Sample records for hard mobile launcher

  1. Small ICBM area narrowing report. Volume 1. Hard mobile launcher in random movement basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  2. Small ICBM area narrowing report. Volume 2. Hard mobile launcher at minuteman facilities basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  3. Long Exposure Photos of Mobile Launcher

    NASA Image and Video Library

    2017-03-14

    A long-exposure view of the mobile launcher at NASA's Kennedy Space Center in Florida. Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  4. View of VAB from Mobile Launcher

    NASA Image and Video Library

    2017-03-13

    A view of the north side of the Vehicle Assembly Building (VAB) from the top of the mobile launcher tower at NASA's Kennedy Space Center in Florida. Inside the VAB, 10 levels of platforms, 20 platform halves altogether, have been installed in High Bay 3. The platforms will surround NASA's Space Launch System (SLS) rocket and the Orion spacecraft and allow access during processing for missions, including the first uncrewed flight test of Orion atop the SLS rocket in 2018. Crawler-transporter 2 will carry the rocket and spacecraft atop the mobile launcher to Launch Pad 39B for Exploration Mission 1. The Ground Systems Development and Operations Program, with support from the center's Engineering Directorate, is overseeing upgrades and modifications to the VAB and the mobile launcher.

  5. 6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. PROTRUSION ON UPPER RIGHT HAND SIDE OF LUT IS SWING ARM NINE WHICH PROVIDED ACCESS TO CAPSULE OF LAUNCH VEHICLE WHILE ON LAUNCHER. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  6. 1. AERIAL VIEW, SHOWING MOBILE LAUNCHER. BASE IS CALLED LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, SHOWING MOBILE LAUNCHER. BASE IS CALLED LAUNCH PLATFORM AND TOWER ON RIGHT IS CALLED LAUNCH UMBILICAL TOWER, (LUT). - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  7. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  8. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  9. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  10. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  11. Mobile Launcher

    NASA Image and Video Library

    2017-05-30

    A view of the mobile launcher (ML) taken from the "eyebrow" of the nearby Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The ML tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The Orion Service Module Umbilical and Core State Forward Skirt Umbilical were recently installed on the ML. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  12. Core Stage Forward Skirt Umbilical Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-06-29

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  13. Crew Access Arm arrival at Mobile Launcher

    NASA Image and Video Library

    2017-11-09

    A heavy-load transport truck carrying the Orion crew access arm arrives at the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  14. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  15. 3. AERIAL VIEW OF MOBILE LAUNCHER. ON TOP OF LUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW OF MOBILE LAUNCHER. ON TOP OF LUT SITS A 25 TON HAMMERHEAD CRANE. STRUCTURE ON LEFT SIDE OF LAUNCH PLATFORM IS KNOWN AS A 'MILK STOOL' AND ALLOWS A SATURN 1B ROCKET TO BE USED IN PLACE OF THE SATURN V ROCKET. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  16. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Several heavy lift cranes surround the mobile launcher at NASA's Kennedy Space Center in Florida. Preparations are underway to lift a vehicle support post up and onto the mobile launcher for installation on the deck. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  17. ICPSU Install at Mobile Launcher

    NASA Image and Video Library

    2018-03-14

    A colorful sunrise serves as the backdrop for the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.

  18. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  19. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  20. ICPSU Install at Mobile Launcher

    NASA Image and Video Library

    2018-03-14

    A sliver of the Moon is visible just before sunrise at NASA's Kennedy Space Center in Florida. In view is one of the steel structures of the mobile launcher (ML). Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.

  1. Orion Service Module Umbilical (OSMU) Installation on Mobile Launcher (ML)

    NASA Image and Video Library

    2017-03-13

    Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  2. Dr. Wernher Von Braun near the mobile launcher.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. George Mueller, NASA associate administrator for manned space flight, and Dr. Wernher Von Braun (right), director of the Marshall Space Flight Center, are seen near the mobile launcher carrying a 363 foot tall Saturn V space launch vehicle as the rocket is rolled from the vehicle assembly building at KSC for its three mile trip to the launch pad.

  3. Full Moon with Vehicle Assembly Building and Mobile Launcher

    NASA Image and Video Library

    2018-02-01

    A full Moon sets behind the Vehicle Assembly Building and Mobile Launcher at NASA’s Kennedy Space Center in Florida. At the nation’s premier multi-user spaceport, NASA and its commercial and international partners are looking to return humans to the Moon and beyond utilizing a variety of rockets and capabilities.

  4. Small ICBM area narrowing report. Volume 3: Hard silo in patterned array basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, or the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  5. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    With a control panel visible in the foreground, a technician begins installation of the Orion crew access arm (CAA) to the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  6. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), technicians help install the Orion crew access arm (CAA) to the tower at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  7. VIEW OF HB1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HB-1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM (VEHICLE ACCESS PLATFORMS ARE VISIBLE IN THE CENTER), FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), the Orion crew access arm (CAA) is beign installed on the tower. The CAA will support the Space launch System (SLS) rocket at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  9. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), a technician begins installation of the Orion crew access arm (CAA) to the tower. The CAA will support the Space launch System (SLS) rocket at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  10. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), a crane positions the Orion crew access arm (CAA) so it can be attached to the tower that will support the Space launch System (SLS) rocket at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  11. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-24

    At NASA's Kennedy Space Center in Florida, the Orion crew access arm (CAA) is lifted and attached to the Mobile Launcher (ML). The arm is installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  12. Crew Access Arm Install on Mobile Launcher

    NASA Image and Video Library

    2018-02-24

    At NASA's Kennedy Space Center in Florida, the Orion crew access arm (CAA) is lifted and attached to the Mobile Launcher (ML). The arm is installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  13. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    At NASA's Kennedy Space Center in Florida, a crane positions the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  14. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    At NASA's Kennedy Space Center in Florida, a crane lifts the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  15. Vehicle Support Posts Installation at Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Construction workers at the Mobile Launcher at NASA's Kennedy Space Center in Florida, prepare to install vehicle support posts. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  16. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-24

    At NASA's Kennedy Space Center in Florida, a crane is prepared to lift the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  17. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    At NASA's Kennedy Space Center in Florida, technicians assist as a crane lifts the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  18. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    At NASA's Kennedy Space Center in Florida, a crane begins lifting the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  19. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-24

    Under the watchful eye of technicians and engineers, a crane is prepared to lift the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  20. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Under the watchful eye of technicians and engineers, a crane begins lifting the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  1. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Seen to the right of the iconic Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane positions the Orion crew access arm (CAA) so it can be attached to the mobile launcher (ML). The arm will be installed at about the 274-foot level on the ML tower. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System (SLS), rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  2. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-25

    Construction workers on the deck of the mobile launcher at NASA's Kennedy Space Center in Florida, prepare to install a vehicle support post. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  3. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-25

    At NASA's Kennedy Space Center in Florida, construction workers on the deck of the mobile launcher install the final four vehicle support posts. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  4. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-25

    At NASA's Kennedy Space Center in Florida, the final four vehicle support posts are being installed on the deck of the mobile launcher. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  5. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Four vehicle support posts have been installed on the deck of the mobile launcher at NASA's Kennedy Space Center in Florida. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  6. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Construction workers on the deck of the mobile launcher at NASA's Kennedy Space Center in Florida, prepare a platform for installation of a vehicle support post. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  7. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    A vehicle support post will lifted up by crane and lowered onto the deck of the mobile launcher at NASA's Kennedy Space Center in Florida. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  8. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    In view are three vehicle support posts installed on the deck of the mobile launcher at NASA's Kennedy Space Center in Florida. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  9. Workers in the VAB move sling into place to lift Columbia to mobile launcher

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Workers in the Vehicle Assembly Building (VAB) move a specially-built sling into place to lift Orbiter Columbia from the transfer aisle to the mobile launcher platform (27015); Columbia is lifted from the floor of the VAB transfer aisle (27016).

  10. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    A construction worker on the deck of the mobile launcher welds a portion of a platform for installation of a vehicle support post at NASA's Kennedy Space Center in Florida. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  11. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Construction workers on the deck of the mobile launcher prepare the platforms for installation of vehicle support posts at NASA's Kennedy Space Center in Florida. At left, four of the support posts are installed. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  12. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  13. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  14. Chartering Launchers for Small Satellites

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  15. STS-30 Atlantis, OV-104, on the mobile launcher platform heads to KSC LC pad

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, riding atop the mobile launcher platform and the crawler transporter approaches Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. This backlit view highlights OV-104's profile, the external tank (ET), and one of the two solid rocket boosters (SRBs) as it moves up LC pad 39B incline.

  16. STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.

  17. Utilizing NX Advanced Simulation for NASA's New Mobile Launcher for Ares-l

    NASA Technical Reports Server (NTRS)

    Brown, Christopher

    2010-01-01

    This slide presentation reviews the use of NX to simulate the new Mobile Launcher (ML) for the Ares-I. It includes: a comparison of the sizes of the Saturn 5, the Space Shuttle, the Ares I, and the Ares V, with the height, and payload capability; the loads control plan; drawings of the base framing, the underside of the ML, beam arrangement, and the finished base and the origin of the 3D CAD data. It also reviews the modeling approach, meshing. the assembly Finite Element Modeling, the model summary. and beam improvements.

  18. Modifications of Hinge Mechanisms for the Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Ganzak, Jacob D.

    2018-01-01

    The further development and modifications made towards the integration of the upper and lower hinge assemblies for the Exploration Upper Stage umbilical are presented. Investigative work is included to show the process of applying updated NASA Standards within component and assembly drawings for selected manufacturers. Component modifications with the addition of drawings are created to precisely display part geometries and geometric tolerances, along with proper methods of fabrication. Comparison of newly updated components with original Apollo era components is essential to correctly model the part characteristics and parameters, i.e. mass properties, material selection, weldments, and tolerances. 3-Dimensional modeling software is used to demonstrate the necessary improvements. In order to share and corroborate these changes, a document management system is used to store the various components and associated drawings. These efforts will contribute towards the Mobile Launcher for Exploration Mission 2 to provide proper rotation of the Exploration Upper Stage umbilical, necessary for providing cryogenic fill and drain capabilities.

  19. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    The Orion crew access arm is secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida and ready to be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  20. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    The Orion crew access arm departs Precision Fabricating and Cleaning in Cocoa, Florida, atop a flatbed truck. The access arm will be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  1. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    A flatbed truck with the Orion crew access arm secured atop arrives in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  2. Generic Software Architecture for Launchers

    NASA Astrophysics Data System (ADS)

    Carre, Emilien; Gast, Philippe; Hiron, Emmanuel; Leblanc, Alain; Lesens, David; Mescam, Emmanuelle; Moro, Pierre

    2015-09-01

    The definition and reuse of generic software architecture for launchers is not so usual for several reasons: the number of European launcher families is very small (Ariane 5 and Vega for these last decades); the real time constraints (reactivity and determinism needs) are very hard; low levels of versatility are required (implying often an ad hoc development of the launcher mission). In comparison, satellites are often built on a generic platform made up of reusable hardware building blocks (processors, star-trackers, gyroscopes, etc.) and reusable software building blocks (middleware, TM/TC, On Board Control Procedure, etc.). If some of these reasons are still valid (e.g. the limited number of development), the increase of the available CPU power makes today an approach based on a generic time triggered middleware (ensuring the full determinism of the system) and a centralised mission and vehicle management (offering more flexibility in the design and facilitating the long term maintenance) achievable. This paper presents an example of generic software architecture which could be envisaged for future launchers, based on the previously described principles and supported by model driven engineering and automatic code generation.

  3. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  4. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  5. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are used to lower the Orion crew access arm onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  6. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being secured onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  7. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  8. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being moved by crane onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  9. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    A flatbed truck with the Orion crew access arm secured atop travels along a road in Cocoa, Florida, after departing Precision Fabricating and Cleaning. The access arm will be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  10. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  11. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to tilt and lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  12. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are being used to lower the Orion crew access arm onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  13. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to lift the Orion crew access arm up from a flatbed truck in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  14. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are being used to move the Orion crew access arm and lower it onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  15. 5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  16. 27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH 7 INCH DIAMETER HOLE FOR SUPPORT CARRIAGE LOCKING PIN. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. 4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  19. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  20. View of Launcher #3 surface doors. Launcher #1 in background ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Launcher #3 surface doors. Launcher #1 in background left, Launcher #2 in background right. Image looking west - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  1. 89. 22'X34' original vellum, VariableAngle Launcher 'ELEVATION OF LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. 22'X34' original vellum, Variable-Angle Launcher 'ELEVATION OF LAUNCHER BRIDGE ON TEMPORARY SUPPORT' drawn at 1'=20'. (BUORD Sketch # 209786, PAPW 1932). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 90. 22'X34' original blueprint, VariableAngle Launcher, 'FRONT ELEVATION OF LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. 22'X34' original blueprint, Variable-Angle Launcher, 'FRONT ELEVATION OF LAUNCHER BRIDGE, CONNECTING BRIDGE AND BARGES' drawn at 1/4'=1'0'. (BUROD Sketch # 208247). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Dimensions and Measurements of Debuncher Band 3 and 4 Waveguide-Coax Launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ding; /Fermilab

    2000-09-13

    This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 3 and 4) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1 and 5 are schematic drawings of launchers (pick-up) in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. Launchers for band 3 and 4 kickers were made by Penn-engineering Inc., therefor no schematic drawings are presented in thismore » note. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurement results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a launcher and a straight section of band 3 or 4 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 12, the original S11 of all launchers are below or around -20 db over the full band 3 or 4. The other type of measurement is the one made after these launchers were installed onto the array including several type N feedthrough or connectors, elbows, waveguide bends (kicker) and magic Ts (kicker) etc. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 8, 10, 11, 13 and 14 these 'final' S11s are around -15 db.« less

  4. 33 CFR 175.113 - Launchers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...

  5. 33 CFR 175.113 - Launchers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...

  6. 33 CFR 175.113 - Launchers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...

  7. 33 CFR 175.113 - Launchers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...

  8. 33 CFR 175.113 - Launchers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...

  9. KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  10. View of Launcher #3 surface doors. Launcher #1 in background. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Launcher #3 surface doors. Launcher #1 in background. Image looking southwest - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  11. Historic and Current Launcher Success Rates

    NASA Technical Reports Server (NTRS)

    Rust, Randy

    2002-01-01

    This presentation reviews historic and current space launcher success rates from all nations with a mature launcher industry. Data from the 1950's through present day is reviewed for possible trends such as when in the launch timeline a failure occurred, which stages had the highest failure rate, overall launcher reliability, a decade by decade look at launcher reliability, when in a launchers history did failures occur, and the reliability of United States human-rated launchers. This information is useful in determining where launcher reliability can be improved and where additional measures for crew survival (i.e., Crew Escape systems) will have the greatest emphasis

  12. Dimensions and Measurements of Debuncher Band 1 and 2 Waveguide-Coax Launchers (Final Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ding; /Fermilab

    2000-02-15

    This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 1 and 2) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1, 5, 8 and 12 are schematic drawings of launchers in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurementmore » results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a straight section of band 1 or 2 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 13, the original S11 of all launchers are below or around - 20 db over the full band 1 or 2. The other type of measurement is the one made after these launchers were installed onto the array including elbows and several type N feedthrough or connectors. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 10, 11 and 14 these 'final' S11s are around -15 db.« less

  13. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  14. Air-Powered Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Andrews, T.; Bjorklund, R. A.; Elliott, D. G.; Jones, L. K.

    1987-01-01

    Air-powered launcher fires plastic projectiles without using explosive propellants. Does not generate high temperatures. Launcher developed for combat training for U.S. Army. With reservoir pressurized, air launcher ready to fire. When pilot valve opened, sleeve (main valve) moves to rear. Projectile rapidly propelled through barrel, pushed by air from reservoir. Potential applications in seismic measurements, avalanche control, and testing impact resistance of windshields on vehicles.

  15. VEGA, the European small launcher: Development status, future perspectives, and applications

    NASA Astrophysics Data System (ADS)

    Bianchi, Stefano; VEGA Integrated Project Team (IPT)

    2008-07-01

    This paper presents a technical and programmatic overview of the VEGA launch system program currently in development for the European Space Agency, which includes the development and qualification activities of the small launcher VEGA, of the ground infrastructure, and of all the launcher elements. Several programmatic milestones have been successfully achieved so far: most subsystems have gone through the critical design review or qualification review. The launcher system critical design review has been performed during spring 2007 as well. Concerning propulsion, all the three development models of the solid rocket motors have been successfully tested between December 2005 and December 2006. The first qualification model engine of the liquid propulsion upper module has successfully completed its firing campaign and the test campaign for the second model has just started. The liquid upper stage AVUM engine has been tested as well. The VEGA ground segment program has entered its final lapse by completing the detailed design of the various subsystems. The installation phase in the launch range site (Kourou, French Guyane) is in full swing. The integration of the Mobile Gantry, necessary to integrate the launcher, is almost completed as for the main structure.

  16. KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  17. The STS-93 external tank and booster stack sits at the Mobile Launcher Platform park site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 stack of solid rocket boosters and external tank sits at the Mobile Launcher Platform park site waiting for lightning shield wires to be installed on the Vehicle Assembly Building (VAB) in the background. The stack is being temporarily stored outside the VAB while Space Shuttle Discovery undergoes repair to hail damage in High Bay 1. Discovery was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The STS-93 stack will be moved under the wires at the VAB for protection until Discovery returns to the pad, later this week. The scheduled date for launch of mission STS-96 is no earlier than May 27. STS-93 is targeted for launch on July 22, carrying the Chandra X-ray Observatory.

  18. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    NASA Astrophysics Data System (ADS)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  19. Interactive electromagnetic launcher simulation

    NASA Astrophysics Data System (ADS)

    Young, F. J.; Howland, H. R.; Hughes, W. F.; Fikse, D. A.

    1982-01-01

    The mathematical model, usage, and documentation of an interactive computer simulation for an electromagnetic launcher is presented. The launcher is modeled as an electrical circuit. Three slight variations of the program permit studies of a launcher with (1) rail skin effects, (2) rail skin effects and approximated storage coil skin effects, or (3) neither of these effects. Usage of the program as currently implemented on the Westinghouse R&D Univac 1106 is described, with a sample session shown. The implementation of the program permits rapid scoping of the effects of parameter changes.

  20. The DSI small satellite launcher

    NASA Technical Reports Server (NTRS)

    Nichols, S.; Gibbons, D.; Wise, J.; Nguyen, D.

    1992-01-01

    A new launcher has been developed by DSI, that is compatible with the GAS canisters. It has the proven capability to deploy a satellite from an orbiting Shuttle that is 18 inches in diameter, 31 inches long, and weighing 190 pounds. These DSI Launchers were used aboard the Discovery (STS-39) in May 1991 as part of the Infrared Background Signature Survey (IBSS) to deploy three small satellites known as Chemical Release Observation (CRO) satellites A, B, and C. Because the satellites contained hazardous liquids (MMH, UDMH, and MON-10) and were launched from GAS Cylinders without motorized doors, the launchers were required to pass NASA Shuttle Payload safety and verification requirements. Some of the more interesting components of the design were the V-band retention and separation mechanism, the separation springs, and the launcher electronics which provided a properly inhibited release sequence operated through the Small Payload Accommodations Switch Panel (SPASP) on board the Orbiter. The original plan for this launcher was to use a motorized door. The launcher electronics, therefore has the capability to be modified to accommodate the door, if desired.

  1. Summary of EM launcher experiments performed at LLNL

    NASA Astrophysics Data System (ADS)

    Hawke, R. S.; Nellis, W. J.; Newman, G. H.; Rego, J.; Susoeff, A. R.

