow-up. The clinical and radiographic results of our study, which, to our knowledge, represent the longest duration of follow-up for a series of cementless total hip arthroplasties with use of a 28-mm metal-on-metal bearing, continue to be comparable with the results observed for other hard-on-hard bearings.

  8. CAPSULE REPORT: HARD CHROME FUME ...

    EPA Pesticide Factsheets

    All existing information which includes the information extrapolated from the Hard Chrome Pollution Prevention Demonstration Project(s) and other sources derived from plating facilities and industry contacts, will be condensed and featured in this document. At least five chromium emission prevention/control devices have been tested covering a wide spectrum of techniques currently in use at small and large-sized chrome metal plating shops. The goal for limiting chromium emissions to levels specified in the MACT Standards are: (1) 0.030 milligrams per dry standard cubic meter of air (mg/dscm) for small facilities with existing tanks, (2) 0.015 mg/dscm for small facilities with new tanks or large facilities with existing or new tanks. It should be emphasized that chemical mist suppressants still have quality issues and work practices that need to be addressed when they are used. Some of the mist suppressants currently in use are: one-, two-, and three-stage mesh pad mist eliminators; composite mesh pad mist eliminators; packed-bed scrubbers and polyballs. This capsule report should, redominantly, emphasize pollution prevention techniques and include, but not be restricted to, the afore-mentioned devices. Information

  9. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  10. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  11. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  12. Mechanics of hard films on soft substrates

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2009-12-01

    Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the

  13. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  14. Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation

    PubMed Central

    Schmitt, Clemens N. Z.; Winter, Alette; Bertinetti, Luca; Masic, Admir; Strauch, Peter; Harrington, Matthew J.

    2015-01-01

    Protein–metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA–metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat. PMID:26311314

  15. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    PubMed

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  16. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  17. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  18. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  19. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  20. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  1. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  2. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  3. Ground hardness and injury in community level Australian football.

    PubMed

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A

    2012-07-01

    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (<30 g) to unacceptably high hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Metal contamination in environmental media in residential areas around Romanian mining sites

    EPA Science Inventory

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  5. A Hard X-ray Study of a Manganese-Terpyridine Dimer Catalyst in a Chromium-based Metal Organic Framework - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Alexandra

    2015-08-25

    Cleaner forms of energy are needed, and H 2 produced from water spliFng is a possible source. However, a robust catalyst is necessary to carry out the water oxidaKon reacKon. Plants uKlize Photosystem II to catalyze water oxidaKon as a part of photosynthesis, and many syntheKc water oxidaKon catalysts use Photosystem II as a model. In this study, the catalyst of interest was [(terpy)Mn(μ-O)2Mn(terpy)]3+ (MnTD), which was synthesized in a chromium-based Metal Organic Framework (MOF) to avoid degradaKon of MnTD molecules. Hard X-ray powder diffracKon was the primary method of analysis. The diffracKon data was used to detect the presencemore » of MOF in samples at different catalyKc stages, and laFce parameters were assigned to the samples containing MOF. Fourier maps were constructed to determine the contents of the MOF as preliminary studies suggested that MnTD may not be present. Results showed that MOF is present before catalysis occurs, but disappears in the iniKal stages of catalysis. Changes in the MOF’s laFce parameters suggest aWracKve interacKons between the MOF and catalyst; these interacKons may lead to the observed MOF degradaKon. Fourier maps also reveal limited, if any, amounts of MnTD in the system. Molecular manganese oxide may be the source of the high rate of water oxidaKon catalysis in the studied system.« less

  6. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  7. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  8. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  9. "We Can Get Everything We Want if We Try Hard": Young People, Celebrity, Hard Work

    ERIC Educational Resources Information Center

    Mendick, Heather; Allen, Kim; Harvey, Laura

    2015-01-01

    Drawing on 24 group interviews on celebrity with 148 students aged 14-17 across six schools, we show that "hard work" is valued by young people in England. We argue that we should not simply celebrate this investment in hard work. While it opens up successful subjectivities to previously excluded groups, it reproduces neoliberal…

  10. Short-term hot hardness characteristics of rolling-element steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  11. 36 CFR 13.1308 - Harding Icefield Trail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Harding Icefield Trail. 13... Provisions § 13.1308 Harding Icefield Trail. The Harding Icefield Trail from the junction with the main paved trail near Exit Glacier to the emergency hut near the terminus is closed to— (a) Camping within 1/8 mile...

  12. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  13. Indications of hard-soft-acid-base interactions governing formation of ultra-small (r < 3 nm) digestively ripened copper oxide quantum-dots

    NASA Astrophysics Data System (ADS)

    Talluri, Bhusankar; Thomas, Tiju

    2017-10-01

    We use a soft-approach for synthesis of quasi-spherical, ultra-small, digestively-ripened, stable copper oxide QDs (radius < 3 nm). Common copper precursors (acetate, sulphite, nitrate and chloride) are explored. Triethanolamine (TEA) capping results in substantial increase of zetapotential (25 ± 5 meV); this is invariant with respect to Cu-precursor used. Relevant spectral analysis indicates that solvent and the surfactant are the most critical parameters. Hard-hard-acid-base-interaction (between CuO and TEA) based (i) mass-transfer (for pre-DR QDs) and (ii) passivation (for DR-QDs) seems to be the mechanism behind observed ceramic-DR; interestingly this is consistent with the metallic-DR-model proposed by Prasad et al. (Chem. Phys. Lett., 2012).

  14. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  15. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  16. Deformation of metal brackets: a comparative study.

    PubMed

    Flores, D A; Choi, L K; Caruso, J M; Tomlinson, J L; Scott, G E; Jeiroudi, M T

    1994-01-01

    The purpose of this study was to determine the effect of material and design on the force and stress required to permanently deform metal brackets. Fourteen types of metal brackets were categorized according to raw material composition, slot torque degree, and wing type. Five types of raw materials, three types of slot torque degree, and four types of wing design were tested using an archwire torque test developed by Flores. An analysis of variance (ANOVA) and t-test showed that all three categories had a significant effect on the force and stress needed to permanently deform metal brackets. Of the three, raw material had the greatest effect on the amount of force. Results showed that 17-4PH and 303S had higher yield strengths and regular twin brackets had higher resistance to deformation. Also, as slot torque degree increased, brackets deformed with less force. Result confirmed that brackets requiring the greatest stress to permanently deform were made of steel with the greatest hardness.

  17. Titanium-alloy, metallic-fluid heat pipes for space service

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1979-01-01

    Reactivities of titanium limit its long-term terrestrial use for unprotected heat-pipe envelopes to about 870 K (1100 F). But this external thermochemical limitation disappears when considerations shift to space applications. In such hard-vacuum utilization much higher operating temperatures are possible. Primary restrictions in space environment result from vaporization, thermal creep, and internal compatibilities. Unfortunately, a respected head-pipe reference indicates that titanium is compatible only with cesium from the alkali-metal working-fluid family. This problem and others are subjects of the present paper which advocates titanium-alloy, metallic-fluid heat pipes for long-lived, weight-effective space service between 500 and 1300 K (440 and 1880 F).

  18. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    PubMed

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment. © 2015 Wiley Periodicals, Inc.

  19. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  20. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  1. Waste minimisation in a hard chromiun plating Small Medium Enterprise (SME).

    PubMed

    Viguri, J R; Andrés, A; Irabien, A

    2002-01-01

    The high potential of waste stream minimisation in the metal finishing sector justifies specific studies of Small and Medium Enterprises (SME). In this work, the minimisation options of the wastes generated in a hard chromium plating activity have been analysed. The study has been performed in a small job shop company, which works in batch mode with big pieces. A process flowsheet after connecting the unit operations and determining the process inputs (raw and secondary materials) and outputs (waste streams) has been carried out. The main properties, quantity and current management of the waste streams have been shown. The obvious lack of information has been identified and finally the waste minimisation options that could be adopted by the company have been recorded.

