Sample records for hard metal production

  1. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  2. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  3. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  4. Process for casting hard-faced, lightweight camshafts and other cylindrical products

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.; Wilson, Rick D.

    1996-01-01

    A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when the molten base metal solidifies.

  5. Inorganic particulates in pneumoconiotic lungs of hard metal grinders.

    PubMed Central

    Rüttner, J R; Spycher, M A; Stolkin, I

    1987-01-01

    Data from the analysis of lung dust in 16 metal grinders who had been exposed to hard metals between five and 44 years is reported. The mean latent time between the first exposure and analysis in biopsy or necropsy specimens was 33.6 years. Mineralogical and elementary analysis by a variety of techniques showed small or trace amounts of hard metal in all lungs. Many specimens, however, did not contain all hard metal components, cobalt, for example, being detected in four cases only. All the lungs contained quartz and silicates and in most of the necropsy cases carborundum and corundum could also be shown. Histologically no specific pattern was found. The appearances included mixed dust nodular pneumoconiosis, diffuse interstitial lung fibrosis, and foreign body and sarcoid like granulomatous changes. In view of the mixed dust exposure of the hard metal grinders and the variable histological appearance we think that the term "mixed dust pneumoconiosis in hard metal grinders" is more appropriate than "hard metal lung" to describe this condition. PMID:3676118

  6. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  7. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  8. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  9. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  10. A deformation mechanism of hard metal surrounded by soft metal during roll forming

    PubMed Central

    YU, Hailiang; TIEU, A. Kiet; LU, Cheng; LIU, Xiong; GODBOLE, Ajit; LI, Huijun; KONG, Charlie; QIN, Qinghua

    2014-01-01

    It is interesting to imagine what would happen when a mixture of soft-boiled eggs and stones is deformed together. A foil made of pure Ti is stronger than that made of Cu. When a composite Cu/Ti foil deforms, the harder Ti will penetrate into the softer Cu in the convex shapes according to previously reported results. In this paper, we describe the fabrication of multilayer Cu/Ti foils by the roll bonding technique and report our observations. The experimental results lead us to propose a new deformation mechanism for a hard metal surrounded by a soft metal during rolling of a laminated foil, particularly when the thickness of hard metal foil (Ti, 25 μm) is much less than that of the soft metal foil (Cu, 300 μm). Transmission Electron Microscope (TEM) imaging results show that the hard metal penetrates into the soft metal in the form of concave protrusions. Finite element simulations of the rolling process of a Cu/Ti/Cu composite foil are described. Finally, we focus on an analysis of the deformation mechanism of Ti foils and its effects on grain refinement, and propose a grain refinement mechanism from the inside to the outside of the laminates during rolling. PMID:24853192

  11. Combined effect of smoking habits and occupational exposure to hard metal on total IgE antibodies.

    PubMed

    Shirakawa, T; Kusaka, Y; Morimoto, K

    1992-06-01

    A survey was made within a population of workers (n = 706) exposed to hard metal dust (an alloy including cobalt), an agent known to cause occupational allergy. Twenty-seven (4 percent) of 733 workers were eliminated from consideration in this study because of atopic status identified prior to starting work in the plant. Using a Phadebas PRIST, the subjects' total IgE levels were determined and related to their smoking and exposure status. Nonexposed male smokers (n = 135) had a higher geometric mean IgE level (39.7 IU/ml) than did nonexposed subjects who had never smoked (33.1 IU/ml; n = 99); those with a higher Brinkman index (greater than 300), a smoking index obtained by multiplying the number of cigarettes per day by the duration of smoking in years, had significantly (p less than 0.05) decreased IgE levels. Although ex-smokers (n = 72) had a higher geometric mean IgE level (73.3 IU/ml) than did those who had never smoked, their serum IgE level declined with age since the time they quit smoking, regardless of their hard metal exposure status. Hard metal (cobalt) exposure may play a significant role as an adjuvant in the production of total IgE. A multivariate analysis demonstrated that hard metal exposure and a smoking habit together arithmetically (p less than 0.05) increased total IgE levels. These two factors may be preventable risk factors for occupational allergy in hard metal workers.

  12. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    PubMed Central

    Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H.

    2012-01-01

    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds. PMID:22919393

  13. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and

  14. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE PAGES

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    2017-10-26

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and

  15. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  16. Laboratory studies on the tribology of hard bearing hip prostheses: ceramic on ceramic and metal on metal.

    PubMed

    Vassiliou, K; Scholes, S C; Unsworth, A

    2007-01-01

    Total hip replacements offer relief to a great many patients every year around the world. With an expected service life of around 25 years on most devices, and with younger and younger patients undergoing this surgery, it is of great importance to understand the mechanisms of their function. Tribological testing of both conventional and hard bearing joint combinations have been conducted in many centres throughout the world, and, after being initially abandoned owing to premature failures, hard bearing combinations have been revisited as viable options for joint replacements. Improved design, manufacturing procedures, and material compositions have led to improved performance over first-generation designs in both metal-on-metal and ceramic-on-ceramic hip prostheses. This paper offers a review of the work conducted in an attempt to highlight the most important factors affecting joint performance and tribology of hard bearing combinations. The tribological performance of these joints is superior to that of conventional metal- or ceramic-on-polymer designs.

  17. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  18. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  19. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  20. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands.

    PubMed

    Kopittke, Peter M; Menzies, Neal W; Wang, Peng; McKenna, Brigid A; Wehr, J Bernhard; Lombi, Enzo; Kinraide, Thomas B; Blamey, F Pax C

    2014-02-01

    Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms. © 2013 SETAC.

  1. Application of hard sphere perturbation theory for thermodynamics of model liquid metals

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-06-01

    Hard sphere perturbation theory (HSPT) has contributed toward the fundamental understanding of dense fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general, and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density. To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than one-component plasma (OCP) for alkali metals and polyvalent metals. We are thus able to provide insight into the long standing observation that a OCP is a better reference system than a HS for alkali metals.

  2. Metal oxide multilayer hard mask system for 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  3. Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons

    Treesearch

    Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone

    2012-01-01

    We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...

  4. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity.

    PubMed

    Yim, Jin Hee; Kim, Kyoung W; Kim, Sang D

    2006-11-02

    In this study, the effect of hardness on the combined outcome of metal mixtures was investigated using Daphnia magna. The toxic unit (TU) was calculated using modified LC(50) values based on the hardness (i.e., LC(50-soft) and LC(50-hard)). From a bioassay test, the degree of sensitivity to hardness on the toxicity changes was in the order: Cdhard test solution was replaced with a soft test solution. In mixture toxicity tests, the difference in the test solution hardness was found to clearly cause different toxicities, as determined by the TU calculated by the LC(50-hard), using the toxicity of a standard culture medium as the reference. That is, approximately four to five times higher toxicity was observed in soft (i.e., 44+/-4 mg/L as CaCO(3)) rather than hard water (i.e., 150+/-10mg/L as CaCO(3)) test solutions. In the tests where the modified reference toxicity values (i.e., LC(50-soft) and LC(50-hard) for soft and hard test solution, respectively) obtained from the individual metal toxicity tests with different hardness were used to calculate the TU, the results showed very similar D. magna toxicities to those of the TU from the mixture of soft and hard test solutions, regardless of the hardness. According to the toxicity results of the mixture, the aquatic toxic effects of the acid mine drainage (AMD) collected from mine areas that contained metal mixtures were investigated using Daphnia magna and the modified LC(50) value of the TU hardness function calculated for varying solution hardness. The results of the biological WET test closely matched our overall prediction, with significant correlation, having a p-value of 0.513 in one way ANOVA test (n=19). Therefore, this study revealed that the predicted toxicity of the metal mixture agreed well with the biological toxicity test when the modified LC(50) value was employed as the basis of hardness in the TU calculation.

  5. Structural and electronic properties of OsB2 : A hard metallic material

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  6. Hard metal lung disease: a case series.

    PubMed

    Mizutani, Rafael Futoshi; Terra-Filho, Mário; Lima, Evelise; Freitas, Carolina Salim Gonçalves; Chate, Rodrigo Caruso; Kairalla, Ronaldo Adib; Carvalho-Oliveira, Regiani; Santos, Ubiratan Paula

    2016-01-01

    To describe diagnostic and treatment aspects of hard metal lung disease (HMLD) and to review the current literature on the topic. This was a retrospective study based on the medical records of patients treated at the Occupational Respiratory Diseases Clinic of the Instituto do Coração, in the city of São Paulo, Brazil, between 2010 and 2013. Of 320 patients treated during the study period, 5 (1.56%) were diagnosed with HMLD. All of those 5 patients were male (mean age, 42.0 ± 13.6 years; mean duration of exposure to hard metals, 11.4 ± 8.0 years). Occupational histories were taken, after which the patients underwent clinical evaluation, chest HRCT, pulmonary function tests, bronchoscopy, BAL, and lung biopsy. Restrictive lung disease was found in all subjects. The most common chest HRCT finding was ground glass opacities (in 80%). In 4 patients, BALF revealed multinucleated giant cells. In 3 patients, lung biopsy revealed giant cell interstitial pneumonia. One patient was diagnosed with desquamative interstitial pneumonia associated with cellular bronchiolitis, and another was diagnosed with a hypersensitivity pneumonitis pattern. All patients were withdrawn from exposure and treated with corticosteroid. Clinical improvement occurred in 2 patients, whereas the disease progressed in 3. Although HMLD is a rare entity, it should always be included in the differential diagnosis of respiratory dysfunction in workers with a high occupational risk of exposure to hard metal particles. A relevant history (clinical and occupational) accompanied by chest HRCT and BAL findings suggestive of the disease might be sufficient for the diagnosis. Descrever aspectos relacionados ao diagnóstico e tratamento de pacientes com doença pulmonar por metal duro (DPMD) e realizar uma revisão da literatura. Estudo retrospectivo dos prontuários médicos de pacientes atendidos no Serviço de Doenças Respiratórias Ocupacionais do Instituto do Coração, localizado na cidade de S

  7. Electrochemical removal of metallic implants from Technovit 9100 New embedded hard and soft tissues prior to histological sectioning.

    PubMed

    Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank

    2013-11-01

    Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.

  8. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    NASA Astrophysics Data System (ADS)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  9. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2017-01-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  10. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  11. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  12. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE PAGES

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...

    2017-01-05

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  13. Interspeaker Variability in Hard Palate Morphology and Vowel Production

    ERIC Educational Resources Information Center

    Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth

    2013-01-01

    Purpose: Differences in vocal tract morphology have the potential to explain interspeaker variability in speech production. The potential acoustic impact of hard palate shape was examined in simulation, in addition to the interplay among morphology, articulation, and acoustics in real vowel production data. Method: High-front vowel production from…

  14. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  15. Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness.

    PubMed

    Saglam, Dilek; Atli, Gülüzar; Canli, Mustafa

    2013-06-01

    Hardness is one of the most important factors in water chemistry as it affects fish physiology and metal toxicity. The aim of this study was to investigate osmoregulatory responses in the Nile tilapia Oreochromis niloticus exposed to copper and cadmium (1.0μg/mL) in soft water (SW) (hardness 80mg CaCO3/L and conductivity 1.77mS/cm) and hard water (HW) (hardness 320mg CaCO3/L and conductivity 5.80mS/cm) for 0, 1, 7 and 14 days. Following the exposures, Na(+)/K(+)-ATPase activity, ion and Cu levels in the gill, kidney and intestine were measured. There was no fish mortality within 14 days, except Cu exposure in SW which killed all fish between 8 and 12 days. Generally, Na(+)/K(+)-ATPase activity was altered by both metal exposures in the gill and kidney as it increased in HW condition, but decreased in SW condition. There were also alterations in Na(+)/K(+)-ATPase activity in the intestine as its activity generally decreased. Data, in general, showed that Cd was more effective on Na(+)/K(+)-ATPase activity comparing to Cu. However, ion levels altered mainly in the kidney and intestine. Tissue metal accumulation was higher in fish tissues from SW condition comparing to HW condition. Data represented here showed that the effects of metals differed in differing water hardness. This suggests that special attention should be paid to the water chemistry when natural monitoring studies are carried out. This study also suggests that the response of osmoregulation system of fish may be a sensitive indicator under stressful conditions in different natural waters. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal

    NASA Astrophysics Data System (ADS)

    Kushkhov, Kh. B.; Adamokova, M. N.; Kvashin, V. A.; Kardanov, A. L.

    2010-08-01

    Single and cyclic voltammetry is used to study the electrode processes that occur during electrochemical synthesis of hard-alloy compositions based on tungsten carbide and an iron triad metal in tungstate and tungstate-carbonate Na2WO4-Li2WO4-Li2CO3 (5.0-22.0 wt %) melts. The conditions of bringing the electroprecipitation potentials of tungsten, carbon, and an iron triad metal into coincidence are determined.

  17. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    PubMed

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  18. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    NASA Astrophysics Data System (ADS)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  19. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  20. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  1. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  2. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  3. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    NASA Astrophysics Data System (ADS)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  4. Surface texture and hardness of dental alloys processed by alternative technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  5. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.R., E-mail: raymix@aliyun.com

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB regionmore » had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.« less

  6. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  7. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  8. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwestern streams, USA

    USGS Publications Warehouse

    Maret, T.R.; Cain, D.J.; MacCoy, D.E.; Short, T.M.

    2003-01-01

    Benthic macroinvertebrate assemblages, environmental variables, and associated mine density were evaluated during the summer of 2000 at 18 reference and test sites in the Coeur d'Alene and St. Regis River basins, northwestern USA as part of the US Geological Survey's National Water-Quality Assessment Program. Concentrations of Cd, Pb, and Zn in water and (or) streambed sediment at test sites in basins where production mine density was ???0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than concentrations at reference sites. Zn and Pb were identified as the primary contaminants in water and streambed sediment, respectively. These metal concentrations often exceeded acute Ambient Water Quality Criteria for aquatic life and the National Oceanic and Atmospheric Administration Probable Effect Level for streambed sediment. Regression analysis identified significant correlations between production mine density in each basin and Zn concentrations in water and Pb in streambed sediment (r2 = 0.69 and 0.65, p < 0.01). Metal concentrations in caddisfly tissue, used to verify site-specific exposures of benthos, also were highest at sites downstream from intensive mining. Benthic invertebrate taxa richness and densities were lower at sites downstream than upstream of areas of intensive hard-rock mining and associated metal enrichment. Benthic invertebrate metrics that were most effective in discriminating changes in assemblage structure between reference and mining sites were total number of taxa, number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, and densities of total individuals, EPT individuals, and metal-sensitive Ephemeroptera individuals.

  9. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  10. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  11. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  12. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water.

    PubMed

    Forghani, Fereidoun; Park, Joong-Hyun; Oh, Deog-Hwan

    2015-06-01

    Slightly acidic electrolyzed water (SAEW) has been proved as an effective sanitizer against microorganisms attached to foods. However, its physical properties and inactivation efficacy are affected by several factors such as water hardness. Therefore, in this study the effect of water hardness on SAEW properties were studied. Pure cultures of foodborne bacteria were used in vitro and in vivo to evaluate the inactivation efficacy of the SAEWs produced. Results obtained showed water hardness to be an important factor in the production of SAEW. Low water hardness may result in the necessity of further optimization of production process. In this study the addition of 5% HCl and 2 M NaCl at 1.5 mL/min flow rate was found to be the best electrolyte concentration for the optimization of SAEW production from low hardness water (34 ± 2 mg/L). Furthermore, the results showed that pre-heating was a better approach compared to post-production heating of SAEW, resulting in higher ACC values and therefor better sanitization efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  14. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  15. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products. ...

  16. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property..., Procedures, and Guidelines § 109-27.5011 Identification marking of metals and metal products. ...

  17. Soft photon and two hard jets forward production in proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Altinoluk, Tolga; Armesto, Néstor; Kovner, Alex; Lublinsky, Michael; Petreska, Elena

    2018-04-01

    We calculate the cross section for production of a soft photon and two hard jets in the forward rapidity region in proton-nucleus collisions at high energies. The calculation is performed within the hybrid formalism. The hardness of the final particles is defined with respect to the saturation scale of the nucleus. We consider both the correlation limit of small momentum imbalance and the dilute target limit where the momentum imbalance is of the order of the hardness of the jets. The results depend on the first two transversemomentum-dependent (TMD) gluon distributions of the nucleus.

  18. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  19. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  20. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  1. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  2. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  3. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  4. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  5. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  6. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  7. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  8. 30 CFR 56.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 56.15002 Section 56.15002 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personal Protection § 56.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant where falling objects...

  9. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  10. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  11. 30 CFR 57.15002 - Hard hats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hard hats. 57.15002 Section 57.15002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.15002 Hard hats. All persons shall wear suitable hard hats when in or around a mine or plant...