    1986-11-01

    Performance results for three railguns are summarized. The system used a helium gas-driven injector and railgun launcher to accelerate 1- and 4-g polycarbonate projectiles intact up to 6.6 and 3.0 km/sc, respectively. A 625 kJ capacitor bank powered the railgun, and an adjustable inductor provided pulse shaping and peak current control. Operation in hard and soft vacuum was reliably achieved. The diagnostic system measured the projectile position and launch velocity, verified that the projectile was launched intact in the desired direction, and identified system components where improvements could enhance performance. Flash X-ray radiography measured velocity and verified that projectiles were intact. Pre-launch projectile travel along the axis of the launcher without tilt was recorded with flash radiographs and impact impressions or holes in witness plates. The sysem performed as expected up to 4-5 km/sec but below expectations at higher velocities. Diagnostics suggest that the decreased performance was probably cuased by the restriking of a second arc in the breech of the railgun, which shunted the current from the propulsive arc.

  2. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  3. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  4. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane lifts the core stage forward skirt umbilical for installation onto the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  5. NPS CubeSat Launcher Program Management

    DTIC Science & Technology

    2009-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NPS CUBESAT LAUNCHER ...CubeSat Launcher Program Management 6. AUTHOR(S) Christina M. Hicks 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...article in support of the NPS CubeSat Launcher (NPSCuL) project. This thesis will describe the process, experience, and results of managing the NPSCuL

  6. The ESA activities on future launchers

    NASA Technical Reports Server (NTRS)

    Pfeffer, H.

    1984-01-01

    A future launcher development scenario depends on many assumptions, such as the impetus provided by the probability of future missions, and the political willingness of member states to undertake future developments. Because of the long timescale implied by a coherent launcher development, a step-wise approach within an overall future launcher development plan appears essential. The definition of development steps allows the launcher developments to be adapted to the driving external forces, so that no possible opportunity to Europe in the space launch business is missed out because of improper planning on the absence of a long term goal. The launcher senario, to be presented in 1985, forms part of Europe's overall STS plan for the future. This overall STS plan is one product of the complete STS LTPP, a first draft of which should exist by 1985, and which will be updated regularly to take into account the changing political and economic perspectives.

  7. An electomagnetic lunar launcher utilizing superconductivity technology

    NASA Technical Reports Server (NTRS)

    Bilby, Curt; Nozette, Stewart; Kolm, Henry

    1989-01-01

    The application of superconductivity technology to the lunar launcher problem was considered, and a quenchgun concept was formulated to reduce the mass of the launcher system by incorporating the energy storage in the launcher itself and using the efficiency of the quenchgun to reduce the power requirements. A conceptual design for the quenchgun launcher is presented, and the integration of the system into a lunar base logistics model for evaluation is addressed. The results of these evaluations under the NASA Office of Exploration lunar base scenarios are reported.

  8. Non-US electrodynamic launchers research and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Batteh, J.H.; Greig, J.R.

    Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in somemore » technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.« less

  9. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  10. 21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING BOTH LAUNCHER TUBES TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. 32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. STS-32 Columbia, OV-102, is positioned on the hard stand at KSC LC Pad 39A

    NASA Image and Video Library

    1989-11-28

    S89-51983 (18 Nov 1989) --- Roll-out of the Space Shuttle Columbia is completed as the vehicle, atop the Mobile Launcher Platform, is positioned on the hard stand at Pad 39A. The approximately eight-hour journey from the Vehicle Assembly Building began at 2:32 a.m. EST. This marks the first time a Space Shuttle has been at Pad A at Launch Complex 39 since January 12, 1986, when Columbia was launched on mission 61C. Pad A will next be used for the launch of Columbia and a five person crew on the STS-32 mission, presently scheduled for no earlier than December 18, 1989.

  13. 30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE PROJECTILE LOADING CAR AND LOADING PLATFORM ADJACENT TO THE PROJECTILE LOADING DECK AND LAUNCHER BRIDGE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. Arcas Rocket with Special Tubular Launcher

    NASA Image and Video Library

    1959-07-31

    Arcas Rocket with Special Tubular Launcher: Lt. Commander W. Houston checks elevation adjustment of special tubular launcher for Arcas rocket, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 697.

  15. New developments in the field of launchers

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.; Arend, H.

    The current status of launch-system technology is discussed in a global survey. Topics addressed include the factors influencing launcher cost effectiveness; the capabilities of state-of-the-art Soviet, U.S., European, Chinese, and Japanese systems; possible improvements to the current launchers; alternative technologies (the ESA Hermes shuttle, SSTO vehicles, etc.); and future trends in the commercial launch market. Particular attention is given to the Neptun two-stage reusable ballistic launcher proposed by Apel et al. (1985). It is suggested that it may be possible to lower specific transport costs to about $500/kg, or even to $100/kg if the lifetime cargo capacity of reusable launchers can be extended to the order of 2 Tg. Extensive diagrams, drawings, and tables of numerical data are provided.

  16. KENNEDY SPACE CENTER, FLA. - Workers, covered in protective clothing and breathing apparatus, continue sandblasting on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Workers, covered in protective clothing and breathing apparatus, continue sandblasting on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, clouds of dust float away from the Mobile Launcher Platform, which is undergoing sandblasting to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, clouds of dust float away from the Mobile Launcher Platform, which is undergoing sandblasting to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  18. Resent Status of ITER Equatorial Launcher Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less

  19. Impurity Radiation From The LHCD Launcher During Operation In JET And Investigation Of Launcher Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirov, K.K.; Mailloux, J.; Ekedahl, A.

    2005-09-26

    In this study, the most likely causes of the enhanced radiation in front of the LHCD launcher are investigated: fast ions from the warm plasma, fast electrons parasitically accelerated in front of the grill and arcs. Evidence for the presence of each of these mechanisms is discussed. The experimental conditions favouring the appearance of these phenomena and their impact on the launcher have also been highlighted.

  20. Small launchers (current and future projects in the world)

    NASA Astrophysics Data System (ADS)

    Naumann, W. G.

    1993-01-01

    Small satellites need launching services using small launchers capable of injecting 100 to 1000 kg into a polar orbit at an altitude of 1000 km. Operational small launchers are reviewed as well as developing and planned ones. Launcher characteristics, constraints, performance, and status are detailed. Few technical problems are encountered, as most launcher projects call for existing components and well known technologies. Most of the difficulties have come from launch site availability and from financial considerations.

  1. Space transportation propulsion USSR launcher technology, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  2. Explosively driven hypervelocity launcher: Second-stage augmentation techniques

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.

  3. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated

  4. GRID-Launcher v.1.0.

    NASA Astrophysics Data System (ADS)

    Deniskina, N.; Brescia, M.; Cavuoti, S.; d'Angelo, G.; Laurino, O.; Longo, G.

    GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

  5. A general theory of DC electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Engel, Thomas G.; Timpson, Erik J.

    2015-08-01

    The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.

  6. 18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF THE 32' DIAMETER LAUNCHING TUBE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.

    2013-08-01

    Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting

  8. 79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER BRIDGE, BARGES, SONAR BUOY RANGE AND MORRIS DAM IN BACKGROUND, June 10, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  10. Traveling-wave induction launchers

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1989-01-01

    An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.

  11. 83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ON TEMPORARY SUPPORTS LOOKING NORTHEAST SHOWING TWO LAUNCHING TUBES, Date unknown, circa 1950'S. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. 82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE LOOKING NORTH SHOWING THE CONNECTING BRIDGE AND TWO LAUNCHING TUBES, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. Hypervelocity Launcher for Aerothermodynamic Experiments. Phase 2

    NASA Technical Reports Server (NTRS)

    Scholz, Timothy J.; Bauer, David P.

    1995-01-01

    The capability of an Ultra Distributed Energy Store System (UDESS) powered electromagnetic launcher (EM) is experimentally assessed. The UDESS system was developed specifically to address the velocity speed limit seen in plasma armature EM launchers. Metal armature launch packages were also developed and tested to assess the usefulness of the UDESS concept for low velocity applications.

  14. Future launcher demonstrator. Challenge and pathfinder

    NASA Astrophysics Data System (ADS)

    Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.

    1996-02-01

    For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which

  15. Development of Composite Technologies for the European Next Generation Launcher

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn

    2014-06-01

    In the frame of the European Space Agency's Future Launchers Preparatory Programme (FLPP), in conjunction with national Research and Technology programs, Dutch Space has undertaken the development of composite technologies for application in the Europe's next generation launcher, Ariane 6. The efforts have focused on development of a Carbon Fibre Reinforced Plastic (CFRP) Engine Thrust Frame (ETF) for the upper-stage of Ariane6 launcher. These new technologies are expected to improve performance and to lower cost of development and exploitation of the launcher. Although the first targeted application is the thrust frame, the developed technologies are set to be generic in the sense that they can be applied to other structures of the launcher, e.g. inter-stage structures.This paper addresses the design, analysis, manufacturing and testing activities related to the composite technology developments.

  16. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  17. Feasibility study of superconducting LSM rocket launcher system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Ohashi, Takaaki; Shiraishi, Katsuto; Takami, Hiroshi

    1994-01-01

    A feasibility study is presented concerning an application of a superconducting linear synchronous motor (LSM) to a large-scale rocket launcher, whose acceleration guide tube of LSM armature windings is constructed 1,500 meters under the ground. The rocket is released from the linear launcher just after it gets to a peak speed of about 900 kilometers per hour, and it flies out of the guide tube to obtain the speed of 700 kilometers per hour at the height of 100 meters above ground. The linear launcher is brought to a stop at the ground surface for a very short time of 5 seconds by a quick control of deceleration. Very large current variations in the single-layer windings of the LSM armature, which are produced at the higher speed region of 600 to 900 kilometers per hour, are controlled successfully by adopting the double-layer windings. The proposed control method makes the rocket launcher ascend stably in the superconducting LSM system, controlling the Coriolis force.

  18. Computational model for simulation small testing launcher, technical solution

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Cristian, Barbu; Chelaru, Adrian

    2014-12-01

    The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project "Suborbital Launcher for Testing" (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle

  19. Computational model for simulation small testing launcher, technical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Cristian, Barbu, E-mail: barbucr@mta.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro

    The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper ismore » focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital

  20. New coplanar waveguide to rectangular waveguide end launcher

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1992-01-01

    A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.

  1. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  2. Launcher Systems Development Cost: Behavior, Uncertainty, Influences, Barriers and Strategies for Reduction

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    2001-01-01

    This paper will report on the activities of the IAA Launcher Systems Economics Working Group in preparations for its Launcher Systems Development Cost Behavior Study. The Study goals include: improve launcher system and other space system parametric cost analysis accuracy; improve launcher system and other space system cost analysis credibility; and provide launcher system and technology development program managers and other decisionmakers with useful information on development cost impacts of their decisions. The Working Group plans to explore at least the following five areas in the Study: define and explain development cost behavior terms and concepts for use in the Study; identify and quantify sources of development cost and cost estimating uncertainty; identify and quantify significant influences on development cost behavior; identify common barriers to development cost understanding and reduction; and recommend practical, realistic strategies to accomplish reductions in launcher system development cost.

  3. ISAS' new satellite launcher M-V

    NASA Astrophysics Data System (ADS)

    Akiba, R.; Matsuo, H.; Kohno, M.

    The concept of the M-V, a new version of Japanese satellite launchers that is being developed by the Institute of Space and Astronautical Science, is described. The M-V is a three-stage solid propellant rocket that could lift about 2 tons of payload into LEO. Its first flight is scheduled to be at the beginning of 1995, when M-V will carry an engineering test satelline to prove the technology for Space VLBE. The basic parameters of the M-V launcher, the vehicle configuration diagram, and motor-design diagrams are presented.

  4. Magnetic reconnection launcher

    DOEpatents

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  5. LH Power Losses In Front of the JET Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquet, P.; Arnoux, G.; Kirov, K.

    2009-11-26

    In recent JET experiments, Lower Hybrid (LH) power losses in the Scrape-Off Layer (SOL) were characterized using infra-red (IR) thermography. Hot spots were observed on objects intercepting the field lines passing in front of the LH launcher, i.e. on poloidal limiters and on dumplates located at the top of the tokamak; their locations being in good agreement with magnetic field line tracing using the EFIT equilibrium code. The dumplate temperature was monitored while scanning the launcher position so that the radial distance between field lines intercepting the hot spots and the launcher was increased up to 3.5 cm. The dissipationmore » layer in front of the launcher was estimated to be at least 3.5 cm wide, in agreement with recent measurements on Tore-Supra, but not with simple models that predict a dissipation layer in the mm range.« less

  6. Final Report Advanced Quasioptical Launcher System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality tomore » SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.« less

  7. Future launchers strategy : the ariane 2010 initiative

    NASA Astrophysics Data System (ADS)

    Bonnal, Ch.; Eymard, M.; Soccodato, C.

    2001-03-01

    With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition. Current Arianespace projections for the following years 2010-2020 indicate two major trends: satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations, to remain competitive, the launch cost has to be reduced. The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction. Two strategies are possible to achieve this double goal: reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP), expendable launchers, derived from the future Ariane 5+. This second way started by CNES at the end of year 1999 is called the "Ariane 2010 initiative". The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+. To achieve these very ambitious goals, numerous major modifications are studied: technical improvements : modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, … evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages, simplified electrical system, increased standardization, for instance on flanged interfaces and manufacturing processes, operational improvements such as launch cycle simplification

  8. Sphere launcher

    NASA Technical Reports Server (NTRS)

    Reed, W. B.

    1972-01-01

    The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.

  9. Photographic copy of photograph, view of rail launcher used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, view of rail launcher used for 'Baby Corporal E' missiles on 6 and 7 May 1946 at JPL-Muroc Army Air Base (later Edwards Air Force Base) (This launcher was also used for 'Baby WAC' missiles at Goldstone, Fort Irwin, California in 1945). Photocopy of 35mm photograph made in December 1994, looking west with Test Stand 'A' immediately behind the rail launcher. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  10. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  11. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  12. First University of Michigan Strongarm sounding rocket on launcher at Wallops for test, November 10, 1959E5-188 Shop and Launcher Pictures

    NASA Image and Video Library

    1959-11-10

    L59-7932 First University of Michigan Strongarm sounding rocket on launcher at Wallops for test, November 10, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 701.E5-188 Shop and Launcher Pictures

  13. The Physics Performance Of The Front Steering Launcher For The ITER ECRH Upper Port

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, M.; Chavan, R.; Nikkola, P.

    2005-09-26

    The capability of any given e.m.-wave plasma heating system to be utilized for physics applications depends strongly on the technical properties of the launching antenna (or launcher). An effective ECH launcher must project a small mm-wave beam spot size far into the plasma and 'steer' the beam across a large fraction of the plasma cross section (along the resonance surface). Thus the choice in the launcher concept and design may either severely limit or enhance the capability of a heating system to be effectively applied for physics applications, such as sawtooth stabilization, control of the Neoclassical Tearing Mode (NTM), Edgemore » Localized Mode (ELM) control, etc. Presently, two antenna concepts are under consideration for the ITER upper port ECH launcher: front steering (FS) and remote steering (RS) launchers. The RS launcher has the technical advantage of easier maintenance access to the steering mirror, which is isolated from the torus vacuum. The FS launcher places the steering mirror near the plasma increasing the technical challenges, but significantly enhancing the focusing and steering capabilities of the launcher, offering a threefold increase in NTM stabilization efficiency over the RS launcher as well as the potential for application to other critical physics issues such as ELM or sawtooth control.« less

  14. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  15. KENNEDY SPACE CENTER, FLA. - A camera is installed on the aft skirt of a solid rocket booster in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-11-06

    KENNEDY SPACE CENTER, FLA. - A camera is installed on the aft skirt of a solid rocket booster in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

  16. Trauma potential and ballistic parameters of cal. 9 mm P.A. dummy launchers.

    PubMed

    Frank, Matthias; Bockholdt, Britta; Philipp, Klaus-Peter; Ekkernkamp, Axel

    2010-07-15

    Blank cartridge actuated dummy launching devices are used by migratory bird hunters to train dogs to retrieve downed birds. The devices create a loud noise while simultaneously propelling a hard foam dummy for retrieval. A newly developed dummy launcher is based on a modified cal. 9 mm P.A. blank handgun with an extension tube pinned and welded to the barrel imitation. Currently, there are no experimental investigations on the ballistic background and trauma potential of these uncommon shooting devices. An experimental test set-up consisting of a photoelectric infrared light barrier was used for measurement of the velocity of hard foam dummies propelled with an automatic dummy launcher. Ballistic parameters of the dummies and an aluminium sleeve as improvised projectile (kinetic energy (E), impulse (p), energy density (E') and threshold velocity (v(tsh)) to cause penetrating wounds as a function of cross-sectional density (S)) were calculated. The average velocity (v) of the dummies was measured 25.71 m/s exerting an average impulse (p) of 3.342 Ns. The average kinetic energy (E) was calculated 43.04 J with an average energy density (E') of 0.069 J/mm(2). The average velocity (v) of the aluminium sleeves as improvised projectiles was measured 79.58 m/s exerting an average impulse (p) of 2.228 Ns. The average kinetic energy (E) of the aluminium sleeves was calculated as 88.70 J with an average energy density (E') of 0.282 J/mm(2). The energy delivered by these shooting devices is high enough to cause relevant injuries. The absence of skin penetration must not mislead the emergency physician or forensic expert into neglecting the potential damage from these devices. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. 7. VARIABLEANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VARIABLE-ANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), AND W.H. SAYLOR (RIGHT), AT THE DEDICATION CEREMONY, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. 23. VIEW DOWN INTO LAUNCHER AND FLAME BUCKET FROM STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW DOWN INTO LAUNCHER AND FLAME BUCKET FROM STATION 48 IN SLC-3W MST. NOTE REMOVABLE METAL PLANKS BELOW LAUNCHER AND ROPE NET OVER FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Magnetic reconnection launcher

    DOEpatents

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  20. Mesh-matrix analysis method for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1989-01-01

    The mesh-matrix method is a procedure for calculating the current distribution in the conductors of electromagnetic launchers with coil or flat-plate geometry. Once the current distribution is known the launcher performance can be calculated. The method divides the conductors into parallel current paths, or meshes, and finds the current in each mesh by matrix inversion. The author presents procedures for writing equations for the current and voltage relations for a few meshes to serve as a pattern for writing the computer code. An available subroutine package provides routines for field and flux coefficients and equation solution.

  1. Electromagnetic launchers for space applications

    NASA Technical Reports Server (NTRS)

    Schroeder, J. M.; Gully, J. H.; Driga, M. D.

    1989-01-01

    An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.

  2. Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Earhart, R. W.

    1982-01-01

    An Earth to space electromagnetic (railgun) launcher (ESRL) for launching material into space was studied. Potential ESRL applications were identified and initially assessed to formulate preliminary system requirements. The potential applications included nuclear waste disposal in space, Earth orbital applications, deep space probe launchers, atmospheric research, and boost of chemical rockets. The ESRL system concept consisted of two separate railgun launcher tubes (one at 20 deg from the horizontal for Earth orbital missions, the other vertical for solar system escape disposal missions) powered by a common power plant. Each 2040 m launcher tube is surrounded by 10,200 homopolar generator/inductor units to transmit the power to the walls. Projectile masses are 6500 kg for Earth orbital missions and 2055 kg for nuclear waste disposal missions. For the Earth orbital missions, the projectile requires a propulsion system, leaving an estimated payload mass of 650 kg. For the nuclear waste disposal in space mission, the high level waste mass was estimated at 250 kg. This preliminary assessment included technical, environmental, and economic analyses.

  3. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  4. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  5. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.

    PubMed

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  6. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  7. Characterization of the Electrostatic Environment of Launchers

    NASA Astrophysics Data System (ADS)

    Soyah, Jamila; Mantion, Pascal; Herlem, Yannick

    2016-05-01

    The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.

  8. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  9. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  10. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    A crane has been attached to the Core Stage Forward Skirt Umbilical (CSFSU) to lift it up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  11. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Cranes and rigging are being used to lift up the Core Stage Forward Skirt Umbilical (CSFSU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  12. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Cranes and rigging are being used to lift the Core Stage Forward Skirt Umbilical (CSFSU) into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  13. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    A construction worker welds a metal part during installation of the Core Stage Forward Skirt Umbilical on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  14. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  15. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Seeming to hang in midair, the Core Stage Forward Skirt Umbilical (CSFSU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  16. Additive Layer Manufacturing for Launcher's Applications

    NASA Astrophysics Data System (ADS)

    Vilanova, J.; Romera, P.; Lasagni, F.; Zorrilla, A.; Perinan, A.

    2014-06-01

    In the next years the European space industry has the challenge of maintaining its competitiveness in launch vehicles (LV) production, due to the growth of competition worldwide. It has to assure its position developing new applied technologies. In this field the effort is focussed on the production of short series of customized products, like payloads, flight components or launcher parts. ALM (Additive Layer Manufacturing) could be a powerful tool that offers new competitiveness factors for this industry, comprising a set of emerging technologies that are becoming a competitor to forming, casting and machining as well as being utilised directly as a complementary alternative.Originally used for prototypes and models, now ALM becomes a very useful technology capable to fabricate functional parts for the space industrial sector. Its demands on rapid technologies are different to "earth" industries, and they aren't so easily satisfied because space is a field with different requirements depending on its application: launchers, reusable vehicles, satellites, probes, low gravity researches, manned spacecraft, or even moon and planetary exploration.This paper reports on the ALM potential applications, under ESA requirements, exploring the challenges and possibilities for its use in the launchers market, trying to answer two basic questions: the first one, whether ALM is a mature technology to be ready for its use as flight hardware; and the second one, if it can be used to reduce the product cycle, and consequently, the development, production and operational costs.

  17. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  18. Results from Sandia National Laboratories/Lockheed Martin Electromagnetic Missile Launcher (EMML).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockner, Thomas Ramsbeck; Skurdal, Ben; Gaigler, Randy

    2005-05-01

    Sandia national laboratories (SNL) and lockheed martin MS2 are designing an electromagnetic missile launcher (EMML) for naval applications. The EMML uses an induction coilgun topology with the requirement of launching a 3600 lb. missile up to a velocity of 40 m/s. To demonstrate the feasibility of the electromagnetic propulsion design, a demonstrator launcher was built that consists of approximately 10% of the propulsion coils needed for a tactical design. The demonstrator verified the design by launching a 1430 lb weighted sled to a height of 24 ft in mid-December 2004 (Figure 1). This paper provides the general launcher design, specificmore » pulsed power system component details, system operation, and demonstration results.« less

  19. 11. 28'X40' original vellum, VariableAngle Launcher, 'INDEX TO Drawings' drawn ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 28'X40' original vellum, Variable-Angle Launcher, 'INDEX TO Drawings' drawn at no scale (P.W.DWG.No. 1781). - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  20. Effect of the electric field pattern on the generation of fast electrons in front of lower hybrid launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valade, Laurent, E-mail: laurent.valade@cea.fr; Ekedahl, Annika; Colas, Laurent

    2015-12-10

    The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be themore » consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)« less

  1. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  2. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  3. Design of Launcher Towards Spacecraft Comfort: Ariane 6 Objectives

    NASA Astrophysics Data System (ADS)

    Mourey, Patrick; Lambare, Hadrien; Valbuena, Matias F.

    2014-06-01

    Preliminary advanced studies were performed recently to select the possible concepts for a launcher that could succeed to Ariane 5. During the end of 2012 Space Ministry Conference, a configuration defining the propellant of the stages and the coarse staging ("PPH") was frozen in order to engage the preliminary selection concept studies. The first phase consisted to select the main features of the architecture in order to go deeper in the different matters or the advanced studies. The concept was selected mid of 2013.During all these phases of the preliminary project, different criteria (such as the recurring cost which is a major one) were used to quote the different concepts, among which the "payload comfort", ie the minimization of the environment generated by the launcher toward the satellites.The minimization of the environment was first expressed in term of objectives in the Mission Requirement Document (MRD) for the different mechanical environment such as quasi-static loads, dynamic loads, acoustics, shocks... Criteria such as usable volume, satellites frequency requirement and interface requirement are also expressed in the MRD.The definition of these different criteria was of course fixed taking benefit from the launcher operator experience based on a long story of dealing with spacecraft-launcher interface issues on Ariane, Soyouz and Vega. The general idea is to target improved or similar levels than those currently applicable for Ariane 5. For some environment for which a special need is anticipated from the potential end users, a special effort is aimed.The preliminary advanced study phase is currently running and has to address specific topics such as the definition of the upper part layout including geometry ofthe fairing, the definition of the launch pad with preliminary ideas to minimize acoustics and blast wave or first calculations on dimensioning dynamic load- cases such as thrust oscillations of the solid rocket motors (SRM).The present paper

  4. Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide.

    PubMed

    Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-03-28

    A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.

  5. High-Efficiency Helical Coil Electromagnetic Launcher

    DTIC Science & Technology

    2006-08-31

    significant launcher performance benefits by super-cooling the conductor in the armature (i.e., liquid nitrogen temperatures). 20061102530 14. ABSTRACT...i.e., liquid nitrogen temperatures). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON...31 Liquid Nitrogen Cooled Armature

  6. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  7. Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX

    NASA Astrophysics Data System (ADS)

    Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team

    2014-10-01

    The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  8. NPS Cubesat Launcher-Lite Sequencer

    DTIC Science & Technology

    2009-06-01

    AND SUBTITLE NPS Cubesat Launcher-Lite Sequencer 6. AUTHOR(S) Harris, Anthony D. 5. FUNDING NUMBERS RSPXL 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY...international nanosatellite manufacturers. On April 28, 2009, Indian Space Research Organization launched 8 nanosatellites on the Polar Satellite Launch

  9. Treating childhood pneumonia in hard-to-reach areas: a model-based comparison of mobile clinics and community-based care.

    PubMed

    Pitt, Catherine; Roberts, Bayard; Checchi, Francesco

    2012-01-10

    Where hard-to-access populations (such as those living in insecure areas) lack access to basic health services, relief agencies, donors, and ministries of health face a dilemma in selecting the most effective intervention strategy. This paper uses a decision mathematical model to estimate the relative effectiveness of two alternative strategies, mobile clinics and fixed community-based health services, for antibiotic treatment of childhood pneumonia, the world's leading cause of child mortality. A "Markov cycle tree" cohort model was developed in Excel with Visual Basic to compare the number of deaths from pneumonia in children aged 1 to 59 months expected under three scenarios: 1) No curative services available, 2) Curative services provided by a highly-skilled but intermittent mobile clinic, and 3) Curative services provided by a low-skilled community health post. Parameter values were informed by literature and expert interviews. Probabilistic sensitivity analyses were conducted for several plausible scenarios. We estimated median pneumonia-specific under-5 mortality rates of 0.51 (95% credible interval: 0.49 to 0.541) deaths per 10,000 child-days without treatment, 0.45 (95% CI: 0.43 to 0.48) with weekly mobile clinics, and 0.31 (95% CI: 0.29 to 0.32) with CHWs in fixed health posts. Sensitivity analyses found the fixed strategy superior, except when mobile clinics visited communities daily, where rates of care-seeking were substantially higher at mobile clinics than fixed posts, or where several variables simultaneously differed substantially from our baseline assumptions. Current evidence does not support the hypothesis that mobile clinics are more effective than CHWs. A CHW strategy therefore warrants consideration in high-mortality, hard-to-access areas. Uncertainty remains, and parameter values may vary across contexts, but the model allows preliminary findings to be updated as new or context-specific evidence becomes available. Decision analytic modelling

  10. Basic and applied studies of the ram accelerator as a hypervelocity projectile launcher

    NASA Astrophysics Data System (ADS)

    Bruckner, Adam P.; Knowlen, Carl

    1993-12-01

    The potential of using ram accelerator technology for an impulsive launcher of autonomously guided interceptors, such as the LEAP, has been studied during this contract period. In addition, fundamental investigations on some of the engineering issues which must be addressed for enabling ram accelerator propulsive modes to operate at 4 km/sec have been undertaken. An experimental investigation of the gas dynamic limits of ram accelerator operation has demonstrated the existence of two distinct limiting mechanisms that must be accounted for when designing projectiles for these launchers. Other experiments were conducted to make detailed pressure measurements of the flow fields at the tube walls to study the effects of projectile canting. Results from this LEAP launcher study and the experimental investigations indicate that the ram accelerator technology is well suited for applications as a transportable launcher capable of meeting the needs of theater ballistic missile defense missions.

  11. 13. 22'X34' original vellum, VariableAngle Launcher, 'SIDEVIEW CAMERA CAR TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. 22'X34' original vellum, Variable-Angle Launcher, 'SIDEVIEW CAMERA CAR TRACK DETAILS' drawn at 1/4'=1'-0' (BUORD Sketch # 208078, PAPW 908). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. 10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. New life for expendable launchers

    NASA Astrophysics Data System (ADS)

    Lopez, Ramon L.; Waskul, Greg

    The U.S. commercial expendable launch vehicle (ELV) industry is examined. The use of Titan, Delta, Atlas-Centaur, and Liberty boosters to launch domestic and foreign commercial payloads is analyzed. The ELV commercialization agreement which explains the division of liability between the parties is described. Consideration is given to the competition to the U.S. industry from Europe's Ariane, China's Long March, and the Soviet Proton launchers.

  14. 1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. Thermal limitations in a rapid-fire multirail launcher powered by a pulsed magnetodhydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Stankevich, S. V.; Shvetsov, G. A.; Butov, V. G.; Sinyaev, S. V.

    2017-09-01

    The operation of rapid burst firing multirail electromagnetic launchers of solids is numerically simulated using unsteady two-dimensional and three-dimensional models. In the calculations, the launchers are powered by a Sakhalin pulsed magnetohydrodynamic generator. Launchers with three and five pairs of parallel rails connected in a series electrical circuit are considered. Firing sequences of different numbers of solid projectiles of different masses is modeled. It is established that the heating of the rails is one of the main factors limiting the performance of launchers under such conditions. It is shown that the rate of heating of the rails is determined by the nonuniformity of the current density distribution over the rail cross-section due to the unsteady diffusion of the magnetic field into the rails. Calculations taking into account the unsteady current density distribution in the rails of a multirail launcher show that with an appropriate of the mass of the projectiles (up to 800 g), their number in the sequence, and the material of the rails, it is possible to attain launching velocities of 1.8-2.5 km/s with moderate heating of the rails.

  16. EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.

    2004-08-01

    Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and

  17. Development of concepts for the protection of space launchers against lightning

    NASA Astrophysics Data System (ADS)

    Taillet, Joseph

    1988-12-01

    Following a review of the characteristics of lightning and the effects of lightning on space launchers, various strategies for protection against lightning are discussed. Special attention is given to the damage inflicted on the Apollo 12 and Atlas/Centaur vehicles by lightning. It is demonstrated that the protection of space launchers is best performed by the real-time observation of atmospheric discharges at high altitude by such systems as the interferometric lightning alert system, SAFIR.

  18. Experimental launcher facility - ELF-I: Design and operation

    NASA Astrophysics Data System (ADS)

    Deis, D. W.; Ross, D. P.

    1982-01-01

    In order to investigate the general area of ultra-high-current density, high-velocity sliding contacts as applied to electromagnetic launcher armatures, a small experimental launcher, ELF-I, has been developed, and preliminary experiments have been performed. The system uses a 36 kJ, 5 kV capacitor bank as a primary pulse power source. When used in conjunction with a 5-microhenry pulse conditioning coil, a 100-kA peak current and 10-ms-wide pulse is obtained. A three-station 150 kV flash X-ray system is operational for obtaining in-bore photographs of the projectiles. Experimental results obtained for both metal and plasma armatures at sliding velocities of up to 1 km/s are discussed with emphasis on armature-rail interactions.

  19. Modeling the capillary discharge of an electrothermal (ET) launcher

    NASA Astrophysics Data System (ADS)

    Least, Travis

    Over the past few decades, different branches of the US Department of Defense (DoD) have invested at improving the field ability of electromagnetic launchers. One such focus has been on achieving hypervelocity launch velocities in excess of 7 km/s for direct launch to space applications [1]. It has been shown that pre-injection is required for this to be achieved. One method of pre-injection which has promise involves using an electro-thermal (ET) due to its ability to achieve the desired velocities with a minimal amount of hot plasma injected into the launcher behind the projectile. Despite the demonstration of pre-injection using this method, polymer ablation is not very well known and this makes it challenging to predict how the system will behave for a given input of electrical power. In this work, the rate of ablation has been studied and predicted using different models to generate the best possible characteristic curve. [1] - Wetz, David A., Francis Stefani, Jerald V. Parker, and Ian R. McNab. "Advancements in the Development of a Plasma-Driven Electromagnetic Launcher." IEEE TRANSACTIONS ON MAGNETICS 45.1 (2009): 495--500. IEEE Xplore. Web. 18 Aug. 2012.

  20. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  1. KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

    NASA Image and Video Library

    2003-11-06

    KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.

  2. The enhanced ASDEX Upgrade pellet centrifuge launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system.more » Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.« less

  3. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.

    1992-01-01

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.

  4. Metal vapor vacuum arc switching - Applications and results. [for launchers

    NASA Technical Reports Server (NTRS)

    Cope, D.; Mongeau, P.

    1984-01-01

    The design of metal-vapor vacuum-arc switches (MVSs) for electromagnetic launchers is discussed, and preliminary results are presented for an experimental MVS. The general principles of triggered-vacuum-gap and vacuum-interrupter MVSs are reviewed, and the requirements of electromagnetic launchers are analyzed. High-current design problems such as electrode erosion, current sharing, magnetic effects, and thermal effects are examined. The experimental MVS employs stainless-steel flanges, a glass vacuum vessel, an adjustable electrode gap, autonomous internal magnetic-field coils, and a tungsten-pin trigger assembly. Some results from tests without magnetic augmentation are presented graphically.

  5. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  6. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  7. Teaching Math to Deaf/Hard-of-Hearing (DHH) Children Using Mobile Games: Outcomes with Student and Teacher Perspectives

    ERIC Educational Resources Information Center

    Shelton, Brett E.; Parlin, Mary Ann

    2016-01-01

    Leveraging the use of mobile devices for education, such as instructional games, is an area of increasing interest for targeted subpopulations of students including those who are deaf/hard-of-hearing (DHH). This paper outlines the perspectives of Deaf Education teachers and DHH children who participated in the GeePerS*Math project. Interviews and…

  8. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  9. Electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  10. Electromagnetic Launchers and Guns. Phase 1

    DTIC Science & Technology

    1980-06-01

    a high-speed maglev transportation system based on a linear synchronous motor (1,2,3). In 1975 Gerard K. O’Neill of Princeton University...fact that the very important railgun- homopolar launcher technology is already being pursued at Westinghouse and university of Texas, Austin. The...shown in Fig. 14 on the following page. There are three comparable options for energy storage: an engine-driven homopolar generator followed by an

  11. Development of explosively driven launcher for meteoroid studies

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results of a continuing program to develop an explosively driven 2-stage hypervelocity launcher capable of achieving velocities between 15 and 20 km/sec are described. Previous efforts had identified incomplete barrel collapse as a limiting factor in launcher performance. Correlation of experimental and computational results obtained in the present study indicate that boundary-layer gases within the barrel act to prevent complete closure. Simplified calculations suggest that in-contact explosives may have insufficient energy densities to collapse the barrel against a developed boundary layer. Higher energy densities, sufficient to produce complete closure, were obtained with the use of steel flyer plates accelerated by a phased explosive lens. However, when flat flyer plates were impacted on the barrel, the sides of the barrel were observed to rupture and leak gas prior to barrel closure. A promising solution to this problem (untested) is to produce a symmetrical collapse with a cylindrical tube around the barrel.

  12. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  13. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation.

    PubMed

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  14. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  15. Energy stores and switches for rail-launcher systems

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.; Zowarka, R. C.; Marshall, R. A.

    1983-01-01

    An overview of existing switch and power supply technology applicable to space launch, a new candidate pulsed power supply for Earth-to-space rail launcher duty, the inverse railgun flux compressor, and a set of switching experiments to study further the feasibility of Earth-to-space launch are discussed.

  16. Energy stores and switches for rail-launcher systems

    NASA Astrophysics Data System (ADS)

    Weldon, W. F.; Zowarka, R. C.; Marshall, R. A.

    An overview of existing switch and power supply technology applicable to space launch, a new candidate pulsed power supply for Earth-to-space rail launcher duty, the inverse railgun flux compressor, and a set of switching experiments to study further the feasibility of Earth-to-space launch are discussed.

  17. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.

    PubMed

    Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo

    2017-08-07

    In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.

  18. An Engineering Design STEM Project: T-Shirt Launcher

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Grant, Melva R.

    2013-01-01

    The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…

  19. Note Launchers: Promoting Active Reading of Mathematics Textbooks

    ERIC Educational Resources Information Center

    Helms, Josh W.; Helms, Kimberly Turner

    2010-01-01

    Note launchers, an instructor-designed reading guide, model how to select, decide, and focus upon what textbook material is important to learn. Reading guides are specially-designed study aids that can steer students through difficult parts of assigned readings (Bean, 1996) while encouraging advance preparation. As an example of a reading guide,…

  20. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, A.; Alessi, E.; Bruschi, A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effectsmore » with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.« less

  1. Electromagnetic launcher for heavy projectiles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  2. 5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. STS 2000: Structural design of the airbreathing launcher

    NASA Astrophysics Data System (ADS)

    Boyeldieu, E.

    This paper presents a description of the structural design and the choice of materials of the different parts of the Space Transportation System 2000 (STS 2000). This launcher is one of the different concepts studied by AEROSPATIALE to evaluate its feasibility and its performance. The STS 2000 Single-Stage-To-Orbit (SSTO) is a reusable single stage launcher using airbreathing propulsion till Mach 6. This SSTO takes off horizontally using an undercarriage It takes off with a speed of 150 m/s and with an incidence angle of 12 deg. The STS 2000 flights from Mach 0.4 to Mach 3.6 using four turbo-rockets engines, from Mach 3.6 to Mach 6 using four ramjets-rockets engines and from Mach 6 to Mach 25 using four rockets engines. During its reentry, it glides from orbit to earth and it horizontally lands at the same base (KOUROU in French Guiana). The initial take-off mass is 338 metric tons. The ascent phase specification are: a maximum axial acceleration of 4 g's and a maximum dynamic pressure of 70 kPa.

  4. 56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON RIGHT; UMBILICAL MAST ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Development of a smart IUD launcher for prevention of uterine perforation.

    PubMed

    Al-Ashwal, Rania Hussein; Aziz, Noor Afatin Che; Nooh, Syed Mohd

    2016-10-01

    Intrauterine contraception is a widely used, highly effective and reversible means of birth control. One potential disadvantage with the use of intrauterine devices (IUDs) is the risk of uterine perforation. During the process of IUD insertion, there is a possibility to perforate the wall of the uterus during which health workers might injure the fundus of the uterus, due to inadequate knowledge or insufficient training. This paper discusses the development of a smart IUD launcher insertion system that would be used to prevent perforation of the uterine wall by detecting a specific distance to the wall for the safe release of the IUD using a sensor. Several launcher prototypes were developed prior to the final version of the IUD launcher. The results from testing experiments, that have been conducted to evaluate the performance of the proposed device, show that the sensor is able to detect a distance up to 5 mm and is also capable of detecting the distance to the target even in high viscosity liquid. The developed prototype promises a solution for more accurate IUD insertion that could be used as a training module for health care providers, helping remove fear from using this long-lasting contraceptive method and promote an affordable modern contraceptive method to society.

  6. Flow structure and unsteadiness in the supersonic wake of a generic space launcher

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf

    2015-11-01

    At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''

  7. 6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING UP TO LAUNCH DECK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.

    PubMed

    Park, Chang Min; Heo, Jiyong; Her, Namguk; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin

    2016-10-15

    This study aims to provide insights into the mechanisms governing the deposition and retention of silver nanoparticles (AgNPs) in saturated porous media. Column experiments were conducted with quartz sand under saturated conditions to investigate the deposition kinetics of AgNPs, their mobility at different groundwater hardnesses (10-400 mg/L as CaCO3), and humic acid (HA, 0-50 mg/L as dissolved organic carbon [DOC]). An anionic surfactant, sodium dodecyl sulfate (SDS), was used as a dispersing agent to prepare a SDS-AgNPs suspension. The deposition kinetics of AgNPs were highly sensitive to the surfactant concentration, ionic strength, and cation type in solution. The breakthrough curves (BTCs) of SDS-AgNPs suggested that the transport and retention were influenced by groundwater hardness and HA. At low water hardness and high HA, high mobility of SDS-AgNPs was observed in saturated conditions. However, the retention of SDS-AgNPs increased substantially in very hard water with a low concentration of HA, because of a decreased primary energy barrier and the straining effect during the course of transport experiments. A modified clean-bed filtration theory and a two-site kinetic attachment model showed good fits with the BTCs of SDS-AgNPs. The fitted model parameters (katt and kstr) could be used successfully to describe that the retention behaviors were dominated by electrostatic and electrosteric repulsion, based on extended Derjaguin-Landau-Vaerwey-Overbeek calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  10. Technology demonstration for reusable launchers

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Bonnal, Ch.

    2016-03-01

    Reusable launchers have been studied under CNES contracts for more than 30 years, with early concepts such as STS-2000 or Oriflamme, more recently with very significant efforts devoted to Liquid Fly Back Boosters as with the Bargouzin project led with Tsniimash, TSTO with the Everest concept studied by Airbus-DS as prime contractor or the RFS Reusable First Stage concept of a large first stage associated to a cryotechnic second stage. These investigations, summarized in the first part of the paper, enabled CNES to identify clearly the technology requirements associated to reusability, as well as cost efficiency through detailed non-recurring costs and mission costs analysis. In parallel, CNES set in place development logic for sub-systems and equipment based on demonstrators, hardware test benches enabling maturation of technologies up to a TRL such that an actual development can be decided with limited risk. This philosophy has been applied so far to a large number of cases, such as TPTech and TPX for Hydrogen turbo pump, GGPX as demonstrator of innovative gas generator, HX demonstrator of modern cryotechnic upper stage with a dozen of different objectives (Thermal Protection, 20K Helium storage, measurements …). This virtuous approach, "learn as you test", is currently applied in the phased approach towards scaled down reusable booster stage, whose possibility to be used as first stage of a microlaunch vehicle is under investigation. The selected technologies allow paving the way towards reusable booster stages for Ariane 6 evolutions or main reusable stage for a further generation of heavy launchers. The paper describes the logic behind this project, together with the demonstration objectives set for the various sub-systems as well as operations.

  11. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  12. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  13. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  14. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  15. Development of fiber optic sensing interrogators for launchers

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible

  16. 41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE RECOVERY TANK LEFT OF FLAME BUCKET; LIQUID OXYGEN CATCH TANK RIGHT OF FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  19. 62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END OF LAUNCH PAD. FIRE SUPPRESSION EQUIPMENT RIGHT OF FLAME BUCKET. SOUTH FACE OF MST IS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. AFRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. A-FRAME PIVOT POINT IN CENTER OF PHOTOGRAPH; NITROGEN CONTROL UNIT IN UPPER LEFT CORNER OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  2. Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.

    NASA Technical Reports Server (NTRS)

    Glass, I. I.

    1972-01-01

    A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.

  3. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2017-06-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9) and hypersonic (M=5.9) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5) and high for the hypersonic case (p_e/p_∞ ≈ 90). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  4. Rocket launcher: A novel reduction technique for posterior hip dislocations and review of current literature.

    PubMed

    Dan, Michael; Phillips, Alfred; Simonian, Marcus; Flannagan, Scott

    2015-06-01

    We provide a review of literature on reduction techniques for posterior hip dislocations and present our experience with a novel technique for the reduction of acute posterior hip dislocations in the ED, 'the rocket launcher' technique. We present our results with six patients with prosthetic posterior hip dislocation treated in our rural ED. We recorded patient demographics. The technique involves placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, in an ergonomically friendly manner for the reducer. We used Fisher's t-test for cohort analysis between reduction techniques. Of our patients, the mean age was 74 years (range 66 to 85 years). We had a 83% success rate. The one patient who the 'rocket launcher' failed in, was a hemi-arthroplasty patient who also failed all other closed techniques and needed open reduction. When compared with Allis (62% success rate), Whistler (60% success rate) and Captain Morgan (92% success rate) techniques, there was no statistically significant difference in the successfulness of the reduction techniques. There were no neurovascular or periprosthetic complications. We have described a reduction technique for posterior hip dislocations. Placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, thus mechanically and ergonomically superior to standard techniques. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  5. Assessing the role of syringe dispensing machines and mobile van outlets in reaching hard-to-reach and high-risk groups of injecting drug users (IDUs): a review

    PubMed Central

    Islam, Md Mofizul; Conigrave, Katherine M

    2007-01-01

    Reaching hard-to-reach and high-risk injecting drug users (IDUs) is one of the most important challenges for contemporary needle syringe programs (NSPs). The aim of this review is to examine, based upon the available international experience, the effectiveness of syringe vending machines and mobile van/bus based NSPs in making services more accessible to these hard-to-reach and high-risk groups of IDUs. A literature search revealed 40 papers/reports, of which 18 were on dispensing machines (including vending and exchange machines) and 22 on mobile vans. The findings demonstrate that syringe dispensing machines and mobile vans are promising modalities of NSPs, which can make services more accessible to the target group and in particular to the harder-to-reach and higher-risk groups of IDUs. Their anonymous and confidential approaches make services attractive, accessible and acceptable to these groups. These two outlets were found to be complementary to each other and to other modes of NSPs. Services through dispensing machines and mobile vans in strategically important sites are crucial elements in continuing efforts in reducing the spread of HIV and other blood borne viruses among IDUs. PMID:17958894

  6. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. ISOMETRIC: EXISTING ML NO. 3 LAUNCHER. Sheet A1 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. First AFSWC Javelin Sounding Rocket On Launcher at Wallops Island.

    NASA Image and Video Library

    1959-07-07

    Air Force Javelin Rocket on Launcher (USAF JV-1) Wallops Model D4-78 L59-5144 First AFSWC Javelin sounding rocket ready for flight test, July 7, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 704.

  8. 13. Photocopy of drawing of missile launcher from 'Procedures and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of drawing of missile launcher from 'Procedures and Drills for the NIKE Ajax System,' Department of the Army Field Manual, FM-44-80 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1956 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  9. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  10. Use of mobile phones for improving vaccination coverage among children living in rural hard-to-reach areas and urban streets of Bangladesh.

    PubMed

    Uddin, Md Jasim; Shamsuzzaman, Md; Horng, Lily; Labrique, Alain; Vasudevan, Lavanya; Zeller, Kelsey; Chowdhury, Mridul; Larson, Charles P; Bishai, David; Alam, Nurul

    2016-01-04

    In Bangladesh, full vaccination rates among children living in rural hard-to-reach areas and urban streets are low. We conducted a quasi-experimental pre-post study of a 12-month mobile phone intervention to improve vaccination among 0-11 months old children in rural hard-to-reach and urban street dweller areas. Software named "mTika" was employed within the existing public health system to electronically register each child's birth and remind mothers about upcoming vaccination dates with text messages. Android smart phones with mTika were provided to all health assistants/vaccinators and supervisors in intervention areas, while mothers used plain cell phones already owned by themselves or their families. Pre and post-intervention vaccination coverage was surveyed in intervention and control areas. Among children over 298 days old, full vaccination coverage actually decreased in control areas--rural baseline 65.9% to endline 55.2% and urban baseline 44.5% to endline 33.9%--while increasing in intervention areas from rural baseline 58.9% to endline 76*8%, difference +18.8% (95% CI 5.7-31.9) and urban baseline 40.7% to endline 57.1%, difference +16.5% (95% CI 3.9-29.0). Difference-in-difference (DID) estimates were +29.5% for rural intervention versus control areas and +27.1% for urban areas for full vaccination in children over 298 days old, and logistic regression adjusting for maternal education, mobile phone ownership, and sex of child showed intervention effect odds ratio (OR) of 3.8 (95% CI 1.5-9.2) in rural areas and 3.0 (95% CI 1.4-6.4) in urban areas. Among all age groups, intervention effects on age-appropriate vaccination coverage were positive: DIDs +13.1-30.5% and ORs 2.5-4.6 (p<0.001 in all comparisons). Qualitative data showed the intervention was well-accepted. Our study demonstrated that a mobile phone intervention can improve vaccination coverage in rural hard-to-reach and urban street dweller communities in Bangladesh. This small-scale successful

  11. Millimeter wave experiment of ITER equatorial EC launcher mock-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Oda, Y.; Kajiwara, K.

    2014-02-12

    The full-scale mock-up of the equatorial launcher was fabricated in basis of the baseline design to investigate the mm-wave propagation properties of the launcher, the manufacturability, the cooling line management, how to assemble the components and so on. The mock-up consists of one of three mm-wave transmission sets and one of eight waveguide lines can deliver the mm-wave power. The mock-up was connected to the ITER compatible transmission line and the 170GHz gyrotron and the high power experiment was carried out. The measured radiation pattern of the beam at the location of 2.5m away from the EL mock-up shows themore » successful steering capability of 20°∼40°. It was also revealed that the radiated profile at both steering and fixed focusing mirror agreed with the calculation. The result also suggests that some unwanted modes are included in the radiated beam. Transmission of 0.5MW-0.4sec and of 0.12MW-50sec were also demonstrated.« less

  12. Impact of Launchers on the Environment in French Guiana

    NASA Astrophysics Data System (ADS)

    Richard, S.; Chemoul, B.

    2012-01-01

    The main combustion products of the Ariane 5 solid rocket boosters are alumina and chlorhyde gas. When the launcher lift off the significant concentrations of this components are around the launch zone. We use samplers to evaluate the concentrations of this two elements. To optimize the localisation of the samplers we use a model to obtain the projected traces of the combustion cloud according to meteorological data (software sarrim). During the first seconds of takes 1000 m3 of water flood the base right to decrease the acoustic vibration. The major parts of the pollutants fall close to the launch zone and acidic cloud is formed. Once having stabilized the cloud begins diluting, it is subjected to the influence of the different layers of wind. To measure air quality we use first continuous analysers, secondly containers with distilled water to sample the acidic particles from the cloud. We also monitor the physicochemical quality of water in a river near the launch zone, the impact of the combustion products on vegetation, the aquatic fauna. Noise and vibrations are also measured. For terrestrial fauna like birds, we monitor the general population and a colony of wade. The most important colony of this species is located on the base : around 75% of the population of the French Guiana. We use also a new protocol to estimate the impact of launch by measuring the thickness of eggshells. We use research results which show that calcium can be replaced by alumina. When the thickness of eggshells is thin, the reproduction can be affected. For each measurement campaign, we have more than 100 sites and around 600 samples. The results shows that the land around the space centre is like a natural refuge. The impact of the launches is low, hunting is forbidden and security personal controls the zone base is a protected zone. The space centre is now a natural wildlife refuge. For the two new launchers, Vega and Soyuz, we will also monitor the environmental impact of the launch

  13. KSC-2009-1617

    NASA Image and Video Library

    2009-02-13

    CAPE CANAVERAL, Fla. – At the turn basin at NASA's Kennedy Space Center in Florida, a tug boat keeps the barge in place for the offloading of the girder for the new mobile launcher. The new mobile launcher will be the base for the Ares rockets to launch the Orion crew exploration vehicle and the cargo vehicle. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the added load of the 345-foot tower and taller rocket. When the structural portion of the new mobile launcher is complete, umbilicals, access arms, communications equipment and command/control equipment will be installed. Photo credit: NASA/Jack Pfaller

  14. Development of a large-area planar surface-wave plasma source with a cavity launcher driven by a 915 MHz UHF wave

    NASA Astrophysics Data System (ADS)

    Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki

    2013-04-01

    A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.

  15. View of the Endeavour moving towards it launch pad

    NASA Image and Video Library

    1996-06-06

    STS077-S-044 (16 April 1996) --- The Space Shuttle Endeavour atop the Mobile Launcher Platform and Crawler-Transporter (MLP/CT) slowly lumbers past a tree alongside the crawlerway, at the Kennedy Space Center (KSC). The journey from the Vehicle Assembly Building (VAB) to Launch Pad 39B will take about five to six hours to complete. Once hard down at the pad, preparations will continue to ready Endeavour for its upcoming spaceflight on STS-77.

  16. Shuttle Hitchhiker Experiment Launcher System (SHELS)

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerry

    1999-01-01

    NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

  17. Turbojet-type engines for the airbreathing propulsion of reusable winged launchers

    NASA Astrophysics Data System (ADS)

    Duparcq, J. L.; Hermant, E.; Scherrer, D.

    Combined propulsion systems for hypersonic application have become new challenges for industrial and research organizations. In France, SNECMA and SEP, which have just joined together for a common effort on hypersonics within Hyperspace, and ONERA have been involved, under CNES (French space agency) contracts, in the assessment of new propulsion concepts for reusable winged launchers (SSTO or TSTO). As potential solutions for the airbreathing propulsion, some turbojet-type engines are presented: —the twin spool turbojet or turbofan with reheat —the turbojet with reheat —the twin-duct turbojet ramjet —the precooled turbojet with reheat. All these engines have been sized for a flight Mach number under seven with a cryogenic fuel (liquid hydrogen). Mainly due to total temperature and pressure encountered along the trajectory, the systems will have to withstand severe physical constraints. Coupled with performance and size requirements, like specific thrust and maximum air capture area, these operating conditions have been taken into account in order to select each engine cycle and technical arrangement. Performance and mass criteria make it possible to compare these systems and to emphasize their distinctive features among the propulsion concepts envisioned for the future reusable winged launchers (including airbreathing combined engines under study in France). The first step of the final selection, leading to the best adaptation between the engine and the vehicle, will then be tackled. This will be particularly enhanced by the analysis of potential advantages or technical difficulties, like thrust-to-weight ratio or needs of variable geometry and heat exchangers. The twin-duct turbojet ramjet, for example, is probably one of the best candidates for the first stages of propulsion of a reusable winged launcher.

  18. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  19. Non-Rocket Missile Rope Launcher

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    The method, installation, and estimation for delivering payload and missiles into outer space are presented. This method uses, in general, the engines and straight or closed-loop cables disposed on a planet surface. The installation consists of a space apparatus, power drive stations located along trajectory of the apparatus, the cables connected to the apparatus and to the power stations, a system for suspending the cable, and disconnected device. The drive stations accelerate the apparatus up to hypersonic speed. The estimations and computations show the possibility of making these projects a reality in a short period of time (see attached project: launcher for missiles and loads). The launch will be very cheap $1-$2 per LB. We need only light strong cable, which can be made from artificial fibers, whiskers, nanotubes, which exist in industry and scientific laboratories.

  20. Integrated fiber-coupled launcher for slow plasmon-polariton waves.

    PubMed

    Della Valle, Giuseppe; Longhi, Stefano

    2012-01-30

    We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.

  1. KSC-2009-4425

    NASA Image and Video Library

    2009-08-04

    CAPE CANAVERAL, Fla. – Sitting on top of the mobile launcher platform, space shuttle Discovery straddles the flame trench, which channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery was secured, or "hard down" to Launch Pad 39A at 1:50 p.m. EDT. "Hard down" means that the mobile launcher platform, or MLP, is sitting on the pedestals on the pad, and the crawler has been jacked down, thus transferring the weight of the MLP from the crawler to the pad pedestals. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder

  2. Numerical predictions of EML (electromagnetic launcher) system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less

  3. Spacecraft configuration study for second generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.

    1985-01-01

    A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.

  4. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  5. Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1980-01-01

    The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.

  6. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. ISOMETRIC VIEW: MLP NO. 1. Sheet A10 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. A coaxial radial opening switch for a distributed-energy-store rail launcher

    NASA Astrophysics Data System (ADS)

    Upshaw, J. L.; Zowarka, R. C.

    1984-03-01

    The design, fabrication, and initial testing results for a coaxial radial opening switch for a distributed-energy-store rail launcher are presented. In this nonarcing switch, the voltage needed to transfer current to the rail launcher is generated in a fixed resistor sized to absorb the energy required to accomplish the switching. The coaxial geometry consisting of concentric rings allowed flexibility in defining the conductive and resistive portions of the switch, and also provided tight coupling by minimizing the inductance of the current path between the charging path and the load path to minimize the energy absorption requirements. The resistive portion of the switch is composed of a series of stacked circular steel ring laminations. Switching is completed in three intervals through radial actuation. The switch parts were machined from ETP 110 electrical tough pitch copper plate, 2000 series aluminum plate, and close-tolerance standed GFR epoxy. Current may be transferred at levels less than 20 kA.

  8. A versatile fibre optic sensor interrogation system for the Ariane Launcher based on an electro-optically tuneable laser diode

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.

    2017-11-01

    Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].

  9. KSC-2009-2301

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett

  10. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    A view from below the mobile launcher shows a crane positioning the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  11. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    In this view looking down from high up on the mobile launcher, a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  12. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  13. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  14. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    NASA Astrophysics Data System (ADS)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  15. KSC-2010-4358

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Program Manager Dale Thomas talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  16. KSC-2010-4359

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Senior Project Manager Larry Schultz talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  17. Interaction of the electron density fluctuations with electron cyclotron waves from the equatorial launcher in ITER

    NASA Astrophysics Data System (ADS)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.

    2018-01-01

    We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.

  18. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN – DECK A. Sheet A13 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS I. Sheet A17 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS II. Sheet A18 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN – DECK B. Sheet A14 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN – DECK 0. Sheet A12 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS IV. Sheet A20 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. Optimization of the launcher ascent trajectory leading to the global optimum without any initialization: the breakthrough of the Hamilton-Jacobi-Bellman approach

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Bokanowski, O.; Zidani, H.; Désilles, A.

    2018-06-01

    The resolution of the launcher ascent trajectory problem by the so-called Hamilton-Jacobi-Bellman (HJB) approach, relying on the Dynamic Programming Principle, has been investigated. The method gives a global optimum and does not need any initialization procedure. Despite these advantages, this approach is seldom used because of the dicculties of computing the solution of the HJB equation for high dimension problems. The present study shows that an eccient resolution is found. An illustration of the method is proposed on a heavy class launcher, for a typical GEO (Geostationary Earth Orbit) mission. This study has been performed in the frame of the Centre National d'Etudes Spatiales (CNES) Launchers Research & Technology Program.

  5. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    NASA Astrophysics Data System (ADS)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  6. KSC-2010-1102

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-6894

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  8. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, ELEVATION – SIDE 1 & 2. Sheet A15 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  9. Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, ELEVATION – SIDE 3 & 4. Sheet A16 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Analysis of Poloidal Asymmetric Density Behaviors in SOL Induced by 4.6-GHz Lower Hybrid Launcher Power in EAST

    NASA Astrophysics Data System (ADS)

    Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2018-02-01

    On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.

  11. A socio-economic impact assessment of the European launcher sector

    NASA Astrophysics Data System (ADS)

    Monte, Luca del; Scatteia, Luigi

    2017-08-01

    In a context where the economic strains are challenging European policies as well as the very fabric of governmental contributions to public life, innovation and efficacy of public policy in research are called upon to support growth in Europe and to sustain employment and entrepreneurial capacities. Governments need evidence that the investments in space, while providing strategic tools to implement sovereign policies, create jobs and build the competitive European economy of the future. This is particularly true when the decisions at stake have a potential bearing on the future of the European space sector for at least the next 30 years, as it has been the case for the ESA Council at ministerial level meeting in December 2014. On that occasion, Ministers took the decision to start the development of a new Ariane 6 launcher and Vega evolutions having a critical bearing on the Member States' strategic industrial capabilities and on the sustainability of the European guaranteed access to space. Given the importance of the subject, and following similar studies undertaken in the past for e.g. the Ariane 1-4 programme, the Agency has requested an independent consulting team to perform a dedicated study to assess ex-post the direct, indirect and induced socio-economic impacts of the Ariane 5 programme (mid-term evaluation) and of the Vega programme (early evaluation) globally, at European level, and within the economies and industries of each ESA Member State. This paper presents the assessment of the socio-economic impacts allowing the evaluation of the return on public investments in launchers through ESA in a wider perspective, going beyond the purely economic terms. The scope of the assessment covered in total approximately 25 ESA programmatic and activity lines and 30,000 commitments from 1986 to end 2012. In the framework of the study, the economic impact of the European launcher programmes is measured through a GDP impact defined as the straight economic

  12. The Hazard of an Explosion of the ARIANE 5 Launcher- The Risks for the Astronauts Sitting on the Ejector Seats

    DTIC Science & Technology

    1990-08-30

    velocities (a first approach). In a first step, we <<construct>> the launcher. A launcher is composed of structures (propellant reservoirs for example... structures and the unburnt propellant included in the cone C, are all part of the fragments’ <<environment>> (Fig. 3). Its D mass W,is concentrated on the...dynamic fluid- structure interactions*. Computer Methods in Applied Mechanics And Engineering 33 (1982) 689-723. 1151 M. ECK, M.MUKUNDA : <<Predicting

  13. Optimization of the propulsion for multistage solid rocket motor launchers

    NASA Astrophysics Data System (ADS)

    Calabro, M.; Dufour, A.; Macaire, A.

    2002-02-01

    Some tools focused on a rapid multidisciplinary optimization capability for multistage launch vehicle design were developed at EADS-LV. These tools may be broken down into two categories, those related to propulsion design optimization and a computer code devoted to trajectories and under constraints optimization. Both are linked in order to obtain optimal vehicle design after an iterative process. After a description of the two categories tools, an example of application is given on a small space launcher.

  14. Small ICBM Area Narrowing Report. Volume 1. Hard Mobile Launcher in Random Movement Basing Mode

    DTIC Science & Technology

    1986-01-01

    WHICH STATE INSTALLATION SERVICE ELIMINATED DE DOVER AIR FORCE BASE AF 4 DE REC AREA, FIRST ARMY ARMY 3 FL AVON PARK AIR FORCE RANGE AF 3 FL CAPE...PLANT NO. 47 AF 3 OH COLUMBUS DEF CONST SUPPLY CTR ARMY 4 OH COLUMBUS WEAPONS IND RES PLANT NAVY 3 OH EVANDALE PLANT NO. 36 AF 3 OH LIMA ARMY TANK...BLANK I I I I i I I I D-19 SENSITIVE FOR OFFICIAL USE ONLY 29I 331 J11 31 Alabam .._ _ . _ _ ............. _ . BAY MNETI ALLENTOW DE FUNII X0 LAN AT NO

  15. KSC-2009-6895

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, seems to hover above the ground as it is lifted by crane toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  16. KSC-2014-3528

    NASA Image and Video Library

    2014-08-14

    CAPE CANAVERAL, Fla. – A storm moves in over Launch Complex 39 at NASA’s Kennedy Space Center in Florida. At center is the mobile launcher that will support NASA's Space Launch System heavy-lift rocket, under development. At left is the Launch Control Center and the Vehicle Assembly Building. Kennedy's Ground Support Development and Operations Program is hard at work transforming the center's facilities into a multi-user spaceport, when the weather permits. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Ben Smegelsky

  17. The Aurora space launcher concept

    NASA Astrophysics Data System (ADS)

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2017-11-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  18. The Aurora space launcher concept

    NASA Astrophysics Data System (ADS)

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2018-06-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  19. Unit Reference Sheet (URS) Cost Methodology.

    DTIC Science & Technology

    1980-08-01

    LAUNCHER MONORAIL GUIDED MISSILE: W/E (NIKE-HERCULES) L45740 LAUNCHER TUBULAR GUIDED MISSILE: (TOW) L45757 LAUNCHER ZERO LENGTH GUIDED MISSILE: (IMP-HAWK...L76762 LOADER TRANSPORTER GUIDED MISSILE: W/E (HAWK) M57503 MOBILE TARGET TRACKING SYSTEM: USED TO SUPPORT MQM 34 ( FIRE BEE) M57549 MOBILITY KIT GUIDED...HIGH RATE THREE BARREL W/E J96479 GUN AUTOMATIC 20 MILLIMETER: GAS OPERATED MANUAL OR ELECT FIRED J96481 GUN AUTOMATIC 20 MILLIMETER: ELECTRIC J96694 GUN

  20. Distributed data fusion across multiple hard and soft mobile sensor platforms

    NASA Astrophysics Data System (ADS)

    Sinsley, Gregory

    is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in

  1. A Monte Carlo Analysis for Collision Risk Assessment on Vega Launcher Payloads and LARES Satellite

    NASA Astrophysics Data System (ADS)

    Sindoni, G.; Ciufolini, I.; Battie, F.

    2016-03-01

    This work has been developed in the framework of the LARES mission of the Italian Space Agency (ASI). The LARES satellite has been built to test, with high accuracy, the frame-dragging effect predicted by the theory of General Relativity, specifically the Lense-Thirring drag of its node. LARES was the main payload in the qualification flight of the European Space Agency launcher VEGA. A concern arose about the possibility of an impact between the eight secondary payloads among themselves, with LARES and with the last stage of the launcher (AVUM). An impact would have caused failure on the payloads and the production of debris in violation of the space debris mitigation measures established internationally. As an additional contribution, this study allowed the effect of the payload release on the final manoeuvers of the AVUM to be understood.

  2. KSC-06pd1710

    NASA Image and Video Library

    2006-08-02

    KENNEDY SPACE CENTER, FLA. - In the bright light of day, Space Shuttle Atlantis nears the hard stand on Launch Pad 39B. First motion out of the Vehicle Assembly Building was 1:05 a.m. The shuttle sits on top of the mobile launcher platform, which in turn rests on the crawler-transporter. At right is the 290-foot high, 300,000- gallon water tank that aids in sound suppression during launch. The water releases just prior to the ignition of the shuttle engines and flows through 7-foot-diameter pipes for about 20 seconds, pouring into 16 nozzles atop the flame deflectors and from outlets in the main engines exhaust hole in the mobile launcher platform. The slow speed of the crawler results in a 6-hour trek to the pad approximately 4 miles away. Atlantis' launch window begins Aug. 27 for an 11-day mission to the International Space Station. The STS-115 crew of six astronauts will continue construction of the station and install their cargo, the Port 3/4 truss segment with its two large solar arrays. Photo credit: NASA/Troy Cryder

  3. Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher

    NASA Astrophysics Data System (ADS)

    Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.

    2015-06-01

    The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.

  4. British government, industry agree to fund Hotel launcher studies

    NASA Astrophysics Data System (ADS)

    Brown, D. A.

    1986-02-01

    A program status assessment is presented for the horizontal takeoff and landing 'Hotol' single-stage-to-orbit space launcher, for which parallel, two-year airframe and propulsion system proof-of-concept studies have been approved. A two-year initial development program for the airframe would be followed by a four-year development and manufacturing phase that would begin upon the propulsion system concept's successful demonstration. Flight trials could begin in 1996. A number of significant modifications have already been made to the initial design concept, such as to the foreplanes, afterbody, engine intake, and orbital control system.

  5. Infrared tracker for a portable missile launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.J.

    1993-07-13

    An infrared beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the infrared beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first infrared detector for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second infrared detector for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to themore » first and second infrared detectors and responsive to the electric signals generated by said detectors for determining errors in missile flight direction and communicating course correction information to the missile.« less

  6. High-Efficiency Helical Coil Electromagnetic Launcher and High Power Hall-Effect Switch

    DTIC Science & Technology

    2008-02-29

    also given that demonstrate significant launcher performance benefits by super-cooling the armature (i.e., using liquid nitrogen ). 14. ABSTRACT... liquid nitrogen temperatures). A computer model for a magnetically-controlled Hall-effect switch is developed. The model is constructed in the PSpice...of super-cooling is demonstrated with liquid nitrogen cooling and indicates super-cooled EML operation is desirable if cryo-cooling is practical for

  7. KSC-2009-6225

    NASA Image and Video Library

    2009-11-12

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fourth section is lowered into position. The tower will be approximately 345 feet tall when completed and have multiple platforms for personnel access. The ML is being built at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  8. KSC-2009-6660

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fifth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  9. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    NASA Technical Reports Server (NTRS)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  10. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure

  11. Characterization of the Ignition Over-Pressure/Sound Suppression Water in the Space Launch System Mobile Launcher Using Volume of Fluid Modeling

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2015-01-01

    The Space Launch System (SLS) Vehicle consists of a Core Stage with four RS-25 engines and two Solid Rocket Boosters (SRBs). This vehicle is launched from the Launchpad using a Mobile Launcher (ML) which supports the SLS vehicle until its liftoff from the ML under its own power. The combination of the four RS-25 engines and two SRBs generate a significant Ignition Over-Pressure (IOP) and Acoustic Sound environment. One of the mitigations of these environments is the Ignition Over-Pressure/Sound Suppression (IOP/SS) subsystem installed on the ML. This system consists of six water nozzles located parallel to and 24 inches downstream of each SRB nozzle exit plane as well as 16 water nozzles located parallel to and 53 inches downstream of the RS-25 nozzle exit plane. During launch of the SLS vehicle, water is ejected through each water nozzle to reduce the intensity of the transient pressure environment imposed upon the SLS vehicle. While required for the mitigation of the transient pressure environment on the SLS vehicle, the IOP/SS subsystem interacts (possibly adversely) with other systems located on the Launch Pad. One of the other systems that the IOP/SS water is anticipated to interact with is the Hydrogen Burn-Off Igniter System (HBOI). The HBOI system's purpose is to ignite the unburned hydrogen/air mixture that develops in and around the nozzle of the RS-25 engines during engine start. Due to the close proximity of the water system to the HBOI system, the presence of the IOP/SS may degrade the effectiveness of the HBOI system. Another system that the IOP/SS water may interact with adversely is the RS-25 engine nozzles and the SRB nozzles. The adverse interaction anticipated is the wetting, to a significant degree, of the RS-25 nozzles resulting in substantial weight of ice forming and water present to a significant degree upstream of the SRB nozzle exit plane inside the nozzle itself, posing significant additional blockage of the effluent that exits the nozzle

  12. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  13. Aktiv De-Orbiting Onboard System from Leo of Upper Stages of Launchers

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Shalay, V.; Shatrov, J.; Jakovlev, M.; Kostantino, A.

    2009-03-01

    The active de-orbiting onboard system (VDOS) of upper separable parts (USP) stage of launchers from LEO into orbits of utilization with term of existence orbital lifetimes till 25 years is offered. ADOS it is based on use of power resources of not produced rests of liquid fuel onboard USP launchers with liquid propulsion module (LPM). Following systems enter in structure VDOS: the gas jet propulsion system consisting of a system of gasification, chambers of gas engines (GE), a control system. For gasification of the rests of liquid fuel the heat-carrier received in the autonomous gas generator is used. The gasification propellant components from each tank with temperature and the pressure determined by strength of the corresponding tank, move in chambers of the GE established on a top of a fuel compartment. After separation of a payload execute twist USP for preservation of its position in the space by activity of the GE. Ways of increase of a system effectiveness of gasification are offered by superposition on the entered heat-carrier of ultrasonic oscillations, and also introduction in gaseous fuel nanopowder of aluminum. The volume of adaptations of construction USP, connected with introduction VDOS does not exceed 5 % from weight of a dry construction.

  14. KSC-2009-6792

    NASA Image and Video Library

    2009-12-13

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program continues to grow as the sixth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jim Grossmann

  15. KSC-2010-1101

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-6892

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  17. KSC-2010-1105

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, construction of the tower on a new mobile launcher, or ML, for the Constellation Program progresses with placement of the eighth tower segment on the growing structure. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  18. University of Maryland-Republic Terrapin Sounding Rocket H121-2681-I(Terrapin) Model on the Launcher

    NASA Image and Video Library

    1956-10-21

    LAL 95,647 University of Maryland-Republic Terrapin sounding rocket mounted on special launcher, September 21, 1956. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 506.

  19. Analysis of LH Launcher Arrays (Like the ITER One) Using the TOPLHA Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggiora, R.; Milanesio, D.; Vecchi, G.

    2009-11-26

    TOPLHA (Torino Polytechnic Lower Hybrid Antenna) code is an innovative tool for the 3D/1D simulation of Lower Hybrid (LH) antennas, i.e. accounting for realistic 3D waveguides geometry and for accurate 1D plasma models, and without restrictions on waveguide shape, including curvature. This tool provides a detailed performances prediction of any LH launcher, by computing the antenna scattering parameters, the current distribution, electric field maps and power spectra for any user-specified waveguide excitation. In addition, a fully parallelized and multi-cavity version of TOPLHA permits the analysis of large and complex waveguide arrays in a reasonable simulation time. A detailed analysis ofmore » the performances of the proposed ITER LH antenna geometry has been carried out, underlining the strong dependence of the antenna input parameters with respect to plasma conditions. A preliminary optimization of the antenna dimensions has also been accomplished. Electric current distribution on conductors, electric field distribution at the interface with plasma, and power spectra have been calculated as well. The analysis shows the strong capabilities of the TOPLHA code as a predictive tool and its usefulness to LH launcher arrays detailed design.« less

  20. Characterisation of SOL density fluctuations in front of the LHCD PAM launcher in Tore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosako, T.; Ekedahl, A.; Goniche, M.

    2011-12-23

    The density fluctuations, modified by Lower Hybrid Wave (LHW), is analyzed in Tore Supra with reference to the injected LHW power, density and the gap between LCFS (Last Closed Flux Surface) and the PAM (passive-active-multijunction) launcher. The density fluctuations are measured with RF probes installed at the PAM launcher front. A density scan at nominal toroidal field (3.8 T) shows that the fluctuations rate stays nearly constant ({approx}50%) for <3.5x10{sup 19}m{sup -3} and with LHW power up to 2MW. However, when increasing the density above <{approx}4.2x10{sup 19}m{sup -3}, using strong gas puffing, the fluctuation rate increases to >70%more » and is characterized by strong negative spikes, with typical frequency >100kHz. These are most likely originating from acceleration of electrons in the LHW near field due to parasitic absorption, as evidenced on the IR images, showing hot spots on the side limiters.« less

  1. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  2. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilhem, D.; Achard, J.; Bertrand, B.

    2009-11-26

    The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and willmore » be installed and commissioned on plasma during the fall of 2009.« less

  3. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  4. Analytical Study on Flight Performance of a RP Laser Launcher

    NASA Astrophysics Data System (ADS)

    Katsurayama, H.; Ushio, M.; Komurasaki, K.; Arakawa, Y.

    2005-04-01

    An air-breathing RP Laser Launcher has been proposed as the alternative to conventional chemical launch systems. This paper analytically examines the feasibility of SSTO system powered by RP lasers. The trajectory from the ground to the geosynchronous orbit is computed and the launch cost including laser-base development is estimated. The engine performance is evaluated by CFD computations and a cycle analysis. The results show that the beam power of 2.3MW per unit initial vehicle mass is optimum to reach a geo-synchronous transfer orbit, and 3,000 launches are necessary to redeem the cost for laser transmitter.

  5. Plasma-material interaction in electrothermal and electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Bourham, M. A.; Gilligan, J. G.; Hankins, O. E.

    1993-07-01

    Various material surfaces have been exposed to high heat fluxes from 2 to 80 GW/sq m over 100 microsec duration using the electrothermal launcher, SIRENS. The vapor shield is effective in reducing the heat to the ablating surface, and the energy transmission factor through the vapor shield decreases as the incident heat flux increases. Results show good agreement with code predictions. Visible light emission spectra have been observed both in-bore and from the muzzle flash of the barrel, and from the flash of the source. Measurements of visible emission from the source indicate time averaged temperatures of 1 to 3 eV, and about 1 to 2 eV along the axis of the device, which agree with the theory and experimental measurements of the average heat flux and plasma conductivity.

  6. KSC-2009-5929

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program into place atop the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-6893

    NASA Image and Video Library

    2009-12-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, is lifted above the heads of the workers monitoring its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  8. KSC-2009-5928

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program toward the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller

  9. DETAIL VIEW OF COMPUTER PANELS, ROOM 8A Cape Canaveral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF COMPUTER PANELS, ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.

    PubMed

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.

  11. Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks

    PubMed Central

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736

  12. Robotic weather balloon launchers spread in Alaska

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  13. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    Preparations are underway to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  14. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  15. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  16. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Preparations are underway to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  17. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Seeming to hang in midair, the Orion Service Module Umbilical (OSMU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  18. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  19. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    A crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  20. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  1. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    A crane lifts the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  2. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  3. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  4. DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER OF THE MLP - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  5. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  6. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Construction workers assist as a crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  7. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  8. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web.

    PubMed

    Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C

    1996-05-01

    The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.

  9. DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS (REAR), ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  11. Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins

    NASA Image and Video Library

    2017-03-13

    Construction workers and crane specialists high up on the mobile launcher tower monitor the progress as a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  12. KENNEDY SPACE CENTER, FLA. - The rising sun and some scattered clouds provide a picturesque backdrop for the Space Shuttle Discovery as it travels along the crawlerway toward Launch Pad 39A in preparation for the STS-82 mission. The Shuttle is on a Mobile Launcher Platform, and the entire assemblage is being carried by a large, tracked vehicle called the crawler transporter. A seven-member crew will perform the second servicing of the orbiting Hubble Space Telescope (HST) during the 10-day STS-82 flight, whcih is targeted for a Feb. 11 liftoff.

    NASA Image and Video Library

    1997-01-17

    KENNEDY SPACE CENTER, FLA. - The rising sun and some scattered clouds provide a picturesque backdrop for the Space Shuttle Discovery as it travels along the crawlerway toward Launch Pad 39A in preparation for the STS-82 mission. The Shuttle is on a Mobile Launcher Platform, and the entire assemblage is being carried by a large, tracked vehicle called the crawler transporter. A seven-member crew will perform the second servicing of the orbiting Hubble Space Telescope (HST) during the 10-day STS-82 flight, whcih is targeted for a Feb. 11 liftoff.

  13. KSC-08pd1244

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the empty Constellation Program's mobile launcher platform planned for the Ares I rocket. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  14. KSC-08pd1245

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's mobile launcher platform with an Ares I rocket attached. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  15. KSC-2010-4437

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  16. KSC-2010-4436

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd1834

    NASA Image and Video Library

    2007-07-11

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour rests on Launch Pad 39A after rolling out from the Vehicle Assembly Building over night. First motion out of the VAB was at 8:10 p.m. July 10, and the shuttle was hard down on the pad at 3:02 a.m. July 11. The shuttle sits on top of the mobile launcher platform. At far left is the rotating service structure, which can be rolled around to enclose the shuttle for access during processing. Behind it is the fixed service structure, topped by an 80-foot-tall lightning mast. At right is the 290-foot-tall water tank, which provides the deluge over the mobile launcher platform for sound suppression during liftoff. Endeavour is scheduled to launch on mission STS-118 on Aug. 7. During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago. STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis. Photo credit: NASA/Ken Thornsley

  18. The rise of the mobile phone in the hard drug scene of Rotterdam.

    PubMed

    Barendregt, Cas; van der Poel, Agnes; van de Mheen, Dike

    2006-03-01

    The rise of mobile phone dealing in the retail market of heroin and cocaine in the city of Rotterdam is described. Multiple methods were used for the study, including analysis of street survey data (1998, 2000, 2003), qualitative and quantitative analysis of fieldwork data, and semi-open interviews with drug users and key informants. In 2000, 70% of the respondents to a street survey bought drugs from a mobile dealer. Qualitative data showed that the majority of mobile dealers have an ethnic Moroccan background; the reasons for this may include the ambiguous attitude of the Moroccan community towards drug crime, and repressive legislation causing the market to find alternatives for basic street dealing. The rise of mobile dealing is discussed as a form of reshaping of the drug market under prohibition.

  19. Planning perception and action for cognitive mobile manipulators

    NASA Astrophysics Data System (ADS)

    Gaschler, Andre; Nogina, Svetlana; Petrick, Ronald P. A.; Knoll, Alois

    2013-12-01

    We present a general approach to perception and manipulation planning for cognitive mobile manipulators. Rather than hard-coding single purpose robot applications, a robot should be able to reason about its basic skills in order to solve complex problems autonomously. Humans intuitively solve tasks in real-world scenarios by breaking down abstract problems into smaller sub-tasks and use heuristics based on their previous experience. We apply a similar idea for planning perception and manipulation to cognitive mobile robots. Our approach is based on contingent planning and run-time sensing, integrated in our knowledge of volumes" planning framework, called KVP. Using the general-purpose PKS planner, we model information-gathering actions at plan time that have multiple possible outcomes at run time. As a result, perception and sensing arise as necessary preconditions for manipulation, rather than being hard-coded as tasks themselves. We demonstrate the e ectiveness of our approach on two scenarios covering visual and force sensing on a real mobile manipulator.

  20. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  1. Laser Transformation Hardening of Firing Zone Cutout Cams.

    DTIC Science & Technology

    1981-06-01

    bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel

  2. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  3. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all

  4. Sharp and the Jules Verne Launcher

    NASA Astrophysics Data System (ADS)

    Hunter, John; Cartland, Harry

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) has built the worlds largest hydrogen gas gun called SHARP, (Super High Altitude Research Project). Originally designed to launch 5 kg to a 450 km altitude, SHARP is configured horizontally at Site 300 in Tracy, California. SHARP is successfully delivering 5 kg scramjets at Mach 9 in aerophysics tests. Some of the results of the scramjet tests are enlightening and are presented insofar as they are relevant to future launches into space. Using a light gas gun to launch payloads into orbit has been analyzed. We look at LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), and LO (Lunar Orbit). We present a conceptual design for a large light gas gun called the Jules Verne Launcher (JVL). The JVL can deliver 3.3 metric tons to a 500 km low earth orbit. We anticipate one launch per day. We present the history of light gas guns, the SHARP design and performance, and the JVL design. Another section is devoted to the vehicle environment and resultant design. Lastly, we present a cost analysis. Our results indicated that the JVL will be able to deliver 1000 metric tons of payload to LEO yearly. The cost will be 5% of the best US rocket delivery cost. This technology will enable the next phase of man's exploration of space.

  5. KSC-2009-2537

    NASA Image and Video Library

    2009-04-06

    CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-2538

    NASA Image and Video Library

    2009-04-06

    CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann

  7. Development of a CFRP Engine Thrust Frame for the Next Generation Launchers

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn; Cruijssen, Henk

    2012-07-01

    This paper addresses the activities related to the development of technologies for a composite Engine Thrust Frame (ETF) for the next generation launchers. In particular, the design and analyses of a full Carbon Fibre Reinforced Plastic (CFRP) engine thrust frame are presented in more detail. The ETF concept is composed of three main parts, i.e. an aluminium top-ring which connects the ETF to the upper-stage tank, a CFRP cone, and a CFRP cone-cap which connects the Vinci engine to the ETF. The main challenging requirements for development of a CFRP ETF are recalled. The ETF concept and its mechanical performances are assessed.

  8. Lock-and-key dimerization in dense Brownian systems of hard annular sector particles

    NASA Astrophysics Data System (ADS)

    Hodson, Wade D.; Mason, Thomas G.

    2016-08-01

    We develop a translational-rotational cage model that describes the behavior of dense two-dimensional (2D) Brownian systems of hard annular sector particles (ASPs), resembling C shapes. At high particle densities, pairs of ASPs can form mutually interdigitating lock-and-key dimers. This cage model considers either one or two mobile central ASPs which can translate and rotate within a static cage of surrounding ASPs that mimics the system's average local structure and density. By comparing with recent measurements made on dispersions of microscale lithographic ASPs [P. Y. Wang and T. G. Mason, J. Am. Chem. Soc. 137, 15308 (2015), 10.1021/jacs.5b10549], we show that mobile two-particle predictions of the probability of dimerization Pdimer, equilibrium constant K , and 2D osmotic pressure Π2 D as a function of the particle area fraction ϕA correspond closely to these experiments. By contrast, predictions based on only a single mobile particle do not agree well with either the two-particle predictions or the experimental data. Thus, we show that collective entropy can play an essential role in the behavior of dense Brownian systems composed of nontrivial hard shapes, such as ASPs.

  9. Tactics of Interventions: Student Mobility and Human Capital Building in Singapore

    ERIC Educational Resources Information Center

    Koh, Aaron

    2012-01-01

    Hitherto, research on transnational higher education student mobility tended to narrowly present hard statistics on student mobility, analysing these in terms of "trends" and the implication this has on policy and internationalizing strategies. What is missing from this "big picture" is a close-up analysis of the micropolitics…

  10. Preliminary analysis of space mission applications for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  11. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered for an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  12. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team signed a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  13. On The Aerodynamic Heating Of Vega Launcher: Compressible Chimera Navier-Stokes Simulation With Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Di Mascio, A.; Zaghi, S.; Muscari, R.; Broglia, R.; Cavallini, E.; Favini, B.; Scaccia, A.

    2011-05-01

    The results of accurate compressible Navier-Stokes simulations of aerodynamic heating of the Vega launcher are presented. Three selected steady conditions of the Vega mission profile are considered: the first corresponding to the altitude of 18 km, the second to 25 km and the last to 33 km. The numerical code is based on the Favre- Average Navier-Stokes equations; the turbulent model chosen for closure is the one-equation model by Spalart- Allmaras. The equations are discretized by a finite volume approach, that can handle block-structured meshes with partial overlap (“Chimera” grid-overlapping technique). The isothermal boundary condition has been applied to the lancher wall. Particular care was devoted to the construction of the discrete model; indeed, the launcher is equipped with many protrusions and geometrical peculiarities (as antennas, raceways, inter-stage connection flanges and retrorockets) that are expected to affect considerably the local thermal flow-field and the level of heat fluxes, because the flow have to undergo strong variation in space; con- sequently, special attention was devoted to the definition of a tailored mesh, capable of catching local details of the aerothermal flow field (shocks, expansion fans, boundary layer, etc..). The computed results are reported together with uncertainty and actual convergence order, that were estimated by the standard procedures suggested by AIAA [Ame98].

  14. OMA analysis of a launcher under operational conditions with time-varying properties

    NASA Astrophysics Data System (ADS)

    Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.

    2018-05-01

    The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.

  15. Calibrating Accelerometers Using an Electromagnetic Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik Timpson

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering amore » desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less

  16. Commercial space development needs cheap launchers

    NASA Astrophysics Data System (ADS)

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  17. Slots in dielectric image line as mode launchers and circuit elements

    NASA Astrophysics Data System (ADS)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  18. KSC-2009-2539

    NASA Image and Video Library

    2009-04-06

    CAPE CANAVERAL, Fla. – Water cascades over the side of the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sound suppression system is being tested on the platform. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Dimitri Gerondidakis

  19. STS-29 Discovery, Orbiter Vehicle (OV) 103, roll out to KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the early morning hours, STS-29 Discovery, Orbiter Vehicle (OV) 103, mated to the external tank (ET) and solid rocket boosters (SRBs) is rolled out to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop the mobile launcher platform. Trees, shrubs, and a light mist surround the mobile launcher platform as it makes its way to LC Pad 39B. OV-103 will fly on Mission STS-29 scheduled for launch in mid-March. View provided by KSC with alternate KSC number KSC-89PC-50.

  20. KSC-02pd0398

    NASA Image and Video Library

    2002-04-04

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, an inspection team gathers at the foot of Mobile Launcher Platform where Space Shuttle Atlantis sits. Earlier today a leak in a ground support liquid hydrogen vent line on the south side of the Mobile Launcher Platform caused a scrub of the launch of Atlantis on mission STS-110. An engineering team is assessing the situation to determine the best method to repair the hydrogen line. The turnaround plan includes time to perfor weld repairs and return the vehicle to a timeline to resume the countdown

  1. KSC-02pd0396

    NASA Image and Video Library

    2002-04-04

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, workers on a crane inspect pipes on the Mobile Launcher Platform where Space Shuttle Atlantis sits. Earlier today a leak in a ground support liquid hydrogen vent line on the south side of the Mobile Launcher Platform caused a scrub of the launch of Atlantis on mission STS-110. An engineering team is assessing the situation to determine the best method to repair the hydrogen line. The turnaround plan includes time to perfor weld repairs and return the vehicle to a timeline to resume the countdown

  2. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-10

    A heavy-load transport truck carrying the Orion crew access arm passes the Vehicle Assembly Building on its way to the mobile launcher at NASA's Kennedy Space Center in Florida. The access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  3. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-10

    A heavy-load transport truck carrying the Orion crew access arm makes its way toward the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  4. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-10

    A heavy-load transport truck carrying the Orion crew access arm nears the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  5. KSC-08pd1246

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's Ares V rocket on the mobile launcher platform (left) and the Ares I rocket on the platform (right) with the space shuttle in between for comparison. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  6. KENNEDY SPACE CENTER, FLA. - Like candles embedded in a sculptured “cake,” the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it inches along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Like candles embedded in a sculptured “cake,” the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it inches along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  7. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi, E-mail: thfan@engr.uconn.edu; Tuinier, Remco

    2014-06-07

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamicsmore » as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.« less

  8. KSC-05PD-0633

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Space Shuttle Discovery lingers at the foot of Launch Pad 39B in the evening twilight. First motion from the Vehicle Assembly Building was at 2:04 p.m. EDT April 6, and the Shuttle was hard down on the pad at 1:16 a.m. EDT April 7. The Shuttle sits atop a Mobile Launcher Platform transported by a Crawler-Transporter underneath. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Photo courtesy of Scott Andrews.

  9. Was a Mobile Health Strategy One of Your New Year's Resolutions?

    PubMed

    Felkey, Bill G; Fox, Brent I

    2014-03-01

    Culture change is hard in any organization. However, it can often lead to positive results. We believe that the culture of health care needs to focus on how mobile health tools can assist in care provision in hospitals and health systems. In this installment, we explore some of the steps necessary to help move mobile health into the mainstream of health care.

  10. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. Patrick Simpkins, director of Engineering, speaks to the test team during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  11. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered with a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  12. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. One of the test team members signs a banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  13. A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher

    NASA Astrophysics Data System (ADS)

    Saad, Saad Michael

    1990-02-01

    An electromagnetic model is developed for the analysis of the coaxial-to-rectangular waveguide transition of the end-launcher type. The model describes the coupling mechanism in terms of an excitation probe which is fed by a transmission line intermediate section. The model is compared with a coupling loop model. The two models have a few analytical steps in common, but expressions for the probe model are easier to derive and compute. The two models are presented together with numerical examples and experimental verification. The superiority of the probe model is illustrated, and a design method yielding a maximum voltage standing wave ratio of 1.035 over 13 percent bandwidth is outlined.

  14. Driven tracer with absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2018-02-01

    Instances of negative mobility, where a system responds to a perturbation in a way opposite to naive expectation, have been studied theoretically and experimentally in numerous nonequilibrium systems. In this work we show that absolute negative mobility (ANM), whereby current is produced in a direction opposite to the drive, can occur around equilibrium states. This is demonstrated with a simple one-dimensional lattice model with a driven tracer. We derive analytical predictions in the linear response regime and elucidate the mechanism leading to ANM by studying the high-density limit. We also study numerically a model of hard Brownian disks in a narrow planar channel, for which the lattice model can be viewed as a toy model. We find that the model exhibits negative differential mobility (NDM), but no ANM.

  15. Performance and technical feasibility comparison of reusable launch systems: A synthesis of the ESA winged launcher studies

    NASA Astrophysics Data System (ADS)

    Berry, W.; Grallert, H.

    1996-02-01

    The paper presents a synthesis of the performance and technical feasibility assessment of 7 reusable launcher types, comprising 13 different vehicles, studied by European Industry for ESA in the ESA Winged Launcher Study in the period January 1988 to May 1994. The vehicles comprised single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) vehicles, propelled by either air-breathing/rocket propulsion or entirely by rocket propulsion. The results showed that an SSTO vehicle of the HOTOL-type, propelled by subsonic combustion air-breathing/rocket engines could barely deliver the specified payload mass and was aerodynamically unstable; that a TSTO vehicle of the Saenger type, employing subsonic combustion airbreathing propulsion in its first stage and rocket propulsion in its second stage, could readily deliver the specified payload mass and was found to be technically feasible and versatile; that an SSTO vehicle of the NASP type, propelled by supersonic combustion airbreathing/rocket propulsion was able to deliver a reduced payload mass, was very complex and required very advanced technologies; that an air-launched rocket propelled vehicle of the Interim HOTOL type, although technically feasible, could deliver only a reduced payload mass, being constrained by the lifting capability of the carrier airplane; that three different, entirely rocket-propelled vehicles could deliver the specified payload mass, were technically feasible but required relatively advanced technologies.

  16. MLP-1 on Crawler Transporter 2 (CT-2)

    NASA Image and Video Library

    2017-03-22

    NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, moves slowly along the crawlerway at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications will be monitored and tested under loaded conditions during its travel to the crawlerway Pad A/B split and back to the crawler yard to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.

  17. Basic Research Investigations into Multimode Laser and EM Launchers for Affordable, Rapid Access to Space (Volumes 1 and 2)

    DTIC Science & Technology

    2010-08-31

    The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids

  18. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  19. A small scale lunar launcher for early lunar material utilization

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kubby, J. A.; Dunbar, R. S.

    1981-01-01

    A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.

  20. Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher

    NASA Astrophysics Data System (ADS)

    Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory

    2004-08-01

    As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.

  1. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks

    PubMed Central

    Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-01-01

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452

  2. Specifications and implementation of the RT MHD control system for the EC launcher of FTU

    NASA Astrophysics Data System (ADS)

    Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.

    2012-09-01

    To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.

  3. Very High Specific Energy, Medium Power Li/CFx Primary Battery for Launchers and Space Probes

    NASA Astrophysics Data System (ADS)

    Brochard, Paul; Godillot, Gerome; Peres, Jean Paul; Corbin, Julien; Espinosa, Amaya

    2014-08-01

    Benchmark with existing technologies shows the advantages of the lithium-fluorinated carbon (Li/CFx) technology for use aboard future launchers in terms of a low Total Cost of Ownership (TCO), especially for high energy demanding missions such as re-ignitable upper stages for long GTO+ missions and probes for deep space exploration.This paper presents the new results obtained on this chemistry in terms of electrical and climatic performances, abuse tests and life tests. Studies - co-financed between CNES and Saft - looked at a pure CFx version with a specific energy up to 500 Wh/kg along with a medium power of 80 to 100 W/kg.

  4. Non-Gaussian effects, space-time decoupling, and mobility bifurcation in glassy hard-sphere fluids and suspensions.

    PubMed

    Saltzman, Erica J; Schweizer, Kenneth S

    2006-12-01

    Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the alpha relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time alpha relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.

  5. KSC-2010-1367

    NASA Image and Video Library

    2010-01-19

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, preparations are under way to install the ninth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, on the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. For information on the Constellation Program, visit http://www.nasa.gov/constellation. Photo credit: NASA/Jack Pfaller

  6. MLP-1 on Crawler Transporter 2 (CT-2)

    NASA Image and Video Library

    2017-03-22

    Ground support technicians walk alongside NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, as it slowly travels on the crawlerway at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications will be monitored and tested under loaded conditions during its travel to the crawlerway Pad A/B split and back to the crawler yard to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.

  7. MLP-1 on Crawler Transporter 2 (CT-2)

    NASA Image and Video Library

    2017-03-22

    NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, moves slowly along the crawlerway toward the Vehicle Assembly Building at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications were monitored and tested during a loaded test to the crawlerway Pad A/B split. CT-2 will return to the crawler yard. The crawler is being tested to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.

  8. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-10

    The Orion crew access arm is secured on a flatbed transporter for its move from a storage location at NASA's Kennedy Space Center in Florida to the mobile launcher (ML) tower near the Vehicle Assembly Building at the center. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  9. Estimation of Lightning Levels on a Launcher Using a BEM-Compressed Model

    NASA Astrophysics Data System (ADS)

    Silly, J.; Chaigne, B.; Aspas-Puertolas, J.; Herlem, Y.

    2016-05-01

    As development cycles in the space industry are being considerably reduced, it seems mandatory to deploy in parallel fast analysis methods for engineering purposes, but without sacrificing accuracy. In this paper we present the application of such methods to early Phase A-B [1] evaluation of lightning constraints on a launch vehicle.A complete 3D parametric model of a launcher has been thus developed and simulated with a Boundary Element Method (BEM)-frequency simulator (equipped with a low frequency algorithm). The time domain values of the observed currents and fields are obtained by post-treatment using an inverse discrete Fourier transform (IDFT).This model is used for lightning studies, especially the simulation are useful to analyse the influence of lightning injected currents on resulting circulated currents on external cable raceways. The description of the model and some of those results are presented in this article.

  10. On investigating social dynamics in tactical opportunistic mobile networks

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Li, Yong

    2014-06-01

    The efficiency of military mobile network operations at the tactical edge is challenging due to the practical Disconnected, Intermittent, and Limited (DIL) environments at the tactical edge which make it hard to maintain persistent end-to-end wireless network connectivity. Opportunistic mobile networks are hence devised to depict such tactical networking scenarios. Social relations among warfighters in tactical opportunistic mobile networks are implicitly represented by their opportunistic contacts via short-range radios, but were inappropriately considered as stationary over time by the conventional wisdom. In this paper, we develop analytical models to probabilistically investigate the temporal dynamics of this social relationship, which is critical to efficient mobile communication in the battlespace. We propose to formulate such dynamics by developing various sociological metrics, including centrality and community, with respect to the opportunistic mobile network contexts. These metrics investigate social dynamics based on the experimentally validated skewness of users' transient contact distributions over time.