  2. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  3. Corrosion processes of physical vapor deposition-coated metallic implants.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  4. Distribution of heavy metals in a woodland food web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharenberg, W.; Ebeling, E.

    1996-03-01

    Often investigations deal with the residue situation in contaminated areas and their effects on ecosystems, however, information are rare concerning relatively uncontaminated areas - so called {open_quotes}reference areas{close_quotes}. In such areas we can assume an insignificant influence of pollutants and we can measure the metal flux under relatively natural conditions. Since 1988 we have investigated the nutrient and energy flow as well as the metal flux in an area which is hardly influenced by anthropogenic activities besides some agro-chemical compounds. For example, the deposition and contamination of some plants is relatively low in comparison to other places in North Germany.more » Also the average of geological background concentrations of soil from Schleswig-Holstein are higher than soil concentrations from Bornhoeved. With this investigation we demonstrate the flux of metals through selected biotic compartments of a relatively uncontaminated woodland. Good indicators accumulating the non essential metals Cd and Pb are beetles and isopods. In contrast ground spiders, although predators, show only low metal concentrations. The essential metals Cu and Zn were relatively homogeneous in concentration in the animals. Zn showed the highest values and beetles seem to accumulate it.« less

  5. Tribological performance of Zinc soft metal coatings in solid lubrication

    NASA Astrophysics Data System (ADS)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  6. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  7. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  8. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less

  9. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  10. The hardness, microstructure, and pitting resistance of austenitic stainless steel Fe25Ni15Cr with the addition of tungsten, niobium, and vanadium

    NASA Astrophysics Data System (ADS)

    Prifiharni, Siska; Anwar, Moch. Syaiful; Nikitasari, Arini; Mabruri, Efendi

    2018-05-01

    In this work, the effect of 2% W, 1%Nb, and 1% V addition on the hardness, microstructure, and pitting resistance to austenitic stainless steel Fe25Ni15Cr was investigated. The specimens were prepared in induction melting furnace, followed by homogenizing at 1100°C for 24 h. Then, the specimens were solution treated at 975°C for 2 h followed by water quenching and aging at 725°C for 15 h. The hardness was measured by using Rockwell hardness B, and metallographic observation was conducted using optical microscope and SEM-EDS. The results show that the increament of W, Nb, and V in the austenitic stainless steel Fe25Ni15Crby increased the hardness. The metal carbide precipitation occurred at grain boundaries in niobium free alloy. The addition of Nb in the alloy promotes the Laves phase transformation, and addition of V increase Nb content in the Laves phase. Laves phase formation in alloys containing niobium during aging heat treatments lead to an increase in hardness. Addition of W, Nb, and V also increase pitting resistance of the Fe25Ni15Cr austenitic stainless steel. This can be attributed to an increasing level of niobium in the matrix.

  11. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  12. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  13. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanthi, M.; Dept. of Mechanical Engineering, National University of Singapore, Singapore 117576; Gupta, M.

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their lowmore » density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.« less

  14. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    NASA Astrophysics Data System (ADS)

    Shanthi, M.; Gupta, M.; Jarfors, A. E. W.; Tan, M. J.

    2011-01-01

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their low density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.

  15. An overview of biofunctionalization of metals in Japan

    PubMed Central

    Hanawa, Takao

    2009-01-01

    Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014

  16. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period

    PubMed Central

    ERDEMİR, Ugur; YİLDİZ, Esra; EREN, Meltem Mert; OZEL, Sevda

    2013-01-01

    Objectives: This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. Material and Methods: A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group). For the control groups, the specimens were stored in distilled water for 24 hours at 37º C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05). Results: Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (p<0.001) in different solutions (p<0.001). The effect of different solutions on the surface hardness values of the restorative materials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (p<0.001). The compomer was the most affected by an acidic environment, whereas the composite resin materials were the least affected materials. Conclusions: The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material. PMID:23739850

  17. Injury risk associated with ground hardness in junior cricket.

    PubMed

    Twomey, Dara M; White, Peta E; Finch, Caroline F

    2012-03-01

    To establish if there is an association between ground hardness and injury risk in junior cricket. Nested case-series of players who played matches on specific grounds with objective ground hardness measures, within a prospective cohort study of junior community club cricket players. Monitoring of injuries and playing exposure occurred during 434 matches over the 2007/2008 playing season. Objective assessment of the hardness of 38 grounds was undertaken using a Clegg hammer at 13 sites on 19 different junior cricket grounds on the match eve across the season. Hardness readings were classified from unacceptably low (<30 g) to unacceptably high (>120 g) and two independent raters assessed the likelihood of each injury being related to ground hardness. Injuries sustained on tested grounds were related to the ground hardness measures. Overall, 31 match injuries were reported; 6.5% were rated as likely to be related to ground hardness, 16.1% as possibly related and 74.2% as unlikely to be related and 3.2% unknown. The two injuries likely to be related to ground hardness were sustained whilst diving to catch a ball resulting, in a graze/laceration from contact with hard ground. Overall, 31/38 (82%) ground assessments were rated as having 'unacceptably high' hardness and all others as 'high/normal' hardness. Only one injury occurred on an objectively tested ground. It remains unclear if ground hardness is a contributing factor to the most common injury mechanism of being struck by the ball, and needs to be confirmed in future larger-scale studies. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  19. In vitro Fracture strength and hardness of different computer-aided design/computer-aided manufacturing inlays.

    PubMed

    Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A

    2018-03-01

    The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.

  20. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.

    PubMed

    Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho

    2010-06-01

    The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.

  2. Macroindentation hardness measurement-Modernization and applications.

    PubMed

    Patel, Sarsvat; Sun, Changquan Calvin

    2016-06-15

    In this study, we first developed a modernized indentation technique for measuring tablet hardness. This technique is featured by rapid digital image capture, using a calibrated light microscope, and precise area-determination. We then systematically studied effects of key experimental parameters, including indentation force, speed, and holding time, on measured hardness of a very soft material, hydroxypropyl cellulose, and a very hard material, dibasic calcium phosphate, to cover a wide range of material properties. Based on the results, a holding period of 3min at the peak indentation load is recommended to minimize the effect of testing speed on H. Using this method, we show that an exponential decay function well describes the relationship between tablet hardness and porosity for seven commonly used pharmaceutical powders investigated in this work. We propose that H and H at zero porosity may be used to quantify the tablet deformability and powder plasticity, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  4. Seismic signals hard clipping overcoming

    NASA Astrophysics Data System (ADS)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  5. Direct Fabrication of Inkjet-Printed Dielectric Film for Metal-Insulator-Metal Capacitors

    NASA Astrophysics Data System (ADS)

    Cho, Cheng-Lin; Kao, Hsuan-ling; Wu, Yung-Hsien; Chang, Li-Chun; Cheng, Chun-Hu

    2018-01-01

    In this study, an inkjet-printed dielectric film that used a polymer-based SU-8 ink was fabricated for use in a metal-insulator-metal (MIM) capacitor. Thermal treatment of the inkjet-printed SU-8 polymer film affected its surface morphology, chemical structure, and surface wettability. A 20-min soft-bake at 60°C was applied to eliminate inkjet-printed bubbles and ripples. The ultraviolet-exposed SU-8 polymer film was crosslinked at temperatures between 120°C and 220°C and became disordered at 270°C, demonstrated using Fourier-transform infrared spectroscopy. A maximum SU-8 polymer film hard-bake temperature of 120°C was identified, and a printing process was subsequently employed because the appropriate water contact angle of the printed film was 79°. Under the appropriate inkjet printing conditions, the two-transmission-line method was used to extract the dielectric and electrical properties of the SU-8 polymer film, and the electrical behavior of the fabricated MIM capacitor was also characterized.