  12. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  13. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  14. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  15. The Relationship Between Basal Area and Hard Mast Production in the Ouachita Mountains

    Treesearch

    Roger W. Perry; Ronald E. Thill; Philip A. Tappe; David G. Peitz

    2004-01-01

    Abstract - Because the relationship between stand density and hard mast production is not clear, we investigated the effects of varying total overstory basal area (BA) on acorn and hickory nut production in the Ouachita Mountains. We used Whitehead visual surveys to estimate mast production in oaks (Quercus spp.) and hickories (...

  16. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  17. Risk assessment of allergen metals in cosmetic products.

    PubMed

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health.

  18. Femtosecond ablation applied to deep-drilling of hard metals

    NASA Astrophysics Data System (ADS)

    Bruneau, Sebastien; Hermann, Joerg; Dumitru, Gabriel; Sentis, Marc L.

    2004-09-01

    Mechanisms responsible for the limitation of the aspect ratio obtained by deep drilling of hard metals are investigated in the present work. Cemented carbide targets have been irradiated with laser pulses of 100 fs duration and 100 μJ maximum energy delivered by a Ti:sapphire laser system. The experiments are carried out in different gas environments (vacuum, air, helium up to atmospheric pressure) with incident laser fluences ranging from 1 to 20 Jcm-2. During deep drilling, the laser-induced ablation plume is characterized by means of in-situ plasma diagnostics. Fast imaging is used to observe the expansion behavior of the plasma plume whereas time- and space-resolved emission spectroscopy is employed to analyze the plasma composition. After irradiation, the laser-produced craters were examined by optical microscopy. A correlation between the ablation plume characteristics and the morphological changes of the mciro-holes is established. The results indicate that nanoclusters, that present a significant part of the ablated material, are responsbile for the alteration of the crater shape in the high laser fluence regime.

  19. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  20. Effective hard x-ray spectrum of a tabletop Mather-type plasma focus optimized for flash radiography of metallic objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raspa, V.; Moreno, C.; Sigaut, L.

    The effective spectrum of the hard x-ray output of a Mather-type tabletop plasma focus device was determined from attenuation data on metallic samples using commercial radiographic film coupled to a Gd{sub 2}O{sub 2}S:Tb phosphor intensifier screen. It was found that the radiation has relevant spectral components in the 40-150 keV range, with a single maximum around 60-80 keV. The radiation output allows for 50 ns resolution, good contrast, and introspective imaging of metallic objects even through metallic walls. A numerical estimation of the induced voltage on the focus during the compressional stage is briefly discussed.

  1. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness.

    PubMed

    Ayyıldız, Simel; Soylu, Elif Hilal; Ide, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-11-01

    The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with

  2. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

    PubMed Central

    Soylu, Elif Hilal; İde, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-01-01

    PURPOSE The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). CONCLUSION After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic

  3. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  4. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  5. How to estimate hardness of crystals on a pocket calculator

    NASA Astrophysics Data System (ADS)

    Šimůnek, Antonín

    2007-05-01

    A generalization of the semiempirical microscopic model of hardness is presented and applied to currently studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC, RuB2 , ReB2 , OsB2 , IrN2 , PtN2 , and OsN2 crystals in various structural phases is predicted. It is found that none of the transition metal crystals is superhard, i.e., with hardness greater than 40GPa . The presented method provides materials researchers with a practical tool in the search for new hard materials.

  6. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  7. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process

    NASA Astrophysics Data System (ADS)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.

    2017-09-01

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.

  8. Production and mechanical properties of Al-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.

    2016-11-01

    The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.

  9. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN

    DOE PAGES

    Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; ...

    2015-11-09

    Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is muchmore » stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.« less

  10. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2018-01-01

    The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.

  11. The production and tribology of hard facing coatings for agricultural applications

    NASA Astrophysics Data System (ADS)

    Roffey, Paul

    Abrasive wear is a significant issue in many industries but is of particular significance in agriculture. This research is being carried out due to the demand for a hard wearing, economical coating for use in the agricultural industry.A primary objective has been to review and develop an in depth understanding of the type of wear suffered by metal shares in agricultural soils. The affect of soil properties and abrasive wear environments on the amount of wear that occurs, and the way in which material properties can be used to reduce or prevent this has also been investigated. A review of the diverse range of soil properties, such as the mineral content, moisture content, soils strengths has been carried out in order to create an appropriate wear test procedure.The coatings developed for testing were modifications to an existing powder metallurgy coating. The modifications were made by the addition of selected hard phases to the powder prior to sintering. The resulting materials were characterised in terms of sinterability, hardness and abrasive wear resistance. Prior to commencing this work little or no data existed on the wear performance of the pre-existing coating. Wear resistance has been measured using a fixed ball micro-scale abrasive wear test (also known as the ball-cratering wear test) with SiC and SiO2 abrasives and also using a modified version of the ASTM G65 abrasive wear test which allowed testing in dry and wet modes. Limited field trials were performed to determine the abrasive wear resistance in real soil. Results from wear testing have determined that the optimum modification to the coating can improve performance compared to the unmodified coating.Detailed scanning electron microscopy (SEM) has been performed on the wear scars and has revealed the resultant wear mechanisms and role that the hard phase additions play in improving the wear resistance. The influence of the hard phase addition on the microstructure has also been studied.The wear

  12. New Insights into Hard Phases of CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L. D.

    2012-01-01

    The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M23C6-type (M=Cr, Mo, Co) and M6C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ~100 nm fine grains. The nanosized grains were identified to be mostly of M23C6 type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M23C6 structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ~15.7 GPa, while the M23C6 carbides in the wrought alloy were twice as hard (~30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo. PMID:22659365

  13. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    NASA Astrophysics Data System (ADS)

    Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.

  15. Heavy metal contaminants in yerberia shop products.

    PubMed

    Levine, Michael; Mihalic, Jason; Ruha, Anne-Michelle; French, Robert N E; Brooks, Daniel E

    2013-03-01

    Complementary and alternative medications, including the use of herbal medications, have become quite popular in the USA. Yerberias are found throughout the southwest and specialize in selling Hispanic herbal products. The products sold in these stores are not regulated by any governmental agency. Previous reports have found Ayurvedic medications contain high levels of lead, mercury, and arsenic. The primary purpose of this study is to examine the prevalence of heavy metal contaminants sold at Yerberia stores in the southwest. Yerberias in the Phoenix, Arizona area were identified via search of an on-line search engine using the words "Yerberia Phoenix." Every second store was selected, and products were purchased using a standard script. The products were subsequently analyzed for mercury, lead, and arsenic. The main outcome is the prevalence of heavy metal content in over-the-counter "cold" medications purchased at a Yerberia. Twenty-two samples were purchased. One product contained pure camphor (2-camphone) and was subsequently not further analyzed. Of the 21 samples analyzed, lead was found in 4/21 (19.4 %). Arsenic and mercury were in 1/21 (4.8 %) each. Because two samples contained two heavy metals, the total prevalence of heavy metals was 4/21 (19.4). Heavy metal contaminants are commonly encountered in over-the-counter herbal "cold" medications purchased at Yerberias in the southwest.

  16. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  17. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lu; Nie, Zhihua

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less

  18. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    PubMed Central

    Wahab, Hassan A.; Noordin, M. Y.; Izman, S.

    2013-01-01

    Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models. PMID:23997678

  19. Initial Effects of Reproduction Cutting Treatments on Residual Hard Mast Production in the Ouachita Mountains

    Treesearch

    Roger W. Perry; Ronald E. Thill

    2003-01-01

    We compared indices of total hard mast production (oak and hickory combined) in 20, second-growth, pine-hardwood stands under five treatments to determine the effects of different reproduction treatments on mast production in the Ouachita Mountains. We evaluated mast production in mature unharvested controls and stands under four reproduction cutting methods (single-...

  20. A Novel Approach to Hardness Testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; West, Harvey A.

    1996-01-01

    This paper gives a description of the application of a simple rebound time measuring device and relates the determination of relative hardness of a variety of common engineering metals. A relation between rebound time and hardness will be sought. The effect of geometry and surface condition will also be discussed in order to acquaint the student with the problems associated with this type of method.

  1. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  2. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE PAGES

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...

    2017-06-05

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  3. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  4. A study on the production of titanium carbide nano-powder in the nanostate and its properties

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.

    2016-09-01

    The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.

  5. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  6. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  7. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    PubMed

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  8. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods

    PubMed Central

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783

  9. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    PubMed

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  10. In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombaert, Nooemi; Lison, Dominique; Van Hummelen, Paul

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profilemore » of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNF{alpha}), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.« less

  11. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  12. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.).

    PubMed

    Taniguchi, Yoshimasa; Yamada, Makiko; Taniguchi, Harumi; Matsukura, Yasuko; Shindo, Kazutoshi

    2015-11-25

    The bitter taste of beer originates from resins in hops (Humulus lupulus L.), which are classified into two subtypes (soft and hard). Whereas the nature and reactivity of soft-resin-derived compounds, such as α-, β-, and iso-α-acids, are well studied, there is only a little information on the compounds in hard resin. For this work, hard resin was prepared from stored hops and investigated for its compositional changes in an experimental model of beer aging. The hard resin contained a series of α-acid oxides. Among them, 4'-hydroxyallohumulinones were unstable under beer storage conditions, and their transformation induced primary compositional changes of the hard resin during beer aging. The chemical structures of the products, including novel polycyclic compounds scorpiohumulinols A and B and dicyclohumulinols A and B, were determined by HRMS and NMR analyses. These compounds were proposed to be produced via proton-catalyzed cyclization reactions of 4'-hydroxyallohumulinones. Furthermore, they were more stable than their precursor 4'-hydroxyallohumulinones during prolonged storage periods.

  13. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  14. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  15. Improvement of hot-carrier and radiation hardnesses in metal-oxide-nitride-oxide semiconductor devices by irradiation-then-anneal treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Liao, K.S.; Hwu, J.G.

    The hardnesses of hot-carrier and radiation of metal-oxide nitride-oxide semiconductor (MONOS) devices can be improved by the irradiation-then-anneal (ITA) treatments. Each treatment includes an irradiation of Co-60 with a total dose of 1M rads(SiO[sub 2]) and an anneal in N[sub 2] at 400 C for 10 min successively. This improvement can be explained by the release of SiO[sub 2]/Si interfacial strain.

  16. Production and use of metals and oxygen for lunar propulsion

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  17. Effect of magneto rheological damper on tool vibration during hard turning

    NASA Astrophysics Data System (ADS)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  18. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  19. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  20. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  1. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  2. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  3. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  4. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  5. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  7. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  8. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  9. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    NASA Astrophysics Data System (ADS)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  10. 21 CFR 133.150 - Hard cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity are...

  11. The Comprehension and Production of Wh-Questions in Deaf and Hard-of-Hearing Children

    ERIC Educational Resources Information Center

    Friedmann, Naama; Szterman, Ronit

    2011-01-01

    Hearing loss during the critical period for language acquisition restricts spoken language input. This input limitation, in turn, may hamper syntactic development. This study examined the comprehension, production, and repetition of Wh-questions in deaf or hard-of-hearing (DHH) children. The participants were 11 orally trained Hebrew-speaking…

  12. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  13. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    PubMed Central

    Tash, Mahmoud M.; Mahmoud, Essam R. I.

    2016-01-01

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature. PMID:28773564

  14. By-product metals are technologically essential but have problematic supply

    PubMed Central

    Nassar, N. T.; Graedel, T. E.; Harper, E. M.

    2015-01-01

    The growth in technological innovation that has occurred over the past decades has, in part, been possible because an increasing number of metals of the periodic table are used to perform specialized functions. However, there have been increasing concerns regarding the reliability of supply of some of these metals. A main contributor to these concerns is the fact that many of these metals are recovered only as by-products from a limited number of geopolitically concentrated ore deposits, rendering their supplies unable to respond to rapid changes in demand. Companionality is the degree to which a metal is obtained largely or entirely as a by-product of one or more host metals from geologic ores. The dependence of companion metal availability on the production of the host metals introduces a new facet of supply risk to modern technology. We evaluated companionality for 62 different metals and metalloids, and show that 61% (38 of 62) have companionality greater than 50%. Eighteen of the 38—including such technologically essential elements as germanium, terbium, and dysprosium—are further characterized as having geopolitically concentrated production and extremely low rates of end-of-life recycling. It is this subset of companion metals—vital in current technologies such as electronics, solar energy, medical imaging, energy-efficient lighting, and other state-of-the-art products—that may be at the greatest risk of supply constraints in the coming decades. PMID:26601159

  15. Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka?

    PubMed Central

    Jayasumana, Channa; Gunatilake, Sarath; Senanayake, Priyantha

    2014-01-01

    The current chronic kidney disease epidemic, the major health issue in the rice paddy farming areas in Sri Lanka has been the subject of many scientific and political debates over the last decade. Although there is no agreement among scientists about the etiology of the disease, a majority of them has concluded that this is a toxic nephropathy. None of the hypotheses put forward so far could explain coherently the totality of clinical, biochemical, histopathological findings, and the unique geographical distribution of the disease and its appearance in the mid-1990s. A strong association between the consumption of hard water and the occurrence of this special kidney disease has been observed, but the relationship has not been explained consistently. Here, we have hypothesized the association of using glyphosate, the most widely used herbicide in the disease endemic area and its unique metal chelating properties. The possible role played by glyphosate-metal complexes in this epidemic has not been given any serious consideration by investigators for the last two decades. Furthermore, it may explain similar kidney disease epidemics observed in Andra Pradesh (India) and Central America. Although glyphosate alone does not cause an epidemic of chronic kidney disease, it seems to have acquired the ability to destroy the renal tissues of thousands of farmers when it forms complexes with a localized geo environmental factor (hardness) and nephrotoxic metals. PMID:24562182

  16. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  17. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims inmore » updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.« less

  18. Concentrations and Potential Health Risks of Metals in Lip Products

    PubMed Central

    Liu, Sa; Rojas-Cheatham, Ann

    2013-01-01

    Background: Metal content in lip products has been an issue of concern. Objectives: We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals. Methods: We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks. Results: Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were < 20% of ADIs for average and high use. Conclusions: Cosmetics safety should be assessed not only by the presence of hazardous contents, but also by comparing estimated exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation. PMID:23674482

  19. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  20. Impact of heavy metals on the oil products biodegradation process.

    PubMed

    Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta

    2008-12-01

    Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  3. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    PubMed

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  4. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  5. 21 CFR 133.148 - Hard grating cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of...

  6. LC and ferromagnetic resonance in soft/hard magnetic microwires

    NASA Astrophysics Data System (ADS)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  7. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  8. Influence of photoactivation method and mold for restoration on the Knoop hardness of resin composite restorations.

    PubMed

    Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho

    2013-09-01

    The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.

  9. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  10. Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    NASA Astrophysics Data System (ADS)

    Marini, C. D.; Fatchurrohman, N.

    2018-04-01

    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement.

  11. Products of combustion of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1995-01-01

    The objective of this project is to evaluate methodologies for the qualitative and quantitative determination of the gaseous products of combustion of non-metallic materials of interest to the aerospace community. The goal is to develop instrumentation and analysis procedures which qualitatively and quantitatively identify gaseous products evolved by thermal decomposition and provide NASA a detailed system operating procedure.

  12. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  13. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  14. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  15. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  16. Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield

    DTIC Science & Technology

    2017-10-01

    ARL-RP-0618 ● OCT 2017 US Army Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the...Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield by Marc Pepi Weapons and...REPORT TYPE Reprint 3. DATES COVERED (From - To) June 2016–June 2017 4. TITLE AND SUBTITLE Towards Production of Additive Manufacturing Grade

  17. Electroerosion micro- and nanopowders for the production of hard alloys

    NASA Astrophysics Data System (ADS)

    Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.

    2016-06-01

    The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.

  18. Designing superhard metals: The case of low borides

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun

    2018-04-01

    The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.

  19. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  20. Evidence for a Hard Ionizing Spectrum from a z = 6.11 Stellar Population

    NASA Astrophysics Data System (ADS)

    Mainali, Ramesh; Kollmeier, Juna A.; Stark, Daniel P.; Simcoe, Robert A.; Walth, Gregory; Newman, Andrew B.; Miller, Daniel R.

    2017-02-01

    We present the Magellan/FIRE detection of highly ionized C IV λ1550 and O III]λ1666 in a deep infrared spectrum of the z = 6.11 gravitationally lensed low-mass galaxy RXC J2248.7-4431-ID3, which has previously known Lyα. No corresponding emission is detected at the expected location of He II λ1640. The upper limit on He II, paired with detection of O III] and C IV, constrains possible ionization scenarios. Production of C IV and O III] requires ionizing photons of 2.5-3.5 Ryd, but once in that state their multiplet emission is powered by collisional excitation at lower energies (˜0.5 Ryd). As a pure recombination line, He II emission is powered by 4 Ryd ionizing photons. The data therefore require a spectrum with significant power at 3.5 Ryd but a rapid drop toward 4.0 Ryd. This hard spectrum with a steep drop is characteristic of low-metallicity stellar populations, and less consistent with soft AGN excitation, which features more 4 Ryd photons and hence higher He II flux. The conclusions based on ratios of metal line detections to helium non-detection are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing handful of reionization-era galaxies with UV emission line ratios distinct from the general z=2{--}3 population in a way that suggests hard ionizing spectra that do not necessarily originate in AGNs.