  11. Do mobile family planning clinics facilitate vasectomy use in Nepal?

    PubMed

    Padmadas, Sabu S; Amoako Johnson, Fiifi; Leone, Tiziana; Dahal, Govinda P

    2014-06-01

    Nepal has a distinct topography that makes reproductive health and family planning services difficult to access, particularly in remote mountain and hill regions where over a quarter of modern contraceptive users rely exclusively on vasectomy. A three-level random intercept logistic regression analysis was applied on data from the 2011 Nepal Demographic and Health Survey to investigate the extent of influence of mobile family planning clinics on the odds of a male or a female sterilization, adjusting for relevant characteristics including ecological differences and random effects. The analyses included a sample of 2014 sterilization users, considering responses from currently married women of reproductive ages. The odds of a male sterilization were significantly higher in a mobile clinic than those in a government hospital (odds ratio, 1.65; 95% confidence interval, 1.21-2.25). The effects remained unaltered and statistically significant after adjusting for sociodemographic and clustering effects. Random effects were highly significant, which suggest the extent of heterogeneity in vasectomy use at the community and district levels. The odds of vasectomy use in mobile clinics were significantly higher among couples residing in hill and mountain regions and among those with three or more sons or those with only daughters. Mobile clinics significantly increase the uptake of vasectomy in hard-to-reach areas of Nepal. Reproductive health interventions should consider mobile clinics as an effective strategy to improve access to male-based modern methods and enhance gender equity in family planning. Family planning interventions in hard-to-reach communities could consider mobile clinic as an effective strategy to promote male-based modern methods. Improving access to vasectomy could substantially reduce unmet need for family planning in countries experiencing rapid fertility transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mobile Devices at School: Possibilities, Problems, and Tough Choices

    ERIC Educational Resources Information Center

    Adams, Dennis; Angeles, Rebecca

    2008-01-01

    This article takes a "point/counterpoint" approach to considering the educational use of mobile devices. It views the possibilities and problems surrounding the use of small laptops, cellphones, iPhones, etc. Although clear answers to questions regarding the classroom use of digital devices are hard to come by, the authors believe that educators…

  13. Dedicated outreach service for hard to reach patients with tuberculosis in London: observational study and economic evaluation.

    PubMed

    Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J; Abubakar, Ibrahim

    2011-09-14

    To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London's enhanced tuberculosis surveillance system. Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10,000/QALY gained (about €7300-€11,000 or $10,000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18,000-£26,000/QALY gained; case management support team, £4100-£6800/QALY gained). Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance.

  14. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating.

    PubMed

    Fonoberov, Vladimir A; Balandin, Alexander A

    2006-11-01

    We show theoretically that the low-field carrier mobility in silicon nanowires can be greatly enhanced by embedding the nanowires within a hard material such as diamond. The electron mobility in the cylindrical silicon nanowires with 4-nm diameter, which are coated with diamond, is 2 orders of magnitude higher at 10 K and a factor of 2 higher at room temperature than the mobility in a free-standing silicon nanowire. The importance of this result for the downscaled architectures and possible silicon-carbon nanoelectronic devices is augmented by an extra benefit of diamond, a superior heat conductor, for thermal management.

  15. Visible light emission measurements from a dense electrothermal launcher plasma

    NASA Astrophysics Data System (ADS)

    Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.

    1993-01-01

    Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.

  16. Muon Trigger for Mobile Phones

    NASA Astrophysics Data System (ADS)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  17. LH launcher Arcs Formation and Detection on JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranov, Yu. F.; Challis, C. D.; Kirov, K.

    2011-12-23

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distributionmore » function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.« less

  18. Nanolubrication: patterned lubricating films using ultraviolet (UV) irradiation on hard disks.

    PubMed

    Zhang, J; Hsu, S M; Liew, Y F

    2007-01-01

    Nanolubrication is emerging to be the key technical barrier in many devices. One of the key attributes for successful device lubrication is self-sustainability using only several molecular layers. For single molecular species lubrication, one desires bonding strength and molecular mobility to repair the contact by diffusing back to the contact. One way to achieve this is the use of mask to shield the surface with a patterned surface texture, put a monolayer on the surface and induce bonding. Then re-deposit mobile molecules on the surface to bring the thickness back to the desired thickness. This paper describes the use of long wavelength UV irradiation (320-390 nm) to induce bonding of a perfluoropolyether (PFPE) on CN(x) disks for magnetic hard disk application. This allows the use of irradiation to control the degree of bonding on CN(x) coatings. The effect of induced bonding based on this wavelength was studied by comparing 100% mobile PFPE, 100% bonded PFPE, and a mixture of mobile and bonded PFPE in a series of laboratory tests. Using a lateral force microscope, a diamond-tipped atomic force microscope, and a ball-on-inclined plane apparatus, the friction and wear characteristics of these three cases were obtained. Results suggested that the mixed PFPE has the highest shear rupture strength.

  19. Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling

    DTIC Science & Technology

    1993-05-01

    interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of

  20. ESC-B: The Cryogenic Upper Stage for Europe's Heavy Lift Launcher Ariane 5ECB

    NASA Astrophysics Data System (ADS)

    Juhls, A.

    2002-01-01

    -A. Juhls, Astrium GmbH -M. Lepelletier, Snecma Moteurs -JM. Bahu, CNES -C. Poincheval, CNES. In the year 1998 the European ministerial council decided to initiate the Ariane 5 Plus programme in order to upgrade the European heavy lift launcher Ariane 5. The market was changing more rapidly than predicted showing steadily growing satellite mass and the demand for flexible missions while strong competitors were intensifying their preparations to enter the commercial business. The answer was to improve the Ariane 5 launcher by modifying the cryogenic first (or lower ?) stage and the solid boosters and by introducing two cryogenic upper stages in two steps: In order to cope with the short term need of a significant growth of GTO lift capacity up to 10 t the first denoted ESC-A shall enter commercial service in 2002. Four years later a more powerful second version shall take over enabling a GTO performance of 12 t and providing versatile mission capability. The paper will focus on this new cryogenic upper stage denoted ESC-B giving first a general description of main characteristics and constituents. The article will highlight different challenging aspects of the ESC-B development: Ambitious economical conditions regarding both limited development budgets and the strong need to reduce production cost require improved working methods and an adjustment of the conventional development logic, in particular regarding new verification methods. Furthermore Europe is now facing the complex combination of versatile mission capability together with a powerful cryogenic upper stage. The paper will present the approach to define reasonable mission scenarios in order to cover customer demands while avoiding too stringent system requirements. Along with VINCI, Europe's first expander cycle type engine featuring an extendable nozzle dedicated subsystems will be described which allow 4 re-ignitions and 6 hours of ballistic flight. The paper concludes with the summary of the

  1. KSC-2014-2273

    NASA Image and Video Library

    2014-04-22

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Two large cranes are situated next to the ML for lifting of heavy metal beams and other construction materials. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Daniel Casper

  2. Workers Welding on ML

    NASA Image and Video Library

    2014-02-24

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker prepares a metal beam that will be attached to the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2014-2018

    NASA Image and Video Library

    2014-04-04

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker uses a measuring device on the surface of the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Cory Huston

  4. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-10

    A heavy-load transport truck carries the Orion crew access arm along the NASA Causeway east toward State Road 3 at NASA's Kennedy Space Center in Florida. The access arm will be moved to the mobile launcher (ML) near the Vehicle Assembly Building at the center. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.

  5. Double biprism arrays design using for stereo-photography of mobile phone camera

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin

    2016-11-01

    Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.

  6. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would

  7. Mobile clinics in Haiti, part 2: Lessons learned through service.

    PubMed

    Haley, Janice M; Cone, Pamela H

    2016-11-01

    Learning from experience is a positive approach when preparing for mobile clinic service in a developing country. Mobile clinics provide healthcare services to people in hard to reach areas around the world, but preparation for their use needs to be done in collaboration with local leaders and healthcare providers. For over 16 years, Azusa Pacific University School of Nursing has sponsored mobile clinics to rural northern Haiti with the aim to provide culturally sensitive healthcare in collaboration with Haitian leaders. Past Haiti mobile clinic experiences have informed the APU-SON approach on best practices in study abroad, service-learning, and mission trips providing healthcare services. Hopefully, lessons learned from these experiences with mobile clinic service-learning opportunities in Haiti will benefit others who seek to plan study abroad service-learning trips for students in healthcare majors who desire to serve the underserved around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. System issues and considerations associated with design of ground mobile strategic satellite communication terminals

    NASA Astrophysics Data System (ADS)

    Poliakon, J. A.

    The current national defense doctrine calls for increased use of ground mobile strategic satellite communication earth terminals. This paper discusses some of the key communication terminal system issues and considerations associated with the design of nuclear hardened strategic ground mobile earth terminals. It considers system requirements such as nuclear hardness, rapid mobility, low profile, signal interference resistance, high availability, and long term independent operation. It also discusses impacts and implications associated with these requirements when imposed on a satellite earth terminal. It gives special focus to the ramifications of imposing mobility on earth terminals and its relationship to the system design approach used to arrive at an optimal system solution.

  9. 78 FR 695 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Consideration for Purchase: 7 M142 High Mobility Artillery Rocket System (HIMARS) Launchers with the Universal... M68A2 Trainers, 1 Advanced Field Artillery Tactical Data System (AFATDS); 2 M1151A1 High Mobility..., transportation, wheeled vehicles, communications equipment, spare and repair parts, support equipment, tools and...

  10. Rockot - a new cost effective launcher for small satellites

    NASA Astrophysics Data System (ADS)

    Mosenkis, Regina

    1996-01-01

    Daimler-Benz Aerospace of Germany and the Russian Khrunichev State Research and Production Space Center have formed a jointly owned EUROCKOT Launch Services GmbH to offer worldwide cost effective launch services for the ROCKOT launch vehicle. ROCKOT, produced by Khrunichev, builder of the famous PROTON launcher, aims at the market of small and medium size satellites ranging from 300 to 1800 kg to be launched into low earth or sunsynchronous orbits. These comprize scientific, earth observation and polar meteorological satellites as well as the new generation of small communication satellites in low earth orbits, known as the ``Constellations''. ROCKOT is a three stage liquid propellant launch vehicle, composed of a former Russian SS 19 strategic missile, which has been withdrawn from military use, and a highly sophisticated, flight-proven upper stage named Breeze, which is particularly suited for a variety of civic and commercial space applications. Usable payload envelope has a length of 4.75 meters and a maximum diameter of 2.26 meters for accomodating the payload within the payload fairing. ROCKOT can also accomodate multiple payloads which can be deployed into the same or different orbits. So far ROCKOT has been successfully launched three times from Baikonur. The commercial launch services on ROCKOT from the Plesetsk launch site, Russia, will begin in 1997 and will be available worldwide at a highly competitive price.

  11. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  12. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M

    Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less

  13. Dedicated outreach service for hard to reach patients with tuberculosis in London: observational study and economic evaluation

    PubMed Central

    Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J

    2011-01-01

    Objective To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Design Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. Setting London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London’s enhanced tuberculosis surveillance system. Main outcome measures Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. Results The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10 000/QALY gained (about €7300-€11 000 or $10 000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18 000-£26 000/QALY gained; case management support team, £4100-£6800/QALY gained). Conclusions Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance. PMID:22067473

  14. Alternate approach for calculating hardness based on residual indentation depth: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Ananthakrishna, G.; K, Srikanth

    2018-03-01

    It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic

  15. Can Mobile Health Training Meet the Challenge of "Measuring Better"?

    ERIC Educational Resources Information Center

    Winters, Niall; Oliver, Martin; Langer, Laurenz

    2017-01-01

    Mobile learning has seen a large uptake in use in low- and middle-income countries. This is driven by rhetorics of easy scaling, reaching the hard-to-reach and the potential for generating analytics from the applications used by learners. Healthcare training has seen a proliferation of apps aimed at improving accountability through tracking and…

  16. Handheld Libraries 101: Using Mobile Technologies in the Academic Library

    ERIC Educational Resources Information Center

    Kosturski, Kate; Skornia, Frank

    2011-01-01

    The 2009 "Horizon Report" called mobile technologies "an opportunity for higher education to reach its constituents in new and compelling ways." The report implied that academic libraries would find them to be the ideal tools for bringing reluctant researchers to the library, mainly for their convenience. It's not hard to see why--in 2008, mobile…

  17. KSC-2014-2017

    NASA Image and Video Library

    2014-04-04

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A large crane is situated next to the ML for lifting of heavy metal beams and other construction materials. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Cory Huston

  18. ML Construction Progress

    NASA Image and Video Library

    2014-12-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Scaffolding, or work platforms, have been installed around the base of the tower on the ML to continue upgrades and modifications to the structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. The ML is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  19. ML Construction Progress

    NASA Image and Video Library

    2014-12-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is being used to move scaffolding, or work platforms, around the base of the tower on the ML to continue upgrades and modifications to the structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. The ML is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  20. Persistence, Privilege, and Parenting: The Comparative Study of Intergenerational Mobility

    ERIC Educational Resources Information Center

    Smeeding, Timothy M., Ed.; Erikson, Robert, Ed.; Jantti, Markus, Ed.

    2011-01-01

    Americans like to believe that theirs is the land of opportunity, but the hard facts are that children born into poor families in the United States tend to stay poor and children born into wealthy families generally stay rich. Other countries have shown more success at lessening the effects of inequality on mobility--possibly by making public…

  1. Design of a robust control law for the Vega launcher ballistic phase

    NASA Astrophysics Data System (ADS)

    Valli, Monica; Lavagna, Michèle R.; Panozzo, Thomas

    2012-02-01

    This work presents the design of a robust control law, and the related control system architecture, for the Vega launcher ballistic phase, taking into account the complete six degrees of freedom dynamics. To gain robustness a non-linear control approach has been preferred: more specifically the Lyapunov's second stability theorem has been exploited, being a very powerful tool to guarantee asymptotic stability of the controlled dynamics. The dynamics of Vega's actuators has also been taken into account. The system performance has been checked and analyzed by numerical simulations run on real mission data for different operational and configuration scenarios, and the effectiveness of the synthesized control highlighted: in particular scenarios including a wide range of composite's inertial configurations performing various typologies of maneuvers have been run. The robustness of the controlled dynamics has been validated by 100 cases Monte Carlo analysis campaign: the containment of the dispersion for the controlled variables - say the composite roll, yaw and pitch angles - confirmed the wide validity and generality of the proposed control law. This paper will show the theoretical approach and discuss the obtained results.

  2. Group Formation in Mobile Computer Supported Collaborative Learning Contexts: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Amara, Sofiane; Macedo, Joaquim; Bendella, Fatima; Santos, Alexandre

    2016-01-01

    Learners are becoming increasingly divers. They may have much personal, social, cultural, psychological, and cognitive diversity. Forming suitable learning groups represents, therefore, a hard and time-consuming task. In Mobile Computer Supported Collaborative Learning (MCSCL) environments, this task is more difficult. Instructors need to consider…

  3. Launcher Roadmap for the CrVI Substitution of Surface Treatments. Screening of Trivalent-Chromium Conversion Solutions and First Promising Results for Repair Applications on Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Debout, Vincent; Pettier, Sophie

    2014-06-01

    Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.

  4. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions.

    PubMed

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between "hard" and "rigid" and between "soft" and "flexible" in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations.

  5. Mobile Phone Application Development for the Classroom

    NASA Astrophysics Data System (ADS)

    Lewis, P.; Oostra, D.; Crecelius, S.; Chambers, L. H.

    2012-08-01

    With smartphone sales currently surpassing laptop sales, it is hard not to think that these devices will have a place in the classroom. More specifically, with little to no monetary investment, classroom-centric mobile applications have the ability to suit the needs of teachers. Previously, programming such an item was a daunting task to the classroom teacher. But now, through the use of online visual tools, anyone has the ability to generate a mobile application to suit individual classroom needs. The "MY NASA DATA" (MND) project has begun work on such an application. Using online tools that are directed at the non-programmer, the team has developed two usable mobile applications ("apps") that fit right into the science classroom. The two apps generated include a cloud dichotomous key for cloud identification in the field, and an atmospheric science glossary to help with standardized testing key vocabulary and classroom assignments. Through the use of free online tools, teachers and students now have the ability to customize mobile applications to meet their individual needs. As an extension of the mobile applications, the MND team is planning web-based application programming interfaces (API's) that will be generated from data that is currently included in the MND Live Access Server. This will allow teachers and students to choose data sets that they want to include in the mobile application without having to populate the API themselves. Through the use of easy to understand online mobile app tutorials and MND data sets, teachers will have the ability to generate unit-specific mobile applications to further engage and empower students in the science classroom.

  6. Flow experience and the mobilization of attentional resources.

    PubMed

    de Sampaio Barros, Marcelo Felipe; Araújo-Moreira, Fernando M; Trevelin, Luis Carlos; Radel, Rémi

    2018-05-07

    The present study attempts to better identify the neurophysiological changes occurring during flow experience and how this can be related to the mobilization of attentional resources. Self-reports of flow (using a flow feelings scale) and attention (using thought probes), autonomic activity (heart rate, heart rate variability, and breathing rate), and cerebral oxygenation (using near-infrared spectroscopy) in two regions of the frontoparietal attention network (right lateral frontal cortex and right inferior parietal lobe) were measured during the practice of two simple video games (Tetris and Pong) played at different difficulty conditions (easy, optimal, hard, or self-selected). Our results indicated that an optimal level of difficulty, compared with an easy or hard level of difficulty led to greater flow feelings and a higher concentration of oxygenated hemoglobin in the regions of the frontoparietal network. The self-selected, named autonomy condition did not lead to more flow feelings than the optimal condition; however, the autonomy condition led to greater sympathetic activity (reduced heart rate variability and greater breathing rate) and higher activation of the frontoparietal regions. Our study suggests that flow feelings are highly connected to the mobilization of attentional resources, and all the more in a condition that promotes individuals' choice and autonomy.

  7. Judging hardness of an object from the sounds of tapping created by a white cane.

    PubMed

    Nunokawa, K; Seki, Y; Ino, S; Doi, K

    2014-01-01

    The white cane plays a vital role in the independent mobility support of the visually impaired. Allowing the recognition of target attributes through the contact of a white cane is an important function. We have conducted research to obtain fundamental knowledge concerning the exploration methods used to perceive the hardness of an object through contact with a white cane. This research has allowed us to examine methods that enhance accuracy in the perception of objects as well as the materials and structures of a white cane. Previous research suggest considering the roles of both auditory and tactile information from the white cane in determining objects' hardness is necessary. This experimental study examined the ability of people to perceive the hardness of an object solely through the tapping sounds of a white cane (i.e., auditory information) using a method of magnitude estimation. Two types of sounds were used to estimate hardness: 1) the playback of recorded tapping sounds and 2) the sounds produced on-site by tapping. Three types of handgrips were used to create different sounds of tapping on an object with a cane. The participants of this experiment were five sighted university students wearing eye masks and two totally blind students who walk independently with a white cane. The results showed that both sighted university students and totally blind participants were able to accurately judge the hardness of an object solely by using auditory information from a white cane. For the blind participants, different handgrips significantly influenced the accuracy of their estimation of an object's hardness.