  6. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  7. Synchronized metal-ion irradiation as a way to control growth of transition-metal nitride alloy films during hybrid HIPIMS/DCMS co-sputtering

    NASA Astrophysics Data System (ADS)

    Greczynski, Grzegorz

    2016-09-01

    High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic

  8. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    NASA Astrophysics Data System (ADS)

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro

    2015-08-01

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  9. Group electronegativity for prediction of materials hardness.

    PubMed

    Li, Keyan; Yang, Peng; Niu, Lingxiao; Xue, Dongfeng

    2012-06-28

    We have developed a method to predict the hardness of materials containing ultrastrong anionic polyhedra, dense atomic clusters, and layers stacked through van der Waals bonds on the basis of group electronegativity. By considering these polyhedra, clusters, and layers as groups that behave as rigid unities like superatoms bonding to other atoms or groups, the hardness values of materials such as oxysalts, T-carbon, and graphite were quantitatively calculated, and the results are consistent with the available experiments. We found that the hardness of materials containing these artificial groups is determined by the bonds between the groups and other atoms or groups, rather than by the weakest bonds. This work sheds light on the nature of materials hardness and the design of novel inorganic crystal materials.

  10. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1981-02-03

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

  11. 21 CFR 133.150 - Hard cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity are...

  12. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  13. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  14. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  15. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  16. 7 CFR 201.30 - Hard seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seed. 201.30 Section 201.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard...

  17. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  18. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  19. Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters.

    PubMed

    Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk

    2016-12-01

    Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3  L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2  = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    NASA Astrophysics Data System (ADS)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  1. Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders

    NASA Astrophysics Data System (ADS)

    Aydin, Huseyin; Alomair, Mashael; Wong, Wilson; Vo, Phuong; Yue, Stephen

    2017-02-01

    In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers's hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the `matrix' powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.

  2. Characterization of cellulose nanofibrillation by micro grinding

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  3. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  4. Hard water softening effect of a baby cleanser

    PubMed Central

    Walters, Russel M; Anim-Danso, Emmanuel; Amato, Stephanie M; Capone, Kimberly A; Mack, M Catherine; Telofski, Lorena S; Mays, David A

    2016-01-01

    Background Hard water is associated with atopic dermatitis (eczema). We wanted to determine if a baby cleanser and its individual components altered free ionized calcium (Ca2+) in a simulated hard water baby bath. For these studies, an in vitro determination of free Ca2+ in a simulated hard water baby bath, and an in vivo exploratory study of free Ca2+ absorption into skin from hard water were performed. Methods Free Ca2+ was measured with an ion-sensitive electrode in vitro in hard water (100–500 ppm, Ca2+) before and after addition of the cleanser and/or its components. In an exploratory study, absorption of Ca2+ into skin from hard water was determined in three female participants (aged 21–29 years). Results At an in-use dilution of 1%, the test cleanser reduced free Ca2+ from ~500 ppm to <200 ppm; a 10% in-use dilution bound virtually all free Ca2+. The anionic surfactant component contributed the most to this effect. In the exploratory in vivo study, we measured a reduction of ~15% in free Ca2+ from simulated hard water over 10 minutes. Conclusion Baby cleansers can bind free Ca2+ and reduce the effective water hardness of bath water. Reducing the amount of free Ca2+ in the water will reduce the availability of the ion for binding to the skin. Altering or reducing free Ca2+ concentrations in bath water may be an important parameter in creating the ideal baby bath. PMID:27789967

  5. Potential Health Impacts of Hard Water

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents. PMID:24049611

  6. Potential health impacts of hard water.

    PubMed

    Sengupta, Pallav

    2013-08-01

    In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents.

  7. Feasibility study on development of metal matrix composite by microwave stir casting

    NASA Astrophysics Data System (ADS)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  8. Penile strangulation by iron metal ring: A novel and effective method of management

    PubMed Central

    Paonam, Somorendro; Kshetrimayum, Nillachandra; Rana, Indrajit

    2017-01-01

    Penile strangulation by metal ring is a rare urological emergency situation which requires urgent decompression of the penis to avoid adverse effect. It is usually associated with an attempt to improve sexual act and/or to prolong erection. But sometimes, cutting of the ring to decompress the penis safely is a very difficult task particularly when the strangulating object is a hard metal object as in our case. Here, we present a case which was managed by cutting in a novel way with the help of dental micromotor with wheel shape bur. PMID:28216935

  9. Structural basis for expanding the application of bioligand in metal bioremediation: A review.

    PubMed

    Sharma, Virbala; Pant, Deepak

    2018-03-01

    Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    NASA Astrophysics Data System (ADS)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  11. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications.

    PubMed

    Con, Celal; Cui, Bo

    2017-12-16

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  12. USE OF RADIOISOTOPES IN THE STUDY OF METAL-TO-METAL WEAR OF HARDENED IRON- BASE ALLOYS. Quarterly Report No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talento, A.; Steven, G.

    1959-04-15

    A literature survey was made on the friction and wear of solid metals and on autoradiographic techniques as they apply to metal-to-metal wear studies. When two contacting surfaces are moving with respect to one another, the asperities weld together to form weld junctions. The number of junctions is large when no foreigm materials are on the contacting surfaces, but is greatly reduced by the presence of lubricants. Frictional forces are equal to the sum of the forces required to shear the weld junctions and the plough ing force. The rubbing surfaces may develop localized hot spots which may reach 2000more » F, and in these areas the metal is plastically deformed. Frictional forces and wear usually decrease as the hardness of the specimens increases. Autoradiographic techniques have been used to determine the location of radioactive tracers. Because photographic emulsions are sensitive to ionization caused by products of atomic disintegration, they are used to record the radiation given off by radioactive tracers. The wet and dry autoradiographic techniques that have been developed for metallurgical applications are described in this report. (auth)« less

  13. Theoretical Investigation of Phonon Dispersion Relation of 3d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-12-01

    The phonon dispersion relations of 3d liquid transition metals have been obtained in the present study. We have used Hubbard and Beeby (HB) method to generate phonon dispersion relation of liquid metals. To describe the structural information, the structure factor S(q) due to the Percus-Yevick hard sphere (PYHS) reference systems is used along with our newly constructed parameter free model potential. The influence of exchange and correlation effect on the phonon dispersion relation of 3d liquid transition metals is examined explicitly, which reflects the varying effects of screening. We have used different local field correction functions like Hartree (H), Taylor (T) and Sarkar et al (S). Present results have found good in agreement with available experimental data.

  14. Linking Microstructural Evolution and Tribology in Metallic Contacts

    NASA Astrophysics Data System (ADS)

    Chandross, Michael; Cheng, Shengfeng; Argibay, Nicolas

    Tribologists rely on phenomenological models to describe the seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold - frequently used in electrical contacts - exhibit high friction and wear. In contrast, nanocrystalline metals often show much lower friction and wear. The engineering community has generally used a phenomenological connection between hardness and friction/wear to explain this macroscale response and guide designs. We present results of recent simulations and experiments that demonstrate a general framework for connecting materials properties (i.e. microstructural evolution) to tribological response. We present evidence that competition between grain refinement (from cold working), grain coarsening (from stress-induced grain growth), and wear (delamination and plowing) can be used to describe transient and steady state tribological behavior of metals, alloys and composites. We explore the seemingly disjointed steady-state friction regimes of metals and alloys, with a goal of elucidating the structure-property relationships, allowing for the engineering of tribological materials and contacts based on the kinetics of grain boundary motion. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    NASA Astrophysics Data System (ADS)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  16. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, Haskell

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.

  17. Novel hard compositions and methods of preparation

    DOEpatents

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  18. Haptic Search for Hard and Soft Spheres

    PubMed Central

    van Polanen, Vonne; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features. PMID:23056197

  19. Haptic search for hard and soft spheres.

    PubMed

    van Polanen, Vonne; Bergmann Tiest, Wouter M; Kappers, Astrid M L

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features.

  20. Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O2 system.

    PubMed

    Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon

    2017-04-10

    Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M n+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M n+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M n+ on oxygen reduction. A case study on the Na-O 2 system is described in detail. Among other things, the Na + concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Degree of conversion and hardness of two different systems of the Vitrebond™ glass ionomer cement light cured with blue LED.