  1. Occurrence of cohesion of metals during combined plastic deformation

    NASA Technical Reports Server (NTRS)

    Aynbinder, S. G.; Klokova, E. F.

    1980-01-01

    Experiments were conducted to study the cohesion of metals with surface films of varying thickness and hardness. It was established that the deformation necessary for the occurrence of cohesion is determined by the correlation of mechanical properties of the films and the base metal. The greater the relative hardness of the film the lower the deformation necessary for the occurrence of cohesion. The films are as plastic as the base metal prevent cohesion, since in this case it is impossible for sections of metal to appear that are free of contaminants. The physical perculiarities of metals that determine their capability for coalescence under conditions of dry friction are the relative hardness and plasticity of the oxide films formed on their surface under atmospheric conditions.

  2. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  3. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  4. Preliminary investigation of metal and metalloid contamination of homeopathic products marketed in Croatia.

    PubMed

    Tumir, Hrvoje; Bosnir, Jasna; Vedrina-Dragojević, Irena; Dragun, Zrinka; Tomić, Sinisa; Puntarić, Dinko

    2010-07-01

    Due to their popularity as a complementary therapy in many diseases, homeopathic products of animal, vegetable, mineral and chemical origin should be tested for the presence of contaminants to prevent eventual toxic effects. Thirty samples of homeopathic products were analyzed to estimate possible contamination with potentially toxic elements: Pb, Cd, As, Hg, Cr, Ni and Zn, and to assess human exposure to these metals/metalloid as a consequence of their consumption. Atomic absorption spectrometry was used to determine metal and metalloid concentrations. Most tested products had very low metal/metalloid levels (below the limit of quantification of the method), but the metal/metalloid levels in the remaining products were in the following ranges (in microg g(-1)): Pb 0.33-1.29 (6 samples), Cd 2.78 (1 sample), As 0.22 (1 sample), Hg 0.02-0.12 (24 samples), Cr 0.40-10.27 (10 samples), Ni 0.43-55.00 (19 samples), and Zn 2.20-27.80 (11 samples). In the absence of regulatory standards for homeopathic products, the obtained results were compared to maximum allowable levels (MALs) as proposed by USP Ad Hoc Advisory Panel. Some analyzed preparations had metal levels above MALs (Pb: 2 samples; Cd: 1 sample; Ni: 2 samples). However, estimated cumulative daily intakes from tested homeopathic products were in all cases lower than permitted daily exposures for all dosage forms. The risk of bioaccumulation of metals/metalloid from the homeopathic medicines seems to be rather low, due to small quantities of those products prescribed to be applied per day, as well as insignificant metal contamination of the majority of tested products. However, the fact that particular formulations were contaminated by metals above MALs indicates potential risk and points to the necessity of regular monitoring of homeopathic products for metal contamination, due to their frequent and mostly unsupervised use. 2010 Elsevier Ltd. All rights reserved.

  5. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...

  6. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...

  7. Bioethanol production from recovered napier grass with heavy metals.

    PubMed

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  8. Process for production of a metal hydride

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  9. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    PubMed

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Preliminary effects of water hardness on triactinomyxon production and development from eastern tubifex worms infected with Myxobolus cerebralis

    USGS Publications Warehouse

    Waldrop, Thomas B.; Densmore, Christine; Blazer, Vicki; Smith, Dave; Schill, Bane; Schill, B.; Waldrop, T.; Blazer, V.

    1999-01-01

    Whirling disease is caused by Myxobolus cerebralis and requires an intermediate oligochaete host identified as Tubifex tubifex (Wolf, Markiw, and Hiltunen, 1986). M. cerebralis spores ingested by the tubifex worms develop into triactinomyxons (tams) that are eventually released into the water column to infect salmonid fish. There may be many environmental parameters, biotic or abiotic, that may affect the development of waterborne tams in eastern tubifex worms. This study will focus on one of those environmental parameters, total water hardness. Total water hardness is defined as the concentration of calcium and magnesium in a water sample expressed in milligrams per liter of equivalent CACO3 (Boyd, 1990). This study will address whether different levels of water hardness affect the development and production of tams released by infected tubifex worms.

  11. Revealing the role of the product metal in DNA polymerase β catalysis

    PubMed Central

    Freudenthal, Bret D.; Beard, William A.; Pedersen, Lee G.; Wilson, Samuel H.

    2017-01-01

    Abstract DNA polymerases catalyze a metal-dependent nucleotidyl transferase reaction during extension of a DNA strand using the complementary strand as a template. The reaction has long been considered to require two magnesium ions. Recently, a third active site magnesium ion was identified in some DNA polymerase product crystallographic structures, but its role is not known. Using quantum mechanical/ molecular mechanical calculations of polymerase β, we find that a third magnesium ion positioned near the newly identified product metal site does not alter the activation barrier for the chemical reaction indicating that it does not have a role in the forward reaction. This is consistent with time-lapse crystallographic structures following insertion of Sp-dCTPαS. Although sulfur substitution deters product metal binding, this has only a minimal effect on the rate of the forward reaction. Surprisingly, monovalent sodium or ammonium ions, positioned in the product metal site, lowered the activation barrier. These calculations highlight the impact that an active site water network can have on the energetics of the forward reaction and how metals or enzyme side chains may interact with the network to modulate the reaction barrier. These results also are discussed in the context of earlier findings indicating that magnesium at the product metal position blocks the reverse pyrophosphorolysis reaction. PMID:28108654

  12. Physical stability and resistance to peroxidation of a range of liquid-fill hard gelatin capsule products on extreme long-term storage.

    PubMed

    Bowtle, William; Kanyowa, Lionel; Mackenzie, Mark; Higgins, Paul

    2011-06-01

    The industrial take-up of liquid-fill hard capsule technology is limited in part by lack of published long-term physical and chemical stability data which demonstrate the robustness of the system. To assess the effects of extreme long-term storage on liquid-fill capsule product quality and integrity, with respect to both the capsules per se and a standard blister-pack type (foil-film blister). Fourteen sets of stored peroxidation-sensitive liquid-fill hard gelatin capsule product samples, originating ~20 years from the current study, were examined with respect to physical and selected chemical properties, together with microbiological evaluation. All sets retained physical integrity of capsules and blister-packs. Capsules were free of leaks, gelatin cross-linking, and microbiological growth. Eight samples met a limit (anisidine value, 20) commonly used as an index of peroxidation for lipid-based products with shelf lives of 2-3 years. Foil-film blister-packs using PVC or PVC-PVdC as the thermoforming film were well-suited packaging components for the liquid-fill capsule format. The study confirms the long-term physical robustness of the liquid-fill hard capsule format, together with its manufacturing and banding processes. It also indicates that various peroxidation-sensitive products using the capsule format may be maintained satisfactorily over very prolonged storage periods.

  13. Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica.

    PubMed

    Li, Zheng; Zeng, Hua Chun

    2014-04-16

    Metal-organic frameworks (MOFs) are a class of fascinating supramolecular soft matters but with relatively weak mechanical strength. To enforce MOF materials for practical applications, one possible way seems to be transforming them into harder composites with a stronger secondary phase. Apparently, such a reinforcing phase must possess larger porosity for ionic or molecular species to travel into or out of MOFs without altering their pristine physicochemical properties. Herein we report a general synthetic approach to coat microporous MOFs and their derivatives with an enforcing shell of mesoporous silica (mSiO2). Four well-known MOFs (ZIF-8, ZIF-7, UiO-66, and HKUST-1), representing two important families of MOFs, have served as a core phase in nanocomposite products. We show that significant enhancement in mechanical properties (hardness and toughness) can indeed be achieved with this "armoring approach". Excellent accessibility of the mSiO2-wrapped MOFs and their metal-containing nanocomposites has also been demonstrated with catalytic reduction of 4-nitrophenol.

  14. Design of optimum solid oxide membrane electrolysis cells for metals production

    DOE PAGES

    Guan, Xiaofei; Pal, Uday B.

    2015-12-24

    Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less

  15. A new, bright and hard aluminum surface produced by anodization

    NASA Astrophysics Data System (ADS)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  16. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  17. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  18. Domestic Production Issues in Chromium and Platinum-Group Metals

    DTIC Science & Technology

    1988-09-01

    iridium, and minor amounts of osmium. 12 Uses. Platinum-group metals (PGM) are critical as catalysts in fossil fuel processing and electronic...metals (PGM) were then described as critical in fossil fuel production, and in electronic and electrical components. The international market is...this research process . ii Table of Contents Page Preface.. .............. ii List of Figures ................ vi List of Tables ................ vi

  19. Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides

    NASA Astrophysics Data System (ADS)

    Kaner, Richard

    2013-06-01

    The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).

  20. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    PubMed

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  1. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  2. Production and investigation of thin films of metal actinides (Pu, Am, Cm, Bk, Cf)

    NASA Astrophysics Data System (ADS)

    Radchenko, V. M.; Ryabinin, M. A.; Stupin, V. A.

    2010-03-01

    Under limited availability of transplutonium metals some special techniques and methods of their production have been developed that combine the process of metal reduction from a chemical compound and preparation of a sample for examination. In this situation the evaporation and condensation of metal onto a substrate becomes the only possible technology. Thin film samples of metallic 244Cm, 248Cm and 249Bk were produced by thermal reduction of oxides with thorium followed by deposition of the metals in the form of thin layers on tantalum substrates. For the production of 249Cf metal in the form of a thin layer the method of thermal reduction of oxide with lanthanum was used. 238Pu and 239Pu samples in the form of films were prepared by direct high temperature evaporation and condensation of the metal onto a substrate. For the production of 241Am films a gram sample of plutonium-241 metal was used containing about 18 % of americium at the time of production. Thermal decomposition of Pt5Am intermetallics in vacuum was used to produce americium metal with about 80% yield. Resistivity of the metallic 249Cf film samples was found to decrease exponentially with increasing temperature. The 249Cf metal demonstrated a tendency to form preferably a DHCP structure with the sample mass increasing. An effect of high specific activity on the crystal structure of 238Pu nuclide thin layers was studied either.

  3. Math on the Job. Metal Product Assembler.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…

  4. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  5. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  6. Investigation of pouring temperature and holding time for semisolid metal feedstock production

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Ahmad, A. H.; Rashidi, M. M.

    2017-10-01

    Semisolid metal (SSM) processing, as a kind of new technology that exploits forming of alloys between solidus and liquidus temperatures, has attracted great attention from investigators for its thixotropic behaviour as well as having advantages in reducing porosity, macrosegregation, and forming forces during shaping process. Various techniques are employed to produce feedstock with fine globular microstructures, and direct thermal method is one of them. In this paper, the effect from different pouring temperatures and holding times using a direct thermal method on microstructure and hardness of aluminium alloy 6061 is presented. Molten aluminium alloy 6061 was poured into a cylindrical copper mould and cooled down to the semisolid temperature before being quenched in water at room temperature. The effect of different pouring temperatures of 660 °C, 680 °C, 700 °C, and holding time of 20 s, and 60 s on the microstructure of aluminium alloy 6061 were investigated. From the micrographs, it was found that the most globular structures were achieved at processing parameters of 660 °C pouring temperature and 60 s holding time. The highest density and hardness of the samples were found at the same processing parameters. It can be concluded that the most spheroidal microstructure, the highest density, and the hardness were recorded at lower pouring temperature and longer holding time.

  7. Cyclic Hardness Test PHYBALCHT: A New Short-Time Procedure to Estimate Fatigue Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar

    Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.

  8. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory. © The Author(s) 2013.

  9. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  10. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  11. Beyond the bed: effects of metal contamination on recruitment to bedded sediments and overlying substrata.

    PubMed

    Hill, Nicole A; Simpson, Stuart L; Johnston, Emma L

    2013-02-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O2 system.

    PubMed

    Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon

    2017-04-10

    Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M n+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M n+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M n+ on oxygen reduction. A case study on the Na-O 2 system is described in detail. Among other things, the Na + concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  14. Metal stress in zooplankton diapause production: post-hatching response.

    PubMed

    Aránguiz-Acuña, Adriana; Pérez-Portilla, Pablo

    2017-04-01

    Aquatic organisms commonly respond to harsh conditions by forming diapausing stages, which enable populations to survive adverse periods forming egg banks. Production of diapausing eggs is frequently observed in monogonont rotifers, previously changing from asexual to partial sexual reproduction (mixis). In despite that zooplankton are frequently used in ecotoxicological assessment because of their sensitivity to various toxicants and their important role in the ecosystems, toxicity evaluations often consider the directly exposed population produced by parthenogenetic reproduction, exclusively. We assessed experimentally effects of exposure to metals on mixis delay and fitness of hatchlings of the rotifer Brachionus plicatilis obtained from a brackish water lagoon with high metal content, especially copper. We show that sub-lethal concentrations of copper affected traits related to sexual reproduction and diapausing egg production in the rotifer. Copper addition did not delay the start of mixis, suggesting that rapid initiation of mixis is promoted in risky environments, according to the hypothesis of mixis as an escape strategy. Higher investment in mixis was obtained when individuals were exposed to metal. Addition of copper negatively affected the hatching success of diapausing eggs and performance of hatchlings. Nevertheless, these effects were greater for individuals formed in non-metal conditions, suggesting an adaptive advantage of populations from natural sediments exposed to copper. These results highlight the ecological and evolutionary consequences of the presence of metals in freshwater environments by modulating diapause adaptive efficacy and the selective process in egg banks.

  15. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be

  16. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  17. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  18. Spin-on metal oxide materials with high etch selectivity and wet strippability

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  19. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  20. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fan, Meng; Liu, Yanhui

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approachingmore » that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important

  1. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  2. The interpretation of hard X-ray polarization measurements in solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.; Emslie, A. G.; Petrosian, V.

    1983-01-01

    Observations of polarization of moderately hard X-rays in solar flares are reviewed and compared with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. The recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, new polarization observations with current generation instruments are proposed which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.

  3. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  4. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  5. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  6. Crystal Facets Make a Profound Difference in Polyoxometalate-Containing Metal-Organic Frameworks as Catalysts for Biodiesel Production.

    PubMed

    Liu, Yiwei; Liu, Shumei; He, Danfeng; Li, Ning; Ji, Yujuan; Zheng, Zhiping; Luo, Fang; Liu, Shuxia; Shi, Zhan; Hu, Changwen

    2015-10-07

    An inherent challenge in using metal-organic frameworks (MOFs) for catalysis is how to access the catalytic sites generally confined inside the porous structure, in particular for substrates larger than the pores. We present here a promising solution to bypass this roadblock by modulating the facets of a crystalline MOF NENU-3a to enhance the facet exposure of the catalytic sites and the adsorption of substrates. Specifically, by transforming it with encapsulated catalysis-responsible polyoxometalate from octahedron characterized entirely by {111} facets to cube with only {100} facets, much enhanced catalytic activities were observed, especially for sterically demanding substrates that are otherwise hard to diffuse into the pores. Crystallographic analysis and adsorption/desorption experiments collectively established the critical effects of morphological control on the enhanced catalysis. The cubic crystals were then applied for biodiesel production, reaching more than 90% conversion of fatty acids (C12-C22) in comparison to <22% using octahedral crystals.

  7. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  8. Spin-on metal oxide materials for N7 and beyond patterning applications

    NASA Astrophysics Data System (ADS)

    Mannaert, G.; Altamirano-Sanchez, E.; Hopf, T.; Sebaai, F.; Lorant, C.; Petermann, C.; Hong, S.-E.; Mullen, S.; Wolfer, E.; Mckenzie, D.; Yao, H.; Rahman, D.; Cho, J.-Y.; Padmanaban, M.; Piumi, D.

    2017-04-01

    There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.

  9. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  10. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    PubMed

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  11. Metallic Scaffolds for Bone Regeneration

    PubMed Central

    Alvarez, Kelly; Nakajima, Hideo

    2009-01-01

    Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.

  12. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  13. Tribological and mechanical performance evaluation of metal prosthesis components manufactured via metal injection molding.