  8. Reviews Book: Enjoyable Physics Equipment: SEP Colorimeter Box Book: Pursuing Power and Light Equipment: SEP Bottle Rocket Launcher Equipment: Sciencescope GLE Datalogger Equipment: EDU Logger Book: Physics of Sailing Book: The Lightness of Being Software: Logotron Insight iLog Studio iPhone Apps Lecture: 2010 IOP Schools and Colleges Lecture Web Watch

    NASA Astrophysics Data System (ADS)

    2010-09-01

    WE RECOMMEND Enjoyable Physics Mechanics book makes learning more fun SEP Colorimeter Box A useful and inexpensive colorimeter for the classroom Pursuing Power and Light Account of the development of science in the 19th centuary SEP Bottle Rocket Launcher An excellent resource for teaching about projectiles GLE Datalogger GPS software is combined with a datalogger EDU Logger Remote datalogger has greater sensing abilities Logotron Insight iLog Studio Software enables datlogging, data analysis and modelling iPhone Apps Mobile phone games aid study of gravity WORTH A LOOK Physics of Sailing Book journeys through the importance of physics in sailing The Lightness of Being Study of what the world is made from LECTURE The 2010 IOP Schools and Colleges Lecture presents the physics of fusion WEB WATCH Planet Scicast pushes boundaries of pupil creativity

  9. Enhanced hypervelocity launcher: Capabilities to 16 km/s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabildas, L.C.; Kmetyk, L.N.; Reinhart, W.D.

    1993-12-31

    A systematic study is described which has led to the successful launch of thin flier plates to velocities of 16 km/s. The energy required to launch a flier plant to 16 km/s is approximately 10 to 15 times the energy required to melt and vaporize the plate. The energy must, therefore, be deposited in a well-controlled manner to prevent melt or vaporation. This is achieved by using a graded-density assembly to impact a stationary flier-plate upon impact time dependent, structure, high pressure pulses are generated and used to propel the plantes plates to hypervelocities without melt or fracture. In previousmore » studies, a graded density impact of 7.3 km/s was used to launch a 0.5 mm thick plate to a velocity of over 12 km/s. If impact techniques alone were to be used to achieve flier-plate velocities approaching 16 km/s, this would require that the graded-density impact occur at {approximately} 10 km/s. In this paper, we describe a new technique that has been implemented to enhance the performance of the Sandia hypervelocity launcher. This technique of creating an impact-generated acceleration reservoir, has allowed the launch of 0.5 mm to 1.0 mm thick plates to record velocities up to 15.8 km/s. In these experiments, both titanium (Ti-6A1-4V) and aluminum (6061-T6) alloy were used for the flier-plate material. These are the highest metallic projectile plate velocities ever achieved for masses in the range of 0.1 g to 1 g.« less

  10. Active case-finding for tuberculosis by mobile teams in Myanmar: yield and treatment outcomes.

    PubMed

    Myint, Ohnmar; Saw, Saw; Isaakidis, Petros; Khogali, Mohammed; Reid, Anthony; Hoa, Nguyen Binh; Kyaw, Thi Thi; Zaw, Ko Ko; Khaing, Tin Mi Mi; Aung, Si Thu

    2017-06-02

    Since 2005, the Myanmar National Tuberculosis Programme (NTP) has been implementing active case finding (ACF) activities involving mobile teams in hard-to-reach areas. This study revealed the contribution of mobile team activities to total tuberculosis (TB) case detection, characteristics of TB patients detected by mobile teams and their treatment outcomes. This was a descriptive study using routine programme data between October 2014 and December 2014. Mobile team activities were a one-stop service and included portable digital chest radiography (CXR) and microscopy of two sputum samples. The algorithm of the case detection included screening patients by symptoms, then by CXR followed by sputum microscopy for confirmation. Diagnosed patients were started on treatment and followed until a final outcome was ascertained. A total of 9 349 people with symptoms suggestive of TB were screened by CXR, with an uptake of 96.6%. Of those who were meant to undergo sputum smear microscopy, 51.4% had sputum examinations. Finally, 504 TB patients were identified by the mobile teams and the overall contribution to total TB case detection in the respective townships was 25.3%. Among total cases examined by microscopy, 6.4% were sputum smear positive TB. Treatment success rate was high as 91.8% in study townships compared to national rate 85% (2014 cohort). This study confirmed the feasibility and acceptability of ACF by mobile teams in hard-to-reach contexts, especially when equipped with portable, digital CXR machines that provided immediate results. However, the follow-up process of sputum examination created a significant barrier to confirmation of the diagnosis. In order to optimize the ACF through mobile team activity, future ACF activities were needed to be strengthened one stop service including molecular diagnostics or provision of sputum cups to all presumptive TB cases prior to CXR and testing if CXR suggestive of TB.

  11. KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

  12. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  13. KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  14. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  15. KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  16. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  17. Comparative study of mobile Raman instrumentation for art analysis.

    PubMed

    Vandenabeele, P; Castro, K; Hargreaves, M; Moens, L; Madariaga, J M; Edwards, H G M

    2007-04-04

    In archaeometry, one of the main concerns is to extract information from an art object, without damaging it. Raman spectroscopy is being applied in this research field with recent developments in mobile instrumentation facilitating more routine analysis. This research paper evaluates the performances of five mobile Raman instruments (Renishaw RA100, Renishaw Portable Raman Analyser RX210, Ocean Optics RSL-1, Delta Nu Inspector Raman, Mobile Art Analyser--MArtA) in three different laboratories. A set of samples were collected, in order to obtain information on the spectral performances of the instruments including: spectral resolution, calibration, laser cut-off, the ability to record spectra of organic and inorganic pigments through varnish layers and on the possibilities to identify biomaterials. Spectra were recorded from predefined regions on a canvas painting to simulate the investigation of artworks and the capabilities to record spectra from hardly accessible areas was evaluated.

  18. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  19. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  20. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  1. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  2. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  3. Large Spun Formed Friction-Stir Welded Tank Domes for Liquid Propellant Tanks Made from AA2195: A Technology Demonstration for the Next Generation of Heavy Lift Launchers

    NASA Technical Reports Server (NTRS)

    Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.

    2010-01-01

    Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.

  4. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  5. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  6. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  7. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  8. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  9. 8. 320 FOOT LEVEL, SWING ARM NINE SHOWING BACK SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. 320 FOOT LEVEL, SWING ARM NINE SHOWING BACK SIDE OF ENVIRONMENTAL CHAMBER (WHITE ROOM). WHITE ROOM MADE CONNECTION WITH CAPSULE ON LAUNCH VEHICLE. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  10. Cryogenic pellet launcher adapted for controlling of tokamak plasma edge instabilities.

    PubMed

    Lang, P T; Cierpka, P; Harhausen, J; Neuhauser, J; Wittmann, C; Gál, K; Kálvin, S; Kocsis, G; Sárközi, J; Szepesi, T; Dorner, C; Kauke, G

    2007-02-01

    One of the main challenges posed recently on pellet launcher systems in fusion-oriented plasma physics is the control of the plasma edge region. Strong energy bursts ejected from the plasma due to edge localized modes (ELMs) can form a severe threat for in-vessel components but can be mitigated by sufficiently frequent triggering of the underlying instabilities using hydrogen isotope pellet injection. However, pellet injection systems developed mainly for the task of ELM control, keeping the unwanted pellet fueling minimized, are still missing. Here, we report on a novel system developed under the premise of its suitability for control and mitigation of plasma edge instabilities. The system is based on the blower gun principle and is capable of combining high repetition rates up to 143 Hz with low pellet velocities. Thus, the flexibility of the accessible injection geometry can be maximized and the pellet size kept low. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. This article reports on the design of the new system, its main operational characteristics as determined in extensive test bed runs, and also its first test at the tokamak experiment ASDEX Upgrade.

  11. The design of a light aircraft automated dropsonde launcher

    NASA Astrophysics Data System (ADS)

    Pasken, Gregory R.

    The use of the National Center for Atmospheric Research's dropsonde system is currently limited to large NASA, NSF and NOAA operated research aircraft, which are expensive to fly and are over-subscribed. Designing a new dropsonde system for a smaller, less expensive to operate light aircraft will make the dropsonde system available to a much wider research community. To test this concept, a dropsonde launch system designed to fit in the cargo door of a twin engine Piper Seminole is developed and tested. Although the launch system for the light aircraft dropsonde launcher has gone through many designs, a prototype is built and tested from the final design using Tetra for the computation fluid dynamics and stress testing, as Tetra has material properties for solids as well as fluids. The design is further tested in the wind tunnel. These tests show that the new design is a viable alternative for light aircraft, thus allowing dropsondes to be more widely used. The results of the ABAQUS, SC Tetra simulations, and the wind tunnel results of the final design are covered and discussed. The settings used for the ABAQUS and SC Tetra simulations are described in detail. ABAQUS simulations are conducted to perform stress testing and SC Tetra is used for CFD simulations. The SC Tetra simulations provide a more comprehensive picture of the design, as SC Tetra is able to perform the stress testing, as well as pressure testing, allowing for more accurate results. The limitations of ABAQUS simulations require numerous assumptions for loading that may or may not be realistic.

  12. Mobile-PKI Service Model for Ubiquitous Environment

    NASA Astrophysics Data System (ADS)

    Jeun, Inkyung; Chun, Kilsoo

    One of the most important things in PKI(Public Key Infrastructure) is the private key management issue. The private key must be deal with safely for secure PKI service. Even though PKI service is usually used for identification and authentication of user in e-commerce, PKI service has many inconvenient factors. Especially, the fact that storage media of private key for PKI service is limited to PC hard disk drive or smart card users must always carry, gives an inconvenience to user and is not suitable in ubiquitous network. This paper suggests the digital signature service using a mobile phone(m-PKI service) which is suitable in future network. A mobile phone is the most widely used for personal communication means and has a characteristic of high movability. We can use the PKI service anytime and anywhere using m-PKI.

  13. Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher

    NASA Astrophysics Data System (ADS)

    Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.

    2017-01-01

    The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 15 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photon Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single laser system sampled at 40 GS/s with a 13 GHz detector/scope bandwidth is limited to 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s with the same bandwidth and sampling rate. The two-laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These internal ballistics trajectories are used to compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.

  14. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats.

    PubMed

    Beisiegel, Kolja; Darr, Alexander; Gogina, Mayya; Zettler, Michael L

    2017-08-15

    Hard-bottom habitats with complex topography and fragile epibenthic communities are still not adequately considered in benthic monitoring programs, despite their potential ecological importance. While indicators of ecosystem health are defined by major EU directives, methods commonly used to measure them are deficient in quantification of biota on hard surfaces. We address the suitability of seafloor imaging for monitoring activities. We compared the ability of high-resolution imagery and physical sampling methods (grab, dredge, SCUBA-diving) to detect taxonomic and functional components of epibenthos. Results reveal that (1) with minimal habitat disturbance on large spatial scales, imagery provides valuable, cost-effective assessment of rocky reef habitat features and community structure, (2) despite poor taxonomic resolution, image-derived data for habitat-forming taxa might be sufficient to infer richness of small sessile and mobile fauna, (3) physical collections are necessary to develop a robust record of species richness, including species-level taxonomic identifications, and to establish a baseline. Copyright © 2017. Published by Elsevier Ltd.

  15. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  16. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  17. Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe

    2013-01-01

    The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772

  18. A Mobile Aviary Design to Allow the Soft Release of Cavity Nesting Birds

    Treesearch

    Kathleen E. Franzreb

    1997-01-01

    Translocation of endangered red-cockaded woodpeckers (Picoides boreal is) has been an important component in restoration efforts to establish new populations and enlarge small populations. These efforts-relying on a "hard release" approach whereby the bird is captured, moved, and immediately released at the new site-have met with mixed results. A mobile...

  19. An Ergonomic Evaluation of the Extravehicular Mobility Unit (EMU) Space Suit Hard Upper Torso (HUT) Size Effect on Metabolic, Mobility, and Strength Performance

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Harvill, Lauren; England, Scott; Young, Karen; Norcross, Jason; Rajulu, Sudhakar

    2014-01-01

    The objective of this project was to assess the performance differences between a nominally sized Extravehicular Mobility Unit (EMU) space suit and a nominal +1 (plus) sized EMU. Method: This study evaluated suit size conditions by using metabolic cost, arm mobility, and arm strength as performance metrics. Results: Differences between the suit sizes were found only in shoulder extension strength being 15.8% greater for the plus size. Discussion: While this study was able to identify motions and activities that were considered to be practically or statistically different, it does not signify that use of a plus sized suit should be prohibited. Further testing would be required that either pertained to a particular mission critical task or better simulates a microgravity environment that the EMU suit was designed to work in.

  20. Research in the Hard Sciences, and in Very Hard "Softer" Domains

    ERIC Educational Resources Information Center

    Phillips, D. C.

    2014-01-01

    The author of this commentary argues that physical scientists are attempting to advance knowledge in the so-called hard sciences, whereas education researchers are laboring to increase knowledge and understanding in an "extremely hard" but softer domain. Drawing on the work of Popper and Dewey, this commentary highlights the relative…

  1. [Spanish adaptation of the "Mobile Phone Problem Use Scale" for adolescent population].

    PubMed

    López-Fernández, Olatz; Honrubia-Serrano, Ma Luisa; Freixa-Blanxart, Montserrat

    2012-01-01

    Problematic use of the mobile telephone is an emerging phenomenon in our society, and one which particularly affects the teenage population. Knowledge from research on the problematic use of this technology is necessary, since such use can give rise to a behavioural pattern with addictive characteristics. There are hardly any scales for measuring possible problematic use of mobile phones, and none at all adapted exclusively for the Spanish adolescent population. The scale most widely used internationally is the Mobile Phone Problem Use Scale (MPPUS). The aim of the present study is to adapt the MPPUS for use with Spanish adolescents. The Spanish version of the questionnaire was administered to a sample of 1132 adolescents aged 12 to 18. Reliability and factorial validity were comparable to those obtained in adult population, so that the measure of problematic mobile phone use in Spanish teenagers is one-dimensional. A prevalence of 14.8% of problematic users was detected.

  2. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  3. Retrieval of charge mobility from apparent charge packet movements in LDPE thin films

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2017-03-01

    The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.

  4. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. In view is the mobile launcher. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  5. KSC-2014-2413

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A large crane is situated next to the ML for lifting of heavy metal beams and other construction materials. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  6. KSC-2014-3379

    NASA Image and Video Library

    2014-08-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2014-3378

    NASA Image and Video Library

    2014-08-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  8. Water resources of the Mobile area, Alabama, with a section on salinity of the Mobile River

    USGS Publications Warehouse

    Robinson, W.H.; Powell, William J.; Brown, Eugene; Corps of Engineers, U.S. Army

    1956-01-01

    Water is an abundant resource of the Mobile area. The Mobile River has an estimated average flow of 60, 000 cubic feet per second (cfs), or about 39,000 million gallons per day (mgd). It is the largest single source of water. Water is available in substantial quantities from the many local streams and extensive water-bearing formations almost anywhere in the area. Surface water is low in dissolved mineral matter and is extremely soft. Salt water moving up the Mobile River from Mobile Bay during periods of low river flow, however, limits the use of that stream as a source of supply. The principal water-bearing formations are the alluvium and sediments of Miocene age. The Miocene strata dip toward the southwest, forming an artesian basin in the downtown area of Mobile. Small groundwater supplies can be developed practically everywhere, and supplies for industrial or other large-scale uses are available north of Mobile. The average use of water from all sources in the area during 1954 was about 356 mgd, of which about 20 mgd was used for domestic supplies and 336 mgd was used by industry. An estimated 42 mgd of ground water is used in the Mobile area. The discharge from wells used by industry ranges from 10 to 1,500 gallons per minute (gpm}, and the specific capacity of the large-capacity wells ranges from less than 6 to about 6 3 gpm per foot of drawdown. Concentrated pumping in the downtown area of Mobile between 1941 and 1945 resulted in encroachment of salt water from the Mobile River into the alluvium. Because of a decrease in pumping in that vicinity, the sodium chloride content of the water has decreased substantially since 1945. The quality of ground water is variable. Hardness of waters sampled ranged from 1 to 2, 190 parts per million (ppm}, the dissolved solids from 27 to 13, 000 ppm, and the chloride from 2.2 to 6,760 ppm. The water of best quality occurs between McIntosh and Prichard, and the water of poorest quality occurs in the downtown area of Mobile

  9. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  10. Mobile clinics in Haiti, part 1: Preparing for service-learning.

    PubMed

    Cone, Pamela H; Haley, Janice M

    2016-11-01

    Mobile clinics have been used successfully to provide healthcare services to people in hard to reach areas around the world, but their use is sometimes controversial. There are advantages to using mobile clinics among rural underserved populations, and providing access to those who are vulnerable will improve health and decrease morbidity and mortality. However, some teams use inappropriate approaches to international service. For over 15 years, Azusa Pacific University School of Nursing has sponsored mobile clinics to rural northern Haiti with the aim to provide culturally sensitive healthcare in collaboration with Haitian leaders. Experience and exploring the literature have informed the APU-SoN approach on best practices for planning and preparing study abroad, service-learning trips that provide healthcare services. The authors hope that this description of the preparation and planning needed for appropriate and culturally sensitive service-learning experiences abroad will benefit others who seek to provide healthcare study abroad opportunities around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Update on Progress of Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    NASA Technical Reports Server (NTRS)

    Newswander, Daniel; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2014-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, was introduced last August (2013) during Technical Session V: From Earth to Orbit of the 27th Annual AIAA/USU Conference on Small Satellites. Cyclops is a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense (DoD) Space Test Program (STP) communities to develop a dedicated 50-100 kg class ISS small satellite deployment system. This paper will address the progress of Cyclops through its fabrication, assembly, flight certification, and on-orbit demonstration phases. It will also go into more detail regarding its anatomy, its satellite deployment concept of operations, and its satellite interfaces and requirements. Cyclops is manifested to fly on Space-X 4 which is currently scheduled in July 2014 with its initial satellite deployment demonstration of DoD STP's SpinSat and UT/TAMU's Lonestar satellites being late summer or fall of 2014.

  12. Hard Water and Soft Soap: Dependence of Soap Performance on Water Hardness

    ERIC Educational Resources Information Center

    Osorio, Viktoria K. L.; de Oliveira, Wanda; El Seoud, Omar A.; Cotton, Wyatt; Easdon, Jerry

    2005-01-01

    The demonstration of the performance of soap in different aqueous solutions, which is due to water hardness and soap formulation, is described. The demonstrations use safe, inexpensive reagents and simple glassware and equipment, introduce important everyday topics, stimulates the students to consider the wider consequences of water hardness and…

  13. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    PubMed

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  14. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    retrieving polarization information from few of such spectroscopic instruments like RHESSI, INTEGRAL-IBIS, INTEGRAL-SPI. Cadmium Zinc Telluride Imager (CZTI) onboard Astrosat, India's first astronomical mission, is one of such instruments which is expected to provide sensitive polarization measurements for bright X-ray sources. CZTI consists of 64 CZT detector modules, each of which is 5 mm thick and 4 cm × 4 cm in size. Each CZT module is subdivided into 256 pixels with pixel pitch of 2.5 mm. Due to its pixelation nature and significant Compton scattering efficiency at energies beyond 100 keV, CZTI can work as a sensitive Compton polarimeter in hard X-rays. Detailed Geant-4 simulations and polarization experiments with the flight configuration of CZTI show that CZTI will have significant polarization measurement capability for bright sources in hard X-rays. CZTI is primarily a spectroscopic instrument with coded mask imaging. To properly utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix for CZTI, which in turn requires precise modelling of the CZT lines shapes for monoenergetic X-ray interaction. CZT detectors show an extended lower energy tail of an otherwise Gaussian line shape due to low mobility and lifetime of the charge carriers. On the other hand, interpixel charge sharing may also contribute to the lower energy tail making the line shape more complicated. We have developed a model to predict the line shapes from CZTI modules taking into account the mobility and lifetime of the charge carriers and charge sharing fractions. The model predicts the line shape quite well and can be used to generate pixel-wise response matrix for CZTI.

  15. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    PubMed

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from

  16. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  17. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  18. KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  19. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon) and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon) and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  20. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (framed between the boosters), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (framed between the boosters), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.