    PubMed

    Calixto, Luiz Rafael; Tonetto, Mateus Rodrigues; Pinto, Shelon Cristina Souza; Barros, Erico Damasceno; Borges, Alvaro Henrique; Lima, Fabricio Viana Pereira; de Andrade, Marcelo Ferrarezi; Bandéca, Matheus Coelho

    2013-03-01

    This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter x 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm(2) during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.

  2. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    NASA Astrophysics Data System (ADS)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe

  3. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  4. Weldability and Impact Energy Properties of High-Hardness Armor Steel

    NASA Astrophysics Data System (ADS)

    Cabrilo, Aleksandar; Geric, Katarina; Jovanovic, Milos; Vukic, Lazic

    2018-03-01

    In this study, the weldability of high-hardness armor steel by the gas metal arc welding method has been investigated. The study was aimed at determining the weakness points of manual welding compared to automated welding through microhardness testing, the cooling rate, tensile characteristics and nondestructive analysis. Detailed studies were performed for automated welding on the impact energy and microhardness in the fusion line, as the most sensitive zone of the armor steel weld joint. It was demonstrated that the selection of the preheating and interpass temperature is important in terms of the cooling rate and quantity of diffusible and retained hydrogen in the weld joint. The tensile strength was higher than 800 MPa. The width of the heat-affected zone did not exceed 15.9 mm, measured from the weld centerline, while the impact energy results were 74 and 39 J at 20 and - 40 °C, respectively.

  5. Effects of soldering and laser welding on bond strength of ceramic to metal.

    PubMed

    Aladağ, Akin; Cömlekoğlu, M Erhan; Dündar, Mine; Güngör, M Ali; Artunç, Celal

    2011-01-01

    Welding or soldering of metal frameworks negatively affects the overall bond strength between the veneering ceramic and metal. The purpose of this study was to evaluate the effect of soldering and laser-welding procedures on the bond strength between ceramic and metal. Thirty Ni-based metal specimens (Wiron 99) (8 × 4 × 4 mm) were fabricated and divided into 3 groups; soldered (S), laser welded (L), and control (untreated cast alloy) (n=10). In S and L specimens, a notch (1 × 1.5 mm) was prepared longitudinally on the surface of each specimen and filled with compatible alloy (Wiron soldering rods and Wiroweld NC, respectively). Vickers hardness measurements were made after polishing the surfaces with a metallographic polishing kit. A veneering ceramic (VITA VMK 95) was vibrated, condensed in a mold, and fired on the metal frameworks. The specimens were sectioned in 2 axes to obtain nontrimmed bar specimens with a bonding area of approximately 1 mm². Forty bars per block were obtained. Each bar was subjected to microtensile bond strength (μTBS) testing with a crosshead speed of 1 mm/min. The μTBS data (MPa) were recorded, and SEM was used for failure analysis of the tested bars. The measurements were statistically analyzed using a 1-way ANOVA and Tamhane tests (α=.05). The mean differences in μTBS of veneering ceramic to soldered (10.4 ±2.4 MPa) and laser-welded (11.7 ±1.3 MPa) metal surfaces were not significantly different and were significantly lower than that of the cast alloy (25.4 ±3.6 MPa) (P<.05). The mean Vickers hardness of cast alloy was significantly higher (236 ±17 HV) than soldered (114 ±9 HV) and laser-welded groups (129 ±11 HV) (P<.05). Soldering and laser welding significantly decreased the μTBS of a veneering ceramic to a base metal alloy. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue.

    PubMed

    Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander

    2017-10-01

    Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.

  7. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  8. Qualitative Assessment of Wear Resistance and Surface Hardness of Different Commercially Available Dental Porcelain: An in vitro Study.

    PubMed

    Singh, Abhishek; Nagpal, Abhishek; Pawah, Salil; Pathak, Chetan; Issar, Gaurav; Sharma, Pankaj

    2016-09-01

    In an attempt to minimize wear damage to the enamel of antagonist teeth, new low and medium fusing ceramic materials have been developed. Manufacturers usually claim that these ceramics are wear-friendly because of their lower hardness, lower concentrations of crystal phase, and smaller crystal sizes. This study aimed to quantitatively analyze the wear strength of various commercially available dental porcelain with tooth enamel as well as the surface hardness of these dental porcelain. The basic model was designed as a pin on plate arrangement. The tooth specimens were mounted on the stylus which was centered on the ceramic specimen in a wear testing machine. The dental ceramic specimen was centered in the metal die. A load of 40 N was applied at a rate of 80 cycles/minute for 15 minutes. In the current study, mean wear depth (Ra) value, volumetric loss, and surface hardness were obtained by standard quantification method and were statistically evaluated. Ceramco-3 was reported to be most abrasive for enamel; however, Duceram love significantly more abraded itself than the other two, Ceramco-3 and Vita Alpha, and generated the lowest loss of enamel. Also, same abrasive type of wear was revealed for all three variants of tested ceramics. Ceramco-3 was the most abrasive for enamel, while surface roughness (mean wear depth) of Duceram love was maximum and for Ceramco-3 it was minimum. The value of surface roughness for Vita Alpha was in between Duceram love and Ceramco-3. Nonetheless, the mean surface hardness of Duceram love was found to be least and maximum for Vita Alpha. In situations of dental wear and wasting tooth disease (Attrition/Abrasion), Duceram can be applied in lieu of Ceramco-3 so as to prevent worsening of existing dentition. However, in younger patients Vita Alpha would offer maximum durability due to its greater surface hardness.

  9. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  10. Hard particle effect on surface generation in nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.

  11. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    NASA Astrophysics Data System (ADS)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  12. Tribological and mechanical performance evaluation of metal prosthesis components manufactured via metal injection molding.

    PubMed

    Melli, Virginia; Juszczyk, Mateusz; Sandrini, Enrico; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; Manfredini, Tiziano; De Nardo, Luigi

    2015-01-01

    The increasing number of total joint replacements, in particular for the knee joint, has a growing impact on the healthcare system costs. New cost-saving manufacturing technologies are being explored nowadays. Metal injection molding (MIM) has already demonstrated its suitability for the production of CoCrMo alloy tibial trays, with a significant reduction in production costs, by holding both corrosion resistance and biocompatibility. In this work, mechanical and tribological properties were evaluated on tibial trays obtained via MIM and conventional investment casting. Surface hardness and wear properties were evaluated through Vickers hardness, scratch and pin on disk tests. The MIM and cast finished tibial trays were then subjected to a fatigue test campaign in order to obtain their fatigue load limit at 5 millions cycles following ISO 14879-1 directions. CoCrMo cast alloy exhibited 514 HV hardness compared to 335 HV of MIM alloy, furthermore it developed narrower scratches with a higher tendency towards microploughing than microcutting, in comparison to MIM CoCrMo. The observed fatigue limits were (1,766 ± 52) N for cast tibial trays and (1,625 ± 44) N for MIM ones. Fracture morphologies pointed out to a more brittle behavior of MIM microstructure. These aspects were attributed to the absence of a fine toughening and surface hardening carbide dispersion in MIM grains. Nevertheless, MIM tibial trays exhibited a fatigue limit far beyond the 900 N of maximum load prescribed by ISO and ASTM standards for the clinical application of these devices.