    PubMed

    Melli, Virginia; Juszczyk, Mateusz; Sandrini, Enrico; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; Manfredini, Tiziano; De Nardo, Luigi

    2015-01-01

    The increasing number of total joint replacements, in particular for the knee joint, has a growing impact on the healthcare system costs. New cost-saving manufacturing technologies are being explored nowadays. Metal injection molding (MIM) has already demonstrated its suitability for the production of CoCrMo alloy tibial trays, with a significant reduction in production costs, by holding both corrosion resistance and biocompatibility. In this work, mechanical and tribological properties were evaluated on tibial trays obtained via MIM and conventional investment casting. Surface hardness and wear properties were evaluated through Vickers hardness, scratch and pin on disk tests. The MIM and cast finished tibial trays were then subjected to a fatigue test campaign in order to obtain their fatigue load limit at 5 millions cycles following ISO 14879-1 directions. CoCrMo cast alloy exhibited 514 HV hardness compared to 335 HV of MIM alloy, furthermore it developed narrower scratches with a higher tendency towards microploughing than microcutting, in comparison to MIM CoCrMo. The observed fatigue limits were (1,766 ± 52) N for cast tibial trays and (1,625 ± 44) N for MIM ones. Fracture morphologies pointed out to a more brittle behavior of MIM microstructure. These aspects were attributed to the absence of a fine toughening and surface hardening carbide dispersion in MIM grains. Nevertheless, MIM tibial trays exhibited a fatigue limit far beyond the 900 N of maximum load prescribed by ISO and ASTM standards for the clinical application of these devices.

  14. Highly crystalline inverse opal transition metal oxides via a combined assembly of soft and hard chemistries.

    PubMed

    Orilall, M Christopher; Abrams, Neal M; Lee, Jinwoo; DiSalvo, Francis J; Wiesner, Ulrich

    2008-07-16

    A combined assembly of soft and hard chemistries is employed to generate highly crystalline three-dimensionally ordered macroporous (3DOM) niobia (Nb2O5) and titania (TiO2) structures by colloidal crystal templating. Polystyrene spheres with sp2 hybridized carbon are used in a reverse-template infiltration technique based on the aqueous liquid phase deposition of the metal oxide in the interstitial spaces of a colloidal assembly. Heating under inert atmosphere as high as 900 degrees C converts the polymer into sturdy carbon that acts as a scaffold and keeps the macropores open while the oxides crystallize. Using X-ray diffraction it is demonstrated that for both oxides this approach leads to highly crystalline materials while heat treatments to lower temperatures commonly used for polymer colloidal templating, in particular for niobia, results in only weakly crystallized materials. Furthermore it is demonstrated that heat treatment directly to higher temperatures without generating the carbon scaffold leads to a collapse of the macrostructure. The approach should in principle be applicable to other 3DOM materials that require heat treatments to higher temperatures.

  15. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  16. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Liu, Qing; Chen, Weilun; Wan, Min; Li, Xiaocheng; Wang, Lili; Xue, Lihong; Zhang, Wuxing

    2018-02-01

    Porous hard carbons are synthesized via carbonizing lotus stems with naturally hierarchical structures. The hard carbon carbonized at 1400 °C (LS1400) delivers a total capacity 350 mAh g-1 in the current density of 100 mA g-1 and a plateau capacity of 250 mAh g-1. Even cycled at 100 mA g-1 after 450 cycles, the capacity still retains 94%. Further investigation shows that the sodium storage of LS carbons involves Na+ adsorption in the defect sites, Na+ insertion and Na metal deposition in the closed pores. However, the Na metal deposition in closed pores mainly contribute to the plateau capacity, leading to the excellent sodium storage performance of LS1400 with a large closed pore ratio of 66%. The results show that the intrinsic structure of natural biomass can inspire us to design hard carbon with large closed pore ratio as excellent anode for sodium ion batteries.

  17. SQUID sensor application for small metallic particle detection

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-04-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods.

  18. Clean Metal Finishing Alternatives

    DTIC Science & Technology

    2006-05-01

    Cr, must heat treat for hardness 4 4 Trivalent chrome Trivalent plating chemistry Varying success, some must be brush plate 3 3 Alloy plating...metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition/ Alloying (ESD/ ESA) Microarc welding Localized repair of non...Alternatives to chromate conversion coatings Al TriChrome Pretreatment (TCP)* – AnoChem TCP, Aluminescent, TCP-HF Trivalent Cr3+ conversion with Zr

  19. A comprehensive approach for the determination of extractable and leachable metals in pharmaceutical products by inductively-coupled plasma.

    PubMed

    Zuccarello, Daniel J; Murphy, Michael P; Meyer, Richard F; Winslow, Paul A

    2009-01-01

    A comprehensive digestive approach for determining the extractable and leachable metals in pharmaceutical products by inductively-coupled plasma is investigated. This study examines several acid digestion strategies for packaging materials, containers, and formulated products for complete trace metals analysis. Packaging materials, a food product, and a simulated drug product are evaluated for leachable metals by stressing the materials under accelerated stability conditions. Trace metal profiles of 64 elements for these materials are reported.

  20. EVALUATING THE ROLE OF ION COMPOSITION ON THE TOXICITY OF COPPER TO CERIODAPHNIA DUBIA IN VERY HARD WATERS

    EPA Science Inventory

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States. - - - Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g. alkalinity ...

  1. Metal Triflates for the Production of Aromatics from Lignin.

    PubMed

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bcl-2 expression is essential for development and normal physiological properties of tooth hard tissue and saliva production.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Gurel, Zafer; Sorenson, Christine M; Sheibani, Nader

    2017-09-15

    Apoptosis plays a fundamental role in appropriate tissue development and function. Although expression of Bcl-2 has been reported during tooth and submandibular gland (SMG) development, the physiological role Bcl-2 plays during these processes has not been addressed. This study was performed to evaluate the impact of Bcl-2 expression on the formation and properties of tooth hard tissue, and saliva production. Twenty-four mice (12 males and 12 females) were divided into three groups of eight (n=8): group A (Bcl-2 +/+), group B (Bcl-2 +/-), and group C (Bcl-2 -/-) and subjected to micro-CT analyses. The mineral content of first molars was analyzed by X-Ray diffraction (XRD) and scanning electron microscopy (SEM) color dot map. The surface microhardness was determined by Vickers test on labial surfaces of incisors. Saliva was collected from different groups of mice after subcutaneous injection of pilocarpine. Samples from Bcl-2 -/- mice showed significantly smaller micro-CT values, lower and poor crystallinity of hydroxyapatite (HA), and lowest surface micro hardness. SMG from Bcl-2 -/- mice showed remarkable reduction in size, consistent with reduced saliva accumulation. The absence of Bcl-2 expression in SMG did not affect the expression of other Bcl-2 family members. Thus, Bcl-2 expression influence on the formation and properties of tooth hard tissue, and saliva accumulation. Bcl-2 expression has a significant impact on the mineralogical content of enamel crystals of tooth structure. Lack of Bcl-2 expression led to impaired production of enamel ACP crystals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  4. First-principles modeling of hardness in transition-metal diborides

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund

    2009-07-01

    Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.

  5. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    PubMed

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  6. Modification of the surface of metal products with carbide coatings by electrospark alloying

    NASA Astrophysics Data System (ADS)

    Koshuro, Vladimir A.; Fomina, Marina A.; Fomin, Aleksandr A.

    2018-04-01

    Electrospark alloying (ESA) technology has existed for a long time (since the middle of the 20th century) but its potential has not been exhausted yet. In the present paper it is proposed to increase the mechanical properties of steel and titanium products by doping with a hard carbide alloy based on "WC-TiC-Co" system. As a result, the hardness of coatings obtained by ESA reaches at least 18-22 GPa with a layer thickness of up to 0.5 mm. The proposed solution can improve the functional qualities of various friction surfaces that are used in engineering, as well as in friction elements.

  7. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  8. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  9. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  10. Designing Superhard Materials by Incorporating Boron Into Heavy Transition Metals

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Li, Anhu; Zhao, Jianzhi; Zhang, Wenqing

    First-principles calculations on the incompressibility, elasticity and hardness of the Os, OsB2, Re, and ReB2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re, which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB2 and OsB2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.

  11. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production.

    PubMed

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-05-27

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence.

  12. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production

    PubMed Central

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-01-01

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence. PMID:27240384

  13. Occupational exposure to metallic cobalt in the Province of Bergamo. Results of a 1991 survey.

    PubMed

    Mosconi, G; Bacis, M; Leghissa, P; Maccarana, G; Arsuffi, E; Imbrogno, P; Airoldi, L; Caironi, M; Ravasio, G; Parigi, P C

    1994-06-30

    The results of a survey on workers potentially exposed to cobalt in the Bergamo Province are reported. Its aim is to assess the number of workers at risk of developing respiratory disease due to the inhalation of metallic cobalt. Interest was shown after an examination of 11 cases of 'hard metal disease', which we diagnosed, in workers who came from different production areas and had different degrees of exposure. A first group of 45 factories with potential cobalt exposure was identified by consulting the archives of the Local Sanitary Units (USSL) and of the Chamber of Commerce, and by use of the telephone directory and requesting information from the producers and users of Widia tools. A second group of 2039 factories was selected from those industrial activities where we had previously ascertained the presence of grinding operations using hard metal tools with diamond wheels. This study is related to all the factories in the first group and 10% of the factories in the second group. More than 304 inspections were carried out. In this context 403 exposed workers were identified. Workplace air measurements (250 samples) and biological monitoring (> 600 samples) to determine the exposure levels to cobalt were performed. The results show an unexpected diffuse occupational exposure in different production areas where the airborne cobalt is frequently underestimated and higher than the TLV.

  14. Substantiation of the ratio of the sample thickness to the indentation depth in hardness measurements

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu.; Terent'ev, E. V.; Demidov, A. N.

    2016-12-01

    The depths to which plastic deformation occurs under ball indentation of a steel plate at various loads is determined. It is established that the ratio of the depth that plastic deformation reaches to the indentation depth is constant (approximately 15) independently of the indentation load. This finding allows us to conclude that this ratio should be held no less than 15 in hardness measurements. Experiments demonstrate that the lower the hardness of the metal substrate, the larger the decrease in the measured hardness when the ratio is lower than 15.

  15. Evaluation of the Various Drying Methods on Surface Hardness of Type IV Dental Stone

    PubMed Central

    Sudhakar, A; Srivatsa, G; Shetty, Rohit; Rajeswari, C L; Manvi, Supriya

    2015-01-01

    Background: Studies regarding the effect of various methods to increase the surface hardness of Type IV dental stone are not conclusive. Therefore, this study was carried out to evaluate the effect of air drying, micro oven drying and die hardener on surface hardness of Type IV dental stone. Materials and Methods: A standard metal die was fabricated; polyvinyl siloxane impression material was used to make the molds of metal die. A total of 120 specimens were obtained from two different die stones and were grouped as Group A (kalrock) and Group B (pearl stone), and were subjected to air drying for 24 h, micro oven drying and application of die hardener. These models were then subjected to surface hardness testing using the knoop hardness instrument. The obtained data were subjected to statistical analysis. Results: The hardness of Group A specimens was 64 ± 0.54 Knoop hardness number (KHN) after application of die hardener, 60.47 ± 0.41 KHN after 24 h air drying, 58.2 ± 0.88 after microwave oven drying and 24.6 ± 0.4 after 1 h air drying. The hardness of Group B specimens was 45.59 ± 0.63 KHN after application of die hardener, 40.2 ± 0.63 KHN after 24 h air drying, 38.28 ± 0.55 KHN after microwave oven drying and 19.91 ± 0.64 KHN after 1 h air drying. Conclusion: Group A showed better results than Group B at all times. Application of the die hardener showed highest hardness values followed in the order by 24 h air drying, microwave oven drying and 1 h air drying in both groups. The study showed that air drying the dies for 24 h followed by application of a single layer of the die hardener produced the best surface hardness and is recommended to be followed in practice. PMID:26124610

  16. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  17. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  18. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  19. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  20. Production of hard X rays in a plasma focus

    NASA Technical Reports Server (NTRS)

    Newman, C. E.; Petrosian, V.

    1975-01-01

    A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.

  1. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  2. Long-term monitoring of fleshy fruit and hard mast production and seasonal bird distribution at the Savannah River Site, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Cathryn, H.; Levey, Douglas J.

    2009-06-15

    A final report of Fruit and hard mast production in five habitat types at SRS with a comparison of fruit consumption by fledgling versus adult birds at SRS and Relative importance of fruit, seeds, and insects in the diets of overwintering birds at SRS.

  3. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    NASA Astrophysics Data System (ADS)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  4. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  5. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  6. CHARACTERIZATION OF METAL BENZOTRIAZOLES AND RELATED POLYMERS

    EPA Science Inventory

    Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons...

  7. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  8. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  9. Solid impingement erosion mechanisms and characterization of erosion resistance of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, V. P.; Buckley, D. H.

    1982-01-01

    Experimental results pertaining to spherical glass bead and angular crushed glass particle impingement are presented. A concept of energy adsorption to explain the failure of material is proposed. The erosion characteristics of several pure metals were correlated with the proposed energy parameters and with other properties. Correlations of erosion and material properties were also carried out with these materials to study the effect of the angle of impingement. Analyses of extensive erosion data indicate that surface energy, strain energy, melting point, bulk modulus, hardness, ultimate resilience, atomic volume and product of linear coefficient of thermal expansion, bulk modulus, and temperature rise required for melting, and ultimate resilience, and hardness exhibit the best correlations. It appears that both energy and thermal properties contribute to the total erosion.

  10. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  11. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  12. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  13. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  14. Effects of Trace Metals on the Production of Aflatoxins by Aspergillus parasiticus

    PubMed Central

    Marsh, Paul B.; Simpson, Marion E.; Trucksess, Mary W.

    1975-01-01

    Certain metals added as salts to a defined basal culture medium influenced the level of aflatoxin production by Aspergillus parasiticus in the low microgramsper-milliliter range of the added metal. In many cases no change or a relatively small change in mat weight and final pH of the medium accompanied this effect. With zinc at added levels of 0 to 10 μg/ml in the medium, aflatoxin increased 30-to 1,000-fold with increasing of zinc, whereas mat weight increased less than threefold. At 25 μg of added zinc per ml, aflatoxin decreased, but mat weight did not. At an added level of 25 μg or less of the metal per ml, salts of iron, manganese, copper, cadmium, trivalent chromium, silver, and mercury partly or completely inhibited aflatoxin production, without influencing mat weight. PMID:238471

  15. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  16. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    PubMed

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  17. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  18. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  19. Hybrid input-output approach to metal production and its application to the introduction of lead-free solders.

    PubMed

    Nakamura, Shinichiro; Murakami, Shinsuke; Nakajima, Kenichi; Nagasaka, Tetsuya

    2008-05-15

    The production process of metals such as copper, lead, and zinc is characterized by mutual interconnections and interdependence, as well as by the occurrence of a large number of byproducts, which include precious or rare metals, such as gold, silver, bismuth, and indium. On the basis of the framework of waste input-output (WIO), we present a hybrid 10 model that takes full account of the mutual interdependence among the metal production processes and the interdependence between them and all the other production sectors of the economy as well. The combination of a comprehensive representation of the whole national economy and the introduction of process knowledge of metal production allows for a detailed analysis of different materials-use scenarios under the consideration of full supply chain effects. For illustration, a hypothetical case study of the introduction of lead-free solder involving the production of silver as a byproduct of copper and lead smelting processes was developed and implemented using Japanese data. To meet the increased demand for the recovery and recycling of silver resources from end-of-life products, the final destination of metal silver in terms of products and user categories was estimated, and the target components with the highest silver concentration were identified.

  20. On the phase behavior of hard aspherical particles

    NASA Astrophysics Data System (ADS)

    Miller, William L.; Cacciuto, Angelo

    2010-12-01

    We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.

  1. USE OF RADIOISOTOPES IN THE STUDY OF METAL-TO-METAL WEAR OF HARDENED IRON- BASE ALLOYS. Quarterly Report No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talento, A.; Steven, G.

    1959-04-15

    A literature survey was made on the friction and wear of solid metals and on autoradiographic techniques as they apply to metal-to-metal wear studies. When two contacting surfaces are moving with respect to one another, the asperities weld together to form weld junctions. The number of junctions is large when no foreigm materials are on the contacting surfaces, but is greatly reduced by the presence of lubricants. Frictional forces are equal to the sum of the forces required to shear the weld junctions and the plough ing force. The rubbing surfaces may develop localized hot spots which may reach 2000more » F, and in these areas the metal is plastically deformed. Frictional forces and wear usually decrease as the hardness of the specimens increases. Autoradiographic techniques have been used to determine the location of radioactive tracers. Because photographic emulsions are sensitive to ionization caused by products of atomic disintegration, they are used to record the radiation given off by radioactive tracers. The wet and dry autoradiographic techniques that have been developed for metallurgical applications are described in this report. (auth)« less

  2. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    PubMed

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  3. [Analysis of 2 patients with occupational hard mental lung disease].

    PubMed

    Ding, Bangmei; Ding, Lu; Yu, Bin; Fan, Cunhua; Han, Lei; Hu, Jinmei; Zhu, Baoli

    2015-01-01

    We sought to master the clinical characteristics and prognosis of hard mental lung disease, improving this disease's diagnosis and treatment quality. We recruited two suspected patients with hard mental lung disease and collected their occupational history, examination results of occupational health, and past medical records. By virtue of laboratory tests, high Kv chest radiography, CT and HRCT of chest, fiberoptic bronchoscopy and ECG examination, diagnostic report was synthesized respectively by respiratory physicians and pathologist from three different agencies. Then the report was submitted to diagnosis organizations of occupational disease, and diagnostic conclusion of occupational disease was drawn after discussion by at least three diagnosticians of occupational disease. We found that both of the two suspected patients were exposed to dusts of hard metal, and length of exposure service ranged from 8 to 9 years. Clinical manifestations were dominated by dry cough, wheezing after activities, and pathological manifestation was characteristic giant cell interstitial pneumonia. The prognosis and outcome of the disease were different. According to exact occupational exposure history, clinical manifestations, combined with the results of high Kv chest radiography, CT of chest and pathological manifestation, it can be diagnosed with hard mental lung disease.

  4. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  5. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  6. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  7. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.

    PubMed

    Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K

    2003-10-01

    One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.

  8. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less

  9. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  10. The comprehension and production of Wh-questions in deaf and hard-of-hearing children.

    PubMed

    Friedmann, Naama; Szterman, Ronit

    2011-01-01

    Hearing loss during the critical period for language acquisition restricts spoken language input. This input limitation, in turn, may hamper syntactic development. This study examined the comprehension, production, and repetition of Wh-questions in deaf or hard-of-hearing (DHH) children. The participants were 11 orally trained Hebrew-speaking children aged 9.1-12.4 with moderate-to-profound hearing loss from birth, who consistently used hearing aids or cochlear implants and who had difficulties understanding relative clauses. Experiment 1 tested the comprehension of Wh-questions using a picture selection task, comparing subject with object questions and who- with which-questions; Experiment 2 tested the production of subject and object who-questions using an elicitation task; and Experiment 3 tested the repetition of Wh-questions and other structures derived by Wh-movement. All the DHH participants showed difficulty in the comprehension, production, and repetition of object questions, and their performance was significantly below that of hearing children. In contrast, they repeated embedded sentences without movement well, indicating that their deficit is in syntactic movement rather than embedding or the CP node in the syntactic tree. The results provide additional evidence that DHH children have difficulties with Wh-movement and emphasize that Wh-questions, which are crucial for communication, can be severely impaired in these children.

  11. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  12. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    PubMed

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  13. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  14. Wheat flour confectionery products as a source of inorganic nutrients: iron and manganese contents in hard biscuits.

    PubMed

    Sebecić, Blazenka; Dragojević, I Vedrina; Horvatić, M

    2002-06-01

    To evaluate some wheat flour based hard biscuits produced in Croatia with regard to their Fe and Mn contents and thereby their functionality, Fe and Mn are determined by cold-vapor atomic absorption spectrometry (CVAAS) in seven biscuits: classic white wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and milk. Presented data show that Fe contents in seven analyzed biscuits range from 9.32 up to 24.80 mg/kg while Mn contents range from 3.76-16.37 mg/kg depending on type and share of cereal milling products and mineral content of other raw materials used. Thus, enriched biscuits produced from wheat flour type 850 and whole wheat grain flour, having the highest concentrations of Fe and Mn, were about 150% and 250%, respectively, richer in those elements in comparison with classic white flour biscuits of Petit Beurre type. Data show that wheat flour based hard biscuits, particularly enriched biscuits, can be considered as a good additional source of Fe and Mn in diets.

  15. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.

    2013-01-01

    Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689

  16. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    PubMed Central

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  17. Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L

    NASA Astrophysics Data System (ADS)

    Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman

    2018-04-01

    One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.

  18. Effect of exposure intensity and post-cure temperature storage on hardness of contemporary photo-activated composites.

    PubMed

    Quance, S C; Shortall, A C; Harrington, E; Lumley, P J

    2001-11-01

    The effect of variation in post-exposure storage temperature (18 vs. 37 degrees C) and light intensity (200 vs. 500mW/cm(2)) on micro-hardness of seven light-activated resin composite materials, cured with a Prismetics Mk II (Dentsply) light activation unit, were studied. Hardness values at the upper and lower surfaces of 2mm thick disc shaped specimens of seven light-cured resin composite materials (Herculite XRV and Prodigy/Kerr, Z100 and Silux Plus/3M, TPH/Dentsply, Pertac-Hybrid/Espe, and Charisma/Kulzer), which had been stored dry, were determined 24h after irradiation with a Prismetics Mk II (Dentsply) light activation unit. Hardness values varied with product, surface, storage temperature, and curing light intensity. In no case did the hardness at the lower surface equal that of the upper surface, and the combination of 500mW/cm(2) intensity and 37 degrees C storage produced the best hardness results at the lower surface. Material composition had a significant influence on surface hardness. Only one of the seven products (TPH) produced a mean hardness values at the lower surface >80% of the maximum mean upper surface hardness obtained for the corresponding product at 500mW/cm(2) intensity/37 degrees C storage temperature when subjected to all four test regimes. Despite optimum post-cure storage conditions, 200mW/cm(2) intensity curing for 40s will not produce acceptable hardness at the lower surface of 2mm increments of the majority of products tested.

  19. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microindentation hardness testing of coatings: techniques and interpretation of data

    NASA Astrophysics Data System (ADS)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  1. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    PubMed

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  2. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    PubMed Central

    Feige, Katja; dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-01-01

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr6+) electrolyte with a reduced chromium trioxide (CrO3) content, both without solid additives and (c) with the addition of fullerene (C60) nanoparticles; and (d) a trivalent chromium (Cr3+) electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23–40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect. PMID:29261128

  3. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOEpatents

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  4. Tax incentives as the tool for stimulating hard to recover oil reserves development

    NASA Astrophysics Data System (ADS)

    Sharf, I. V.; Borzenkova, D. N.; Grinkevich, L. S.

    2015-11-01

    The share of hard-to-recover oil reserves, principally from unconventional hydrocarbon sources, has significantly increased in the world petroleum market. Russian policy of subsurface management is directed to stimulate the development, survey and involvement into production of hard-to-recover oil reserves by tax-financial and economic-organizational tools among which tax incentives is the most effective one. The article highlights different categories of hard-to-recover oil reserves as a basis for generating tax incentives. Also the aspects of tax influence on petroleum business (involved in production of had to recover reserves) in Tomsk region are revealed, both positive and negative.

  5. PHARMACEUTICAL EVALUATION AND TOXICOLOGICAL QUANTIFICATION OF HEAVY METALS AND ADULTERATED ALLOPATHIC CONTENTS IN RAW AND FINISHED DOSAGE FORM OF ANTIHYPERTENSIVE HERBAL PRODUCTS

    PubMed Central

    Khan, Muhammad Asif; Badshah, Amir; Shahid, Muhammad

    2016-01-01

    Background: Herbal products of questionable quality create major concern for human population since their production is often not controlled and regulated. Material and Methods: Antihypertensive herbal products were subjected to pharmaceutical quality control parameters specified in Pharmacopoeias, toxic quantification of heavy metals by flame atomic absorption spectrophotometer and adulterated allopathic contents were quantified using advanced HPLC techniques. Results: A lot of variations in pharmaceutical parameters like moisture contents and LOD% values were observed. Also deviations to a greater extent in weight variation, (P1, P2, P6, P12, P16, P17, P19, and P20), and hardness of the tablets of products (P1, P3, P8 and P11) were found. Friability of tablets of the Products (P3, P9 and P11) was found failed. Heavy metals i-e Fe (1597.20ppm, 1648ppm) in P5, P9, Pb (61.32ppm, 16.59 ppm) in P5, Cr (96.91ppm,108.48 ppm) in P4, P14, Cd (39.53ppm, 32.31 ppm) in P11, P12, Cu (28.22ppm, 21.04 ppm) in P15, P17, Zn (80.31ppm,76.27 ppm) in P15, P16, Ni (45.46ppm,22.18ppm) in P9, P13 in toxic concentrations were detected. Adulterated allopathic contents of Amlpdopine in higher quantities, administered according to manufacturer dose were found in P12 (20.30 mg/day), Verapamil in P2 (93.50 mg/day), Nifedipine (38.65 mg/day) in P6. Products P4, P5 and P7 were found to have a combination of Amlodipine and Hydrochlorothiazide and higher concentrations were found in P5 (10.72 mg/day, 24.75 mg/day). Conclusion: The antihypertensive herbal products contained different kind of adulterants. Our findings suggest that effective regulatory measures should be put in place to address this problem. This will help to decrease the toxic effects of these remedies and increase the commercialization, internationalization and harmonization of antihypertensive herbal products. PMID:28480360

  6. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  7. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor); Huang, Cunping (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  8. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    DTIC Science & Technology

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  9. PRODUCTION OF HAFNIUM METAL

    DOEpatents

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  10. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  11. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  12. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    NASA Astrophysics Data System (ADS)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  13. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  14. On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA 7075 extrusion products

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, A. K.

    1998-03-01

    The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.

  15. Improving hardness and toughness of boride composites based on aluminum magnesium boride

    NASA Astrophysics Data System (ADS)

    Peters, Justin Steven

    The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB14--TiB2 composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB 14--60 vol% TiB2 approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB14 and TiB 2 phases. AlMgB14 is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB2 is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800°C are often required to achieve near full density articles. The AlMgB14--TiB2 composites can achieve 99% density from hotpressing at 1400°C. This is mostly due to the preparation of powders by a high-energy milling technique known as mechanical alloying. The resulting fine powders have

  16. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  17. A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness

    PubMed Central

    Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.

    2014-01-01

    Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043

  18. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    PubMed

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Association of metals with plastic production pellets in the marine environment.

    PubMed

    Ashton, Karen; Holmes, Luke; Turner, Andrew

    2010-11-01

    Plastic production pellets sampled from four beaches along a stretch of coastline (south Devon, SW England) and accompanying, loosely adhered and entrapped material removed ultrasonically have been analysed for major metals (Al, Fe, Mn) and trace metals (Cu, Zn, Pb, Ag, Cd, Co, Cr, Mo, Sb, Sn, U) following acid digestion. In most cases, metal concentrations in composite pellet samples from each site were less than but within an order of magnitude of corresponding concentrations in the pooled extraneous materials. However, normalisation of data with respect to Al revealed enrichment of Cd and Pb in plastic pellets at two sites. These observations are not wholly due to the association of pellets with fine material that is resistant to ultrasonication since new polyethylene pellets suspended in a harbour for 8 weeks accumulated metals from sea water through adsorption and precipitation. The environmental implications and potential applications of these findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The Parameterisation of Metal Centred Redox Couples

    DTIC Science & Technology

    1992-05-29

    of any ligand in the Series is independent of the metal ion to which it is attached, and 2) The contribution of a set of n uigands is additive, i.e...otherwise it would not work, or would have many exceptions. One may expect, for example, that the sequence of EL(L) values for a soft metal ion ...such as Cr(O) would surely be different than for a hard metal ion such as Ta(V), L~e. the old idea that soft Uganda prefer to bind to soft metal ions

  1. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  2. Surface roughness analysis after laser assisted machining of hard to cut materials

    NASA Astrophysics Data System (ADS)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  3. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  4. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base.

    PubMed

    Abou-Hussein, Azza A A; Linert, Wolfgang

    2012-09-01

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit

  5. Hardness map of human meta tarsals and phalanges of toes.

    PubMed

    Manarvi, Irfan

    2016-08-01

    Predicting location of fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers therefore have proposed further studies due to inaccuracies in measurement methods, testing machines and experimental errors. Advancement and availability of hardware, measuring instrumentation and testing machines can now provide remedies to these limitations. Human foot is a critical part of body exposed to various forces throughout its life. A number of products are developed for using over it for protection and care. Which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Not knowing how the hardness is spread all over the Meta tarsals and phalanges is one of major contributory factor for unsatisfactory design of foot protection products. This paper provides a complete hardness distribution map developed by experimental testing of all the Meta tarsals and Phalanges of toes for a typical human foot. The bones were taken from two left feet of a 40 and 42 year old male cadaver. These were dehydrated prior to measurements of hardness using Leeb hardness testing method. Hardness was measured around the circumference of a bone as well as along its length. Hardness values can be related to tensile strength of the bones to predict possible values of stress that could be borne by these bones. Results may also be used for design and developing various accessories for human feet health care and comfort.

  6. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    NASA Astrophysics Data System (ADS)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  7. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  8. Metal boot permits fabrication of hermetically sealed splices in metal sheathed instrumentation cables

    NASA Technical Reports Server (NTRS)

    Chambers, G.

    1966-01-01

    Metal boot splices hard sheathed instrumentation cables used with high temperature strain gages and thermocouples. Silver brazing the conductors together, hermetically seals the splice. This boot is a highly reliable sealed splice which is equally effective at cryogenic temperatures, high temperatures, nuclear environments, and combinations of the above.

  9. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  10. ASSESSING SPECIATION AND RELEASE OF HEAVY METALS FROM COAL COMBUSTION PRODUCTS

    EPA Science Inventory

    In this study, the speciation of heavy metals such as arsenic, selenium, lead, zinc and mercury in coal combustion products (CCPs) was evaluated using sequential extraction procedures. Coal fly ash, bottom ash and flue gas desulphurization (FGD) sludge samples were used in the ex...

  11. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  12. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  13. Inorganic dust pneumonias: the metal-related parenchymal disorders.

    PubMed Central

    Kelleher, P; Pacheco, K; Newman, L S

    2000-01-01

    In recent years the greatest progress in our understanding of pneumoconioses, other than those produced by asbestos, silica, and coal, has been in the arena of metal-induced parenchymal lung disorders. Inhalation of metal dusts and fumes can induce a wide range of lung pathology, including airways disorders, cancer, and parenchymal diseases. The emphasis of this update is on parenchymal diseases caused by metal inhalation, including granulomatous disease, giant cell interstitial pneumonitis, chemical pneumonitis, and interstitial fibrosis, among others. The clinical characteristics, epidemiology, and pathogenesis of disorders arising from exposure to aluminum, beryllium, cadmium, cobalt, copper, iron, mercury, and nickel are presented in detail. Metal fume fever, an inhalation fever syndrome attributed to exposure to a number of metals, is also discussed. Advances in our knowledge of antigen-specific immunologic reactions in the lung are particularly evident in disorders secondary to beryllium and nickel exposure, where immunologic mechanisms have been well characterized. For example, current evidence suggests that beryllium acts as an antigen, or hapten, and is presented by antigen-presenting cells to CD4+ T cells, which possess specific surface antigen receptors. Other metals such as cadmium and mercury induce nonspecific damage, probably by initiating production of reactive oxygen species. Additionally, genetic susceptibility markers associated with increased risk have been identified in some metal-related diseases such as chronic beryllium disease and hard metal disease. Future research needs include development of biologic markers of metal-induced immunologic disease, detailed characterization of human exposure, examination of gene alleles that might confer risk, and association of exposure data with that of genetic susceptibility. PMID:10931787

  14. Towards zero waste production in the minerals and metals sector

    NASA Astrophysics Data System (ADS)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  15. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    PubMed

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  16. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue.

    PubMed

    Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander

    2017-10-01

    Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.

  17. Characterization of solid particle erosion resistance of ductile metals based on their properties

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1985-01-01

    This paper presents experimental results pertaining to spherical glass bead and angular crushed glass particle impingement. A concept of energy absorption to explain the failure of material is proposed and is correlated with the erosion characteristics of several pure metals. Analyses of extensive erosion data indicate that the properties - surface energy, specific melting energy, strain energy, melting point, bulk modulus, hardness, atomic volume - and the product of the parameters - linear coefficient of thermal expansion x bulk modulus x temperature rise required for melting, and ultimate resilience x hardness - exhibit the best correlations. The properties of surface energy and atomic volume are suggested for the first time for correlation purposes and are found to correlate well with erosion rates at different angles of impingement. It further appears that both energy and thermal properties contribute to the total erosion.

  18. Evaluating the role of ion composition on the toxicity of copper to Ceriodaphnia dubia in very hard waters.

    PubMed

    Gensemer, Robert W; Naddy, Rami B; Stubblefield, William A; Hockett, J Russell; Santore, Robert; Paquin, Paul

    2002-09-01

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States over the range of 25-400 mgl(-1) (as CaCO(3)). However, waters in the arid west of the US frequently exceed 400 mgl(-1) hardness, and the applicability of hardness-toxicity relationships in these waters is unknown. Acute toxicity tests with Ceriodaphnia dubia were conducted at hardness levels ranging from approximately 300 to 1,200 mgl(-1) using reconstituted waters that mimic two natural waters with elevated hardness: (1) alkaline desert southwest streams (Las Vegas Wash, NV), and (2) low alkalinity waters from a CaSO(4)-treated mining effluent in Colorado. The moderately-alkaline EPA synthetic hard water was also included for comparison. Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g., alkalinity or other correlated factors). The hardness equations used in regulatory criteria, therefore, may not provide an accurate level of protection against copper toxicity in all types of very hard waters. However, the mechanistic Biotic ligand model generally predicted copper toxicity within +/-2X of observed EC(50) values, and thus may be more useful than hardness for modifying water quality criteria.