  13. Inorganic dust pneumonias: the metal-related parenchymal disorders.

    PubMed Central

    Kelleher, P; Pacheco, K; Newman, L S

    2000-01-01

    In recent years the greatest progress in our understanding of pneumoconioses, other than those produced by asbestos, silica, and coal, has been in the arena of metal-induced parenchymal lung disorders. Inhalation of metal dusts and fumes can induce a wide range of lung pathology, including airways disorders, cancer, and parenchymal diseases. The emphasis of this update is on parenchymal diseases caused by metal inhalation, including granulomatous disease, giant cell interstitial pneumonitis, chemical pneumonitis, and interstitial fibrosis, among others. The clinical characteristics, epidemiology, and pathogenesis of disorders arising from exposure to aluminum, beryllium, cadmium, cobalt, copper, iron, mercury, and nickel are presented in detail. Metal fume fever, an inhalation fever syndrome attributed to exposure to a number of metals, is also discussed. Advances in our knowledge of antigen-specific immunologic reactions in the lung are particularly evident in disorders secondary to beryllium and nickel exposure, where immunologic mechanisms have been well characterized. For example, current evidence suggests that beryllium acts as an antigen, or hapten, and is presented by antigen-presenting cells to CD4+ T cells, which possess specific surface antigen receptors. Other metals such as cadmium and mercury induce nonspecific damage, probably by initiating production of reactive oxygen species. Additionally, genetic susceptibility markers associated with increased risk have been identified in some metal-related diseases such as chronic beryllium disease and hard metal disease. Future research needs include development of biologic markers of metal-induced immunologic disease, detailed characterization of human exposure, examination of gene alleles that might confer risk, and association of exposure data with that of genetic susceptibility. PMID:10931787

  14. THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, F.R.

    1958-07-01

    The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less

  15. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  16. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  17. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  18. An Efficient, Robust, and Inexpensive Grinding Device for Herbal Samples like Cinchona Bark

    PubMed Central

    Hansen, Steen Honoré; Holmfred, Else; Cornett, Claus; Maldonado, Carla; Rønsted, Nina

    2015-01-01

    An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery of analytes in extracts of Cinchona bark was investigated using HPLC. PMID:26839823

  19. An Efficient, Robust, and Inexpensive Grinding Device for Herbal Samples like Cinchona Bark.

    PubMed

    Hansen, Steen Honoré; Holmfred, Else; Cornett, Claus; Maldonado, Carla; Rønsted, Nina

    2015-01-01

    An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery of analytes in extracts of Cinchona bark was investigated using HPLC.

  20. The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation

    NASA Astrophysics Data System (ADS)

    Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.

    2018-03-01

    The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .

  1. Characterization of landfill leachates and studies on heavy metal removal.

    PubMed

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  2. Angular analysis of the cyclic impacting oscillations in a robotic grinding process

    NASA Astrophysics Data System (ADS)

    Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce

    2014-02-01

    In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations

  3. An Extended Hardness Limit in Bulk Nanoceramics

    DTIC Science & Technology

    2014-01-01

    spinel as an archetypal hard ceramic, the hardness of this transparent ceramic armor is shown to rigorously follow the Hall–Petch relationship down...as a result of complex phenomena related to an unconven- tionally high ratio of atoms on interfaces, or grain bound- aries, to atoms in the grain

  4. Mucocele of the hard palate in children.

    PubMed

    Abdel-Aziz, Mosaad; Khalifa, Badawy; Nassar, Ahmed; Kamel, Ahmed; Naguib, Nader; El-Tahan, Abdel-Rahman

    2016-06-01

    Mucus retention cyst of the hard palate may result from obstruction of the ducts of the minor salivary glands, and it was defined as a mucocele. Although, the disease is not common in the hard palate, it was previously reported by many authors in the soft palate. The aim of our study was to present pediatric patients who were diagnosed to have mucocele of the hard palate, and to evaluate the outcome of the surgical excision of this lesion. This is a case series study included 8 pediatric patients who presented with cystic lesions on the hard palate which were removed surgically, and were diagnosed as mucoceles. Preoperative data, surgical procedures, and postoperative outcome were presented. Follow up of patients was performed for at least one year. The swelling was detected as a single isolated lesion, on the side of the hard palate, covered with healthy mucosa, not tender, oval or round in shape, and measuring 0.4 to 1.7cm in its greatest dimension. Computed tomography showed a well defined cavity which was not invading the bone, and not disrupting the muscles of the palate. Histopathological examination confirmed that the lesion was a cavity that is lined with an epithelial layer with pseudoepitheliomatous hyperplasia. No patients developed intraoperative or postoperative complications, and no recurrence was detected in any patient. Oral mucoceles can develop on the hard palate of the children, the lesions are mucus retention cysts. Complete surgical removal of the lesions with their cystic wall is a good treatment options, it carries no risk of recurrence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. First-Principles Calculations on the Origin of Mechanical Properties and Electronic Structures of 5d Transition Metal Monocarbides MC (M = Hf, Ta, W, Re, Os, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Fukuichi, Masayuki; Momida, Hiroyoshi; Geshi, Masaaki; Michiuchi, Masato; Sogabe, Koichi; Oguchi, Tamio

    2018-04-01

    Much is not systematically known about the origin of mechanical properties among 5d transition metal carbides including tungsten carbide. In order to understand the microscopic origin of hardness, the mechanical properties and electronic structures of 5d transition metal monocarbides MC (M = Hf, Ta, W, Re, Os, Ir, and Pt) in five different structures (NaCl, WC, ZnS, CsCl, and NiAs type) are analyzed using first-principles calculations based on the density functional theory. Our results would indicate that WC-type WC and NiAs-type ReC have the highest and second highest hardness among all of the MC, respectively, in terms of the Debye temperature. By examining the Debye temperature in the series, it is found that MC in the range of less and more than half filled 5d shells are brittle and ductile, respectively. Our results would indicate that filling in the bonding and anti-bonding states contributes to brittleness and ductility. The Debye temperature could be a key to understanding hardness in terms of bulk and shear moduli. In addition, we evaluate some other structural properties such as equilibrium volume, formation enthalpy, and elastic constant to investigate structural stability. Based on the theoretical findings, the microscopic mechanisms of hardness and brittleness in the transition metal carbides are discussed.

  6. Effect of Shot Peening in Different Shot Distance and Shot Angle on Surface Morphology, Surface Roughness and Surface Hardness of 316L Biomaterial

    NASA Astrophysics Data System (ADS)

    Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri

    2018-01-01

    Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.

  7. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  8. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  9. 21 CFR 133.148 - Hard grating cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of...

  10. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  11. Examination of first and second order thermodynamic realignments of metals and metal-alloys, with application of DMTA equipment

    NASA Astrophysics Data System (ADS)

    Gábor, Béres; Zsolt, Dugár; Dávid, Kis; Pál, Hansághy

    2015-04-01

    The researcher work pushes the borders of the application of a high efficiency equipment, in the matter of metals. With this equipment, which already testified in the compound industry, a flasher query of some metal-related technological parameters could be easily available. Towards the searching, we shaped different compound copper-alloy samples, in different states, and accordingly we monitored the realignments. Following the shaping, the DMTA detected such microscopic transformations (as we expected), according to heating rate, whereby we could determine the specialities of the transformations. In order to monitor the effect of the work hardening, we applied two different shaping grade: 50% and 75%. The heat treatment already took place in the DMTA, using 3 K/min heating rate. The specimens were loaded by inflection in the 2-point bending support with constant frequency and amplitude. Our current object was the monitoring of the recrystallization, and the investigation of the influential factors of this process, but other transitions were also regarded. Those measurements’ results, that the DMTA presented, had been compared with DSC and hardness analysis, whereby we try to conclude to the utility of DMTA, in matter of metal alloys.

  12. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    PubMed

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  13. Association of ground hardness with injuries in rugby union

    PubMed Central

    Takemura, Masahiro; Schneiders, Anthony G; Bell, Melanie L; Milburn, Peter D

    2007-01-01

    Background Ground hardness is considered one of the possible risk factors associated with rugby injuries. Objectives To examine the contribution of ground hardness, rainfall and evapotranspiration to the incidence of injury, and to investigate seasonal injury bias throughout one full season of rugby union. Methods A prospective epidemiological study of rugby injuries was performed on 271 players from rugby union teams involved in the premier grade rugby competition in Dunedin, New Zealand. Ground hardness was measured before each match over 20 rounds with an industrial penetrometer, and local weather information was collected through the National Institute of Weather and Atmospheric Research and the Otago Regional Council. Poisson mixed models were used to describe injury incidence as a function of ground hardness throughout the season. Results The overall injury incidence during the season was 52 injuries per 1000 match player‐hours (95% CI 42 to 65). Although injury incidence decreased gradually by round with a rate ratio of 0.98 (95% CI 0.96 to 0.99) (p = 0.036), and the hardness of match grounds decreased significantly over the season (0.16 MPa/round, 95% CI 0.12 to 0.21, p<0.001), a non‐significant association was demonstrated between injury incidence and ground hardness. Injury incidence was not associated with a combination of ground hardness, rainfall and evapotranspiration on the day of the match or cumulative rainfall and evapotranspiration before each match. Conclusions Seasonal change in ground hardness and an early‐season bias of injuries was demonstrated. Although the contribution of ground hardness to injury incidence was not statistically significant, match round and injury incidence were highly correlated, confirming a seasonal bias, which may confound the relationship of injury to ground condition. PMID:17504786

  14. Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template.

    PubMed

    Wu, Zhangxiong; Li, Qiang; Feng, Dan; Webley, Paul A; Zhao, Dongyuan

    2010-09-01

    In this paper, an efficient route is developed for controllable synthesis of ordered mesoporous alumina (OMA) materials with variable pore architectures and high mesoporosity, as well as crystalline framework. The route is based on the nanocasting pathway with bimodal mesoporous carbon as the hard template. In contrast to conventional reports, we first realize the possibility of creating two ordered mesopore architectures by using a single carbon hard template obtained from organic-organic self-assembly, which is also the first time such carbon materials are adopted to replicate ordered mesoporous materials. The mesopore architecture and surface property of the carbon template are rationally designed in order to obtain ordered alumina mesostructures. We found that the key factors rely on the unique bimodal mesopore architecture and surface functionalization of the carbon hard template. Namely, the bimodal mesopores (2.3 and 5.9 nm) and the surface functionalities make it possible to selectively load alumina into the small mesopores dominantly and/or with a layer of alumina coated on the inner surface of the large primary mesopores with different thicknesses until full loading is achieved. Thus, OMA materials with variable pore architectures (similar and reverse mesostructures relative to the carbon template) and controllable mesoporosity in a wide range are achieved. Meanwhile, in situ ammonia hydrolysis for conversion of the metal precursor to its hydroxide is helpful for easy crystallization (as low as approximately 500 degrees C). Well-crystallized alumina frameworks composed of gamma-Al(2)O(3) nanocrystals with sizes of 6-7 nm are obtained after burning out the carbon template at 600 degrees C, which is advantageous over soft-templated aluminas. The effects of synthesis factors are demonstrated and discussed relative to control experiments. Furthermore, our method is versatile enough to be used for general synthesis of other important but difficult

  15. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.

    PubMed

    Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L

    2002-07-01

    To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.

  16. Retraction of Hard, Lozano, and Tversky (2006)

    ERIC Educational Resources Information Center

    Hard, B. M.; Lozano, S. C.; Tversky, B.

    2008-01-01

    Reports a retraction of "Hierarchical encoding of behavior: Translating perception into action" by Bridgette Martin Hard, Sandra C. Lozano and Barbara Tversky (Journal of Experimental Psychology: General, 2006[Nov], Vol 135[4], 588-608). All authors retract this article. Co-author Tversky and co-author Hard believe that the research results cannot…

  17. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  18. Methodological problems with gamma-ray burst hardness/intensity correlations

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1993-01-01

    The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.

  19. Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.

    2014-08-01

    Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.

  20. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  1. Variability in hand-arm vibration during grinding operations.

    PubMed

    Liljelind, Ingrid; Wahlström, Jens; Nilsson, Leif; Toomingas, Allan; Burström, Lage

    2011-04-01

    Measurements of exposure to vibrations from hand-held tools are often conducted on a single occasion. However, repeated measurements may be crucial for estimating the actual dose with good precision. In addition, knowledge of determinants of exposure could be used to improve working conditions. The aim of this study was to assess hand-arm vibration (HAV) exposure during different grinding operations, in order to obtain estimates of the variance components and to evaluate the effect of work postures. Ten experienced operators used two compressed air-driven angle grinders of the same make in a simulated work task at a workplace. One part of the study consisted of using a grinder while assuming two different working postures: at a standard work bench (low) and on a wall with arms elevated and the work area adjusted to each operator's height (high). The workers repeated the task three times. In another part of the study, investigating the wheel wear, for each grinder, the operators used two new grinding wheels and with each wheel the operator performed two consecutive 1-min grinding tasks. Both grinding tasks were conducted on weld puddles of mild steel on a piece of mild steel. Measurements were taken according to ISO-standard 5349 [the equivalent hand-arm-weighted acceleration (m s(-2)) averaged over 1 min]. Mixed- and random-effects models were used to investigate the influence of the fixed variables and to estimate variance components. The equivalent hand-arm-weighted acceleration assessed when the task was performed on the bench and at the wall was 3.2 and 3.3 m s(-2), respectively. In the mixed-effects model, work posture was not a significant variable. The variables 'operator' and 'grinder' together explained only 12% of the exposure variability and 'grinding wheel' explained 47%; the residual variability of 41% remained unexplained. When the effect of grinding wheel wear was investigated in the random-effects model, 37% of the variability was associated with

  2. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    NASA Astrophysics Data System (ADS)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  3. Efficacy of massage treatment technique in masseter muscle hardness: robotic experimental approach.

    PubMed

    Hiraiwa, Yuichiro; Ariji, Yoshiko; Kise, Yoshitaka; Sakuma, Shigemitsu; Kurita, Kenichi; Ariji, Eiichiro

    2013-10-01

    The study aimed to clarify the masseter muscle hardness in patients with myofascial pain, to examine their changes after massage, and to analyze whether the hardness can be an index for massage treatment. Sixteen patients with myofascial pain (12 with unilateral and 4 with bilateral masseter muscle pain) and 24 healthy volunteers were enrolled in this study. The masseter hardness between patients and the healthy volunteers was compared. The changes in the hardness in patients after massage were examined. The relation of the hardness with massage regimens and efficacies was analyzed. There was a significant right-and-left difference of the hardness in patients, although there was no difference in the healthy volunteers. The hardness decreased after massage. The pretreatment asymmetry index of the hardness showed a significant correlation with the massage pressure. It was concluded that there was a significant difference between the right and left masseter hardness in patients with myofascial pain. After massage treatment, the masseter hardness and right-and-left difference decreased. The hardness may be an index for determining the massage pressure.

  4. Solid impingement erosion mechanisms and characterization of erosion resistance of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, V. P.; Buckley, D. H.

    1982-01-01

    Experimental results pertaining to spherical glass bead and angular crushed glass particle impingement are presented. A concept of energy adsorption to explain the failure of material is proposed. The erosion characteristics of several pure metals were correlated with the proposed energy parameters and with other properties. Correlations of erosion and material properties were also carried out with these materials to study the effect of the angle of impingement. Analyses of extensive erosion data indicate that surface energy, strain energy, melting point, bulk modulus, hardness, ultimate resilience, atomic volume and product of linear coefficient of thermal expansion, bulk modulus, and temperature rise required for melting, and ultimate resilience, and hardness exhibit the best correlations. It appears that both energy and thermal properties contribute to the total erosion.

  5. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    NASA Astrophysics Data System (ADS)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  6. Predicting Novel Bulk Metallic Glasses via High- Throughput Calculations

    NASA Astrophysics Data System (ADS)

    Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J.; Schroers, J.; Curtarolo, S.

    Bulk metallic glasses (BMGs) are materials which may combine key properties from crystalline metals, such as high hardness, with others typically presented by plastics, such as easy processability. However, the cost of the known BMGs poses a significant obstacle for the development of applications, which has lead to a long search for novel, economically viable, BMGs. The emergence of high-throughput DFT calculations, such as the library provided by the AFLOWLIB consortium, has provided new tools for materials discovery. We have used this data to develop a new glass forming descriptor combining structural factors with thermodynamics in order to quickly screen through a large number of alloy systems in the AFLOWLIB database, identifying the most promising systems and the optimal compositions for glass formation. National Science Foundation (DMR-1436151, DMR-1435820, DMR-1436268).

  7. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  8. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  9. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  10. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    PubMed Central

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  11. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    PubMed

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  12. Patterning with metal-oxide EUV photoresist: patterning capability, resist smoothing, trimming, and selective stripping

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Lazzarino, Frederic; De Schepper, Peter; De Simone, Danilo; Piumi, Daniele; Luong, Vinh; Yamashita, Fumiko; Kocsis, Michael; Kumar, Kaushik

    2017-03-01

    Inpria metal-oxide photoresist (PR) serves as a thin spin-on patternable hard mask for EUV lithography. Compared to traditional organic photoresists, the ultrathin metal-oxide photoresist ( 12nm after development) effectively mitigates pattern collapse. Because of the high etch resistance of the metal-oxide resist, this may open up significant scope for more aggressive etches, new chemistries, and novel integration schemes. We have previously shown that metal-oxide PR can be successfully used to pattern the block layer for the imec 7-nm technology node[1] and advantageously replace a multiple patterning approach, which significantly reduces the process complexity and effectively decreases the cost. We also demonstrated the formation of 16nm half pitch 1:1 line/space with EUV single print[2], which corresponds to a metal 2 layer for the imec 7-nm technology node. In this paper, we investigate the feasibility of using Inpria's metal-oxide PR for 16nm line/space patterning. In meanwhile, we also explore the different etch process for LWR smoothing, resist trimming and resist stripping.

  13. Osteoconductive Properties Of Metal/Metal Alloy Coated Silicon Dioxide Nanosprings

    NASA Astrophysics Data System (ADS)

    Hass, Jamie L.

    This dissertation focuses on the potential of silicon dioxide nanosprings as an osteoconductive nanobiomaterial. The use of nanomaterials as substrates for tissue engineering has recently been considered and the remarkable similarity of the nanosprings and the amorphic mat to collagen fiber type 1 and woven bone, respectively, makes this nanobiomaterial a promising substrate for bone growth. The nanosprings are easily grown on many materials such as glass and orthopedic metals. In addition, there is a unique ability to coat the nanospring surface with both osteogenic metal/metal alloys and proteins. In-vitro bone tissue culture studies, surface science evaluation of osteoblast and protein attachment, and nanomechanical characterization are protocols to determine if nanosprings exhibits promise as an osteoconductive nanomaterial. Firstly, osteoblast cell behaviors on nanosprings are assessed, which were found to display a greater magnitude of proliferation, differentiation, and calcium deposition as a function of the metal/metal alloy when compared to the controls. All the nanospring substrates proved to be biocompatible and durable in the tissue culture environment for an entire 36-day incubation. Secondly, a protocol was developed to evaluate different wettable surface characteristics of the nanospring substrates and relate these to osteoblast attachment, as well as the adsorption of the serum proteins albumin and fibronectin. Fourier transform infrared spectroscopy (FTIR) and x-ray photoemission spectroscopy (XPS) elucidated the surface stoichiometry of the nanospring substrates and after attachment of the proteins. The surface examination exposed preference for albumin to hydrophobic nanospring substrate and fibronectin to dynamically hydrophilic nanospring substrate. Lastly, nanoindentation testing of nanospring substrates before and after bone growth was performed. The hardness, stiffness and reduced elastic moduli values of the nanospring-bone matrix that

  14. Laser Ablatin of Dental Hard Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  15. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  16. Mechanical Properties and Wear Characteristics Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Nayak, S. K.; Mahanta, T.; Sahoo, J. K.; Mishra, A.

    2018-03-01

    Development of Aluminum Metal Matrix Co mposites (AMMCs) has been one of the major requirements in engineering applicat ions due to their excellent mechanical properties, light weight and high strength. In the present investigation, Stir casting technique has been used for fabrication of co mposites, taking Alu miniu m as parent metal, Silicon Carbide (SiCp) of 7 vol. % of 220 mesh size and 1.75 vol. % of graphite as reinforcements. The Zirconia content was varied as 2.75, 4.5 and 6 vol. % to fabricate three d ifferent types of hybrid composites. The tensile strength and hardness were measured in UTM and Vickers hardness tester respectively and the wear characteristics were studied in a pin on disc friction monitor under dry sliding condition against steel counter face. The tensile strength was found to be 90 MPa, 120 MPa, 130 MPa and hardness 80.25 VHN, 103.22 VHN, 103.77 VHN for 2.75, 4.5 and 6vol. % of Zirconia respectively. Fro m the above investigation, it is recommended that composition with Al, 7 %-SiCp, 1.75 % -Gr and 6 vol %-ZrO2 showed better mechanical p roperties i.e . h igh tensile strength (130MPa) and reasonably good hardness (103.77 VHN) . The co mposite with Al, 7 % - SiCp, 1.75 % -Gr and 6 %-ZrO2 is good for short run frictional applicat ion and the composite with Al, 7 %- SiCp, 1.75 % -Gr and 4.5 %- ZrO2 may be used for long run frictional applicat ions after testing.

  17. The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.

    NASA Astrophysics Data System (ADS)

    Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.

    2010-05-01

    The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p < 0.01). Testing the effects of water content, there were no statistically significant differences between water saturated and dry samples. The influence of rock surface roughness was evaluated applying the durometer in ancient rock carvings in medium to coarse grain granites. We compared the values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p < 0.01) between lower rebound values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and

  18. Hard-Boiled for Hard Times in Leonardo Padura Fuentes's Detective Fiction

    ERIC Educational Resources Information Center

    Song, H. Rosi

    2009-01-01

    Focusing on Leonardo Padura Fuentes's hard-boiled fiction, this essay traces the origin and evolution of the genre in Cuba. Padura Fuentes has challenged the officially sanctioned socialist "literatura policial" that became popular in the 1970s and 1980s. creating a new model of criticism that is not afraid to confront the island's socio-economic…

  19. Study of aluminum content in a welding metal by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  20. Metal ion reactive thin films using spray electrostatic LbL assembly.

    PubMed

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  1. Synthesis Functional and Constructional Nanomaterials on a Basis Carbide Tungsten, Molybdenum and Metals of a Triad of Iron in Ionic Melts

    NASA Astrophysics Data System (ADS)

    Kushkhov, H. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.

    2011-04-01

    Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.

  2. Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17-4PH stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Huang, Zeng-Kai; Tseng, Chun-Feng; Hwang, Kuen-Shyang

    2015-05-01

    Metal injection molding (MIM) is a versatile technique for economically manufacturing various metal parts with complicated shapes and excellent properties. The objective of this study was to clarify the effects of powder type (water-atomized and gas-atomized powders) and various heat treatments (sintering, solutioning, H900, and H1100) on the microstructures, mechanical properties, and fracture behaviors of MIM 17-4PH stainless steels. The results showed that better mechanical properties of MIM 17-4PH can be achieved with gas-atomized powder than with water-atomized powder due mainly to the lower silicon and oxygen contents and fewer SiO2 inclusions in the steels. The presence of 10 vol% δ ferrite does not impair the UTS or elongation of MIM 17-4PH stainless steels. The δ ferrite did not fracture, even though the neighboring martensitic matrix was severely cracked. Moreover, H900 treatment produces the highest hardness and UTS, along with moderate elongation. H1100 treatment produces the best elongation, along with moderate hardness and UTS.

  3. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    PubMed

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Long-term hot-hardness characteristics of five through-hardened bearing steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  5. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  6. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  7. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  8. The composition of tea infusions examined in relation to the association between mortality and water hardness

    PubMed Central

    Anderson, W.; Hollins, J. G.; Bond, Pamela S.

    1971-01-01

    Recent epidemiological studies have shown that death-rates from certain chronic diseases are higher in areas with soft than in areas with hard drinking-water. In the striking negative correlation found in the county boroughs of England and Wales between cardiovascular mortality and water hardness the important underlying factor is apparently the water calcium. Interest is therefore focused on the dietary significance of calcium present in drinking-water. In relation to that interest, the present report gives a quantitative account of the composition of tea infusions prepared with waters containing different amounts of calcium. It is shown that a substantial part of water calcium is taken up by the tea leaf during the preparation of infusions. The analysis of the infusions covers a wide range of individual components, including trace metals and polyphenolic substances. It appears that the principal change caused in infusion composition by the presence of calcium in the water is a substantial reduction in the relatively high oxalate content. The question is raised whether there may be some connexion between the `water factor' in cardiovascular disease and the absorption of oxalates from foods. PMID:5291748

  9. Environmental lead pollution and its possible influence on tooth loss and hard dental tissue lesions.

    PubMed

    Cenić-Milosević, Desanka; Mileusnić, Ivan; Kolak, Veljko; Pejanović, Djordje; Ristić, Tamara; Jakovljević, Ankica; Popović, Milica; Pesić, Dragana; Melih, Irena

    2013-08-01

    Environmental lead (Pb) pollution is a global problem. Hard dental tissue is capable of accumulating lead and other hard metals from the environment. The aim of this study was to investigate any correlation between the concentration of lead in teeth extracted from inhabitants of Pancevo and Belgrade, Serbia, belonging to different age groups and occurrence of tooth loss, caries and non-carious lesions. A total of 160 volunteers were chosen consecutively from Pancevo (the experimental group) and Belgrade (the control group) and divided into 5 age subgroups of 32 subjects each. Clinical examination consisted of caries and hard dental tissue diagnostics. The Decayed Missing Filled Teeth (DMFT) Index and Significant Caries Index were calculated. Extracted teeth were freed of any organic residue by UV digestion and subjected to voltammetric analysis for the content of lead. The average DMFT scores in Pancevo (20.41) were higher than in Belgrade (16.52); in the patients aged 31-40 and 41-50 years the difference was significant (p < 0.05) and highly significant in the patients aged 51-60 (23.69 vs 18.5, p < 0.01). Non-carious lesions were diagnosed in 71 (44%) patients from Pancevo and 39 (24%) patients from Belgrade. The concentrations of Pb in extracted teeth in all the groups from Pancevo were statistically significantly (p < 0.05) higher than in all the groups from Belgrade. In the patients from Pancevo correlations between Pb concentration in extracted teeth and the number of extracted teeth, the number of carious lesions and the number of non-carious lesions showed a statistical significance (p < 0.001, p < 0.01 andp < 0.001, respectively). According to correlations between lead concentration and the number of extracted teeth, number of carious lesions and non-carious lesions found in the patients living in Pancevo, one possible cause of tooth loss and hard dental tissue damage could be a long-term environmental exposure to lead.

  10. Is there a hard-to-reach audience?

    PubMed Central

    Freimuth, V S; Mettger, W

    1990-01-01

    The "hard-to-reach" label has been applied to many different audiences. Persons who have a low socioeconomic status (SES), members of ethnic minorities, and persons who have a low level of literacy often are tagged as "hard-to-reach." The authors identify reasons why these groups have been labelled "hard-to-reach," discuss preconceptions associated with the "hard-to-reach" label, propose alternative conceptualizations of these audiences, and present implications of such conceptualizations for health communication campaigns. Pejorative labels and preconceptions about various groups may lead to depicting these audiences as powerless, apathetic, and isolated. The authors discuss alternative conceptualizations, which highlight the strengths of different audience segments and encourage innovative approaches to the communication process. These alternative conceptualizations emphasize interactive communication, a view of society in which individuals are seen as members of equivalent--albeit different--cultures, and a shift of responsibility for health problems from individuals to social systems. Recommendations for incorporating these alternative concepts into health campaigns include formative research techniques that create a dialogue among participants, more sophisticated segmentation techniques to capture audience diversity, and new roles for mass media that are more interactive and responsive to individual needs. PMID:2113680

  11. Relationships among exceedences of metals criteria, the results of ambient bioassays, and community metrics in mining-impacted streams.

    PubMed

    Griffith, Michael B; Lazorchak, James M; Herlihy, Alan T

    2004-07-01

    If bioassessments are to help diagnose the specific environmental stressors affecting streams, a better understanding is needed of the relationships between community metrics and ambient criteria or ambient bioassays. However, this relationship is not simple, because metrics assess responses at the community level of biological organization, while ambient criteria and ambient bioassays assess or are based on responses at the individual level. For metals, the relationship is further complicated by the influence of other chemical variables, such as hardness, on their bioavailability and toxicity. In 1993 and 1994, U.S. Environmental Protection Agency (U.S. EPA) conducted a Regional Environmental Monitoring and Assessment Program (REMAP) survey on wadeable streams in Colorado's (USA) Southern Rockies Ecoregion. In this ecoregion, mining over the past century has resulted in metals contamination of streams. The surveys collected data on fish and macroinvertebrate assemblages, physical habitat, and sediment and water chemistry and toxicity. These data provide a framework for assessing diagnostic community metrics for specific environmental stressors. We characterized streams as metals-affected based on exceedence of hardness-adjusted criteria for cadmium, copper, lead, and zinc in water; on water toxicity tests (48-h Pimephales promelas and Ceriodaphnia dubia survival); on exceedence of sediment threshold effect levels (TELs); or on sediment toxicity tests (7-d Hyalella azteca survival and growth). Macroinvertebrate and fish metrics were compared among affected and unaffected sites to identify metrics sensitive to metals. Several macroinvertebrate metrics, particularly richness metrics, were less in affected streams, while other metrics were not. This is a function of the sensitivity of the individual metrics to metals effects. Fish metrics were less sensitive to metals because of the low diversity of fish in these streams.

  12. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-01-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings. PMID:26924136

  13. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings.

    PubMed

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-29

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  14. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  15. Cooling metals to the microkelvin regime, then and now

    NASA Astrophysics Data System (ADS)

    Pickett, G. R.

    2000-05-01

    Better understanding of the behaviour of materials and the techniques of nuclear cooling, gained in recent years, now allows us to cool metallic samples to the microkelvin regime, with hold times at the higher temperatures of tens of hours. In the early days of nuclear cooling when sources of heat leaks were hardly understood, such performance would have appeared an impossible dream. However, we are now at the point where solid state experiments can be realistically contemplated in the sub- 10 μK regime.

  16. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  17. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  18. Electronic structure of negative charge transfer CaFeO3 across the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Rogge, Paul C.; Chandrasena, Ravini U.; Cammarata, Antonio; Green, Robert J.; Shafer, Padraic; Lefler, Benjamin M.; Huon, Amanda; Arab, Arian; Arenholz, Elke; Lee, Ho Nyung; Lee, Tien-Lin; Nemšák, Slavomír; Rondinelli, James M.; Gray, Alexander X.; May, Steven J.

    2018-01-01

    We investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe sites undergo no observable spectroscopic change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ˜5 -10 % in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.

  19. Compact 2D OPC modeling of a metal oxide EUV resist for a 7nm node BEOL layer

    NASA Astrophysics Data System (ADS)

    Lyons, Adam; Rio, David; Lee, Sook; Wallow, Thomas; Delorme, Maxence; Fumar-Pici, Anita; Kocsis, Michael; de Schepper, Peter; Greer, Michael; Stowers, Jason K.; Gillijns, Werner; De Simone, Danilo; Bekaert, Joost

    2017-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a high-resolution photoresist for EUV lithography1. In this contribution, we describe a Tachyon 2D OPC full-chip model for an Inpria resist as applied to an N7 BEOL block mask application.

  20. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang

    2007-02-01

    High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.