  19. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  20. [The design of Co-Cr-Mo alloy combining the framework with porcelain fused to metal restorations and determination of the mechanical properties].

    PubMed

    Chao, Yong-lie; Lui, Chang-hong; Li, Ning; Yang, Xiao-yu

    2005-02-01

    To investigate a kind of Co-Cr-Mo alloys used for both porcelain fused to metal (PFM) restorations and casting framework of removable partial dentures. The Co-Cr-Mo alloy underwent the design for elementary compositions of the alloys and the production from the raw materials by means of a vacuum melt furnace. The strength, hardness, plasticity and casting ability of the alloy were examined with metal tensile test. Vickers hardness test and grid casting were examined respectively. The microstructure of the Co-Cr-Mo alloy was also inspected by scanning electron microscope and X-ray diffraction analysis. The elementary composition of DA9-4 alloy mainly consisted of Co 54%-67%, Cr 21%-26%, Mo 5%-8%, W 5%-8%, Si 1%-3%, Mn 0.1%-0.25% and trace elements. The yield strength of the alloy was 584 MPa, while the tensile strength was 736 MPa. The coefficient of expansion was 15.0%, the Vickers hardness reached 322, and the casting ratio exibited 100%. The DA9-4 Co-Cr-Mo alloy used for PFM and framework shown in this paper can meet the clinical demands and have reached the objects of the experiment plan.

  1. Hierarchically Superstructured Metal Sulfides: Facile Perturbation-Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations

    DOE PAGES

    Yue, Yanfeng; Li, Yunchao; Bridges, Craig A.; ...

    2016-11-29

    A novel and simple perturbation-assisted nanofusion (PNF) synthetic strategy was developed for the fabrication of stable hierarchically superstructured metal sulfides. This promising approach, based on a kinetically controlled precipitation to simultaneously condense and re-dissolve polymorphic nanocrystallites, provides the resultant samples with a unique mesoporous framework. This PNF approach is environmentally friendly, produces gram-scale products in a matter of hours, and is complimentary to traditional hard or soft templating methods for the construction of mesoporous metal sulfides. PNF derived hierarchical porous CdS exhibited a vastly improved photocatalytic performance over its commercial bulk counterpart under visible light irradiation, demonstrating the advantage ofmore » the porous morphology for photocatalysis resulting from the enlarged surface area and the easy accessibility of the mesopores.« less

  2. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    PubMed

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  4. Investigation of the hard x-ray background in backlit pinhole imagers.

    PubMed

    Fein, J R; Peebles, J L; Keiter, P A; Holloway, J P; Klein, S R; Kuranz, C C; Manuel, M J-E; Drake, R P

    2014-11-01

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  5. Investigation of the hard x-ray background in backlit pinhole imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P.; Peebles, J. L.

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographicmore » image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.« less

  6. Metal-ferroelectric-metal capacitor based persistent memory for electronic product code class-1 generation-2 uhf passive radio-frequency identification tag

    NASA Astrophysics Data System (ADS)

    Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho

    2009-03-01

    With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.

  7. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities.

    PubMed

    Maalej, H; Hmidet, N; Boisset, C; Buon, L; Heyraud, A; Nasri, M

    2015-02-01

    To investigate the effect of culture conditions and medium components on exopolysaccharide (EPS) production by Pseudomonas stutzeri AS22 and to access the EPS performance as a metal-binding exopolysaccharide. The EPS production conditions of Ps. stutzeri AS22 in submerged culture were optimized using two approaches for EPS quantification, and its metal-binding capacity was evaluated using both single and mixed metal ions systems. Maximum EPS level was achieved after 24 h of incubation at 30°C with an initial pH of 8.0, 250 rev min(-1) stirring level and 10% inoculum size. 50 g l(-1) starch, 5 g l(-1) yeast extract, 0.5 g l(-1) NaCl, 1.4 g l(-1) K2 HPO4, 0.4 g l(-1) MgSO4, 0.4 g l(-1) CaCl2 and 1 g l(-1) mannose were found to be the most suitable carbon, nitrogen, mineral and additional carbohydrate sources, respectively. From metal-binding experiments, the crude EPS showed interesting metal adsorption capacity adopting the order Pb > Co > Fe > Cu > Cd. Lead was preferentially biosorbed with a maximal uptake of 460 mg g(-1) crude EPS. Under the optimal culture requirements, EPS level reached 10.2 g l(-1) after 24 h of fermentation, seven times more than the production under initial conditions. According to the metal-binding assay, the crude EPS has potential to be used as a novel biosorbent in the treatment of heavy metals-contaminated water. Our results are interesting in terms of yield as well as efficiency for the potential use of the Ps. stutzeri exopolysaccharide as a metal-absorbent polymer in the bioremediation field. © 2014 The Society for Applied Microbiology.

  8. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization.

    PubMed

    Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei

    2012-10-01

    A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions.

    PubMed

    Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K

    2016-11-05

    The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.

  10. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Induction slag reduction process for purifying metals

    DOEpatents

    Traut, Davis E.; Fisher, II, George T.; Hansen, Dennis A.

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  12. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Fong, Dillon D.; Herbert, F. William

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  13. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE PAGES

    Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...

    2018-04-17

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  14. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  15. Correlation of impression removal force with elastomeric impression material rigidity and hardness.

    PubMed

    Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob

    2013-07-01

    Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p

  16. Does hard insertion and space improve shock absorption ability of mouthguard?

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Handa, Jun; Naitoh, Kaoru; Kurokawa, Katsuhide; Shibusawa, Mami; Nakajima, Kazunori; Kawamura, Shintaro

    2006-04-01

    Mouthguards are expected to reduce sports-related orofacial injuries. Numerous studies have been conduced to improve the shock absorption ability of mouthguards using air cells, sorbothane, metal wire, or hard material insertion. Most of these were shown to be effective; however, the result of each study has not been applied to clinical use. The aim of this study was to develop mouthguards that have sufficient prevention ability and ease of clinical application with focus on a hard insertion and space. Ethylene vinyl acetate (EVA) mouthguard blank used was Drufosoft and the acrylic resin was Biolon (Dreve-Dentamid GMBH, Unna, Germany). Three types of mouthguard samples tested were constructed by means of a Dreve Drufomat (Type SO, Dreve-Dentamid) air pressure machine: the first was a conventional laminated type of EVA mouthguard material; the second was a three layer type with acrylic resin inner layer (hard-insertion); the third was the same as the second but with space that does not come into contact with tooth surfaces (hard + space). As a control, without any mouthguard condition (NOMG) was measured. A pendulum type impact testing machine with interchangeable impact object (steel ball and baseball) and dental study model (D17FE-NC.7PS, Nissin, Tokyo, Japan) with the strain gages (KFG-1-120-D171-11N30C2: Kyowa, Tokyo, Japan) applied to teeth and the accelerometer to the dentition (AS-A YG-2768 100G, Kyowa) were used to measure transmitted forces. Statistical analysis (anova, P < 0.01) showed significant differences among four conditions of NOMG and three different mouthguards in both objects and sensor. About acceleration: in a steel ball which was a harder impact object, shock absorption ability of about 40% was shown with conventional EVA and hard-insertion and about 50% with hard + space. In a baseball that was softer compared with steel ball, a decrease rate is smaller, reduction (EVA = approximately 4%, hard-insertion = approximately 12%, hard + space

  17. Effects of lifestyle on micronuclei frequency in human lymphocytes in Japanese hard-metal workers.

    PubMed

    Huang, Peixin; Huang, Bin; Weng, Huachun; Nakayama, Kunio; Morimoto, Kanehisa

    2009-04-01

    The risks of cardiovascular disease, cancer, and other major causes of mortality are largely attributable to lifestyle factors such as smoking, alcohol drinking, hours of working and sleeping, physical activity, diet, and stress. Earlier studies have suggested that an unhealthy lifestyle is also associated with increased lymphocyte sensitivity to mutagens, oxidative DNA damage level, and leukocyte DNA damage. In order to explore the genotoxicity of unhealthy lifestyle, we evaluated the effect of overall lifestyle as well as some individual lifestyle factors on micronuclei (MN) frequency in cultured human lymphocytes. The study was conducted among 208 healthy adult (19 to 59 years) male Japanese hard-metal workers. The subjects were divided into groups according to their self-reported good, moderate, and poor lifestyles based on their responses to a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, sleeping hours, working hours, physical exercise, eating breakfast, balanced nutrition, and mental stress), the presence or absence of each of which was summed to obtain a health practice index (HPI: range 0-8). Peripheral blood was taken and the cytokinesis-block micronuclei (CBMN) assay was performed. Total lifestyle quality as measured by the HPI was strongly negatively associated with MN frequency in cultured human lymphocytes (p<0.01). Nutritional imbalance, lack of regular exercise (<2 times per week), insufficient sleep (< or =6 h per day), and overtime working (> or =9 h per day) each contributed significantly to higher MN frequency (all p<0.05). In the smoker group, a significantly higher MN frequency was only found in heavy smokers (p<0.05). On the other hand, mental stress, eating breakfast, and alcohol drinking had no effect on MN frequency. Taken together, these findings indicate that poor lifestyle habits significantly increase MN frequency in human lymphocytes.

  18. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  19. Chemistry of carcinogenic metals.

    PubMed Central

    Martell, A E

    1981-01-01

    The periodic distribution of known and suspected carcinogenic metal ions is described, and the chemical behavior of various types of metal ions is explained in terms of the general theory of hard and soft acids and bases. The chelate effect is elucidated, and the relatively high stability of metal chelates in very dilute solutions is discussed. The concepts employed for the chelate effect are extended to explain the high stabilities of macrocyclic and cryptate complexes. Procedures for the use of equilibrium data to determine the speciation of metal ions and complexes under varying solution conditions are described. Methods for assessing the interferences by hydrogen ion, competing metal ions, hydrolysis, and precipitation are explained, and are applied to systems containing iron(III) chelates of fourteen chelating agents designed for effective binding of the ferric ion. The donor groups available for the building up of multidentate ligands are presented, and the ways in which they may be combined to achieve high affinity and selectivity for certain types of metal ions are explained. PMID:6791915

  20. First-principles calculation of entropy for liquid metals.

    PubMed

    Desjarlais, Michael P

    2013-12-01

    We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.

  1. First-principles calculation of entropy for liquid metals

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael P.

    2013-12-01

    We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.

  2. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  3. Effect of sintering atmosphere on the hardness of ThO2

    NASA Astrophysics Data System (ADS)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-08-01

    The hardness and toughness of ThO2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO2 is H0 = 10.5 ± 0.3 GPa for oxidizing conditions and H0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: KIC = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions.

  4. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  5. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  6. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  7. Bio-recycling of metals: Recycling of technical products using biological applications.

    PubMed

    Pollmann, Katrin; Kutschke, Sabine; Matys, Sabine; Raff, Johannes; Hlawacek, Gregor; Lederer, Franziska L

    2018-03-16

    The increasing demand of different essential metals as a consequence of the development of new technologies, especially in the so called "low carbon technologies" require the development of innovative technologies that enable an economic and environmentally friendly metal recovery from primary and secondary resources. There is serious concern that the demand of some critical elements might exceed the present supply within a few years, thus necessitating the development of novel strategies and technologies to meet the requirements of industry and society. Besides an improvement of exploitation and processing of ores, the more urgent issue of recycling of strategic metals has to be enforced. However, current recycling rates are very low due to the increasing complexity of products and the low content of certain critical elements, thus hindering an economic metal recovery. On the other hand, increasing environmental consciousness as well as limitations of classical methods require innovative recycling methodologies in order to enable a circular economy. Modern biotechnologies can contribute to solve some of the problems related to metal recycling. These approaches use natural properties of organisms, bio-compounds, and biomolecules to interact with minerals, materials, metals, or metal ions such as surface attachment, mineral dissolution, transformation, and metal complexation. Further, modern genetic approaches, e.g. realized by synthetic biology, enable the smart design of new chemicals. The article presents some recent developments in the fields of bioleaching, biosorption, bioreduction, and bioflotation, and their use for metal recovery from different waste materials. Currently only few of these developments are commercialized. Major limitations are high costs in comparison to conventional methods and low element selectivity. The article discusses future trends to overcome these barriers. Especially interdisciplinary approaches, the combination of different

  8. Ceramic-metal composites prepared via tape casting and melt infiltration methods

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jun

    Melt infiltration of preforms prepared by tape casting and lamination has been accomplished using a short-time infiltration process that significantly suppresses reaction product formation. For layered materials produced via infiltration of laminated ceramic tapes, of particular interest is the effect that a large change in microstructure has on infiltration, phase formation, and mechanical properties. Hardness of the fine scale composite layers is approximately three times higher than coarse scale layers, due to greater strength of the fine B4C network. Fractography showed that crack propagation occurred by brittle fracture of the carbide and ductile extension of the metal. Despite large differences in hardness, the fracture mode of the fine and coarse scale microstructures appears identical. Fluid flow modeling for tape casting was conducted with a Newtonian slurry under a parallel blade, and the effect of beveling the blade based on a one dimensional flow model is shown. The discussion on slurry deformation after the blade exit suggests that the mode of slurry deformation depends on the relative importance of the pressure gradient and wall shear and that the existence of zero shear plane might have a negative effect on particle alignment in the tape. The analysis of the flow under a beveled blade predicts that this configuration is more advantageous than the parallel blade for productivity and parallel blade is better for producing uniform particle alignment and thinner tape. Also, the one dimensional flow model for the beveled blade is shown to be a valid approximation of the fluid behavior below a blade angle of 45 degrees. The flow visualization study on tape casting was conducted with a transparent apparatus and model slurry. Most investigators have concluded that the shear stress between the doctor blade and moving carrier causes the particle alignment, but, according to the result of visualization experiment, some degree of particle alignment is already

  9. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  10. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskoković, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials

  11. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  12. Reflections on the Hard Work of Mentorship

    ERIC Educational Resources Information Center

    Waters, Marlo

    2017-01-01

    Many wonderful things can and should be written regarding the pleasures of mentorship. As an individual with experience as both a mentee and a mentor, I can attest to the joy that comes from a productive mentoring relationship. However, there is a reality that is discussed less frequently: Mentoring is hard work that can involve pain and…

  13. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  14. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  15. Surface display of synthetic phytochelatins on Saccharomyces cerevisiae for enhanced ethanol production in heavy metal-contaminated substrates.

    PubMed

    Yang, Chi-En; Chu, I-Ming; Wei, Yu-Hong; Tsai, Shen-Long

    2017-12-01

    The aim of this work was to study the feasibility of surface displaying synthetic phytochelatin (EC) on Saccharomyces cerevisiae to overcome the inhibitory effect of heavy metals on ethanol production. Via the fusion of a gene encoding EC to an α-agglutinin gene, the engineered S. cerevisiae was able to successfully display EC on its surface. This surface engineered yeast strain exhibited an efficient cadmium adsorption capability and a remarkably enhanced cadmium tolerance. Moreover, its ethanol production efficiency was significantly improved as compared to a control strain in the presence of cadmium. Similar results could also be observed in the presence of other metals, such as nickel, lead and copper. Overall, this method allows simultaneous biorefinery and heavy metal removal when using heavy metal-contaminated biomass as raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  17. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization.

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2013-05-01

    Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil.

  18. Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites

    DOE PAGES

    Wysocki, Aleksander L.; Antropov, Vladimir P.

    2016-12-01

    Here, we developed a micromagnetic method for modeling magnetic systems with periodic boundary conditions along an arbitrary number of dimensions. The main feature is an adaptation of the Ewald summation technique for evaluation of long-range dipolar interactions. The method was applied to investigate the hysteresis process in hard-soft magnetic nanocomposites with various geometries. The dependence of the results on different micromagnetic parameters was studied. We found that for layered structures with an out-of-plane hard phase easy axis the hysteretic properties are very sensitive to the strength of the interlayer exchange coupling, as long as the spontaneous magnetization for the hardmore » phase is significantly smaller than for the soft phase. The origin of this behavior was discussed. Additionally, we investigated the soft phase size optimizing the energy product of hard-soft nanocomposites.« less

  19. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    NASA Astrophysics Data System (ADS)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe

  20. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (p<0.0001; α=0.05) among NA treatments (10, 20, 40, 60, and 80mg NA/L) and an untreated control (no NAs). Extent of AVS production was sufficient in all NA treatments to achieve ∑SEM:AVS <1, indicating that conditions were conducive for treatment of metals, with sulfide ligands in excess of SEM (Cu, Ni, and Zn). In addition, no adverse effects to SRB (in terms of density, relative abundance, and diversity) were measured following exposures of a commercial NA. In this bench-scale study, dissimilatory sulfate reduction and subsequent metal precipitation were not vulnerable to NAs, indicating passive treatment systems utilizing sulfide production (AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Charrier, Jessica G.; Anastasio, Cort

    2011-12-01

    Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ( rad OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there are no quantitative measurements of rad OH formation from transition metals at concentrations relevant to 24-hour ambient particulate exposure. This research reports specific and quantitative measurements of rad OH formation from 10 individual transition metals (and several mixtures) in a cell-free surrogate lung fluid (SLF) with four antioxidants: ascorbate, citrate, glutathione, and uric acid. We find that Fe and Cu can produce rad OH under all antioxidant conditions as long as ascorbate is present and that mixtures of the two metals synergistically increase rad OH production. Manganese and vanadium can also produce rad OH under some conditions, but given that their ambient levels are typically very low, these metals are not likely to chemically produce significant levels of rad OH in the lung fluid. Cobalt, chromium, nickel, zinc, lead, and cadmium do not produce rad OH under any of our experimental conditions. The antioxidant composition of our SLF significantly affects rad OH production from Fe and Cu: ascorbate is required for rad OH formation, citrate increases rad OH production from Fe, and both citrate and glutathione suppress rad OH production from Cu. MINTEQ ligand speciation modeling indicates that citrate and glutathione affect rad OH production by changing metal speciation, altering the reactivity of the metals. In the most realistic SLF (i.e., with all four antioxidants), Fe generates approximately six times more rad OH than does the equivalent amount of Cu. Since levels of soluble Fe in PM are typically higher than those of Cu, our results suggest that Fe

  2. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  3. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGES

    Zou, Yongtao; Li, Qiang; Qi, Xintong; ...

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (T C) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower T C have been addressed by themore » weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  4. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    PubMed

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  5. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  6. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  7. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less

  8. Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals

    NASA Astrophysics Data System (ADS)

    Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi

    2017-10-01

    Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).

  9. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple

  10. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    PubMed Central

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal

  11. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review

    NASA Astrophysics Data System (ADS)

    De la Calle, Inmaculada; Menta, Mathieu; Séby, Fabienne

    2016-11-01

    Due to the increasing use of nanoparticles (NPs) in consumer products, it becomes necessary to develop different strategies for their detection, identification, characterization and quantification in a wide variety of samples. Since the analysis of NPs in consumer products and environmental samples is particularly troublesome, a detailed description of challenges and limitations is given here. This review mainly focuses on sample preparation procedures applied for the mostly used techniques for metallic and metal oxide NPs characterization in consumer products and most outstanding publications of biological and environmental samples (from 2006 to 2015). We summarize the procedures applied for total metal content, extraction/separation and/or preconcentration of NPs from the matrix, separation of metallic NPs from their ions or from larger particles and NPs' size fractionation. Sample preparation procedures specifically for microscopy are also described. Selected applications in cosmetics, food, other consumer products, biological tissues and environmental samples are presented. Advantages and inconveniences of those procedures are considered. Moreover, selected simplified schemes for NPs sample preparation, as well as usual techniques applied are included. Finally, promising directions for further investigations are discussed.

  12. 75 FR 75694 - Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-648] Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing Same; Notice of Commission Decision To Dismiss the Investigation as Moot AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY...

  13. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  15. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  16. Determination of Trace Metals, Moisture, pH and Assessment of Potential Toxicity of Selected Smokeless Tobacco Products

    PubMed Central

    Prabhakar, V.; Jayakrishnan, G.; Nair, S. V.; Ranganathan, B.

    2013-01-01

    The characterization and classification of smokeless tobacco products has been a continuously evolving process. This is based on a number of different parameters like nicotine content, moisture content, amount of heavy metals, pH, and in vitro cytotoxicity assays. Their contexts often vary between countries, research institutions, and legal requirements. The categorisation of these products is quite challenging due to the diffused sample sizes, diverse array of branded products on offer, and the absence of a centralized manufacturing facility. This study aims at a systematic classification of 10 smokeless tobacco product samples from the retail market based on their potential toxicity upon long-term use. The estimation of potential toxicity follows a well-established method that employs the concentration of toxic metals in the different samples. The potential toxicity as well as heavy metal concentrations of the smokeless tobacco products analysed was found to be much higher than acceptable limits. For instance, the levels of lead, cadmium, copper and zinc of 2.5, 1, 4 and 23 ppm, respectively, are well above their recommended limits. The results from the study indicate that chronic use of smokeless tobacco products is a significant health risk, especially in the vulnerable population. Further studies of this nature will help establish a toxicological fingerprint on the diverse class of products that floods the market now. PMID:24082341

  17. Commercial Applications of Metal Foams: Their Properties and Production

    PubMed Central

    García-Moreno, Francisco

    2016-01-01

    This work gives an overview of the production, properties and industrial applications of metal foams. First, it classifies the most relevant manufacturing routes and methods. Then, it reviews the most important properties, with special interest in the mechanical and functional aspects, but also taking into account costs and feasibility considerations. These properties are the motivation and basis of related applications. Finally, a summary of the most relevant applications showing a large number of actual examples is presented. Concluding, we can forecast a slow, but continuous growth of this industrial sector. PMID:28787887

  18. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  19. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    PubMed

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  20. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  1. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  2. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  3. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  4. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  5. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  6. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  7. Metals Sector

    EPA Pesticide Factsheets

    Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.

  8. A bi-prism interferometer for hard x-ray photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakovic, A.F.; Siddons, D.; Stein, A.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  9. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  10. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  11. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  12. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  13. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  14. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  15. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  16. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    NASA Astrophysics Data System (ADS)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  17. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Si

    Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been

  18. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, A.; Burgstaller, W.; Schinner, F.

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide inmore » combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.« less

  19. Cosmic Metal Production and the Contribution of QSO Absorption Systems to the Ionizing Background

    NASA Technical Reports Server (NTRS)

    Madau, Piero; Shull, J. Michael

    1996-01-01

    The recent discovery by Cowie et al. (1995) and Tytler et al. (1995) of metals in the Ly alpha clouds shows that the intergalactic medium (IGM) at high redshift is contaminated by the products of stars and suggests that ionizing photons from massive star formation may be a significant contributor to the UV background radiation at early epochs. We assess the validity of the stellar photoionization hypothesis. Based on recent computations of metal yields and 0-star Lyman continuum (Lyc) fluxes, we find that 0.2 percent of the rest-mass energy of the metals produced is radiated as Lyc. By modeling the transfer of ionizing radiation through the IGM and the rate of chemical enrichment, we demonstrate that the background intensity of photons at 1 ryd that accompanies the production of metals in the Ly alpha forest clouds may be significant, approaching 0.5 x 10(exp -21) ergs cm squared s(-1) Hz(-1) sr(-1) at z approximately equals 3 if the Lyc escape fraction is greater than of equal to 0.25. Together with quasars, massive stars could then, in principle, provide the hydrogen and helium Lyc photons required to ionize the universe at high redshifts. We propose that observations of the He2 Gunn-Peterson effect and of the metal ionization states of the Ly alpha forest and Lyman-limit absorbers should show the signature of a stellar spectrum. We also note that the stellar photoionization model fails if a large fraction of the UV radiation emitted from stars cannot escape into the IGM, as suggested by the recent Hopkins Ultraviolet Telescope observations by Leitherer et al. (1995) of low-redshift starburst galaxies, or if most of the metals observed at z is approximately 3 were produced at much earlier epochs.

  20. Metal contamination in environmental media in residential ...

    EPA Pesticide Factsheets

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  1. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.

    2018-05-01

    The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.

  2. Alkalinity and hardness: Critical but elusive concepts in aquaculture

    USDA-ARS?s Scientific Manuscript database

    Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...

  3. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    PubMed

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months ofmore » plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.« less

  5. Evaluation and comparison of the levels of occupational exposure to cobalt during dry and/or wet hard metal sharpening. Environmental and biological monitoring.

    PubMed

    Imbrogno, P; Alborghetti, F

    1994-06-30

    To investigate risks to hard metal tool sharpeners, 80 factories in the Lombardia Region (North Italy) were selected and examined. The scope of the survey consisted of verifying and quantifying that risk, so as to be able to control it and reduce it as far as is possible. We singled out a group of 12 factories, comprising approximately 750 workers 60 of whom were exposed to cobalt, in which operations such as sharpening with diamond grinding stones are normally carried out. In those factories, the risk was quantified by determining the concentration of cobalt in dust, collected by means of personal and fixed samplers (23 measurements) during sharpening operations. The station had no local ventilation device; sharpening is mainly performed wet and has been found to present a greater risk than those where sharpening is exclusively performed dry. Results were confirmed by biological monitoring which showed the presence of cobalt excreted in exposed workers' urine collected at the end of the work shift.

  6. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  7. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  8. Determination of Pesticide Dermal Transfer to Operators & Agricultural Workers through Contact with Sprayed Hard Surfaces.

    PubMed

    Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Charistou, Agathi N; Gerritsen-Ebben, Rianda; Glass, C Richard; Machera, Kyriaki

    2018-05-20

    In the present study, the dermal transfer rate of pesticides to agricultural workers occurring via contact with sprayed hard surfaces was investigated. Cotton gloves were used as dosimeters to collect residues from hard surfaces contaminated by pesticides in greenhouses. Dosimeters, either dry or moistened, were in contact with wood, metal and plastic surfaces previously sprayed. The experimental approach applied mimicked the typical hand contact. Moistened cotton gloves were used to simulate hand moisture from dew/condensation or rainfall. The effect of total duration of contact on the final hand exposure via transfer was investigated. The higher duration contact tested (50-sec) resulted in the higher transfer rates for metal and plastic surfaces; no such effect was noted in case of the wood surface. The pesticide amount transferred from the metal and plastic surfaces to wet gloves was greater than the one transferred to dry gloves. Such trend was not observed for the wood surface. Transfer rates varied from 0.46-77.62% and 0.17-16.90% for wet and dry samples, respectively. The current study has generated new data to quantify the proportion of pesticide deposits dislodged from three different non-crop surfaces when in contact with dry or wet gloves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  10. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    NASA Astrophysics Data System (ADS)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  11. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  12. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  13. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  14. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  15. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  16. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  17. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    NASA Astrophysics Data System (ADS)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  19. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Ali, Abdel-Hamid A. M.; Hamed, Mohamed A.; Abd El-Azim, Hoda

    2011-03-01

    Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za'farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha'b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha'b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.

  20. Hardness, elastic, and electronic properties of chromium monoboride

    DOE PAGES

    Han, Lei; Wang, Shanmin; Zhu, Jinlong; ...

    2015-06-03

    Here, we report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shearmore » deformation.« less

  1. Some recent developments in sheet metal forming for production of lightweight automotive parts

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  2. Starting from Marginalized Lives: A Conversation with Sandra Harding.

    ERIC Educational Resources Information Center

    Hirsh, Elizabeth; Olson, Gary A.

    1995-01-01

    Presents a conversation with philosopher of science Sandra Harding, a major exponent of "feminist standpoint theory." Argues that objectivity is maximized not by excluding social factors from the production of knowledge but by starting the process of inquiry from an explicitly social location--the lived experience of those traditionally…

  3. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    PubMed

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  < Cr 6+  < Pb 2+  < Hg 2+ . COD removal rate and volatile fatty acid generation efficiencies were also significantly affected by heavy metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of Nickel Contents on the Microstructure and Mechanical Properties for Low-Carbon Bainitic Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong

    2017-05-01

    Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.

  5. Quantitative 3D imaging of yeast by hard X-ray tomography.

    PubMed

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  6. Polarization observables in hard rescattering mechanism of deuteron photodisintegration

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2004-05-01

    Polarization properties of high energy photodisintegration of the deuteron are studied within the framework of the hard rescattering mechanism (HRM). In HRM, a quark of one nucleon knocked-out by the incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. Summation of all relevant quark rescattering amplitudes allows us to express the scattering amplitude of the reaction through the convolution of a hard photon-quark interaction vertex, the large angle p-n scattering amplitude and the low momentum deuteron wave function. Within HRM, it is demonstrated that the polarization observables in hard photodisintegration of the deuteron can be expressed through the five helicity amplitudes of NN scattering at high momentum transfer. At 90° CM scattering HRM predicts the dominance of the isovector channel of hard pn rescattering, and it explains the observed smallness of induced, Py and transfered, Cx polarizations without invoking the argument of helicity conservation. Namely, HRM predicts that Py and Cx are proportional to the φ5 helicity amplitude which vanishes at θcm=90° due to symmetry reasons. HRM predicts also a nonzero value for Cz in the helicity-conserving regime and a positive Σ asymmetry which is related to the dominance of the isovector channel in the hard reinteraction. We extend our calculations to the region where large polarization effects are observed in pp scattering as well as give predictions for angular dependences.

  7. Noble metal-free reduced graphene oxide-ZnxCd₁-xS nanocomposite with enhanced solar photocatalytic H₂-production performance.

    PubMed

    Zhang, Jun; Yu, Jiaguo; Jaroniec, Mietek; Gong, Jian Ru

    2012-09-12

    Design and preparation of efficient artificial photosynthetic systems for harvesting solar energy by production of hydrogen from water splitting is of great importance from both theoretical and practical viewpoints. ZnS-based solid solutions have been fully proved to be an efficient visible-light driven photocatalysts, however, the H(2)-production rate observed for these solid solutions is far from exciting and sometimes an expensive Pt cocatalyst is still needed in order to achieve higher quantum efficiency. Here, for the first time we report the high solar photocatalytic H(2)-production activity over the noble metal-free reduced graphene oxide (RGO)-Zn(x)Cd(1-x)S nanocomposite prepared by a facile coprecipitation-hydrothermal reduction strategy. The optimized RGO-Zn(0.8)Cd(0.2)S photocatalyst has a high H(2)-production rate of 1824 μmol h(-1) g(-1) at the RGO content of 0.25 wt % and the apparent quantum efficiency of 23.4% at 420 nm (the energy conversion efficiency is ca. 0.36% at simulated one-sun (AM 1.5G) illumination). The results exhibit significantly improved photocatalytic hydrogen production by 450% compared with that of the pristine Zn(0.8)Cd(0.2)S, and are better than that of the optimized Pt-Zn(0.8)Cd(0.2)S under the same reaction conditions, showing that the RGO-Zn(0.8)Cd(0.2)S nanocomposite represents one of the most highly active metal sulfide photocatalyts in the absence of noble metal cocatalysts. This work creates a green and simple way for using RGO as a support to enhance the photocatalytic H(2)-production activity of Zn(x)Cd(1-x)S, and also demonstrates that RGO is a promising substitute for noble metals in photocatalytic H(2)-production.

  8. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  9. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE PAGES

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...

    2017-07-10

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  10. No Difference in Reoperations at 2 Years Between Ceramic-on-metal and Metal-on-metal THA: A Randomized Trial.

    PubMed

    Engh, C Anderson; Sritulanondha, Supatra; Korczak, Abigail; Whalen, Terrence David; Naudie, Douglas D R; McCalden, Richard W; MacDonald, Steven J

    2016-02-01

    Hard-on-hard bearings for total hip arthroplasty continue to warrant analysis even though crosslinked polyethylene is performing very well. Ceramic-on-metal (CoM) has low in vitro wear and did well in an early clinical trial. We report on a prospective, randomized, multicenter investigational device trial comparing CoM with metal-on-metal (MoM). (1) Is there a difference in the number or type of revisions comparing CoM with MoM? (2) Are cobalt and chromium metal levels different for CoM and MoM THA? Between August 2005 and October 2006, of 1015 patients screened, 390 patients were enrolled at 11 centers and randomized to 194 CoM and 196 MoM bearings. There was no difference in the preoperative patient demographics between the study groups. Mean followup was 50 months (range, 22-75 months). Seventy-two patients from two centers had metal level analysis. With the numbers available, there was no difference in the proportion of patients undergoing revisions between the MoM and the CoM cohorts (MOM: 3% [six of 196]; COM: 1.5% [three of 194]; p = 0.50). Four MoM revisions were unrelated to the bearing surface. Two had bearing surface-related reoperations, one for an aseptic lymphocyte-dominated vasculitis-associated lesion and one for elevated metal levels with acetabular malposition. None of the CoM revisions were related to the bearing surface. The metal level analysis revealed that in contrast to the CoM, the MoM bearing group had increasing values of erythrocyte and serum cobalt from 1 to 5 years (CoM erythrocyte 0.45-0.55 ppb, p = 0.11 and CoM serum 0.88-0.85, p = 0.55, and MoM erythrocyte 0.32-0.51 ppb, p < 0.01 and MoM serum 0.65-1.01 ppb, p < 0.01). In addition, the MoM cobalt levels in erythrocytes and serum at 5 years were more variable than at 1 year (erythrocyte interquartile range [IQR], 0.26-0.44 to 0.31-1.21 ppb and serum IQR, 0.42-0.80 to 0.64-2.20 ppb, p < 0.02 for both). Although both bearings performed well at short-term followup, the CoM bearing group

  11. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  12. Grinding tool for making hemispherical bores in hard materials

    DOEpatents

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  13. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  14. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  15. Method of making metal-doped organic foam products

    DOEpatents

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  16. Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015.

    PubMed

    Wang, Wei; Wang, Huasheng; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-05-01

    As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

  17. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  18. The effect of hard water scale buildup and water treatment on residential water heater performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbert, S.G.; Stickford, G.H.; Newman, D.C.

    Conventional gas and electric storage-type residential water heaters were operated at four different U.S. cities under accelerated test conditions to measure the effect of scale buildup on efficiency and to assess the benefits and limitations of common water treatment methods. The four selected test sites had hard water supplied with expected scale-forming tendencies and were located in Columbus, OH; Lisle, IL; Roswell, NM; and Marshall, MN. The main conclusions are as follows. After 60 lbs (27 kg) of scale buildup at two of the test sites (representing an estimated 20 years of equivalent scale buildup), the efficiency of the gasmore » water heaters gradually declined about 5%, while that of the electric water heaters remained constant. However, the buildup of scale in the electric heaters caused the electric heating element to fail periodically, and in the gas-fired heaters, it caused the tank metal temperatures near the burner to operate hotter. Treated water (either softened, softened plus polyphosphate, or hard plus polyphosphate) effectively reduced scale buildup and tended to reduce the corrosion rates of the metal test coupons in hot water.« less

  19. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    PubMed

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  20. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    PubMed

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  1. Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.

    PubMed

    Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros

    2005-11-01

    Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.

  2. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge.

    PubMed

    Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua

    2016-12-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  4. Calcium and magnesium content in hard tissues of rats under condition of subchronic lead intoxication.

    PubMed

    Todorovic, Tatjana; Vujanovic, Dragana; Dozic, Ivan; Petkovic-Curcin, Aleksandra

    2008-03-01

    Lead manifests toxic effects in almost all organs and tissues, especially in: the nervous system, hematopoietic system, kidney and liver. This metal has a special affinity for deposition in hard tissue, i.e., bones and teeth. It is generally believed that the main mechanism of its toxicity relies on its interaction with bioelements, especially with Ca and Mg. This article analyses the influence of Pb poisoning on Ca and Mg content in hard tissues, (mandible, femur, teeth and skull) of female and young rats. Experiments were carried out on 60 female rats, AO breed, and on 80 of their young rats (offspring). Female rats were divided into three groups: the first one was a control group, the second one received 100 mg/kg Pb2+ kg b.wt. per day in drinking water, the third one received 30 mg/kg Pb(2+) kg b.wt. per day in drinking water. Young rats (offspring) were divided into the same respective three groups. Lead, calcium and magnesium content in hard tissues (mandible, femur, teeth-incisors and skull) was determined by flame atomic absorption spectrophotometry in mineralized samples. There was a statistically significant Pb deposition in all analyzed female and young rat hard tissues. Ca and Mg contents were significantly reduced in all female and young rat hard tissues. These results show that Pb poisoning causes a significant reduction in Ca and Mg content in animal hard tissues, which is probably the consequence of competitive antagonism between Pb and Ca and Mg.

  5. 75 FR 49527 - Metaldyne Corporation, Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ..., Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc., Powertrain Division, Hamburg, MI; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with.... 2813), as amended, the Department of Labor issued a Certification of Eligibility to Apply for Worker...

  6. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  7. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  8. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China.

    PubMed

    Xu, Li; Lu, Anxiang; Wang, Jihua; Ma, Zhihong; Pan, Ligang; Feng, Xiaoyuan; Luan, Yunxia

    2015-12-01

    The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  10. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  11. A Study on Effect of Graphite Particles on Tensile, Hardness and Machinability of Aluminium 8011 Matrix Material

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.

    2016-09-01

    Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.

  12. Fish assemblages and environmental variables associated with hard-rock mining in the Coeur d'Alene River basin, Idaho

    USGS Publications Warehouse

    Maret, Terry R.; MacCoy, Dorene E.

    2002-01-01

    As part of the U.S. Geological Survey's National Water Quality Assessment Program, fish assemblages, environmental variables, and associated mine densities were evaluated at 18 test and reference sites during the summer of 2000 in the Coeur d'Alene and St. Regis river basins in Idaho and Montana. Multimetric and multivariate analyses were used to examine patterns in fish assemblages and the associated environmental variables representing a gradient of mining intensity. The concentrations of cadmium (Cd), lead (Pb), and zinc (Zn) in water and streambed sediment found at test sites in watersheds where production mine densities were at least 0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than the concentrations found at reference sites. Many of these metal concentrations exceeded Ambient Water Quality Criteria (AWQC) and the Canadian Probable Effect Level guidelines for streambed sediment. Regression analysis identified significant relationships between the production mine densities and the sum of Cd, Pb, and Zn concentrations in water and streambed sediment (r2 = 0.69 and 0.66, respectively; P < 0.01). Zinc was identified as the primary metal contaminant in both water and streambed sediment. Eighteen fish species in the families Salmonidae, Cottidae, Cyprinidae, Catostomidae, Centrarchidae, and Ictaluridae were collected. Principal components analysis of 11 fish metrics identified two distinct groups of sites corresponding to the reference and test sites, predominantly on the basis of the inverse relationship between percent cottids and percent salmonids (r = -0.64; P < 0.05). Streams located downstream from the areas of intensive hard-rock mining in the Coeur d'Alene River basin contained fewer native fish and lower abundances as a result of metal enrichment, not physical habitat degradation. Typically, salmonids were the predominant species at test sites where Zn concentrations exceeded the acute AWQC. Cottids were absent at these sites, which

  13. Production of metals and compounds by radiation chemistry

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  14. Assessment of the hazard posed by metal forms in water and sediments.

    PubMed

    Wojtkowska, Małgorzata; Bogacki, Jan; Witeska, Anna

    2016-05-01

    This study aimed to describe the prevalence heavy metals (Zn, Cu, Pb, and Cd) forms in the ecosystem of the Utrata river in order to determine the mobile forms and bioavailability of metals. To extract the dissolved forms of metals in the water of the Utrata PHREEQC2 geochemical speciation model was used. The river waters show a high percentage of mobile and eco-toxic forms of Zn, Cu and Pb. The percentage of carbonate forms for all the studied metals was low (<1%). The content of carbonates in the water and the prevailing physical and chemical conditions (pH, hardness, alkalinity) reduce the share of toxic metal forms, which precipitate as hardly soluble carbonate salts of Zn, Cu, Cd and Pb. Cu in the water in 90% of cases appeared in the form of hydroxyl compounds. To identify the forms of metal occurrence in the sediments Tessier's sequential extraction was used, allowing to assay bound metals in five fractions (ion exchange, carbonate, adsorption, organic, residual), whose nature and bioavailability varies in aquatic environments. The study has shown a large share of metals in labile and bioavailable forms. The speciation analysis revealed an absolute dominance of the organic fraction in the binding of Cu and Pb. Potent affinity for this fraction was also exhibited by Cd. The rations of exchangeable Zn and Cu forms in the sediments were similar. Both these metals had the lowest share in the most mobile ion exchange fraction. Copyright © 2016. Published by Elsevier B.V.

  15. 48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in Mill...

  16. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    PubMed

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  17. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  18. Mesoporous metallic rhodium nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke

    2017-05-01

    Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.

  19. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure.

    PubMed

    Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu

    2017-05-01

    Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.

  20. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  1. Production of an antibiotic enterocin from a marine actinobacteria strain H1003 by metal-stress technique with enhanced enrichment using response surface methodology.

    PubMed

    Hassan, Syed Shamsul; Shah, Sayed Asmat Ali; Pan, Chengqian; Fu, Leilei; Cao, Xun; Shi, Yutong; Wu, Xiaodan; Wang, Kuiwu; Wu, Bin

    2017-01-01

    Elicitation by chemical means including heavy metals is one of a new technique for drug discoveries. In this research, the effect of heavy metals on marine actinobacteria Streptomyces sp. H-1003 for the production of enterocin, with a strong broad spectrum activity, along optimized fermented medium was firstly investigated. The optimum metal stress conditions consisted of culturing marine actinobacteria strain H-1003 with addition of cobalt ions at 2mM in optimized Gause's medium having starch at 20mg/L for 10 days at 180 revolution/min. Under these conditions, enterocin production was enhanced with a value of 5.33mg/L, which was totally absent at the normal culture of strain H-1003 and much higher than other tested metal-stress conditions. This work triumphantly announced a prodigious effect of heavy metals on marine actinobacteria with fringe benefits as a key tool of enterocin production.

  2. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    PubMed

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  3. A study of H+ production using metal hydride and other compounds by means of laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine M.; Kondo K.; Okamura, M.

    2012-02-22

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH2 and ZrH2) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be usedmore » as a target for proton laser ion source.« less

  4. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  5. Hardness and adhesion performances of nanocoating on carbon steel

    NASA Astrophysics Data System (ADS)

    Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.

    2018-01-01

    Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

  6. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  7. Apparatus and method for making metal chloride salt product

    DOEpatents

    Miller, William E [Naperville, IL; Tomczuk, Zygmunt [Homer Glen, IL; Richmann, Michael K [Carlsbad, NM

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  8. A study on hardness behavior of geopolymer paste in different condition

    NASA Astrophysics Data System (ADS)

    Zainal, Farah Farhana; Hussin, Kamarudin; Rahmat, Azmi; Abdullah, Mohd Mustafa Al Bakri; Shamsudin, Shaiful Rizam

    2016-07-01

    This study has been conducted to understand the hardness behavior of geopolymer paste in different conditions; with and without being immersed in water. Geopolymer paste has been used nowadays as an alternative way to reduce global warming pollution by carbon dioxide (CO2) released to the air caused from the production of Ordinary Portland Cement (OPC). Geopolymer has many advantages such as high compressive strength, lower water absorption and lower porosity. Geopolymer paste in this study was made from a mixture of fly ash and alkaline activators. The alkaline activators that have been used were sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) solution. Then the mixture was allowed to harden for 24hrs at ambient temperature and then placed in the oven for 24hrs with 60°C for the curing process. The hardness testing was conducted after a few months when the samples already achieved the optimum design. The samples were divided to two conditions; without immersion which was placed at ambient temperature (S1) and immersed in water for one week (S2). The samples then are divided into two at the center and testing was conducted into 4 parts which are part 1, part 2, part 3 and part 4. Various methods of non-destructively testing concrete and mortar have been in use for many years such as Vickers hardness test, Rockwell hardness test, Brinell hardness test and many more. The Rockwell hardness test method as defined in ASTM E-18 is the most commonly used hardness test method which is also used in this study. From the results, S1 has higher hardness value than S2 for all parts with the maximum value of S1 is 118.6 and the minimum value is 71.8. The maximum value of S2 is 114.4 and the minimum value is 0. The central part of the geopolymer paste also showed greater hardness values than the edge area of the samples.

  9. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  10. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  11. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  12. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  13. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  14. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  15. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  16. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  17. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    PubMed

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  18. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    PubMed Central

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  19. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  20. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    PubMed

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  1. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  2. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton–proton collisions at √s = 2.76 TeV with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    2016-03-02

    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb -1 of √s = 2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. Themore » dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. Lastly, the results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.« less

  3. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  4. Analytical model for force prediction when machining metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  5. Stiffness management of sheet metal parts using laser metal deposition

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  6. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  7. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    NASA Astrophysics Data System (ADS)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  8. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  9. Heavy metal content of selected personal care products (PCPs) available in Ibadan, Nigeria and their toxic effects.

    PubMed

    Omenka, Sunday Samuel; Adeyi, Adebola Abosede

    2016-01-01

    There is a growing concern on heavy metals in consumer products due to their potential human health risks and environmental effects. In this study, the levels of zinc, cadmium, lead and nickel were assessed in 3 different classes of personal care products commonly used in Ibadan, Nigeria. Samples were analysed for heavy metals using Atomic Absorption Spectrophotometer (AAS) after acid digestion. Estimated daily intake (EDI) of the metals and Health Risk Index (HRI) were calculated to assess the human health risks associated with the use of these PCPs. The concentrations (mg/kg) of zinc ranged from 3.75 to 19.3, 1.88 to 112,000 and 19.8 to 217 respectively in creams, powders and eyeliners. Cadmium ranged from ND-0.50, ND-36.3 and ND-0.50 mg/kg while lead ranged from ND-6.25, ND-468 and 3.73-27.5 mg/kg and nickel ranged from ND-6.25, 0.13-107 and 2.75-22.7 mg/kg respectively. There were high concentrations of Cd, Pb and Ni in some of the samples when compared with the available permissible limits in cosmetics (Cd: 0.3 ppm, Pb: 10 ppm and Ni: 0.6 ppm while there is no permissible limit for Zn in cosmetics currently available). Prolonged use of PCPs may pose human health and environmental risks due to toxic metal loading through dermal contact and accumulation over a period of time. Hence, the need for necessary government agencies to regulate and enforce toxic metals in consumer products including cosmetics produced and imported into Nigeria to safeguard public health and the environment, which is the final sink.

  10. Wheat flour confectionery products as a source of inorganic nutrients: zinc and copper contents in hard biscuits.

    PubMed

    Sebecić, Blazenka; Vedrina-Dragojević, Irena

    2004-04-01

    Cereal-based confectionery products being consumed through whole human life are considered mainly to be a source of carbohydrates, that is energy, although cereals are a rich source of minerals as well. To evaluate some hard biscuits produced in Croatia as a source of different trace elements in nutrition, in this study Zn and Cu contents were determined in classic wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and skimmed milk. Zn was determined by flame atomic absorption spectrometry (AAS); Cu was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show that the Zn content in different kinds of biscuits ranges from 5.89 up to 17.64 mg/kg and the Cu content ranges from 1.15 up to 2.79 mg/kg depending on the type of wheat milling products and mineral content of other ingredients used. Enriched dietetic biscuits produced from wheat flour type 850 and whole wheat grain flour and/or soya flour and skimmed milk were almost 200% and 150% higher in Zn and Cu, respectively, in comparison to classic white wheat flour biscuits and can be considered as good sources of Zn and Cu in nutrition.

  11. Janka hardness using nonstandard specimens

    Treesearch

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  12. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    PubMed Central

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-01-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888

  13. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    NASA Astrophysics Data System (ADS)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  14. Angle-Dependent Magnetoresistance in Organic Metals

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen J.; Singleton, John

    1996-12-01

    Recent experimental studies of the angle-dependent magnetoresistance in various organic metals have been remarkably successful in elucidating the nature of the low-temperature ground state and providing information about the Fermi surface shape which is hard or impossible to obtain using other techniques. We review various theoretical approaches to describe angel-dependent magnetoresistance and a number of important experimental results which have been obtained.

  15. Temporal and spectral characteristics of solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.

    1985-01-01

    Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.

  16. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  17. Experimental study on internal cooling system in hard turning of HCWCI using CBN tools

    NASA Astrophysics Data System (ADS)

    Ravi, A. M.; Murigendrappa, S. M.

    2018-04-01

    In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.

  18. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  19. Study of irradiation damage induced by He2+ ion irradiation in Ni62Ta38 metallic glass and W metal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonan; Mei, Xianxiu; Zhang, Qi; Li, Xiaona; Wang, Yingmin; Wang, Younian

    2017-09-01

    Metallic glasses are considered to possess good resistant against irradiation due to their inherent structural long-range disorder and a lack of grain boundaries. The He2+ with an energy of 300 keV was used to irradiate Ni62Ta38 binary metallic glass to investigate its resistance against the irradiation, and the irradiated behaviour of the metallic glass was compared with that of W metal. The irradiation fluence range over 2.0 × 1017 ions/cm2-1.6 × 1018 ions/cm2. The TEM results show that nanocrystals of μ-NiTa phase and Ni2Ta phase appeared in Ni62Ta38 metallic glass under the irradiation fluence of 1.6 × 1018 ions/cm2. The SEM results show that the surfaces of Ni62Ta38 metallic glasses maintained flat and smooth, whereas a large area of blisters with peeling formed on the surface of W metal at the irradiation fluence of 1.0 × 1018 ions/cm2. It indicates that the critical irradiation fluence of surface breakage of the Ni62Ta38 metallic glass is higher than that of W metal. After the irradiation, stress was generated in the surface layer of W metal, leading to the increase of the hardness of W metal.

  20. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    PubMed

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented