Science.gov

Sample records for hard superconducting nitrides

  1. The Hardest Superconducting Metal Nitride.

    PubMed

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  2. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  3. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  4. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  5. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  6. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  7. Super-Hard Superconductivity

    NASA Astrophysics Data System (ADS)

    Adams, Philip; Prozorov, Ruslan

    2005-03-01

    We present the magnetic response of Type-II superconductivity in the extreme pinning limit, where screening currents within an order of magnitude of the Ginzburg-Landau depairing critical current density develop upon the application of a magnetic field. We show that this ``super-hard'' limit is well approximated in highly disordered, cold drawn, Nb wire whose magnetization response is characterized by a cascade of Meissner-like phases, each terminated by a catastrophic collapse of the magnetization. Direct magneto-optic measurements of the flux penetration depth in the virgin magnetization branch are in excellent agreement with the exponential model in which Jc(B)=Jco(-B/Bo), where Jco˜5x10^6 A/cm^2 for Nb. The implications for the fundamental limiting hardness of a superconductor will be discussed.

  8. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  9. Tuning of superconducting niobium nitride terahertz metamaterials.

    PubMed

    Wu, Jingbo; Jin, Biaobing; Xue, Yuhua; Zhang, Caihong; Dai, Hao; Zhang, Labao; Cao, Chunhai; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2011-06-20

    Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f(g) = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f(g) to above it. We have found that, as the resonance frequency approaches f(g), the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

  10. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  11. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGES

    Zou, Yongtao; Li, Qiang; Qi, Xintong; ...

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  12. Discovery of superconductivity in hard hexagonal ε-NbN

    SciTech Connect

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Pinwen Zhu; Cui, Tian; Li, Bingbing; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  13. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    NASA Astrophysics Data System (ADS)

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  14. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  15. Chemical bonding in hard boron-nitride multilayers

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.

    1997-06-01

    The oxides and nitrides of boron show great potential for use as hard, wear resistant materials. However, large intrinsic stresses and poor adhesion often accompany the hard coatings as found for the cubic boron-nitride phase. These effects may be moderated for use of a layered structure. Alternate stiff layers of boron and compliant layers of nitride are formed by modulating the sputter gas composition during deposition of boron target. The B/BN thin films are characterized with transmission electronic microscope to evaluate the microstructure, nanoindentation to measure hardness and ex-ray absorption spectroscopy to determine chemical bonding. The effects of layer pair spacing on chemical bonding and hardness are evaluated for the B/BN films.

  16. Nitrogen concentration driving the hardness of rhenium nitrides

    PubMed Central

    Zhao, Zhonglong; Bao, Kuo; Li, Da; Duan, Defang; Tian, Fubo; Jin, Xilian; Chen, Changbo; Huang, Xiaoli; Liu, Bingbing; Cui, Tian

    2014-01-01

    The structures and properties of rhenium nitrides are studied with density function based first principle method. New candidate ground states or high-pressure phases at Re:N ratios of 3:2, 1:3, and 1:4 are identified via a series of evolutionary structure searches. We find that the 3D polyhedral stacking with strong covalent N-N and Re-N bonding could stabilize Re nitrides to form nitrogen rich phases, meanwhile, remarkably improve the mechanical performance than that of sub-nitrides, as Re3N, Re2N, and Re3N2. By evaluating the trends of the crystal configuration, electronic structure, elastic properties, and hardness as a function of the N concentration, we proves that the N content is the key factor affecting the metallicity and hardness of Re nitrides. PMID:24762713

  17. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  18. Improved superconducting qubit coherence using titanium nitride

    NASA Astrophysics Data System (ADS)

    Chang, Josephine B.; Vissers, Michael R.; Córcoles, Antonio D.; Sandberg, Martin; Gao, Jiansong; Abraham, David W.; Chow, Jerry M.; Gambetta, Jay M.; Beth Rothwell, Mary; Keefe, George A.; Steffen, Matthias; Pappas, David P.

    2013-07-01

    We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ˜60 μs, by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to qubits made with lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that surface losses from two-level system (TLS) defects residing at or near interfaces contribute to decoherence. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators, which is inconsistent with the predicted TLS model.

  19. Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons.

    SciTech Connect

    Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K.; Northern Illinois Univ.

    2007-10-15

    Superconducting niobium nitride wires and ribbons with transverse dimensions down to tens of nanometers were synthesized by annealing NbSe{sub 3} nanostructure precursors in flowing ammonia gas at temperatures up to 1000 C. Their critical temperatures increase with increasing annealing temperatures and reach 9-11.2 K when sintered at 950 C or above. X-ray diffraction analyses identified Nb{sub 4}N{sub 5} and Nb{sub 5}N{sub 6} phases, dominating at annealing temperatures below and above 950 C, respectively. Transport measurements show magnetoresistance oscillations at temperatures near the superconducting transition due to vortex-row confinement effects and voltage jumps in current-voltage characteristics at low temperatures attributed to hot-spot behavior.

  20. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  1. Low-loss terahertz metamaterial from superconducting niobium nitride films.

    PubMed

    Zhang, C H; Wu, J B; Jin, B B; Ji, Z M; Kang, L; Xu, W W; Chen, J; Tonouchi, M; Wu, P H

    2012-01-02

    This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

  2. Hard Superconducting Gap in InSb Nanowires.

    PubMed

    Gül, Önder; Zhang, Hao; de Vries, Folkert K; van Veen, Jasper; Zuo, Kun; Mourik, Vincent; Conesa-Boj, Sonia; Nowak, Michał P; van Woerkom, David J; Quintero-Pérez, Marina; Cassidy, Maja C; Geresdi, Attila; Koelling, Sebastian; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Kouwenhoven, Leo P

    2017-04-12

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

  3. Hard Superconducting Gap in InSb Nanowires

    PubMed Central

    2017-01-01

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation. PMID:28355877

  4. Hard Superconducting Gap in InSb Nanowires

    NASA Astrophysics Data System (ADS)

    Gül, Önder; Zhang, Hao; de Vries, Folkert K.; van Veen, Jasper; Zuo, Kun; Mourik, Vincent; Conesa-Boj, Sonia; Nowak, Michał P.; van Woerkom, David J.; Quintero-Pérez, Marina; Cassidy, Maja C.; Geresdi, Attila; Koelling, Sebastian; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.

    2017-04-01

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.

  5. Submicron cubic boron nitride as hard as diamond

    SciTech Connect

    Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei

    2015-03-23

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  6. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  7. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  8. NMR Chemical Shifts in Hard Carbon Nitride Compounds

    SciTech Connect

    Yoon, Y.; Yoon, Y.; Pfrommer, B.G.; Pfrommer, B.G.; Louie, S.G.; Louie, S.G.; Mauri, F.

    1998-04-01

    We show that NMR chemical shift spectroscopy could help to identify the crystalline phases of hard carbon nitride compounds. To this purpose we compute the NMR chemical shifts of defect zinc-blende, cubic, {alpha}{minus} , {beta}{minus} , and graphitic C{sub 3}N{sub 4} with a newly developed {ital ab initio} method. The C shifts can be used to identify the CN bonds and to characterize C hybridization. The N shifts distinguish the {alpha}-C{sub 3}N{sub 4} from the {beta}-C{sub 3}N{sub 4} phases, and indicate the presence of the graphitic phase. {copyright} {ital 1998} {ital The American Physical Society}

  9. Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Swenson, L. J.; Day, P. K.; Eom, B. H.; Leduc, H. G.; Llombart, N.; McKenney, C. M.; Noroozian, O.; Zmuidzinas, J.

    2013-03-01

    If driven sufficiently strongly, superconducting microresonators exhibit nonlinear behavior including response bifurcation. This behavior can arise from a variety of physical mechanisms including heating effects, grain boundaries or weak links, vortex penetration, or through the intrinsic nonlinearity of the kinetic inductance. Although microresonators used for photon detection are usually driven fairly hard in order to optimize their sensitivity, most experiments to date have not explored detector performance beyond the onset of bifurcation. Here, we present measurements of a lumped-element superconducting microresonator designed for use as a far-infrared detector and operated deep into the nonlinear regime. The 1 GHz resonator was fabricated from a 22 nm thick titanium nitride film with a critical temperature of 2 K and a normal-state resistivity of 100 μΩ cm. We measured the response of the device when illuminated with 6.4 pW optical loading using microwave readout powers that ranged from the low-power, linear regime to 18 dB beyond the onset of bifurcation. Over this entire range, the nonlinear behavior is well described by a nonlinear kinetic inductance. The best noise-equivalent power of 2×10-16 W/Hz1/2 at 10 Hz was measured at the highest readout power, and represents a ˜10 fold improvement compared with operating below the onset of bifurcation.

  10. Hard superconductivity of a soft metal in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ozer, M. M.; Thompson, J. R.; Weitering, H. H.

    2006-03-01

    Superconductivity is a collective quantum phenomenon that is inevitably suppressed in reduced dimensionality. Questions of how thin superconducting wires or films can be before losing their superconducting properties have important technological ramifications and go to the heart of understanding formation, coherence, and robustness of the superconducting state in quantum confined geometries. Here, we exploit quantum confinement of itinerant electrons in a soft metal (Pb), to stabilize atomically-flat superconductors with lateral dimensions of mm and vertical dimensions of only a few atomic layers. They show no indication of defect- or fluctuation- driven suppression of superconductivity and support macroscopic super-currents of up to ˜10% of the depairing current density. The hardness of the critical state can be attributed to the presence of intrinsic vortex traps that are stabilized by quantum confinement. The study presents a conceptually appealing picture of a model nano-scale superconductor with calculable critical state properties, suggesting the possibility of achieving and exploiting superconductivity in the ultimate low-dimensional limit.

  11. The influence of laser re-melting on microstructure and hardness of gas-nitrided steel

    NASA Astrophysics Data System (ADS)

    Panfil, Dominika; Wach, Piotr; Kulka, Michał; Michalski, Jerzy

    2016-12-01

    In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ɛ+γ' compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones

  12. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    SciTech Connect

    Baskaran, R. Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  13. Chromium nitride-silver self-lubricating nanoporous hard coatings

    NASA Astrophysics Data System (ADS)

    Mulligan Christopher P

    The focus of this thesis research is to explore a new approach to adaptive solid lubrication using nanoporous hard coatings. To investigate this approach, I deposited prototype coatings for study consisting of a hard chromium nitride (CrN) matrix co-deposited with a lubricious silver (Ag) phase by reactive magnetron co-sputtering. The idea is to exploit the relative immiscibility of the two phases to create nanocomposite structures with intrinsic lubricant transport properties enabled by the presence of the nanopores. Specifically, I develop the scientific understanding of the critical growth parameters that govern nanocomposite structural evolution which in turn control mechanical properties, solid lubricant diffusion, and tribological response. Mechanical properties were analyzed by both micro and nanoindentation measurements for the composites as a function of Ag aggregate morphology. For Ts ≤ 500°C, hardness as measured by nanoindentation into the surface is relatively uniform giving values of 14.6, 13.6, and 14.3 GPa for Ts = 300, 400, and 500°C respectively. For Ts > 500°C, the cross-sectional microhardness increases with T s from 16.5 to 19.7 to 24.3 GPa for Ts = 500, 600, and 700°C, respectively, which is attributed to a decrease in the effective Ag concentration associated with temperature activated segregation. The average hardness for pure CrN samples is 23.8 and 27.5 GPa as measured by surface nanoindentation and cross-sectional microindentation, respectively. Lubricant transport behavior was characterized by a series of vacuum annealing experiments. Vacuum annealing experiments at Ta = 425, 525, and 625°C show that Ag diffuses to the coating surface to form lubricious surface aggregates and that the rate for Ag lubricant transport increases with increasing DeltaT (Ta - Ts) for Ta > Ts, as determined by quantitative electron microscopy surface analyses. However, the Ag remains in the CrN matrix for Ta < Ts, which is attributed to the Ag aggregate

  14. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    NASA Astrophysics Data System (ADS)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  15. Magnetoresistance oscillations in superconducting granular niobium nitride nanowires.

    SciTech Connect

    Patel, U.; Xiao, Z. L.; Gurevich, A.; Avci, S.; Hua, J.; Divan, R.; Welp, U.; Kwok, W. K.; Northern Illinois Univ.; National High Magnetic Field Lab.

    2009-01-01

    We report on magnetoresistance oscillations in superconducting NbN{sub x} nanowires synthesized through ammonia gas annealing of NbSe{sub 3} precursor nanostructures. Even though the transverse dimensions of the nanowires are much larger than the superconducting coherence length, the voltage-current characteristics of these nanowires at low temperatures are reminiscent of one-dimensional superconductors where quantum phase slips are associated with the origin of dissipation. We show that both the magnetoresistance oscillations and voltage-current characteristics observed in this work result from the granular structure of our nanowires.

  16. The phase diagram and hardness of carbon nitrides

    SciTech Connect

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; Zhu, Qiang; Qian, Guang-Rui

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure (P6-bar m2) is dynamically unstable, and we find the lowest-energy structure based on s-triazine unit and s-heptazine unit.

  17. The phase diagram and hardness of carbon nitrides

    PubMed Central

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; Qian, Guang-Rui

    2015-01-01

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure () is dynamically unstable, and we find the lowest-energy structure based on s-triazine unit and s-heptazine unit. PMID:25943072

  18. The phase diagram and hardness of carbon nitrides

    DOE PAGES

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; ...

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure (P6-bar m2) is dynamically unstable, and we find the lowest-energy structuremore » based on s-triazine unit and s-heptazine unit.« less

  19. The phase diagram and hardness of carbon nitrides.

    PubMed

    Dong, Huafeng; Oganov, Artem R; Zhu, Qiang; Qian, Guang-Rui

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0-300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure () is dynamically unstable, and we find the lowest-energy structure based on s-triazine unit and s-heptazine unit.

  20. Superconducting tantalum nitride-based normal metal-insulator-superconductor tunnel junctions

    SciTech Connect

    Chaudhuri, S.; Maasilta, I. J.

    2014-03-24

    We report the development of superconducting tantalum nitride (TaN{sub x}) normal metal-insulator-superconductor (NIS) tunnel junctions. For the insulating barrier, we used both AlO{sub x} and TaO{sub x} (Cu-AlO{sub x}-Al-TaN{sub x} and Cu-TaO{sub x}-TaN{sub x}), with both devices exhibiting temperature dependent current-voltage characteristics which follow the simple one-particle tunneling model. The superconducting gap follows a BCS type temperature dependence, rendering these devices suitable for sensitive thermometry and bolometry from the superconducting transition temperature T{sub C} of the TaN{sub x} film at ∼5 K down to ∼0.5 K. Numerical simulations were also performed to predict how junction parameters should be tuned to achieve electronic cooling at temperatures above 1 K.

  1. Method of nitriding niobium to form a superconducting surface

    DOEpatents

    Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

    2014-08-19

    A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

  2. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    SciTech Connect

    Nagakubo, A.; Ogi, H. Hirao, M.; Sumiya, H.

    2014-08-25

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  3. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    SciTech Connect

    Bueno, J. Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  4. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    SciTech Connect

    Beebe, Melissa R. Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  5. Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides

    NASA Astrophysics Data System (ADS)

    Ding, Ying-Chun; Chen, Min

    2013-10-01

    In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress-strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt-Reuss-Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.

  6. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    SciTech Connect

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89K >= T-c >= 2.78 K. Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm(-1) (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature T-c, the pairing energy Delta, and the superfluid stiffness J, and the superfluid density n(s) can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  7. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    NASA Astrophysics Data System (ADS)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  8. Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings

    NASA Astrophysics Data System (ADS)

    Dubey, P.; Srivastava, S.; Chandra, R.; Ramana, C. V.

    2016-07-01

    An approach is presented to increase the toughness (KIC) while retaining high hardness (H) of Zr-W-N nanocrystalline coatings using energetic ions bombardment. Tuning KIC and H values was made possible by a careful control over the substrate bias, i.e., the kinetic energy (Uk˜9-99 J/cm3) of the bombarding ions, while keeping the deposition temperature relatively low (200 oC). Structural and mechanical characterization revealed a maximum wear resistance (H/Er˜0.23) and fracture toughness (KIC˜2.25 MPa √{ m } ) of ZrWN coatings at Uk˜72 J/cm3. A direct Uk-microstructure-KIC-H relationship suggests that tailoring mechanical properties for a given application is possible by tuning Uk and, hence, ZrWN-coatings' microstructure.

  9. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement.

    PubMed

    Khandaker, Morshed; Riahinezhad, Shahram; Li, Yanling; Vaughan, Melville B; Sultana, Fariha; Morris, Tracy L; Phinney, Lucas; Hossain, Khalid

    2016-11-25

    Titanium (Ti) alloys have been widely used in orthopedics and orthodontic surgeries as implants because of their beneficial chemical, mechanical, and biological properties. Improvement of these properties of a Ti alloy, Ti-6Al-4V Eli, is possible by the use of plasma nitriding treatment on the Ti alloy. The novelty of this study is the evaluation of a DC glow discharge nitrogen plasma treatment method on the surface, mechanical and biological properties of Ti alloy. Specifically, this study measured the chemical states, roughness, hardness, and biocompatibility of plasma nitride treated Ti-6Al-4V Eli as well as determined the effect of plasma treatment on the fracture strength between the Ti alloy and bone clement. This study hypothesized that DC glow discharge nitrogen plasma treatment may alter the surface chemical and mechanical states of the Ti alloy that may influence the fracture strength of implant/cement interfaces under static load. This study found that plasma nitride treatment on Ti alloy does not have effect on the roughness and biocompatibility (P value > 0.5), but significantly effect on the hardness and fracture strength of Ti-bone cement interfaces compared to those values of untreated Ti samples (P value < 0.5). Therefore, the DC glow discharge nitrogen plasma treated Ti alloy can potentially be used for orthopedic applications.

  10. Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying

    NASA Astrophysics Data System (ADS)

    Gu, Zhiqing; Huang, Haihua; Zhang, Sam; Wang, Xiaoyi; Gao, Jing; Zhao, Lei; Zheng, Weitao; Hu, Chaoquan

    2016-12-01

    It is found that incorporation of tantalum in a hafnium nitride film induces a tunable optical reflectivity and improves the hardness. The underlying mechanism can be illustrated by a combination of experiments and first-principles calculations. It is shown that the evolution of optical reflectivity and the increase in hardness arise from the formation of Hf1-xTaxN solid solutions and the resulting changes in the electronic structure. The increase in infrared reflectance originates from the increase in concentration of free electrons (n) because Ta (d3s2) has one more valence electron than Hf (d2s2). The sharp blue-shift in cutoff wavelength is attributed to the increase in n and the appearance of t2g → eg interband absorption. These results suggest that alloying of a second transition metal renders an effective avenue to improve simultaneously the optical and mechanical properties of transition metal nitride films. This opens up a door in preparing high-reflectance yet hard films.

  11. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    SciTech Connect

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  12. New multifunctional tungsten nitride with energetic N6 and extreme hardness predicted from first principles

    NASA Astrophysics Data System (ADS)

    Li, Qian; Sha, Lei; Zhu, Chunye; Yao, Yansun

    2017-05-01

    We report a new member to the family of tungsten nitrides, WN6, predicted from the structure search. Ground-state convex hull calculation reveals that crystalline WN6 is thermodynamically stable at pressures above 16 GPa, but remains dynamically stable at ambient conditions. The predicted high-pressure WN6 structure contains chaired \\text{cyclo-N}6{6-} rings isoelectronic to cyclo-hexasulfur (S6), which is unprecedented in nitrogen. In the \\text{cyclo-N}6{6-} unit all nitrogen atoms are singly bonded and therefore contain a high energy density. By means of efficiently packing the covalent-bonded species, WN6 is estimated to have extremely high Vickers hardness greater than 40 GPa at ambient conditions, placing it as one of the hardest materials. The present results reveal that WN6 may be used as a superhard material but simultaneously maintaining other desirable properties, which represents an interesting example of multifunctional materials.

  13. A study on the ESD damage of a silicon oxy-nitride hard mask on the chromium surface of PSM blank

    NASA Astrophysics Data System (ADS)

    Moon, Songbae; Kim, Heebom; Shin, Inkyun; Jeon, Chanuk

    2013-09-01

    A thin silicon oxy-nitride hard mask on the PSM blank is needed for the feature patterning with the size smaller than 70 nm. It is a good material for hard mask. However, the electrical property of silicon oxy-nitride with the thickness smaller than 10 nm causes the chromium surface damage during the mask processes. From the measurement of the surface damage, we figure out that the chromium surface damage is originated from the charging and the dielectric breakdown phenomena. In our present work, two types of silicon oxy-nitride film with the thicknesses of 5 nm and 12 nm are tested for verifying optimal mask fabrication processes. We find that the occurrence of ESD damage is related to the thickness of silicon oxy-nitride hard mask and mask fabrication process conditions. The optimal fabrication process condition for silicon oxy-nitride thin film hard mask, in which break-down never occurs, is discussed.

  14. Localization and pair breaking parameter in superconducting molybdenum nitride thin films.

    PubMed

    Tsuneoka, Takuya; Makise, Kazumasa; Maeda, Sho; Shinozaki, Bunju; Ichikawa, Fusao

    2017-01-11

    We have investigated the superconductor-insulator transition in molybdenum nitride films prepared by deposition onto MgO substrates. It is indicated that the T c depression from [Formula: see text] for thick films with increase of the normal state sheet resistance [Formula: see text] was well explained by the Finkel'stein formula from the localization theory. Present analysis suggests that the superconducting-insulator transition occurs at a critical sheet resistance [Formula: see text]. It is found that the [Formula: see text] above [Formula: see text] shows different characteristics of [Formula: see text] and [Formula: see text] in the regions [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] is the classical residual resistance and A is a constant. The excess conductance [Formula: see text] due to thermal fluctuation has been analyzed by the sum of the Aslamazov-Larkin and Maki-Thompson correction terms with use of the pair breaking parameter [Formula: see text] in the latter term. The sum agrees well with the data, although the experimental results of the [Formula: see text] dependence of [Formula: see text], that is, [Formula: see text] shows the disagreement with a linear relation [Formula: see text] derived from the localization theory.

  15. Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    NASA Astrophysics Data System (ADS)

    Vissers, Michael R.; Weides, Martin P.; Kline, Jeffrey S.; Sandberg, Martin; Pappas, David P.

    2012-07-01

    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al/TiN fraction in each element is increased, we find that at low electric field, i.e., in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray IR radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.

  16. Ultra-thin superconducting film coated silicon nitride nanowire resonators for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Sebastian, Abhilash; Zhelev, Nikolay; de Alba, Roberto; Parpia, Jeevak

    We demonstrate fabrication of high stress silicon nitride nanowire resonators with a thickness and width of less than 50 nm intended to be used as probes for the study of superfluid 3He. The resonators are fabricated as doubly-clamped wires/beams using a combination of electron-beam lithography and wet/dry etching techniques. We demonstrate the ability to suspend (over a trench of depth ~8 µm) wires with a cross section as small as 30 nm, covered with a 20 nm superconducting film, and having lengths up to 50 µm. Room temperature resonance measurements were carried out by driving the devices using a piezo stage and detecting the motion using an optical interferometer. The results show that metalizing nano-mechanical resonators not only affects their resonant frequencies but significantly reduce their quality factor (Q). The devices are parametrically pumped by modulating the system at twice its fundamental resonant frequency, which results in observed amplification of the signal. The wires show self-oscillation with increasing modulation strength. The fabricated nanowire resonators are intended to be immersed in the superfluid 3He. By tracking the resonant frequency and the Q of the various modes of the wire versus temperature, we aim to probe the superfluid gap structure.

  17. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂Pmore » = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  18. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material.

    PubMed

    Zou, Yongtao; Wang, Xuebing; Chen, Ting; Li, Xuefei; Qi, Xintong; Welch, David; Zhu, Pinwen; Liu, Bingbing; Cui, Tian; Li, Baosheng

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.

  19. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    SciTech Connect

    Zou, Y.; Wang, X.; Chen, T.; Li, X.; Qi, X; Welch, D.; Zhu, P.; Liu, B.; Cui, T.; Li, B.

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.

  20. Improvement in nano-hardness and corrosion resistance of low carbon steel by plasma nitriding with negative DC bias voltage

    NASA Astrophysics Data System (ADS)

    Alim, Mohamed Mounes; Saoula, Nadia; Tadjine, Rabah; Hadj-Larbi, Fayçal; Keffous, Aissa; Kechouane, Mohamed

    2016-10-01

    In this work, we study the effect of plasma nitriding on nano-hardness and corrosion resistance of low carbon steel samples. The plasma was generated through a radio-frequency inductively coupled plasma source. The substrate temperature increased (by the self-induced heating mechanism) with the treatment time for increasing negative bias voltages. X-rays diffraction analysis revealed the formation of nitride phases (ɛ-Fe2-3N and γ'-Fe4N) in the compound layer of the treated samples. A phase transition occurred from 3.5 kV to 4.0 kV and was accompanied by an increase in the volume fraction of the γ'-Fe4N phase and a decrease in that of the ɛ-Fe2-3N phase. Auger electron spectroscopy revealed a deep diffusion of the implanted nitrogen beyond 320 nm. The nano-hardness increased by ~400% for the nitrogen-implanted samples compared to the untreated state, the nitride phases are believed to participate to the hardening. Potentiodynamic polarization measurements revealed that the plasma nitriding has improved the corrosion resistance behavior of the material. When compared to the untreated state, the sample processed at 4.0 kV exhibits a shift of +500 mV and a reduction to 3% in its corrosion current. These results were obtained for relatively low bias voltages and short treatment time (2 h).

  1. Localization and pair breaking parameter in superconducting molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Tsuneoka, Takuya; Makise, Kazumasa; Maeda, Sho; Shinozaki, Bunju; Ichikawa, Fusao

    2017-01-01

    We have investigated the superconductor-insulator transition in molybdenum nitride films prepared by deposition onto MgO substrates. It is indicated that the T c depression from ≈ 6.6 \\text{K} for thick films with increase of the normal state sheet resistance R\\text{sq}\\text{N} was well explained by the Finkel’stein formula from the localization theory. Present analysis suggests that the superconducting-insulator transition occurs at a critical sheet resistance {{R}\\text{c}}≈ 2 \\text{k} Ω . It is found that the {{R}\\text{sq}}(T) above {{R}\\text{c}} shows different characteristics of {{R}\\text{sq}}(T)={{R}\\text{sq,0}}-A\\ln T and {{R}\\text{sq}}(T)\\propto \\exp ≤ft[{≤ft({{T}0}/T\\right)}1/2}\\right] in the regions {{R}\\text{c}}\\text{sq}\\text{N}<{{R}\\text{Q}}=h/4{{e}2}≈ 6.45 \\text{k} Ω and R\\text{sq}\\text{N}>{{R}\\text{Q}} , respectively, where {{R}\\text{sq,0}} is the classical residual resistance and A is a constant. The excess conductance {{σ\\prime}{}(T) due to thermal fluctuation has been analyzed by the sum of the Aslamazov-Larkin and Maki-Thompson correction terms with use of the pair breaking parameter δ in the latter term. The sum agrees well with the data, although the experimental results of the R\\text{sq}\\text{N} dependence of δ , that is, δ \\propto {{≤ft(R\\text{sq}\\text{N}\\right)}≈ 1.7} shows the disagreement with a linear relation δ \\propto ≤ft(R\\text{sq}\\text{N}\\right) derived from the localization theory.

  2. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically <10 nm) of two different materials (e.g. TiN and AlN) are deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of

  3. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    PubMed Central

    Zou, Yongtao; Wang, Xuebing; Chen, Ting; Li, Xuefei; Qi, Xintong; Welch, David; Zhu, Pinwen; Liu, Bingbing; Cui, Tian; Li, Baosheng

    2015-01-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions. PMID:26028439

  4. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    SciTech Connect

    van den Berg, M.; Chow, D.; Loshak, A.; Cunningham, M.F.; Barbee, T.W.; Matthias, F.; Labov, S.E.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.

  5. Nanoscale hardness and microfriction of titanium nitride films deposited from the reaction of tetrakis (dimethylamino) titanium with ammonia

    SciTech Connect

    Bae, Y.W.; Lee, W.Y.; Besmann, T.M.; Blau, P.J.

    1995-04-10

    Nanocrystalline titanium nitride films with very low carbon and oxygen content were deposited on single-crystal silicon substrates from the reaction of tetrakis (dimethylamino) titanium, Ti[(CH{sub 3}){sub 2}N]{sub 4}, with ammonia at 633 K and a pressure of 665 Pa. The film consisted of {similar_to}10 nm grains. The hardness of the film, measured by nanoindentation, was 12.7{plus_minus}0.6 GPa. The average kinetic friction coefficient, against type 440C stainless steel, was determined using a friction microprobe to be 0.43.

  6. Nanoscale hardness and microfriction of titanium nitride films deposited from the reaction of tetrakis (dimethylamino) titanium with ammonia

    NASA Astrophysics Data System (ADS)

    Bae, Y. W.; Lee, W. Y.; Besmann, T. M.; Blau, P. J.

    1995-04-01

    Nanocrystalline titanium nitride films with very low carbon and oxygen content were deposited on single-crystal silicon substrates from the reaction of tetrakis (dimethylamino) titanium, Ti[(CH3)2N]4, with ammonia at 633 K and a pressure of 665 Pa. The film consisted of ˜10 nm grains. The hardness of the film, measured by nanoindentation, was 12.7±0.6 GPa. The average kinetic friction coefficient, against type 440C stainless steel, was determined using a friction microprobe to be 0.43.

  7. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.

    PubMed

    Delacour, Cécile; Pannetier, Bernard; Villegier, Jean-Claude; Bouchiat, Vincent

    2012-07-11

    We present low-temperature electronic transport properties of superconducting nanowires obtained by nanolithography of 4-nm-thick niobium nitride (NbN) films epitaxially grown on sapphire substrate. Below 6 K, clear evidence of phase slippages is observed in the transport measurements. Upon lowering the temperature, we observe the signatures of a crossover between a thermal and a quantum behavior in the phase slip regimes. We find that phase slips are stable even at the lowest temperatures and that no hotspot is formed. The photoresponse of these nanowires is measured as a function of the light irradiation wavelength and temperature and exhibits a behavior comparable with previous results obtained on thicker films.

  8. Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDA + U technique

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, J. C.; Jiang, Q.

    2010-10-01

    The Phillips ionicity is modified, simulated and calculated for conductors. The results show that the percentage of metallic bonding in multiplex chemical bonds of transition metal (TM) carbides and nitrides is large; this affects the Phillips ionicity. The redefinition of Phillips ionicity has been applied to estimate the hardness of TM carbides and nitrides; the values obtained are in agreement with experimental and theoretical evidence. In addition, materials with the zinc blende structure are harder than those with rock salt structure.

  9. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  10. Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yemane, Y. T.; Sowa, M. J.; Zhang, J.; Ju, L.; Deguns, E. W.; Strandwitz, N. C.; Prinz, F. B.; Provine, J.

    2017-09-01

    NbTiN has a variety of superconducting applications, ranging from RF cavities to single-photon detectors. Here, we systematically investigated the plasma-enhanced atomic layer deposition (PEALD) of Nb x Ti{}1-x{{N}} with the organometallic precursors (t-butylimido) tris(diethyamido) niobium(V) and tetrakis (dimethylamido) titanium in conjunction with a remote H2/N2 plasma. Deposited film properties have been studied as a function of the ratio of Nb to Ti precursor pulses within each ALD supercycle. PEALD NbTiN films were characterized with spectroscopic ellipsometry (thickness, optical properties), four point probe (resistivity), x-ray photoelectron spectroscopy (composition), x-ray reflectivity (density and thickness), x-ray diffraction (crystallinity), and superconductivity measurements. The PEALD process has shown distinct advantages over deposition of superconducting films via thermal ALD or sputtering, for example a lower processing temperature and more efficient control of film composition. This control of film composition enabled the tuning of electrical and superconducting properties, such as varying the superconducting critical temperature T C between 6.9 and 13.2 K.

  11. In situ controlled growth of titanium nitride in amorphous silicon nitride: a general route toward bulk nitride nanocomposites with very high hardness.

    PubMed

    Bechelany, Mirna Chaker; Proust, Vanessa; Gervais, Christel; Ghisleni, Rudy; Bernard, Samuel; Miele, Philippe

    2014-10-01

    Bulk nanocomposites possessing very high hardness in which TiN nanocrystallites are homogeneously embedded in an amorphous Si3N4 matrix are produced from perhydropolysilazane and tetrakisdimethylaminotitanium. That is, a low-molecular-weight TiN molecule is mixed in controlled molar ratio with a polymeric Si3N4 precursor; further processing, including ammonolysis, warm pressing, and controlled nanocrystal growth, yields nanocomposites with the desired properties.

  12. The electron-phonon relaxation time in thin superconducting titanium nitride films

    SciTech Connect

    Kardakova, A.; Finkel, M.; Kovalyuk, V.; An, P.; Morozov, D.; Dunscombe, C.; Mauskopf, P.; Tarkhov, M.; Klapwijk, T. M.; Goltsman, G.

    2013-12-16

    We report on the direct measurement of the electron-phonon relaxation time, τ{sub eph}, in disordered TiN films. Measured values of τ{sub eph} are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T{sup −3} temperature dependence. The electronic density of states at the Fermi level N{sub 0} is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

  13. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  14. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations.

    PubMed

    Raza, Zamaan; Errea, Ion; Oganov, Artem R; Saitta, A Marco

    2014-07-30

    State of the art variable composition structure prediction based on density functional theory demonstrates that two new stoichiometries of PN, PN3 and PN2, become viable at high pressure. PN3 has a skutterudite-like Immm structure and is metastable with positive phonon frequencies at pressures between 10 and 100 GPa. PN3 is metallic and is the first reported nitrogen-based skutterudite. Its metallicity arises from nitrogen p-states which delocalise across N4 rings characteristic of skutterudites, and it becomes a good electron-phonon superconductor at 10 GPa, with a Tc of around 18 K. The superconductivity arises from strongly enhanced electron-phonon coupling at lower pressures, originating primarily from soft collective P-N phonon modes. The PN2 phase is an insulator with P2/m symmetry and is stable at pressures in excess of 200 GPa.

  15. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations

    PubMed Central

    Raza, Zamaan; Errea, Ion; Oganov, Artem R.; Saitta, A. Marco

    2014-01-01

    State of the art variable composition structure prediction based on density functional theory demonstrates that two new stoichiometries of PN, PN3 and PN2, become viable at high pressure. PN3 has a skutterudite-like Immm structure and is metastable with positive phonon frequencies at pressures between 10 and 100 GPa. PN3 is metallic and is the first reported nitrogen-based skutterudite. Its metallicity arises from nitrogen p-states which delocalise across N4 rings characteristic of skutterudites, and it becomes a good electron-phonon superconductor at 10 GPa, with a Tc of around 18 K. The superconductivity arises from strongly enhanced electron-phonon coupling at lower pressures, originating primarily from soft collective P-N phonon modes. The PN2 phase is an insulator with P2/m symmetry and is stable at pressures in excess of 200 GPa. PMID:25074347

  16. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  17. Hard x-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows

    SciTech Connect

    Tsunemi, Eika; Watanabe, Yoshio; Oji, Hiroshi; Cui, Yi-Tao; Son, Jin-Young

    2015-06-21

    We applied hard x-ray photoelectron spectroscopy (HAXPES) to a sample under ambient pressure conditions using an environmental cell with an approximately 24 nm-thick SiN{sub x} membrane window. As a model chemical substance, europium (II) iodide (EuI{sub 2}) sealed in the cell with argon gas was investigated with HAXPES to identify the chemical species present inside the cell. The optical and morphological properties of the sample within the cell were measured with optical and fluorescent microscopy, scanning electron microscopy, cathodoluminescence, and energy dispersive x-ray spectrometry. We confirmed the effectiveness of the gas barrier properties of the cell with the SiN{sub x} window and demonstrated its applicability to various other optical and electron measurements as well as HAXPES.

  18. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  19. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  20. Superconductivity of metal nitride chloride β-MNCl (M = Zr, Hf) with rare-earth metal RE (RE = Eu, Yb) doped by intercalation

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Tanaka, Masashi; Onimaru, Takahiro; Takabatake, Toshiro; Isikawa, Yosikazu; Yamanaka, Shoji

    2013-04-01

    Electrons were doped into the β-form layered metal nitride chloride MNCl (M = Zr, Hf) by intercalation of rare-earth metals RE (RE = Eu, Yb) using liquid ammonia solutions. The intercalated compounds REx(NH3)yMNCl show superconductivity with transition temperatures Tc of ˜13 and 24.3 K for M = Zr and Hf, respectively, quite similar to the alkali metal intercalated analogs. The paramagnetic characteristics for Eu2+ and Yb3+ can coexist with superconductivity. The magnetic resistance measured on the uniaxially oriented Eu0.08(NH3)yHfNCl with the magnetic field parallel to the ab plane (‖ ab) and the c axis (‖ c) shows a strong anisotropic effect on the upper critical field Hc2; a large anisotropic parameter \\gamma ={H}_{{c}2}^{\\parallel a b}/{H}_{{c}2}^{\\parallel c}\\sim 4 suggests a pseudo-two-dimensional superconductivity. The Tc of Eu0.13(THF)yHfNCl is shifted toward a higher value of 25.8 K upon expansion of the interlayer spacing from 11.9 to 17.5 Å by co-intercalation of voluminous organic molecules such as tetrahydrofuran.

  1. An ultra-compact hard X-ray superconducting light source for biotechnology and industrial use

    NASA Astrophysics Data System (ADS)

    Cline, David B.; Garren, Al; Green, Mike; Kolonko, Jim; Lee, Kevin

    1998-04-01

    We describe the design of a 1.5-GeV ultra-compact storage ring that uses 7-T superconducting magnets. The aim of this source is to provide intense 10-30 keV X-rays of moderate brilliance for commercial application. The first prototype is being designed for the UCLA Science and Technology Research Building (STRB) in Westwood, California.

  2. Theoretical prediction of phonon-mediated superconductivity with T c ≈ 25 K in Li-intercalated hexagonal boron nitride bilayer

    NASA Astrophysics Data System (ADS)

    Shimada, Nao H.; Minamitani, Emi; Watanabe, Satoshi

    2017-09-01

    A superconducting transition temperature (T c) up to 25 K in the Li-intercalated bilayer of hexagonal boron nitride (h-BN) is predicted according to ab-initio calculations. A T c higher than that of metal-intercalated graphene (MIG) is ascribed to the characteristic spatial distribution of electronic states near the Fermi level, which is distinctly different from that in MIG. In the Li-intercalated bilayer h-BN, the breaking of the symmetrical restriction and the increase in the overlap between the charge density and the Li in-plane motion enhance the electron-phonon coupling. Our results provide a new design guideline for two-dimensional superconductors based on intercalated layered materials.

  3. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  4. Effect of neutron irradiation upon the superconducting critical temperature of some transition-metal carbides, nitrides, and carbonitrides

    SciTech Connect

    Dew-Hughes, D.; Jones, R.

    1980-05-15

    Samples of TiN, NbC, and Nb(CN) have been irradiated to various neutron doses in the Brookhaven High Flux Beam Reactor. Their superconducting critical temperatures are reduced at a rate which is much less than that for similarly irradiated high-T/sub c/ A15 superconductors. A dose of 1.5 x 10/sup 20/ n/cm/sup 2/ (E>1 MeV) causes a reduction in T/sub c/ of 6--27%. This reduction may be explained in terms of the production of metal-lattice vacancies.

  5. Majorana modes in InSb nanowires (I): zero bias peaks in hybrid devices with low-disorder and hard induced superconducting gap

    NASA Astrophysics Data System (ADS)

    Gül, Ö.; Zhang, H.; de Moor, M. W. A.; de Vries, F.; van Veen, J.; van Woerkom, D. J.; Zuo, K.; Mourik, V.; Cassidy, M.; Geresdi, A.; Car, D.; Bakkers, E. P. A. M.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). However, alternative mechanisms such as disorder or formation of quantum dots can also give rise to ZBPs, and obscure experimental studies of Majoranas. Further, a soft induced superconducting gap commonly observed in experiments presents an outstanding challenge for the demonstration of their topological protection. In this talk we show that with device improvements, we reach low-disorder transport regime with clear quantized conductance plateaus and Andreev enhancement approaching the theoretical limit. Tunnelling spectroscopy shows a hard induced superconducting gap and no formation of quantum dots. Together with extremely stable ZBPs observed in large gate voltage and magnetic field ranges, we exclude various alternative theories besides the formation of localized Majorana modes for our observations.

  6. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure.

    PubMed

    Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf

    2003-03-01

    High-pressure synthesis is a powerful method for the preparation of novel materials with high elastic moduli and hardness. Additionally, such materials may exhibit interesting thermal, optoelectronic, semiconductuing, magnetic or superconducting properties. Here, we report on the high-pressure synthesis of zirconium and hafnium nitrides with the stoichiometry M3N4, where M = Zr, Hf. Synthesis experiments were performed in a laser-heated diamond anvil cell at pressures up to 18 GPa and temperatures up to 3,000 K. We observed formation of cubic Zr3N4 and Hf3N4 (c-M3N4) with a Th3P4-structure, where M-cations are eightfold coordinated by N anions. The c-M3N4 phases are the first binary nitrides with such a high coordination number. Both compounds exhibit high bulk moduli around 250 GPa, which indicates high hardness. Moreover, the new nitrides, c-Zr3N4 and c-Hf3N4, may be the first members of a larger group of transition metal and/or lanthanide nitrides with interesting ferromagnetic or superconducting behaviour.

  7. Uranium hohlraum with an ultrathin uranium-nitride coating layer for low hard x-ray emission and high radiation temperature

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Ding, Yongkun; Xing, Pifeng; Li, Sanwei; Kuang, Longyu; Li, Zhichao; Yi, Taimin; Ren, Guoli; Wu, Zeqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Baibin; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

    2015-11-01

    An ultrathin layer of uranium nitrides (UN) has been coated on the inner surface of depleted uranium hohlraum (DUH), which has been proven by our experiment to prevent the oxidization of uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on an SGIII-prototype laser facility. Under a laser intensity of 6 × 1014 W cm-2, we observe that the hard x-ray (hν \\gt 1.8 keV) fraction of the uranium hohlraum decreases by 61% and the peak intensity of the total x-ray flux (0.1 keV˜5.0 keV) increases by 5%. Radiation hydrodynamic code LARED is used to interpret the above observations. Our result for the first time indicates the advantages of the UN-coated DUH in generating a uniform x-ray source with a quasi-Planckian spectrum, which should have important applications in high energy density physics.

  8. Surface properties of metal-nitride and metal-carbide films deposited on Nb for radio-frequency superconductivity

    SciTech Connect

    Garwin, E.L.; King, F.K.; Kirby, R.E.; Aita, O.

    1987-02-01

    Various effects occur which can prevent attainment of the high Q's and/or the high gradient fields necessary for the operation of radio-frequency (rf) superconducting cavities. One of these effects, multipactor, both causes the cavity to detune during filling due to resonant secondary electron emission at the cavity walls, and lowers the quality factor (Q) by dissipative processes. TiN deposited onto the high-field regions of room-temperature Al cavities has been used at the Stanford Linear Accelerator Center to successfully reduce multipactor in the past. We have therefore studied TiN and its companion materials, NbN, NbC, and TiC, all on Nb substrates under several realistic conditions: (1) as-deposited, (2) exposed to air, and (3) electron bombarded. The studied films (up to 14-nm thickness) were sputter deposited onto sputter-cleaned Nb substrates. Results indicate that all the materials tested gave substantially the same results. The maximum secondary electron yields for as-deposited films were reduced to nearly the preoxidized values after electron bombardment (2--3 x 10/sup 17/ electrons cm/sup -2/ in the case of NbN and NbC). X-ray photoelectron spectroscopy analysis showed that the oxides (e.g., TiO/sub 2/ in the case of TiN films) formed during air exposure were slightly reduced (converted to lower oxides) by the electron-beam exposure. Auger electron spectroscopy (AES) showed a slight reduction in the surface O concentration following beam exposure. These results suggest that the chemical nature of top surface layers is responsible for the substantial changes in secondary electron yield observed upon electron-beam exposures and that AES does not reflect this change strongly because of the difficulty in extracting chemical (versus elemental) information from AES.

  9. Surface properties of metal-nitride and metal-carbide films deposited on Nb for radio-frequency superconductivity

    NASA Astrophysics Data System (ADS)

    Garwin, E. L.; King, F. K.; Kirby, R. E.; Aita, O.

    1987-02-01

    Various effects occur which can prevent attainment of the high Q's and/or the high gradient fields necessary for the operation of radio-frequency (rf) superconducting cavities. One of these effects, multipactor, both causes the cavity to detune during filling due to resonant secondary electron emission at the cavity walls, and lowers the quality factor (Q) by dissipative processes. TiN deposited onto the high-field regions of room-temperature Al cavities has been used at the Stanford Linear Accelerator Center to successfully reduce multipactor in the past. We have therefore studied TiN and its companion materials, NbN, NbC, and TiC, all on Nb substrates under several realistic conditions: (1) as-deposited, (2) exposed to air, and (3) electron bombarded. The studied films (up to 14-nm thickness) were sputter deposited onto sputter-cleaned Nb substrates. Results indicate that all the materials tested gave substantially the same results. The maximum secondary electron yields for as-deposited films were reduced to nearly the preoxidized values after electron bombardment (2-3×1017 electrons cm-2 in the case of NbN and NbC). X-ray photoelectron spectroscopy analysis showed that the oxides (e.g., TiO2 in the case of TiN films) formed during air exposure were slightly reduced (converted to lower oxides) by the electron-beam exposure. Auger electron spectroscopy (AES) showed a slight reduction in the surface O concentration following beam exposure. These results suggest that the chemical nature of top surface layers is responsible for the substantial changes in secondary electron yield observed upon electron-beam exposures and that AES does not reflect this change strongly because of the difficulty in extracting chemical (versus elemental) information from AES. The results indicate that any of these films would be poor choices if simply deposited and exposed to air, but, in fact, the in situ electron bombardment which occurs during cavity operation serves to reduce the

  10. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  11. On-Chip Andreev Devices: Hard Superconducting Gap and Quantum Transport in Ballistic Nb-In0.75 Ga0.25 As-Quantum-Well-Nb Josephson Junctions.

    PubMed

    Delfanazari, Kaveh; Puddy, Reuben K; Ma, Pengcheng; Yi, Teng; Cao, Moda; Gul, Yilmaz; Farrer, Ian; Ritchie, David A; Joyce, Hannah J; Kelly, Michael J; Smith, Charles G

    2017-10-01

    A superconducting hard gap in hybrid superconductor-semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non-Abelian excitation). This requires the formation of homogeneous and barrier-free interfaces between the superconductor and semiconductor. Here, a new platform is reported for topological superconductivity based on hybrid Nb-In0.75 Ga0.25 As-quantum-well-Nb that results in hard superconducting gap detection in symmetric, planar, and ballistic Josephson junctions. It is shown that with careful etching, sputtered Nb films can make high-quality and transparent contacts to the In0.75 Ga0.25 As quantum well, and the differential resistance and critical current measurements of these devices are discussed as a function of temperature and magnetic field. It is demonstrated that proximity-induced superconductivity in the In0.75 Ga0.25 As-quantum-well 2D electron gas results in the detection of a hard gap in four out of seven junctions on a chip with critical current values of up to 0.2 µA and transmission probabilities of >0.96. The results, together with the large g-factor and Rashba spin-orbit coupling in In0.75 Ga0.25 As quantum wells, which indeed can be tuned by the indium composition, suggest that the Nb-In0.75 Ga0.25 As-Nb system can be an excellent candidate to achieve topological phase and to realize hybrid topological superconducting devices. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  13. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  14. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  15. Effect of Plasma Nitriding on the Performance of WC-Co Cutting Tools

    NASA Astrophysics Data System (ADS)

    Hamzaoglu, Ebru; Yilmaz, Safak; Gulmez, Turgut

    2011-04-01

    This paper presents the effect of nitriding process parameters on the cutting performance of WC-Co tools. The cutting performance was measured by CNC machining of GG25 cast iron parts. The hardness and phase composition of nitrided layer were determined for different plasma nitriding temperatures and times. The hardness of the nitrided layer increased at all plasma nitrided conditions investigated. However, the machining performance of the cutting inserts varied in the range between a 60% increase and a 40% decrease after plasma nitriding. The maximum number of machined parts was seen when the insert was nitrided at 600 °C-4 h and at 500 °C-4 h.

  16. Properties of boron/boron-nitride multilayers

    SciTech Connect

    Jankowski, A.F.; Wall, M.A.; Hayes, J.P.; Alexander, K.B.

    1996-06-01

    Boron-Nitride films are of interest for their high hardness and wear resistance. Large intrinsic stresses and poor adhesion which often accompany high hardness materials can be moderated through the use of a layered structure. Alternate layers of boron (B) and boron-nitride (BN) are formed by modulating the composition of the sputter gas during deposition from a pure B target. The thin films are characterized with TEM to evaluate the microstructure and with nanoindentation to determine hardness. Layer pair spacing and continuity effects on hardness are evaluated for the B/BN films.

  17. Theoretical Compton profile of diamond, boron nitride and carbon nitride

    NASA Astrophysics Data System (ADS)

    Aguiar, Julio C.; Quevedo, Carlos R.; Gomez, José M.; Di Rocco, Héctor O.

    2017-09-01

    In the present study, we used the generalized gradient approximation method to determine the electron wave functions and theoretical Compton profiles of the following super-hard materials: diamond, boron nitride (h-BN), and carbon nitride in its two known phases: βC3N4 and gC3N4 . In the case of diamond and h-BN, we compared our theoretical results with available experimental data. In addition, we used the Compton profile results to determine cohesive energies and found acceptable agreement with previous experiments.

  18. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  19. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  20. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  1. Low-compressibility and hard material carbon nitride imide C{sub 2}N{sub 2}(NH): First principles calculations

    SciTech Connect

    Yan Haiyan; Wei Qun; Zheng Baobing; Guo Ping

    2011-03-15

    First principles calculations are performed to investigate the structural, mechanical, and electronic properties of C{sub 2}N{sub 2}(NH). Our calculated lattice parameters are in good agreement with the experimental data and previous theoretical values. Orthorhombic C{sub 2}N{sub 2}(NH) phase is found to be mechanically stable at an ambient pressure. Based on the calculated bulk modulus and shear modulus of polycrystalline aggregate, C{sub 2}N{sub 2}(NH) can be regarded as a potential candidate of ultra-incompressible and hard material. Furthermore, the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli. Density of states and electronic localization function analysis show that the strong C-N covalent bond in CN{sub 4} tetrahedron is the main driving force for the high bulk and shear moduli as well as small Poisson's ratio of C{sub 2}N{sub 2}(NH). -- Graphical abstract: Contours of electronic localization function (ELF) of C{sub 2}N{sub 2}(NH) on the: (0 0 1) plane (a), (1 0 0) plane (b), an ELF of Si{sub 2}N{sub 2}(NH) on the: (0 0 1) plane (c) and (1 0 0) plane (d). Display Omitted Research highlights: The structural, mechanical, and electronic properties of C{sub 2}N{sub 2}(NH) have been studied. C{sub 2}N{sub 2}(NH) is a potential low compressible and hard material. Both C{sub 2}N{sub 2}(NH) and Si{sub 2}N{sub 2}(NH) are found to have insulating feature with large band gaps. The strong covalent C-N bonding in CN{sub 4} tetrahedrons play a key role in the incompressibility and hardness of C{sub 2}N{sub 2}(NH). The chemical bonding in these two solids is a complex mixture of covalent and ionic characters.

  2. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN

    SciTech Connect

    Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; Wang, Liping; Leinenweber, Kurt; He, Duanwei; Zhao, Yusheng

    2015-11-09

    Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is much stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.

  3. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN

    DOE PAGES

    Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; ...

    2015-11-09

    Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is muchmore » stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.« less

  4. Ion nitriding; Proceedings of the International Conference, Cleveland, OH, Sept. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Spalvins, T. (Editor)

    1987-01-01

    The present conference discusses plasma-assisted surface coating/modification processes, the applications to date of ion nitriding, the effects of nitrogen on metal surfaces, ion nitriding mechanisms in Cr, Al and Cr + Al-containing 1040 steel, ion nitriding of Al and its alloys, life enhancement for forging dies, novel anode plasma nitriding developments, and a comparative study of the pulsed and dc ion-nitriding behavior in specimens with blind holes. Also discussed are the influence of heating method on ion nitriding, surface hardening of marage steels by ion nitriding without core hardness reduction, plasma nitriding of nodular cast iron sput gears, NbN composites for superconductors, the carburization of tungsten in a glow discharge methane plasma, economic considerations concerning plasma nitriding, and the corrosion properties obtained by ion nitriding.

  5. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films

    NASA Astrophysics Data System (ADS)

    Martev, I. N.; Dechev, D. A.; Ivanov, N. P.; Uzunov, T. D.; Kashchieva, E. P.

    2008-05-01

    The paper presents results on the physical characteristics and mechanical properties of titanium nitride (TiN) and tungsten nitride (W2N) thin films grown by reactive DC magnetron sputtering. The films were deposited in a system with several magnetron modules of different sputtering materials suitable for deposition of single-layer metal nitride films and multilayer nitride coatings. The deposition conditions were optimized to obtain films with the highest adhesion to substrates of machine steel and sintered hard alloy. The adhesion of the films was measured in dependence on two principal process parameters: the nitrogen partial pressure in the magnetron discharge gas mixture of nitrogen and argon and the substrate temperature. The composition of the TiN films was determined by Auger electron spectroscopy. The microstructure and the crystallization trend of the films were studied by transmission electron microscopy and selected area electron diffraction. The hardness of the films was examined using standard measuring methods.

  6. Transport properties of ZrN superconducting films

    SciTech Connect

    Cassinese, A.; Iavarone, M.; Vaglio, R.; Grimsditch, M.; Uran, S.

    2000-12-01

    Superconductivity in nitrides presents intriguing aspects related to the role of optical phonons. In the present paper we report on high-quality superconducting zirconium nitride film preparation and characterization (including Raman scattering) as well as on both dc and microwave frequency transport properties. The high-temperature dc resistivity shows no evidence of saturation effects, possibly due to the low electron-phonon coupling. Surface impedance data can be well fitted by the standard BCS expressions. The data provide further evidence of the ''conventional'' nature of superconductivity in these compounds.

  7. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  8. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  9. Phase Transformations During the Low-Temperature Nitriding of AISI 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Gu, Tan; Qiu, Shaoyu; Wang, Jun; Xiong, Ji; Fan, Hongyuan

    2015-02-01

    Liquid nitriding of type AISI 2205 duplex stainless steel was conducted at 723 K (450 °C), using one type of novel low-temperature liquid chemical thermo-treatment. The transformation of the nitrided surface microstructure was systematically studied. Experimental results revealed that a nitrided layer formed on the sample surface with the thickness ranging from 3 to 28 μm, depending on nitriding time. After the 2205 duplex stainless steel was subjected to liquid nitriding 723 K (450 °C) for less than 8 hours, the pre-existing ferrite region on the surface transformed into the expanded austenite (S phase) by the infusion of nitrogen atoms, most of which stay in the interstitial sites. Generally, the dominant phase of the nitrided layer was the expanded austenite. When the nitriding time prolonged up to 16 hours, some pre-existing ferrite in expanded austenite was decomposed and ɛ-nitride precipitated subsequently. When the treatment time went up to 40 hours, large amount of ɛ-nitride and CrN precipitates were observed in the pre-existing ferritic region in the expanded austenite. Furthermore, many nitrides precipitated from the pre-austenite region. Acicular nitride was identified by transmission electron microscopy. The thickness of the nitrided layer increased with increasing nitriding time. The growth of the nitrided layer is mainly due to nitrogen diffusion in accordance with the expected parabolic rate law. Liquid nitriding effectively increased the surface hardness of 2205 duplex stainless steel by a factor of 3.

  10. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  11. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  12. Microstructure of Spark Plasma-Sintered Silicon Nitride Ceramics

    NASA Astrophysics Data System (ADS)

    Lukianova, O. A.; Novikov, V. Yu.; Parkhomenko, A. A.; Sirota, V. V.; Krasilnikov, V. V.

    2017-04-01

    The microstructure and phase composition of the high-content Al2O3-Y2O3-doped spark plasma-sintered silicon nitride were investigated. Fully dense silicon nitride ceramics with a typical α-Si3N4 equiaxed structure with average grain size from 200 to 530 nm, high elastic modulus of 288 GPa, and high hardness of 2038 HV were spark plasma sintered (SPSed) at 1550 °C. Silicon nitride with elongated β-Si3N4 grains, higher hardness of 1800 HV, density of 3.25 g/cm3, and Young's modulus 300 GPa SPSed at 1650 °C was also reviewed.

  13. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  14. Investigation into nitrided spur gears

    SciTech Connect

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J.

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  15. Investigation into nitrided spur gears

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Aleem, B. J. Abdul

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6A1-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  16. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  17. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  18. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  19. Manufacture of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Iwai, T.

    1985-01-01

    Sintered silicon nitrides are manufactured by sintering Si3N powder containing 2 to 15% in wt of a powder mixture composed of nitride powder of lanthanide or Y 100 parts and AIN powder less than 100 parts at 1500 to 1900 deg. temperature under a pressure of less than 200 Kg/sq. cm. The sintered Si3N has high mechanical strength in high temperature. Thus, Si3N4 93.0, Y 5.0 and AlN 2.0% in weight were wet mixed in acetone in N atom, molded and sintered at 1750 deg. and 1000 Kg/sq. cm. to give a sintered body having high hardness.

  20. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  1. High Strength and Retained Ductility Achieved in a Nitrided Strip Cast Nb-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Xie, Kelvin Y.; Shrestha, Sachin L.; Felfer, Peter J.; Cairney, Julie M.; Killmore, Chris R.; Carpenter, Kristin R.; Kaul, Harold R.; Ringer, Simon P.

    2013-02-01

    The current study investigates the strengthening of an Nb-microallyed CASTRIP® steel at 798 K (525 °C) by nitriding in a KNO3 salt bath. Nitriding up to 1 hour dramatically increased the yield strength of the steel by ~35 pct (from 475 to 645 MPa) with no sacrifice of ductility (~16 pct). Further nitriding led to brittle fracture. Hardness profiles of the nitrided steels through the thickness reveal hard surfaces and a relatively softer core. The hardening of the shell in the nitrided steels is thought to be the combined effect of solid solution strengthening from nitrogen and dispersion strengthening from clusters and precipitates. The retained ductility is attributed to the hard-shell-soft-core structure through nitriding.

  2. Recent developments in nitride chemistry

    SciTech Connect

    Niewa, R.; DiSalvo, F.J.

    1998-10-01

    The chemistry of ternary nitrides is reviewed with special focus on developments of the last two years (1996 and 1997). In particular, structures and properties of ternary and higher transition metal nitrides, main group nitrides, subnitrides, and nitride halides are compared, and a section on thermodynamics of ternary nitrides is included. Finally, methods for the preparation of gallium nitride single crystals are summarized.

  3. Stable xenon nitride at high pressures

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Wang, Yanchao; Wang, Hui; Zhang, Yunwei; Ma, Yanming

    2015-09-01

    Nitrides in many ways are fascinating since they often appear as superconductors, high-energy density, and hard materials. Though there exist a large variety of nitrides, noble gas nitrides are missing in nature. Pursuit of noble gas nitrides has therefore become the subject of topical interests, but remains as a great challenge since molecular nitrogen (N2, a major form of nitrogen) and noble gases are both inert systems and do not interact at normal conditions. We show through a first-principles swarm-structure search that high pressure enables a direct interaction of N2 and xenon (Xe) above 146 GPa. The resultant Xe nitride has a peculiar stoichiometry of XeN6, possessing a high-energy density of approximately 2.4 kJg -1, rivaling that of the modern explosives. Structurally, XeN6 is intriguing with the appearance of chaired N6 hexagons and unusually high 12-coordination of Xe bonded with N. Our work opens up the possibility of achieving Xe nitride with superior high-energy density whose formation is long sought as impossible.

  4. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  5. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  6. Superconductive wire

    SciTech Connect

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1992-12-31

    This invention is comprised of a superconductive article including a first metallic tube having an interior surface and an exterior surface, said interior surface defining an interior hollow cavity, a layer of superconductive material surrounding said exterior surface of said first metallic tube, and, a second metallic tube having an interior surface and an exterior surface, said interior surface adjacent to said layer of superconductive material is provided together with processes of making such a superconductive article including, e.g., inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing and/or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  7. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  8. Titanium Nitride Cermets

    DTIC Science & Technology

    1952-07-01

    7696i ’-Brewer, L., et al. Thermodynamic and Physical Properties of Nitrides. Carbides, Sulfides, i1licides, and Phosphides, Chemistry and Metallurgy of...12 Referen eCs 0 . ...................... • • • 14 WADC TR 52-155 iv LIST OF TABLES I Properties of Titanium Nitride Bodies...15 II Properties of Titanium Nitride-Nickel Bodies............16 III Properties of Titanium Nitride Cermets with Nickel,..... 17 Cobalt, and

  9. Preparation of uranium nitride

    DOEpatents

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  10. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  11. Superconducting Cable

    SciTech Connect

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  12. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  13. Studies on optical emission spectroscopy of nitriding plasma and characterization of nitrided steel

    NASA Astrophysics Data System (ADS)

    Sharma, Manash Kumar

    Plasma in nature is abundant and appears quite beautiful in colour as can be seen in glow of sun and auroras. Plasma produced in laboratories is also quite interesting as a correspondence of the naturally occurring plasmas from a glow discharge to a tokamak. However, plasmas tuned to special conditions have been successfully utilized for material processing, of which, plasma nitriding is one and foremost. The work of the thesis focuses on the setting up of a plasma nitriding system with various diagnostics applied to plasma and plasma treated stainless steels. Emission spectroscopy and probe diagnostics are applied to study the optical and plasma properties whereas austenitic stainless steels are characterized by x-ray diffraction (XRD) and hardness test in order to demonstrate the application of the process. The optical and plasma properties during nitriding are motivating, as these properties will lead to conditions for the formation of surface layer. The formation of iron and chromium nitrides is another important asset of the plasma nitriding process, which is tested by XRD technique, while the surface hardness is tested by hardness test. Optical properties are found from optical emission spectroscopy (OES) in terms of emission intensities and wavelengths. Langmuir probe (LP) is used for finding variations of plasma parameters with respect to process parameters and to make a comparison of plasma parameters with those of optical and discharge parameters. A correlation between OES and material characterization properties is sought in order to make a clear understanding of the process. In Chapter 1, introduction to plasma, the possible applications with relevance to plasma nitriding and spectroscopy are described. Plasma nitriding (termed in the title as nitriding plasma for convenience) has emerged as a powerful tool in modifying surface properties of a material without affecting the bulk properties. The various advantages over a conventional gas nitriding

  14. Surface and Interface Properties of Early Transition Metal Nitride Systems: A DFT-FLAPW study using the LDA and sX-LDA

    NASA Astrophysics Data System (ADS)

    Stampfl, Catherine; Freeman, Arthur J.

    2001-03-01

    Early transition metal nitrides exhibit exceptional physical properties, e.g., hardness, brittleness, high melting point, and in some, superconductivity. And when grown as nanolayered superlattices, superhardness can result. Thus, they are important materials for technological applications. We have performed density-functional theory (DFT) calculations using the full-potential linearized augmented plane wave (FLAPW) method(E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24) (1981) 864. within the local density approximation (LDA), and the screened-exchange (sX)-LDA in order to investigate the bulk, surface, and interface properties of several nitride systems. From the DFT-sX-LDA calculations we find that the relatively unexplored refractory III-V nitrides, ScN, YN, and LaN are not metallic or semi-metallic, but are semi-conductors with indirect band gaps(C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, to be published.). We also investigated various terminations of ScN(001), and stoichiometric Al(001), TiN(001), VN(001) surfaces and interfaces of VN/Ti(001), AlN/VN(001) and AlN/TiN(001). Trends in the electronic and atomic structures will be reported as well as the associated energetics. Supported by the NSF (through the NU MRC).

  15. Superconducting devices

    SciTech Connect

    Ruggiero, S.T. . Dept. of Physics); Rudman, D.A. . Dept. of Materials Science and Engineering)

    1990-01-01

    This book presents a discussion of the theory, fabrication, and qualification of superconducting device elements and integrated circuitry. A look at issues key to the development of practical superconducting devices and systems is presented. Integrated systems, including the fabrication and application of SQUIDs, Josephson arrays, microwave detectors, digital signal processors and computers, and analog signal processors are discussed.

  16. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  17. Quantum electromechanics on silicon nitride nanomembranes

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-08-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom--mechanical, optical and microwave--would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  18. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  19. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  20. Superconductive tunnel junction device and method of manufacture

    SciTech Connect

    Kroger, H.

    1983-12-20

    A Josephson tunnel junction device having niobium nitride superconductive electrodes includes a polycrystalline semiconductor tunneling barrier therebetween comprised of silicon, germanium, or an alloy thereof preferably deposited on the lower superconductive electrodes by vapor deposition. The barrier thickness of the junction is controlled by precision doping of the semiconductor material. The active junction is defined after the interfaces between the barrier material and the two superconductor lines are formed, retaining those active interfaces in fully unpolluted character.

  1. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements.

    PubMed

    Pettersson, M; Tkachenko, S; Schmidt, S; Berlind, T; Jacobson, S; Hultman, L; Engqvist, H; Persson, C

    2013-09-01

    Total joint replacements currently have relatively high success rates at 10-15 years; however, increasing ageing and an active population places higher demands on the longevity of the implants. A wear resistant configuration with wear particles that resorb in vivo can potentially increase the lifetime of an implant. In this study, silicon nitride (SixNy) and silicon carbon nitride (SixCyNz) coatings were produced for this purpose using reactive high power impulse magnetron sputtering (HiPIMS). The coatings are intended for hard bearing surfaces on implants. Hardness and elastic modulus of the coatings were evaluated by nanoindentation, cohesive, and adhesive properties were assessed by micro-scratching and the tribological performance was investigated in a ball-on-disc setup run in a serum solution. The majority of the SixNy coatings showed a hardness close to that of sintered silicon nitride (~18 GPa), and an elastic modulus close to that of cobalt chromium (~200 GPa). Furthermore, all except one of the SixNy coatings offered a wear resistance similar to that of bulk silicon nitride and significantly higher than that of cobalt chromium. In contrast, the SixCyNz coatings did not show as high level of wear resistance.

  2. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  3. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    SciTech Connect

    Masuda, Kohei; Takagi, Tasuku; Hashimoto, Takayuki; Moriyama, Satoshi Komatsu, Katsuyoshi; Morita, Yoshifumi; Miki, Norihisa; Tanabe, Takasumi; Maki, Hideyuki

    2016-05-30

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  4. Hardness testing

    SciTech Connect

    Not Available

    1987-01-01

    This technical manual is a handbook dealing with all aspects of hardness testing. Every hardness testing method is fully covered, from Rockwell to ultrasonic hardness testing. Specific hardness testing problems are also discussed, and methods are offered for many applications. One chapter examines how to select the correct hardness testing method. A directory of manufacturers, distributors and suppliers of hardness testing equipment and supplies in the United States and Canada is also included. The book consist of eight chapters and an appendix. It discusses common concepts of hardness, and the theories and methods of hardness testing. Coverage includes specific hardness testing methods - Brinell, Rockwell, Vickers, and microhardness testing; and other hardness testing methods, such as scleroscope, ultrasonic, scratch and file testing, and hardness evaluation by eddy current testing.

  5. Superconducting electronics

    NASA Astrophysics Data System (ADS)

    Gubankov, V. N.

    The current status and principal trends, recent achievements, and future prospects of superconducting electronics are reviewed. In particular, attention is given to developments in high-temperature superconductivity; contribution of high-temperature superconductors to superconducting electronics; problems associated with high-temperature superconductor devices and recent achievements in this area; and goals in the field of electronics employing high-temperature superconductor components in comparison with the use of traditional superconductors. Applications discussed include ultrasensitive detection of weak electromagnetic radiation, SQUID-based magnetometry; cryogenic logic and memory systems, and measuring instruments.

  6. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  7. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  8. Superconductivity: Phenomenology

    SciTech Connect

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect.

  9. Noise study of insulating films within superconducting LC resonators

    NASA Astrophysics Data System (ADS)

    Ramanayaka, A. N.; Sarabi, B.; Osborn, K. D.

    2014-03-01

    Two-level systems (TLS) in amorphous dielectrics, known to be a major source of decoherence in superconducting qubits, are also known to cause low-frequency phase noise in resonating superconducting circuits. Here we will report on an effort to characterize this noise using microwave LC resonators fabricated with a trilayer capacitor containing a deposited silicon nitride dielectric film containing TLS, sandwiched by superconducting electrodes. The resonators are probed at frequencies of approximately 6 GHz and at temperatures of 10-200 mK. The noise dependence on temperature, microwave power, and dielectric volume will be discussed in the context of standard tunneling model of two level systems and newer models.

  10. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  11. Effects of the Process Parameters on the Microstructure and Properties of Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Zeng, Dezhi; Yan, Jing; Fan, Hongyuan

    2013-04-01

    The effects of process parameters on the microstructure, microhardness, and dry-sliding wear behavior of plasma nitrided 17-4PH stainless steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and wear testing. The results show that a wear-resistant nitrided layer was formed on the surface of direct current plasma nitrided 17-4PH martensitic stainless steel. The microstructure and thickness of the nitrided layer is dependent on the treatment temperature rather than process pressure. XRD indicated that a single α N phase was formed during nitriding at 623 K (350 °C). When the temperature increased, the α N phase disappeared and CrN transformed in the nitrided layer. The hardness measurement demonstrated that the hardness of the stainless substrate steel increased from 320 HV0.1 in the untreated condition increasing to about 1275HV0.1 after nitriding 623 K (350 °C)/600 pa/4 hours. The extremely high values of the microhardness achieved by the great misfit-induced stress fields associated with the plenty of dislocation group and stacking fault. Dry-sliding wear resistance was improved by DC plasma nitriding. The best wear-resistance performance of a nitrided sample was obtained after nitriding at 673 K (350 °C), when the single α N-phase was produced and there were no CrN precipitates in the nitrided layer.

  12. Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma

    NASA Astrophysics Data System (ADS)

    Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf

    2017-05-01

    Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.

  13. Atomic layer deposition of thin superconducting films and multilayers

    NASA Astrophysics Data System (ADS)

    Proslier, Thomas; Klug, Jeffrey; Groll, Nikolas; Altin, Serdar; Becker, Nicholas

    2012-02-01

    We report the use of atomic layer deposition (ALD) to synthesize thin superconducting films and multilayer superconductor-insulator (S-I) heterostructures including: nitrides, carbides, and silicides, nitrides of molybdenum and titanium, and Nb1-xTixN/AlN-based S-I heterostructures. The atomic-scale thickness control afforded by ALD enables the study of superconductivity and associated phenomena in homogeneous layers in the ultra-thin film limit. Two-dimensional superconductivity in such films is of interest from a fundamental point of view, as a new effect has recently been discovered at ultra-low temperature in thin superconducting films made by ALD: the super-insulating transition. Furthermore, the ALD technique applied to superconducting films opens the way for a variety of applications, including improving the performance and decreasing the cost of high energy particle accelerators, superconducting wires for energy storage, and bolometers for radiation detection. In this respect, we will present results on the ALD growth processes, the metallurgy and superconducting properties of these coatings.

  14. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides

    NASA Astrophysics Data System (ADS)

    Yonenaga, Ichiro; Ohkubo, Yasushi; Deura, Momoko; Kutsukake, Kentaro; Tokumoto, Yuki; Ohno, Yutaka; Yoshikawa, Akihiko; Wang, Xin Qiang

    2015-07-01

    The hardness of wurtzite indium nitride (α-InN) films of 0.5 to 4 μm in thickness was measured by the nano-indentation method at room temperature. After investigation of crystalline quality by x-ray diffraction, the hardness and Young's modulus were determined to be 8.8 ± 0.4 and 184 ± 5 GPa, respectively, for the In (0001)- and N ( 000 1 ¯ ) -growth faces of InN films. The bulk and shear moduli were then derived to be 99 ± 3 and 77 ± 2 GPa, respectively. The Poisson's ratio was evaluated to be 0.17 ± 0.03. The results were examined comprehensively in comparison with previously reported data of InN as well as those of other nitrides of aluminum nitride and gallium nitride. The underlying physical process determining the moduli and hardness was examined in terms of atomic bonding and dislocation energy of the nitrides and wurtzite zinc oxide.

  15. Internally nitrided refractory alloy (INRA) development. FY 1986 report. [Nitridation of Mo-1. 86 Hf alloy

    SciTech Connect

    Mitchell, J.B.; Walter, C.E.

    1986-10-06

    Internal structure studies show that by controlling grain size and amount of cold work, the results of the nitriding process can be modified. A uniform hardness can be obtained by properly controlling the nitriding parameters. The ability to control nitrogen pressure during the process over a broad range, including above one atmosphere is expected to provide greater uniformity of hardness. Limited welding efforts have produced sound welds using TIG and E-beam techniques in Mo-1.86 Hf alloy sheet. Fabrication of space power components thus appears to be achievable. Alloy compositions Mo-1.86 Hf and Mo-15 Re-1.86 Hf have been successfully produced in sheet form. Additional effort is required to reduce carbon, oxygen and nitrogen impurities. Creep resistance of Mo-HfN alloy is 100 to 1000 times greater than that observed for other molybdenum based alloys. Greater design flexibility yielding lighter and more reliable components would be available with this material.

  16. Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.

    2013-05-01

    The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.

  17. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  18. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    UOSR-TR- 80 - 04 2 4EL4- G LEYEL ALUMINUM NITRIDE CRYSTAL GROWTH G.A. Slack FINAL REPORT Contract F49620-78-C-0021 DTIC Period Covered ELECTE I...Laboratory personnel worked on the problem of Aluminum Nitride Heat Sink Crystal Growth for the U.S. Air Force Office of Scientific Research under Contract...Number F44620-76-C-0039. From November 1, 1977 to the present we have worked on Aluminum Nitride and Boron Phosphide Crystal Growth under Contract NUmber

  19. Heat treatment of nitrided layer formed on X37CrMoV5-1 hot working tool steel

    NASA Astrophysics Data System (ADS)

    Ciski, A.; Wach, P.; Tacikowski, J.; Babul, T.; Šuchmann, P.

    2017-02-01

    The paper presents the technology consisting of combination of the nitriding process with subsequent austenitizing at temperature above eutectoid temperature of the Fe-C system and further rapid cooling. Such treatment will cause formation of the martensite in the area of the primarily nitrided layer and the additional precipitation hardening by tempering of heat treated steel. The article shows that the heat treatment process of nitrided layer formed on X37CrMoV5-1 steel leads to strengthening of surface layer, the substrate and the core of nitrided part. Heat treatment of nitrided steel with the tempering in inert (nitrogen) or active (ammonia) atmosphere can increase the thickness of the layer formed by short-term nitriding process. After the nitriding process of X37CrMoV5-1 steel the nitrided layer had a thickness of about 160 μm, while a subsurface layer of iron nitrides had a thickness of 7 μm. After subsequent quenching and tempering processes, the nitrided layer undergoes additional diffusion and its thickness is increased to about 220 μm (inert atmosphere) or 280 μm (active atmosphere). If the tempering process is carried out in an inert atmosphere, the primarily formed layer of iron nitrides disappears. Tempering in an active atmosphere leads to forming of white layer with a thickness of 7 μm. Basic properties of nitrided layers formed in such way, like the hardness and the wear resistance, are presented.

  20. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  1. Synthesis of aluminium nitride/boron nitride composite materials

    SciTech Connect

    Xiao, T.D. . Polymer Science Program and Dept. of Chemistry); Gonsalves, K.E. . Polymer Science Program and Dept. of Chemistry Univ. of Connecticut, Storrs, CT . Dept. of Chemistry); Strutt, P.R. . Dept. of Metallurgy)

    1993-04-01

    Aluminum nitride/boron nitride composite was synthesized by using boric acid, urea, and aluminum chloride (or aluminum lactate) as the starting compounds. The starting materials were dissolved in water and mixed homogeneously. Ammonolysis of this aqueous solution resulted in the formation of a precomposite gel, which converted into the aluminum nitride/boron nitride composite on further heat treatment. Characterization of both the precomposite and the composite powders included powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Analysis of the composite revealed that the aluminum nitride phase had a hexagonal structure, and the boron nitride phase a turbostratic structure.

  2. Chemical profiling of silicon nitride structures

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.

    1989-01-01

    X ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and scanning electron microscopy (SEM) were used to study structural and chemical inhomogeneities in several electronic materials and device structures of relevance to radiation hard electronics. The systems studied include metal nitride oxide semiconductor (MNOS) structures, silicon oxynitride (SiO(x)N(y)) formed by the thermal nitridation of SiO2, and semiconductor on insulator (SOI) structures. Studies of MNOS structures suggest that the effect of H2 annealing is to make the Si3N4/SiO2 interface less abrupt by causing interdiffusion of silanol and silamine groups with subsequent oxynitride formation. Another effect of the annealing appears to be to relieve the strain at the SiO2/Si interface.

  3. Ultrahard nanotwinned cubic boron nitride.

    PubMed

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  4. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  5. Hard error generation by neutron irradiation

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-01-01

    We have observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal nitride-oxidenonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup 2/ moving at an angle of 30/sup 0/ or less from the electric field in the high-field, gate region of the memory transistor and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, we observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide-semiconductor (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. We have mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. Our concentration measurements are in excellent agreement with others' measurements of uranium concentration in ceramic lids. Our Monte Carlo analyses also agree closely with our measurements of hard error probability in MNOS NVRAMs. 15 refs., 13 figs., 8 tabs.

  6. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  7. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  8. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  9. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  10. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  11. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  12. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Zdravecká, Eva; Slota, Ján; Solfronk, Pavel; Kolnerová, Michaela

    2017-07-01

    This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5-40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500-520 °C) favors the formation of compound layers of γ' and ɛ iron nitrides in the surface layers, whereas a monophase γ'-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

  13. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    spectral weight. The insulating state is realized due to the presence of local pairing gap but without superconducting correlations; it is characterized by a hard insulating gap in the density of single electrons and by purely activated low-temperature resistivity ln R(T) {approx} 1/T. Based on these results we propose a new 'pseudo-spin' scenario of superconductor-insulator transition and argue that it is realized in a particular class of disordered superconducting films. We conclude by the discussion of the experimental predictions of the theory and the theoretical issues that remain unsolved.

  14. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  15. Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium.

    PubMed

    Çelik, İlhan; Karakan, Mehmet

    2016-02-01

    In this study, plasma nitriding treatment was applied to commercially pure titanium (Grade 2). Structural properties, electrochemical and tribological behaviours of the nitrided pure titanium specimens were comparatively investigated. Microstructure and morphology of the plasma nitrided specimens were analysed by X-ray diffraction and scanning electron microscopy. Furthermore, corrosion tests were conducted in Ringer's solution, which represents a human body environment, to determine electrochemical properties. Then, tribological and frictional properties were investigated using pin-on-disc tribometer, and a micro-hardness tester was used to measure the hardness of the coatings. The results showed that plasma nitrided specimens exhibited higher surface hardness than the untreated specimens did. In addition, the plasma nitrided specimens at 700 °C presented significantly better performance than the other plasma nitrided specimens (at 500 °C and 600 °C) under dry wear conditions. Moreover, corrosion test results showed that corrosion behaviours of untreated and nitrided samples had similar characteristic. © IMechE 2015.

  16. Effect of Loading Rate Upon Conventional Ceramic Microindentation Hardness

    DTIC Science & Technology

    2002-01-01

    silicate crown glass. In this modification of the tradi- tional Vickers hardness test, both load and displacement were monitored during the indentation...loads up to 30 N. Alumina, two aluminum nitrides, and two zirconias had a dynamic hardness from 9 % to 19 % greater than the static hardness at loads up...M. Hooper, Indentation Creep in Zirconia Ceramics Between 290 K and 1073 K, in Mechanics of Creep, Brittle Materials, A. Cooks and A. Ponter, eds

  17. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    NASA Astrophysics Data System (ADS)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  18. Study of Martensite Ageing with Plasma Ion Nitriding of Steel C300 Using Design of an Experiment

    NASA Astrophysics Data System (ADS)

    Gezicioglu, Yavuz; Inal, Osman Tugay

    2014-09-01

    Double treatment of maraging steel C300 (nitriding + ageing) is studied using experimental design with a full 32 factorial matrix. After this treatment maximum surface hardness is 1270 HV and for the core it is 553 HV.

  19. Application of hard coatings to substrates at low temperatures. Final report

    SciTech Connect

    Sproul, W.D.

    1993-06-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  20. Abnormal Nitride Morphologies upon Nitriding Iron-Based Substrates

    NASA Astrophysics Data System (ADS)

    Meka, Sai Ramudu; Mittemeijer, Eric Jan

    2013-06-01

    Nitriding of iron-based components is a very well-known surface engineering method for bringing about great improvement of the mechanical and chemical properties. An overview is presented of the strikingly different nitride morphologies developing upon nitriding iron-based alloy substrates. Observed abnormal morphologies are the result of intricate interplay of the thermodynamic and kinetic constraints for the nucleation and growth of both alloying element nitride particles in the matrix and iron nitrides at the surface of the substrate. Alloying elements having strong Me-N interaction, such as Cr, V, and Ti, precipitate instantaneously as internal Me-nitrides, thus allowing the subsequent nucleation and growth of "normal" layer-type iron nitride. Alloying elements having weak Me-N interaction, such as Al, Si, and Mo, and simultaneously having low solubility in iron nitride, obstruct/delay the nucleation and growth of iron nitrides at the surface, thus leading to very high nitrogen supersaturation over an extended depth range from the surface. Eventually, the nucleation and growth of "abnormal" plate-type iron nitride occurs across the depth range of high nitrogen supersaturation. On this basis, strategies can be devised for tuned development of specific nitride morphologies at the surface of nitrided components.

  1. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    PubMed Central

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-01-01

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996

  2. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel.

    PubMed

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-10-27

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si₃N₄ balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  3. Ion-nitriding of the AISI M2 high speed tool steel and comparison of its mechanical properties with nitrided steels

    SciTech Connect

    Cimen, O.; Alnipak, B.

    1995-12-31

    In the past it was shown that plasma diffusion treatment of steels has several advantages over conventional processes such as gas or salt bath nitriding and nitrocarburizing. Plasma diffusion treatment allows close control of the process so that surface layers with defined microstructures and properties can be obtained. The amount of {gamma}{prime} and {epsilon} phase present can be easily controlled. In this paper, variation of surfaces hardness properties of AISI M2 high speed tool speed after ion nitriding treatments were investigated. The mechanical and electro-chemical advantages of the ion nitrided structures were compared with the other methods.

  4. Hydrogen Effect on Nanomechanical Properties of the Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Barnoush, Afrooz; Asgari, Masoud; Johnsen, Roy; Hoel, Rune

    2013-02-01

    In situ electrochemical nanoindentation is used to examine the effect of electrochemically charged hydrogen on mechanical properties of the nitride layer on low-alloy 2.25Cr-1Mo martensitic structural steel. By application of this method, we were able to trace the changes in the mechanical properties due to the absorption of atomic hydrogen to different depths within the compound and diffusion layers. The results clearly show that the hydrogen charging of the nitriding layer can soften the layer and reduce the hardness within both the compound and the diffusion layers. The effect is completely reversible and by removal of the hydrogen, the hardness recovers to its original value. The reduction in hardness of the nitride layer does not correlate to the nitrogen concentration, but it seems to be influenced by the microstructure and residual stress within the compound and diffusion layers. Findings show that nitriding can be a promising way to control the hydrogen embrittlement of the tempered martensitic steels.

  5. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  6. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  7. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  8. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  9. Superconducting Graphene Nanodevices in Ballistic Transport Regime

    NASA Astrophysics Data System (ADS)

    Chen, Yu-An; Wang, Joel I.-Jan; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Pablo Jarillo-Herrero's Group Team

    2013-03-01

    Superconductivity carried by Dirac fermions can be realized through induced superconductivity in grapheme. Observation of novel phenomena anticipated by theories requires graphene devices with low disorder whereas the carrier transport is ballistic. Current fabrication procedures to make graphene devices with low disorder like suspension or ultra-flat substrates all call for certain kinds of annealing to remove organic residues derived from the fabrication process. Applying these methods to superconducting devices can be challenging since the transparency at the graphene/superconductor interface will be destroyed. Here we present a method to do dry transfer of patterned hexagonal Boron Nitride (hBN) flakes onto graphene. The ultra flatness and lack of dangling bond in the boron nitride substrate reduces the disorder in graphene, and the top layer hBN can protect the graphene from contamination in the nanofabrication procedures and yield the geometry desired for different experimental exploration. National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

  10. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  11. Nitride quantum light sources

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  12. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  13. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; Toops, Todd J; More, Karren Leslie; Meyer III, Harry M; Vitek, John Michael; Wang, Heli; Turner, John; Wilson, Mahlon; Garzon, Fernando; Rockward, Tommy; Connors, Dan; Rakowski, Jim; Gervasio, Don

    2008-01-01

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  14. A low-power nitriding technique utilizing a microwave-excited radical flow

    NASA Astrophysics Data System (ADS)

    Itagaki, Hirotomo; Hirose, Shingo; Kim, Jaeho; Ogura, Mutsuo; Wang, Xuelun; Nonaka, Atsushi; Ogiso, Hisato; Sakakita, Hajime

    2016-06-01

    We report a novel low-power nitriding technique by utilizing a 2.45 GHz microwave-excited nitrogen radical flow system. Nitrogen plasma was produced at the nozzle with dimensions of 50 × 0.5 mm2 and blown onto the surface of a target substrate. A titanium substrate has been used as a target plate since it is easy to visualize a nitriding effect. The titanium substrate was treated under the conditions of 60 W microwave power, 20 Torr of nitrogen gas pressure, and a plate temperature of ∼800 °C. As a result, we have succeeded in nitriding of the titanium substrate in a quasi-atmospheric region of 20 Torr and of a very low power of 60 W with the hardness kept high, which is almost the same as the hardness processed by conventional nitriding methods.

  15. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  16. Effect of chromium and manganese nitride alloying on the evolution of the fine structure in powder hot-forged steels

    NASA Astrophysics Data System (ADS)

    Mamonova, A. A.; Baglyuk, G. A.; Kurovskii, V. Ya.

    2015-06-01

    The effect of alloying with chromium and manganese nitrides is studied on a fine crystal structure of powder iron produced by hot forging. The features of the fine structure and the phase composition are found to strongly depend on the kind of alloying nitrides. It has been shown that the introduction of both nitrides in the initial composition of powder mixture causes an increase in the lattice parameter of a matrix, its defectiveness, and the dislocation density, which results in an increase in the hardness of steel alloyed with nitrides. The defectiveness of the matrix crystal lattice, the dislocation density, and the hardness of hot-forged steels are slightly higher when manganese nitride is used as a nitrogen-bearing additive.

  17. Tribological and microstructural characteristics of ion-nitrided steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 304 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided.

  18. Tribological and microstructural characteristics of ion-nitrided steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635

  19. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  20. Hard gap in epitaxial semiconductor-superconductor nanowires.

    PubMed

    Chang, W; Albrecht, S M; Jespersen, T S; Kuemmeth, F; Krogstrup, P; Nygård, J; Marcus, C M

    2015-03-01

    Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states--a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.

  1. Quantum electromechanics on silicon nitride nanomembranes

    PubMed Central

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-01-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751

  2. Nitriding of restored crankshafts

    NASA Astrophysics Data System (ADS)

    Ponukalin, V. V.; Aleksandrov, V. N.

    1984-02-01

    The following technology is recommended for restoration of steel crankshafts: facing with an Sv-08 electrode wire under an AN-348A flux with chromium and niobium introduced into the melt in accordance with the method used at automotive-repair plants and subsequent gas nitriding at (570±10)°C for 12 h.

  3. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Linzen, S.; Ziegler, M.; Astafiev, O. V.; Schmelz, M.; Hübner, U.; Diegel, M.; Il’ichev, E.; Meyer, H.-G.

    2017-03-01

    We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition (PEALD) process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films was minimised and a film structure consisting of mainly polycrystalline niobium nitride with a small fraction of amorphous niobium oxide and niobium oxo-nitrides were formed. For this composition a critical temperature of 13.8 K and critical current densities of 7 × 106 A cm–2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic δ-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor–insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures. The perfect thickness control and film homogeneity of the PEALD growth make such films extremely promising candidates for developing novel devices on the coherent quantum phase slip effect.

  4. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  5. Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film

    NASA Astrophysics Data System (ADS)

    Hui, Wing C.

    2004-04-01

    Boron nitride thin film has a very unique characteristic of extremely high chemical inertness. Thus, it is a better hard mask than silicon nitride for aggressive etching solutions, such as the isotropic HF/HNO3/CH3COOH (or HNA) etchant for silicon. However, because of its high chemical inertness, it is also difficult to remove it. Plasma etching with Freon gases can etch the boron nitride film, but it is unselective to silicon, silicon dioxide or silicon nitride. Cleaning up the boron nitride film with plasma etching will usually leave a damaged or foggy surface. A special wet chemical solution has been developed for etching or cleaning boron nitride film selectively. It can etch boron nitride, but not the coatings or substrates of silicon, silicon nitride and silicon dioxide. It is a very strong oxidizing agent consisting of concentrated sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), but different from the common Piranha Etch. It may be even more interesting to understand the logic or secret behind of how to formulate a new selective etching solution. Various chemical and chemical engineering aspects were considered carefully in our development process. These included creating the right electrochemical potential for the etchant, ensuring large differences in chemical kinetics to make the reactions selective, providing proper mass transfer for removing the by products, etc.

  6. Influence of surface nano/ultrafine structure formed via pre-deep rolling process on the plasma nitriding characteristics of the AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Tadi, A. Jafari; Hosseini, S. R.; Semiromi, M. Naderi

    2017-08-01

    Influence of deep rolling prior to plasma nitriding on microstructure and hardness of the AISI 316L stainless steel was investigated in this paper. Deep rolling using `ball-point' tool was conducted on the 316L stainless steel bar at multiple passes. Then, plasma nitriding was performed on the as-received and deep-rolled kinds at 450 °C temperature for 5 h. Structural characterisation was done using optical microscope, field emission scanning electron microscope, feritscope, X-ray diffractometer, and glow discharge optical emission spectroscope as well as hardness measurement by a Vickers micro-hardness tester at 0.1 kgf. An ultrafine structure and a nitrogen-rich layer were, respectively, formed on the rolled and nitrided surfaces. Surface hardness was increased from 210 up to 450, 670 and 1050 HV0.1 after the rolling, nitriding, and rolling-nitriding processes, respectively. Thickness of the nitrided layer was increased from 12 to 20 µm and diffusion depth of nitrogen from 12 to 25 µm via conducting the deep rolling before the nitriding process. The rolling-nitriding process was resulted in rising of nitrogen concentration by a factor of about 3 at near-surface regions.

  7. Upper critical field of niobium nitride thin films

    NASA Astrophysics Data System (ADS)

    Vasyutin, M. A.; Kuz'michev, N. D.; Shilkin, D. A.

    2016-02-01

    The temperature dependences of the superconducting transition of niobium nitride (NbN) thin films have been investigated via the first harmonic of the voltage in dc magnetic fields of up to 8 T. The temperature dependence of the second critical field of NbN has been determined. The parameter responsible for the effect of spin paramagnetism in this material and the temperature dependence of the upper critical field that describes well the experimental data have been found in terms of the Werthamer-Helfand-Hohenberg (WHH) theory. The key parameters of the superconductor have been estimated from the transport and optical measurements.

  8. Analysis of plasma nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  9. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  10. Pulsed laser nitriding of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Meng, Daqiao; Xu, Qinying; Zhang, Youshou

    2010-02-01

    Pulsed laser nitriding offers several advantages such as high nitrogen concentration, low matrix temperature, fast treatment, simple vacuum chamber and precise position control compare to ion implantation, which is favorable for radioactive material passivation. In this work, uranium metal was nitrided using an excimer laser for the first time. The nitrided layers are characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The nitride layer is composed mainly of UN and U 2N 3 and depends on nitriding process. The amount of nitride increases with energy density and pressure. The irradiated area has a wavy structure which increases the roughness, while scratches and asperities caused by sand paper polishing were eliminated. Scan speed has a profound influence on the nitride layer, at low speed U 2N 3 is more likely to form and the nitride layer tends to crack. XPS analysis shows that nitrogen has diffused into interior, while oxygen is only present on the surface. Ambient and humid-hot corrosion tests show the nitrided sample has good anticorrosion property.

  11. Irradiation performance of nitride fuels

    SciTech Connect

    Matthews, R.B.

    1993-01-01

    The properties and advantages of nitride fuels are well documented in the literature. Basically the high thermal conductivity and uranium density of nitride fuels permit high power density, good breeding ratios, low reactivity swings, and large diameter pins compared to oxides. Nitrides are compatible with cladding alloys and liquid metal coolants, thereby reducing fuel/cladding chemical interactions and permitting the use of sodium-bonded pins and the operation of breached pins. Recent analyses done under similar operating conditions show that - compared to metal - fuels mixed nitrides operate at lower temperatures, produce less cladding strain, have greater margins to failure, result in lower transient temperatures, and have lower sodium void reactivity. Uranium nitride fuel pellet fabrication processes were demonstrated during the SP-100 program, and irradiated nitride fuels can be reprocessed by the PUREX process. Irradiation performance data suggest that nitrides have low fission gas release and swelling rates thereby permitting favorable pin designs and long lifetime. The objective of this report is to summarize the available nitride irradiation performance data base and to recommend optimum nitride characteristics for use in advanced liquid metal reactors.

  12. Tribology of nitrided-coated steel-a review

    NASA Astrophysics Data System (ADS)

    Bhaskar, Santosh V.; Kudal, Hari N.

    2017-01-01

    Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  13. Surface studies of materials for superconducting cavities

    SciTech Connect

    Garwin, E.L.; Kirby, R.E.; Momose, T.; Hoyt, E.W.

    1980-06-01

    A multitechnique system has been constructed to study materials and processes used for producing high Q superconducting cavities, while constantly maintaining uhv environment. Characterization of a small disc of superconducting material, e.g. Nb, is done by a variety of methods, including AES, XPS, EID, ellipsometry, sputter profiling, and secondary electron yield measurements. The samples may be processed in situ by rf and electron bombardment heating, and ion sputtering. Sample temperatures may be held from 77K to 2500K. Coating by sputtering and evaporation, and oxidizing and nitriding are incorporated. Both AES and secondary yield measurements are accomplished using very low current electron beams and counting electronics to minimize the reduction of oxide surfaces by electrons. Computer-controlled ellipsometry allows monitoring of the temporal growth of surface layers during controlled exposure to gases. Extensive measurements have been carried out on Au, C, Pt, Nb and its oxides, nitride, and carbide. AES, secondary yield, and other measurements are presented, and trends which may enable the production of stable cavity surfaces and their simple, effective in situ regeneration while installed as accelerating cavity surfaces are discussed.

  14. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  15. Boron nitride nanotubes.

    PubMed

    Chopra, N G; Luyken, R J; Cherrey, K; Crespi, V H; Cohen, M L; Louie, S G; Zettl, A

    1995-08-18

    The successful synthesis of pure boron nitride (BN) nanotubes is reported here. Multi-walled tubes with inner diameters on the order of 1 to 3 nanometers and with lengths up to 200 nanometers were produced in a carbon-free plasma discharge between a BN-packed tungsten rod and a cooled copper electrode. Electron energy-loss spectroscopy on individual tubes yielded B:N ratios of approximately 1, which is consistent with theoretical predictions of stable BN tube structures.

  16. Bulk Cubic Gallium Nitride

    DTIC Science & Technology

    1999-02-09

    microcrysta. form at bottom of «he reaction vessel. The objective of the second step is the solvothermal transport of the gallium nitride residing in the...system using pressure pumps can be used to gain precise control of the pressure. High pressure is typically used for the solvothermal transport. The...takes place in the reaction vessel during heating is a solvothermal reaction that is conducted at or above the critical point of the solvent The

  17. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Kuruc, Marcel; Peterka, Jozef

    2014-12-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics). This contribution investigates this advanced machining method during machining of PCBN.

  18. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  19. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  20. Ballistic superconductivity in semiconductor nanowires

    PubMed Central

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  1. Ballistic superconductivity in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  2. Ballistic superconductivity in semiconductor nanowires.

    PubMed

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P

    2017-07-06

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  3. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  4. Surface superconductivity in lead

    SciTech Connect

    Khlyustikov, I. N.

    2016-02-15

    A transition to the surface superconducting state is detected in lead single crystals at a temperature approximately 0.25 mK higher than the bulk superconducting transition temperature. The (H, T) phase diagram of this state is analyzed.

  5. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films.

    PubMed

    Zorn, Gilad; Migonney, Véronique; Castner, David G

    2014-09-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm(2).

  6. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  7. Platinum nitride with fluorite structure

    SciTech Connect

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  8. Superconducting properties of long TiN wires

    NASA Astrophysics Data System (ADS)

    Mironov, A. Yu.; Postolova, S. V.; Nasimov, D. A.

    2016-12-01

    The low-temperature transport properties of titanium nitride wires with the width comparable with or much larger than the superconducting coherence length are studied experimentally. It is shown that the reduction of the width of wires does not affect the transport properties at the temperatures above the superconducting transition temperature and electron transport in this temperature range is determined by quantum contributions to the conductivity from weak localization and electron-electron interaction. It is established that the reduction of the width of wires does not change the superconducting transition temperature but completely suppresses the topological Berezinskii-Kosterlitz-Thouless transition. It is found that the threshold magnetic field increases with a decrease in the width of wires.

  9. Characterizing superconducting filters using residual microwave background

    NASA Astrophysics Data System (ADS)

    Lehtinen, J. S.; Mykkänen, E.; Kemppinen, A.; Lotkhov, S. V.; Golubev, D.; Manninen, A. J.

    2017-05-01

    A normal metal-superconductor hybrid single-electron trap with tunable barrier is utilized as a tool for spectrum analysis at the extremely low signal levels, using only well filtered cryogenic microwave background as a photon source in the frequency range from about 50 to 210 GHz. We probe millimeter wave propagation in two superconducting systems: a Josephson junction array around its plasma frequency, and a superconducting titanium film in the limit when the photon energies are larger than the superconducting energy gap. This regime is relevant for improving the performance of cryogenic quantum devices but is hard to access with conventional techniques. We show that relatively simple models can be used to describe the essential properties of the studied components.

  10. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  11. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  12. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

    DOE PAGES

    Breznay, Nicholas P.; Kapitulnik, Aharon

    2017-09-15

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition frommore » a true superconductor to a metallic phase with saturated resistivity. Lastly, this metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.« less

  13. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-09-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  14. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-11-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  15. a Novel Method for Improving Plasma Nitriding Efficiency: Pre-Magnetization by DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kovaci, Halim; Yetim, Ali Fatih; Bozkurt, Yusuf Burak; Çelik, Ayhan

    2017-06-01

    In this study, a novel pre-magnetization process, which enables easy diffusion of nitrogen, was used to enhance plasma nitriding efficiency. Firstly, magnetic fields with intensities of 1500G and 2500G were applied to the untreated samples before nitriding. After the pre-magnetization, the untreated and pre-magnetized samples were plasma nitrided for 4h in a gas mixture of 50% N2-50% H2 at 500∘C and 600∘C. The structural, mechanical and morphological properties of samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness tester and surface tension meter. It was observed that pre-magnetization increased the surface energy of the samples. Therefore, both compound and diffusion layer thicknesses increased with pre-magnetization process before nitriding treatment. As modified layer thickness increased, higher surface hardness values were obtained.

  16. An investigation of nitride precipitates in archaeological iron artefacts from Poland.

    PubMed

    Kedzierski, Z; Stepiński, J; Zielińska-Lipiec, A

    2010-03-01

    The paper describes the investigations of nitride precipitates in a spearhead and a sword found in the territory of Poland, in cremation graveyards of the Przeworsk Culture, dated to the Roman Period. Three different techniques of the examination of nitride precipitates were employed: optical microscope, scanning electron microscope (scanning electron microscope with energy dispersive X-ray spectrometer) and transmission electron microscope. Two types of precipitates have been observed, and their plate-like shape was demonstrated. The large precipitate has been confirmed to be gamma'-Fe(4)N, whereas the small one has been identified as alpha''-Fe(16)N(2). The origin of nitride precipitates in archaeological iron artefacts from Poland is probably a result of the manufacturing process or cremation as part of burial rites. An examination of available iron artefacts indicates that nitride precipitates (have only limited effect on mechanical properties) influence the hardness of metal only to a very limited degree.

  17. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  18. Formation of silicon nitride nanopillars in dual-frequency capacitively coupled plasma and their application to Si nanopillar etching

    SciTech Connect

    Park, C. K.; Kim, H. T.; Kim, D. Y.; Lee, N.-E.

    2007-07-15

    During the etching process of a silicon nitride layer in CH{sub 2}F{sub 2}/H{sub 2}/Ar dual-frequency superimposed capacitively coupled plasmas, CH{sub x}F{sub y} polymer nanodots were formed on the silicon nitride surface and, as a result, silicon nitride nanopillars were fabricated. The H{sub 2} and low frequency power (P{sub LF}) were found to play a critical role in determining the density and diameters of the pillars due to the change in the degree of hydrofluorocarbon polymerization. Silicon nitride nanopillars with a diameter as small as congruent with 25 nm and an aspect ratio as large as congruent with 3.2 were formed, and silicon nanopillars could also be fabricated by the inductively coupled Cl{sub 2}/Ar plasma etching of a Si substrate using the silicon nitride nanopillars as a hard mask.

  19. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  20. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  1. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  2. High upper critical field in disordered niobium nitride superconductor

    SciTech Connect

    Baskaran, R. Thanikai Arasu, A. V.; Amaladass, E. P.; Janawadkar, M. P.

    2014-10-28

    Superconducting Niobium Nitride thin films have been deposited on glass, aluminum nitride buffered glass, and oxidized silicon substrates by reactive DC magnetron sputtering at ambient substrate temperatures. The crystal structure of these thin films has been determined to be cubic fcc B1 structure by Glancing Incidence X-Ray Diffraction analysis. The superconducting transition temperatures of the thin films were measured to be greater than 11.6 K with a maximum of 13.4 K. The negative temperature coefficient of resistance observed in these thin films indicates the presence of disorder. Magneto-resistance measurements have been carried out on these thin films patterned into standard four probe geometry upto a maximum magnetic field of 12 T for two films and upto 15 T for the other two films. The dependence of transition temperature on the applied field is analyzed to estimate the upper critical field. The upper critical field for most of the films was estimated to exceed 35 T, while one of the most disordered films had an estimated upper critical field greater than 70 T.

  3. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  4. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  5. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  6. Enhanced superconductivity of fullerenes

    DOEpatents

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  7. Superconductivity fact vs. fancy

    SciTech Connect

    Fitzgerald, K.

    1988-05-01

    The author says great advances have been made in superconductivity. However, the rush to secure recognition combined with public confusion over superconductivity has tainted the field with misconceptions. Some people are saying little progress towards practical use of the ceramics has been made over the last year and many researchers have left what they were doing to study superconductivity. All the hype surrounding the new found ceramic superconductors could give way to a period of disillusionment and frustration. This article discusses recent work in the field of superconductivity. IEEE Spectrum has adopted an attitude of ''just the facts'' in reporting superconductivity news.

  8. Superconductivity in Medicine

    NASA Astrophysics Data System (ADS)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  9. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  10. Experimental and numerical study on plasma nitriding of AISI P20 mold steel

    NASA Astrophysics Data System (ADS)

    Nayebpashaee, N.; Vafaeenezhad, H.; Kheirandish, Sh.; Soltanieh, M.

    2016-09-01

    In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures (450°C, 500°C, and 550°C) and over a range of time periods (2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ɛ-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.

  11. NanoSQUIDs based on niobium nitride films

    NASA Astrophysics Data System (ADS)

    Russo, R.; Esposito, E.; Crescitelli, A.; Di Gennaro, E.; Granata, C.; Vettoliere, A.; Cristiano, R.; Lisitskiy, M.

    2017-02-01

    We present an experimental investigation of nanoSQUIDs based on niobium nitride films. Niobium nitride has a relatively high critical temperature and a large upper critical magnetic field, making it a good material for superconducting electronics working in high magnetic field. We have fabricated nanoSQUIDs using electron beam lithography lift-off technique and deposition of niobium nitride films by magnetron sputtering at room temperature. The characterization of nanoSQUIDs was performed at 4.2 K and it consists mainly of current-voltage (IV) characteristics and critical current as a function of external magnetic field (magnetic pattern). The fabricated nanoSQUIDs show a hysteretic IV characteristic and they present a multi-values magnetic pattern. We show that by reducing the critical current by ion etching it is possible to obtain nanoSQUIDs with a single value magnetic pattern suitable for magnetic particle measurements. Magnetic noise analysis has been performed and a white noise of 0.3 μΦ0 Hz-1/2 has been estimated.

  12. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    SciTech Connect

    Takahashi, Hideo; Shinohara, Nobuhiro; Okumiya, Masataro; Uematsu, Keizo; JunIchiro, Tsubaki; Iwamoto, Yuji; Kamiya, Hidehiro

    1995-04-01

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts.

  13. Frictional and structural characterization of ion-nitrided low and high chromium steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.

  14. Frictional and structural characterization of ion-nitrided low and high chromium steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.

  15. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  16. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Hardness and nitrogen bonding structure of AlxTi1-xN/CrN multilayer hard coating.

    PubMed

    Seo, Jong-Hyun; Yoon, Sang-Won; Chae, Keun-Hwa; Park, Jong-Keuk; Song, Jong-Han; Jayaram, Vickram; Lee, Kon-Bae; Seong, Tae-Yeon; Kwon, Hoon; Ahn, Jae-Pyoung

    2012-02-01

    AlxTi1-xN/CrN multilayer coatings were fabricated by magnetron sputtering and those hardness variations were studied by observing the crack propagation and measuring the chemical bonding state of nitrides by Ti addition. While AlN/CrN multilayer shown stair-like crack propagation, AlxTi1-xN/CrN multilayer illustrated straight crack propagation. Most interestingly, Ti addition induced more broken nitrogen bonds in the nitride multilayers, leading to the reduction of hardness. However, the hardness of Al0.25Ti0.75N/CrN multilayer, having high Ti contents, increased by the formation of many Ti-N bond again instead of Al-N bond. From these results, we found that linear crack propagation behavior was dominated by broken nitrogen bonds in the AlxTi1-xN/CrN multilayer coatings.

  18. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    PubMed

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  19. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  20. Structure and energetics of nanotwins in cubic boron nitrides

    SciTech Connect

    Zheng, Shijian E-mail: zrf@buaa.edu.cn; Ma, Xiuliang; Zhang, Ruifeng E-mail: zrf@buaa.edu.cn; Huang, Rong; Taniguchi, Takashi; Ikuhara, Yuichi; Beyerlein, Irene J.

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  1. Structure and energetics of nanotwins in cubic boron nitrides

    NASA Astrophysics Data System (ADS)

    Zheng, Shijian; Zhang, Ruifeng; Huang, Rong; Taniguchi, Takashi; Ma, Xiuliang; Ikuhara, Yuichi; Beyerlein, Irene J.

    2016-08-01

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  2. Method for producing refractory nitrides

    DOEpatents

    Quinby, Thomas C.

    1989-01-24

    A process for making fine, uniform metal nitride powders that can be hot pressed or sintered. A metal salt is placed in a solvent with Melamine and warmed until a metal-Melamine compound forms. The solution is cooled and the metal-Melamine precipitate is calcined at a temperature below 700.degree. C. to form the metal nitrides and to avoid formation of the metal oxide.

  3. Boron nitride converted carbon fiber

    SciTech Connect

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  4. Hemocompatibility of titanium nitride.

    PubMed

    Dion, I; Baquey, C; Candelon, B; Monties, J R

    1992-10-01

    The left ventricular assist device is based on the principle of the Maillard-Wenkel rotative pump. The materials which make up the pump must present particular mechanical, tribological, thermal and chemical properties. Titanium nitride (TiN) because of its surface properties and graphite because of its bulk characteristics have been chosen. The present study evaluated the in vitro hemocompatibility of TiN coating deposited by the chemical vapor deposition process. Protein adsorption, platelet retention and hemolysis tests have been carried out. In spite of some disparities, the TiN behavior towards albumin and fibrinogen is interesting, compared with the one of a reference medical grade elastomer. The platelet retention test gives similar results as those achieved with the same elastomer. The hemolysis percentage is near to zero. TiN shows interesting characteristics, as far as mechanical and tribological problems are concerned, and presents very encouraging blood tolerability properties.

  5. Silicon nitride membrane photonics

    NASA Astrophysics Data System (ADS)

    Pernice, W. H. P.; Li, M.; Gallagher, D. F. G.; Tang, H. X.

    2009-11-01

    We propose a concept for realizing large area nanophotonic circuits in a silicon nitride membrane. Light is coupled into the membrane using a novel metallic photonic crystal grating coupler. A coupling loss of 5.5 dB is predicted for TE polarized light at 1550 nm. Waveguiding at telecoms wavelengths is achieved by using low loss photonic crystal defect waveguides. The propagation losses of the photonic crystal waveguides are estimated at 8.6 dB mm-1, comparable to early silicon photonic crystal waveguides. Using the proposed approach, photonic circuits can be fabricated using a single lithography and etching step. Thus the design scheme shows a route to low-cost fabrication.

  6. Nano boron nitride flatland.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-02-07

    Recent years have witnessed many breakthroughs in research on two-dimensional (2D) nanomaterials, among which is hexagonal boron nitride (h-BN), a layered material with a regular network of BN hexagons. This review provides an insight into the marvellous nano BN flatland, beginning with a concise introduction to BN and its low-dimensional nanostructures, followed by an overview of the past and current state of research on 2D BN nanostructures. A comprehensive review of the structural characteristics and synthetic routes of BN monolayers, multilayers, nanomeshes, nanowaves, nanoflakes, nanosheets and nanoribbons is presented. In addition, electronic, optical, thermal, mechanical, magnetic, piezoelectric, catalytic, ecological, biological and wetting properties, applications and research perspectives for these novel 2D nanomaterials are discussed.

  7. Magnetic iron nitride nanodendrites

    SciTech Connect

    Cao Minhua . E-mail: caomh043@nenu.edu.cn; Liu Tianfu; Sun Genban; Wu Xinglong; He, Xiaoyan; Hu Changwen

    2005-07-15

    We report the synthesis of Fe{sub 3}N nanodendrites directly by reduction-nitriding of {alpha}-Fe{sub 2}O{sub 3} nanopine dendrites in a mixed stream of H{sub 2}-NH{sub 3}. Fe{sub 3}N basically retains dendritic morphology of the starting material {alpha}-Fe{sub 2}O{sub 3.} It is found that nanorod branches of Fe{sub 3}N dendrites have relatively uniform diameters and are evenly distributed at both sides of the stem with a periodicity of about 50nm. The diameters of the nanorods are about 50nm, and their lengths range from 50 to 1000nm. Fe{sub 3}N nanodendrites show a rapid saturation of magnetization of 104emu/g at 300K, as expected for a magnet.

  8. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  9. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  10. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  11. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  12. Cryogenfree superconducting magnets

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuo; Awaji, Satoshi; Motokawa, Mitsuhiro

    2003-05-01

    Various kinds of cryogenfree superconducting magnets such as a wide bore 8 T, a split-pair 5 T, and a high magnetic field 15 T magnet have been developed successfully at Tohoku University. A cryogenfree 23 T hybrid magnet composed of a cryocooled outer superconducting magnet and a water-cooled inner resistive magnet is being tested for the first time. Further, new construction projects of a cryogenfree 30 T hybrid magnet and a cryogenfree 19 T superconducting magnet have just started.

  13. Superconducting energy recovery linacs

    DOE PAGES

    Ben-Zvi, Ilan

    2016-09-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  14. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  15. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  16. Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kusmic, D.; Van Thanh, D.

    2017-02-01

    This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.

  17. Superconducting optical modulator

    NASA Astrophysics Data System (ADS)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  18. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  19. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2016-08-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low-temperature nitriding results in improved properties of both bulk and surface.

  20. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  1. Nitride precipitation in salt-bath nitrided interstitial-free steel

    SciTech Connect

    Lee, Tae-Ho; Oh, Chang-Seok; Lee, Min-Ku; Han, Sang-Won

    2010-10-15

    Nitride precipitation and its effect on microstrain in salt-bath nitrided interstitial-free steel were investigated using transmission electron microscopy and neutron diffraction. As the cooling rate after nitriding decreased, two nitrides, {gamma}'-Fe{sub 4}N and {alpha}{sup -}Fe{sub 16}N{sub 2}, were identified in diffusion zone. Combined analyses using Rietveld whole-profile fitting and size-strain analysis revealed that the microstrain in the nitrided specimen increased due to nitrogen supersaturation and then decreased after nitride precipitation, whereas the effective particle size continuously decreased. It was found that microstrain is the dominant factor in peak broadening of the nitrided specimen.

  2. Kinetics Analysis of Higher Temperature Salt Bath Nitriding for Aisi 1045 Steel

    NASA Astrophysics Data System (ADS)

    Dai, Mingyang; Chen, Yao; Chai, Yating; Hu, Jing

    2016-05-01

    Rapid salt bath nitriding was conducted at higher temperature above 600∘C instead of normally used 560∘C for AISI 1045 steel. Optical microscopy (OM), X-ray diffraction (XRD) and micro-hardness tester were employed to characterize the microstructure, phase constituents and micro-hardness of the treated specimens. The results showed that salt bath nitriding at higher temperature could significantly increase the compound layer thickness and higher cross-sectional hardness can be obtained. Kinetics analysis illustrated that the nitrogen atoms diffusion coefficient was obviously increased with temperature, and the activation energy of nitrogen atom diffusion was decreased from 220kJṡmol-1 to 142kJṡmol-1.

  3. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  4. Long-lived, radiation-suppressed superconducting quantum bit in a planar geometry

    NASA Astrophysics Data System (ADS)

    Sandberg, Martin; Vissers, Michael; Ohki, Thomas; Goa, Jiansong; Aumentado, Jose; Weides, Martin; Pappas, David

    2013-03-01

    We present a superconducting qubit design that is fabricated in a 2D geometry over a super-conducting ground plane to enhance the lifetime. The qubit is coupled to a microstrip resonator for readout. The circuit is fabricated on a silicon substrate using low loss, stoichiometric titanium nitride for capacitor pads and small, shadow-evaporated aluminum/aluminum-oxide junctions. We observe qubit relaxation and coherence times (T1 and T2) of 11.7 +/- 0.2 μs and 8.7 +/- 0.3 μs, respectively. Calculations show that the proximity of the superconducting plane suppresses the otherwise high radiation loss of the qubit. A significant increase in T1 is projected for a reduced qubit-to-superconducting plane separation.

  5. Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.

    PubMed

    Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto

    2008-04-01

    Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N2:H2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe4N, and Fe3N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.

  6. Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy.

    PubMed

    Clem, William C; Konovalov, Valery V; Chowdhury, S; Vohra, Yogesh K; Catledge, Shane A; Bellis, Susan L

    2006-02-01

    Improved methods to increase surface hardness of metallic biomedical implants are being developed in an effort to minimize the formation of wear debris particles that cause local pain and inflammation. However, for many implant surface treatments, there is a risk of film delamination due to the mismatch of mechanical properties between the hard surface and the softer underlying metal. In this article, we describe the surface modification of titanium alloy (Ti-6Al-4V), using microwave plasma chemical vapor deposition to induce titanium nitride formation by nitrogen diffusion. The result is a gradual transition from a titanium nitride surface to the bulk titanium alloy, without a sharp interface that could otherwise lead to delamination. We demonstrate that vitronectin adsorption, as well as the adhesion and spreading of human mesenchymal stem cells to plasma-nitrided titanium is equivalent to that of Ti-6Al-4V, while hardness is improved 3- to 4-fold. These in vitro results suggest that the plasma nitriding technique has the potential to reduce wear, and the resulting debris particle release, of biomedical implants without compromising osseointegration; thus, minimizing the possibility of implant loosening over time. (c) 2005 Wiley Periodicals, Inc.

  7. Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy

    PubMed Central

    Clem, William C.; Konovalov, Valery V.; Chowdhury, S.; Vohra, Yogesh K.; Catledge, Shane A.; Bellis, Susan L.

    2008-01-01

    Improved methods to increase surface hardness of metallic biomedical implants are being developed in an effort to minimize the formation of wear debris particles that cause local pain and inflammation. However, for many implant surface treatments, there is a risk of film delamination due to the mismatch of mechanical properties between the hard surface and the softer underlying metal. In this article, we describe the surface modification of titanium alloy (Ti-6Al-4V), using microwave plasma chemical vapor deposition to induce titanium nitride formation by nitrogen diffusion. The result is a gradual transition from a titanium nitride surface to the bulk titanium alloy, without a sharp interface that could otherwise lead to delamination. We demonstrate that vitronectin adsorption, as well as the adhesion and spreading of human mesenchymal stem cells to plasma-nitrided titanium is equivalent to that of Ti-6Al-4V, while hardness is improved 3- to 4-fold. These in vitro results suggest that the plasma nitriding technique has the potential to reduce wear, and the resulting debris particle release, of biomedical implants without compromising osseointegration; thus, minimizing the possibility of implant loosening over time. PMID:16265649

  8. Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel

    PubMed Central

    Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto

    2008-01-01

    Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N2:H2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe4N, and Fe3N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples. PMID:27877982

  9. High-Resolution Group III Nitride Microdisplays

    DTIC Science & Technology

    2011-12-14

    emissive displays based on gallium nitride micro-size LEDs may be suitable for ultra-portable products such as next- generation handheld projectors...semiconductors. Such devices would benefit from the outstanding physical properties of III- nitrides such as gallium nitride (GaN) and indium gallium ...projected image of a leopard from a green video graphics array indium gallium nitride (InGaN) microdisplay (640 480 pixels, each 12m in size with 15m

  10. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  11. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  12. Plasma Nitriding of CP Titanium Grade-2 and Ti-6Al-4V Grade-5

    NASA Astrophysics Data System (ADS)

    Deepak, J. R.; Bupesh Raja, V. K.; Senthil Kumar, J.; Thomas, Subin; Raju Vithaiyathil, Thomas

    2017-05-01

    Titanium metal is considered to be asset material due to its high tribological properties. Since these tribological properties like hardness, roughness, wear resistance etc. are influenced by the surface properties of the material, so obviously any changes in the surface of the material has direct impact on the tribological properties too. Nitriding is a heat-treating process that diffuses nitrogen into the surface of a metal to create a case hardened surface. The main objective is that to implement the plasma nitriding process to both CP Titanium grade-2 and Ti-6Al-4V grade-5 and to observe the improvements in the tribological properties with respect to the parent materials.

  13. Formation of cubic boron-nitride by the reactive sputter deposition of boron

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Makowiecki, D.W.; McKeman, M.A.

    1997-03-01

    Boron-nitride films are synthesized by RF magnetron sputtering boron targets where the deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are analyzed using Auger electron spectroscopy, transmission electron microscopy, nanoindentation, Raman spectroscopy and x-ray absorption spectroscopy. These techniques provide characterization of film composition, crystalline structure, hardness and chemical bonding, respectively. Reactive, rf-sputtering process parameters are established which lead to the growth of crystalline BN phases. The deposition of stable and adherent boron nitride coatings consisting of the cubic phase requires 400 `C substrate heating and the application of a 300 V negative bias.

  14. Normal, superconducting and topological regimes of hybrid double quantum dots.

    PubMed

    Sherman, D; Yodh, J S; Albrecht, S M; Nygård, J; Krogstrup, P; Marcus, C M

    2017-03-01

    Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot structures made from InAs nanowires with a patterned epitaxial Al two-facet shell that proximitizes two gate-defined segments along the nanowire. We follow the evolution of mesoscopic superconductivity and charging energy in this system as a function of magnetic field and voltage-tuned barriers. Interdot coupling is varied from strong to weak using side gates, and the ground state is varied between normal, superconducting and topological regimes by applying a magnetic field. We identify the topological transition by tracking the spacing between successive co-tunnelling peaks as a function of axial magnetic field and show that the individual dots host weakly hybridized Majorana modes.

  15. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  16. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  17. Superconducting AC generators

    NASA Astrophysics Data System (ADS)

    Lambrecht, D.; Bogner, G.

    1984-06-01

    Investigations into the development of superconducting generators are presented. Theoretical and experimental aspects of basic investigations, design and construction, technological and manufacturing developments, and functional tests on models are discussed. Information on the joint KWU/Siemens long term development program, the status of corresponding development work in other countries, and the special features of superconducting generators are given.

  18. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  19. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  20. Carbon Nitride Thin Films Deposited by Cathodic Electrodeposition

    NASA Astrophysics Data System (ADS)

    Cao, Chuanbao; Fu, Jiyu; Zhu, Hesun

    Carbon nitride thin films were prepared by cathodic electrodeposition. The dicyandiamide compound dissovled in acetone was selected as the organic precursor. Single crystal silicon wafers and conductive glass (ITO) wafers were used as substrates. XPS measurements indicated that the films composed of carbon and nitrogen elements. The nitrogen content reached 41%. The polycrystalline β-C3N4 should exit in the prepared film from TED measurements. The nano hardness of the films on ITO substrates were as high as 13 GPa. The structure and properties were studies.

  1. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  2. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  3. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. Method of producing high T(subc) superconducting NBN films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Lamb, James L. (Inventor); Thakoor, Anilkumar P. (Inventor); Khanna, Satish K. (Inventor)

    1988-01-01

    Thin films of niobium nitride with high superconducting temperature (T sub c) of 15.7 K are deposited on substrates held at room temperature (approx 90 C) by heat sink throughout the sputtering process. Films deposited at P sub Ar 12.9 + or - 0.2 mTorr exhibit higher T sub c with increasing P sub N2,I with the highest T sub c achieved at P sub n2,I= 3.7 + or - 0.2 mTorr and total sputtering pressure P sub tot = 16.6 + or - 0.4. Further increase of N2 injection starts decreasing T sub c.

  5. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  6. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  7. Radiation-suppressed superconducting quantum bit in a planar geometry

    NASA Astrophysics Data System (ADS)

    Sandberg, Martin; Vissers, Michael R.; Ohki, Thomas A.; Gao, Jiansong; Aumentado, José; Weides, Martin; Pappas, David P.

    2013-02-01

    We present a superconducting transmon qubit circuit design based on large, coplanar capacitor plates and a microstrip resonator. The microstrip geometry, with the ground plane on the back, enhances access to the circuit for state preparation and measurement relative to other designs. The device is fabricated on a silicon substrate using low loss, stoichiometric titanium nitride for the capacitor plates and a single small aluminium/aluminium-oxide/aluminium junction. We observe relaxation and coherence times of 11.7 ± 0.2 μs and 9.6 ± 0.5 μs, respectively, using spin echo. Calculations show that the close proximity of the superconducting back-plane has the added advantage of suppressing the otherwise high radiation loss of the qubit.

  8. Graphene on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew; Xue, Jiamin; LeRoy, B. J.

    2014-07-01

    The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabrication of clean graphene devices so as not to obscure its intrinsic physical properties. Hexagonal boron nitride has emerged as a promising substrate for graphene devices as it is insulating, atomically flat and provides a clean charge environment for the graphene. Additionally, the interaction between graphene and boron nitride provides a path for the study of new physical phenomena not present in bare graphene devices. This review focuses on recent advancements in the study of graphene on hexagonal boron nitride devices from the perspective of scanning tunneling microscopy with highlights of some important results from electrical transport measurements.

  9. Nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Nagahama, S.; Iwasa, N.; Senoh, M.; Yamada, T.

    2001-08-01

    We review the progress in the field of InGaN-based light-emitting diodes (LEDs) and discuss the issue of threading dislocations and the luminous efficiency. The first candela-class blue LEDs have been developed. An InGaN layer was used to produce these LEDs instead of a GaN active layer. The quantum-well structure InGaN active layer dramatically improved the external quantum efficiency. There are a number of threading dislocations in nitride-based LEDs. InGaN LEDs, however, have quite high external quantum efficiency. With regard to this, it is thought that the fluctuation of the indium mole fraction is strongly related to the high external quantum efficiency. Considering the density of threading dislocations in the nitride-based LEDs, we discuss what can improve the external quantum efficiency of nitride-based LEDs.

  10. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  11. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  12. New trends in hard coatings technology

    NASA Astrophysics Data System (ADS)

    Baumvol, I. J. R.

    1994-03-01

    The technology of hard coatings based on stoichiometric titanium nitride thin films has been innovated in the past few years in order to fulfill the requirements for higher performance and lower processing cost. The different strategies used to improve the performance consisted in modifying the coating composition by introducing other elements than Ti and N, like C, Cr, Al and others in the film (multicomponent coatings), in modifying the structure by using multilayers and graded composition interfaces (composite coatings), and in altering the density, porosity and texture by using plasma and ion beam assisted processing. In the present work we describe the extensive use of ion beam methods like Rutherford backscattering spectrometry and nuclear reaction analysis to characterize new titanium nitride based coatings belonging to all these different strategies mentioned above. Based on the results of ion beam analysis and on the results obtained from other characterization methods, together with corrosion tests as well as certain tribologic characteristics like wear, hardness and elasticity of the coatings it was possible to establish correlations between the coatings characteristics and their performance.

  13. Investigation of superconducting interactions and amorphous semiconductors

    NASA Technical Reports Server (NTRS)

    Janocko, M. A.; Jones, C. K.; Gavaler, J. R.; Deis, D. W.; Ashkin, M.; Mathur, M. P.; Bauerle, J. E.

    1972-01-01

    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements.

  14. Optimization of Silicon Nitride Films For Use in Phase Qubits

    NASA Astrophysics Data System (ADS)

    Sirois, Adam J.; Huber, Martin E.; Osborn, Kevin D.; Strong, Joshua A.; Simmonds, Raymond W.

    2007-03-01

    The lifetime (coherence time) of superconducting phase qubits is currently severely limited by lossy materials used in standard fabrication techniques. In particular, the insulator material - typically Silicon Nitride - used to isolate and physically separate different layers of the qubit is of interest. We have conducted a fractional factorial design experiment to optimize SiNx loss properties with respect to several deposition parameters in an Electron Cyclotron Resonance (ECR) Plasma-Enhanced Chemical Vapor Deposition (PECVD) reactor. Our experimental design included a three-level, four-parameter matrix with N2/SiH4 ratio, microwave power, rf power, and pressure as the parameters. The test-bed for these films is a low temperature microwave LC resonator circuit in which the various insulator films are used as the dielectric between a parallel plate capacitor and the Q (Quality Factor) of the circuit gives the relevant loss information for qubit operations.

  15. Nitride tuning of lanthanide chromites.

    PubMed

    Black, Ashley P; Johnston, Hannah E; Oró-Solé, Judith; Bozzo, Bernat; Ritter, Clemens; Frontera, Carlos; Attfield, J Paul; Fuertes, Amparo

    2016-03-21

    LnCrO(3-x)N(x) perovskites with Ln = La, Pr and Nd and nitrogen contents up to x = 0.59 have been synthesised through ammonolysis of LnCrO4 precursors. These new materials represent one of the few examples of chromium oxynitrides. Hole-doping through O(2-)/N(3-) anion substitution suppresses the magnetic transition far less drastically than Ln(3+)/M(2+) (M = Ca, Sr) cation substitutions because of the greater covalency of metal-nitride bonds. Hence, nitride-doping is a more benign method for doping metal oxides without suppressing electronic transitions.

  16. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  17. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  18. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  19. Mechanical performance of thermally post-treated ion-nitrided steels

    NASA Astrophysics Data System (ADS)

    Rosales, I.; Martinez, H.; Guardian, R.

    2016-05-01

    To obtain an enlarged nitrided layer, a new diffusion heat treatment was applied to three different ion-nitriding steels. Selected steels were from the AISI series: 1045, O1, and H13. Fractographic analyses showed that layers of each one of the steels considerably grew after being exposed to diffusion heat treatment. Micro-hardness tests indicated that the modified steels showed a similar value when is compared with the nitrided condition. By comparing the results in fracture toughness tests, it was observed that the most positively affected steel by the treatment was the AISI-1045 steel. Wear analyses showed that diffusion heat-treated samples exhibited an enhanced wear behavior under moderate loads.

  20. High-coercivity samarium-iron-nitrogen from nitriding melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Pinkerton, F. E.; Fuerst, C. D.

    1993-04-01

    Melt spinning has proven to be an excellent technique for magnetic hardening of a variety of permanent magnet materials, especially Nd-Fe-B. Recently, a new permanent magnet material has been discovered by nitriding the compound Sm2Fe17 to obtain Sm2Fe17Nx. The authors have obtained magnetically hard Sm-Fe-N ribbons with a room-temperature intrinsic coercivity H ci = 22 kOe (1.8 MA/m) by nitriding melt-spun Sm-Fe precursor ribbons. Best results were obtained by grinding the ribbons to a <25 µm powder, then heat treating the powder in vacuum for 1 h at 700 °C prior to nitriding in N2 gas at 450 to 480 °C. X-ray diffraction shows that the primary phase is TbCu7-type Sn2Fe17Nx, a disordered hexagonal modification of the rhombohedral Snu2Fe17 phase.

  1. Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides

    SciTech Connect

    Zhang, R. F.; Lin, Zhijun; Mao, Ho-kwang; Zhao, Yusheng

    2011-02-11

    We report on a comprehensive study of thermodynamic and mechanical properties as well as a bond-deformation mechanism on ultra-incompressible Re{sub 2} N and Re{sub 3} N. The introduction of nitrogen into the rhenium lattice leads to thermodynamic instability in Re{sub 2} N at ambient conditions and enhanced incompressibility and strength for both rhenium nitrides. Rhenium nitrides, however, show substantially lower ideal shear strength than hard ReB{sub 2} and superhard c -BN, suggesting that they cannot be intrinsically superhard. An intriguing soft “ionic bond mediated plastic deformation” mechanism is revealed to underline the physical origin of their unusual mechanical strength. These results suggest a need to reformulate the design concept of intrinsically superhard transition-metal nitrides, borides, and carbides.

  2. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Dragoş, Uţu

    2012-02-01

    Titanium nitride is a bioceramic material successfully used for covering medical implants due to the high hardness meaning good wear resistance. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. The paper presents the experimental results in obtaining composite layers of titanium nitride and hydroxyapatite by reactive plasma spraying in ambient atmosphere. X-ray diffraction analysis shows that in both cases of powders mixtures used (10% HA + 90% Ti; 25% HA + 75% Ti), hydroxyapatite decomposition occurred; in variant 1 the decomposition is higher compared with the second variant. Microstructure of the deposited layers was investigated using scanning electron microscope, the surfaces presenting a lamellar morphology without defects such as cracks or microcracks. Surface roughness values obtained vary as function of the spraying distance, presenting higher values at lower thermal spraying distances.

  3. Synthesis, Structure, and Properties of New Ternary Calcium Nitrides

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau

    . Then, Appendix A contains all the experimental results in synthesizing new nitrides; Appendix B is a drawing of the x-ray holder used for Rietveld refinement.; and finally Appendix C is a hard copy of the temperature controller program described in the last chapter. (Abstract shortened with permission of author.).

  4. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  5. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  6. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  7. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  8. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  9. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  10. Tribology and surface mechanical properties of excimer laser nitrided titanium

    SciTech Connect

    Jervis, T.R.; Zocco, T.G.; Tesmer, J.R.; Hirvonen, J.P.

    1994-11-01

    The authors have nitrided Ti-6Al-4V alloys using excimer laser pulses at 1.2 J-cm{sup {minus}2} in high purity N{sub 2} at approximately one atmosphere. Substantial nitrogen and some oxygen incorporation resulted from multiple pulse processing. Formation of a TiN surface film was not observed. They have examined the tribological and mechanical properties of these surfaces using pin-on-disk and nanoindenter techniques respectively. Nitrogen alloying results in reduced friction and torque noise in the pin-on-disk measurements. At higher N concentrations, very little wear is observed, even after the friction behavior suggests surface deterioration. This is consistent with the formation of a transfer film at the sliding interface. Nanoindenter measurements of the surfaces show increasing hardness proportional to nitrogen incorporation. The tribological improvements can therefore be ascribed to a combination of increased surface hardness and tribochemical effects.

  11. Tailoring the mesoporous texture of graphitic carbon nitride.

    PubMed

    Yang, Jae-Hun; Kim, Gain; Domen, Kazunari; Choy, Jin-Ho

    2013-11-01

    Recently, graphitic carbon nitride (g-C3N4) materials have received a great attention from many researchers due to their various roles as a visible light harvesting photocatalyst, metal-free catalyst, reactive template, nitrogen source of nitridation reaction, etc. g-C3N4 could be prepared by temperature-induced polymerization of cyanamide or melamine. In this study, we report a preparation of mesoporous graphitic carbon nitrides with tailored porous texture including pore size, and specific surface area from cyanamide and colloidal silica nanoparticles (Ludox). At first, cyanamide-silica nanocomposites were prepared by mixing colloidal silica with different size in the range of 7-22 nm and cyanamide, followed by evaporating the solvent in the resulting mixture. Mesoporous g-C3N4 samples were prepared by calcining cyanamide-silica nanocomposite at 550 degrees C for 4 hrs and removing the silica nanoparticles by using ammonium hydrogen fluoride. The formation of g-C3N4 was confirmed by the sharp (002) peak (d = 3.25 A) of graphitic interlayer stacking, and the broad (100) peak (d = 6.86 A) of in-plane repeating unit in the X-ray diffraction patterns. According to N2 adsorption-desorption analysis, the pore size of mesoporous carbon nitrides was similar to the size of colloidal silica used as hard template (7-22 nm). The specific surface area of mesoporous g-C3N4 could be tailored in the range of 189 m2/g-288 m2/g.

  12. Thermal properties of silicon nitride beams below 1 Kelvin.

    SciTech Connect

    Wang, G.; Yefremenko, V.; Novosad, V.; Datesman, A.; Pearson, J.; Shustakova, G.; Divan, R.; Chang, C.; McMahon, J.; Bleem, L.; Crites, A. T.; Downes, T.; Mehl, J.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2010-01-01

    We have investigated the thermal transport of long, narrow beams of silicon nitride at cryogenic temperatures. Simultaneously employing a superconducting Transition Edge Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 {micro}m thick silicon nitride beams of different lateral dimensions. Based upon these measurements, we calculate the thermal parameters of the beams. We utilize a boundary limited phonon scattering model and assume the phonon mean free path to be temperature independent in the calculation. In the temperature range from 300 mK to 530 mK, the following results are obtained for 20 (30) {micro}m beams: the volume heat capacity is 0.083 T+0.509 T{sup 3} J/m{sup 3}-K, the width dependent phonon mean free path is 9.60 (11.05) {micro}m, and the width dependent thermal conductivity is 5.60 x 10{sup -3} T+3.41 x 10{sup -2} T{sup 3} (6.50 x 10{sup -3} T+3.93 x 10{sup -2} T{sup 3}) W/m-K.

  13. Structure of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Buranova, Yu. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-01

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  14. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  15. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  16. P-type gallium nitride

    SciTech Connect

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  17. Superconductivity without phonons.

    PubMed

    Monthoux, P; Pines, D; Lonzarich, G G

    2007-12-20

    The idea of superconductivity without the mediating role of lattice vibrations (phonons) has a long history. It was realized soon after the publication of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity 50 years ago that a full treatment of both the charge and spin degrees of freedom of the electron predicts the existence of attractive components of the effective interaction between electrons even in the absence of lattice vibrations--a particular example is the effective interaction that depends on the relative spins of the electrons. Such attraction without phonons can lead to electronic pairing and to unconventional forms of superconductivity that can be much more sensitive than traditional (BCS) superconductivity to the precise details of the crystal structure and to the electronic and magnetic properties of a material.

  18. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  19. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  20. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  1. TESLA superconducting accelerating structures

    NASA Astrophysics Data System (ADS)

    Sekutowicz, J.

    2007-08-01

    Superconducting standing wave structures have been used for charged particle acceleration for almost 40 years. A brief introduction to this application with examples, test procedures and recently achieved results are discussed in this paper.

  2. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  3. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  4. Short-crack toughness and abrasive machining of silicon nitride

    SciTech Connect

    Xu, H.H.K.; Jahanmir, S.; Ives, L.K.; Job, L.S.; Ritchie, K.T.

    1996-12-01

    Hardness and toughness are often used to analyze the abrasive machining behavior of ceramic materials. However, toughness values of silicon nitride ceramics with microstructures containing elongated grains increase with microstructures containing elongated grains increase with crack extension. The present study investigates the effect of toughness on the process of abrasive machining to determine which value of toughness should be used in the analysis. The toughness curves (i.e., toughness as a function of crack length) of ten different silicon nitride materials are characterized by an indentation-strength technique and an indentation technique. The forces in surface grinding are measured as a function of the depth of cut. Examination of ground surfaces by scanning electron microscopy indicates that the material-removal processes in grinding follows the formation of short cracks (i.e., microcracks) and grain-scale material dislodgement. An indentation fracture model for material removal in abrasive machining is used to correlate the grinding forces with toughness and hardness of the materials. An agreement is obtained between the experimental results and the indentation model only when the toughness associated with short cracks is used. This study shows the importance of using appropriate toughness values corresponding to the microfracture processes in analyzing abrasive machining results for materials possessing rising toughness curves.

  5. High Temperature Superconducting Compounds.

    DTIC Science & Technology

    1999-04-02

    addition to superconducting films, non-superconducting mixed-valence manganite perovskites, which exhibit so-called colossal magnetoresistance were grown...The manganites are unique in that their charge carriers are believed to be almost 100% spin polarized. These materials were combined with the...brought about by the injection of spin polarized carriers from the manganite into the curate. This work may make possible new classes of devices based on

  6. High-temperature superconductivity

    SciTech Connect

    Burns, G.

    1992-01-01

    Review of conventional superconductors. Structures. Normal-state properties. Superconducting properties. Vortex behavior, J[sub c], and applications. Index. An introductory presentation of high-temperature superconductivity, with emphasis on the experimental approach. Intended as a supplementary text for undergraduate solid state physics courses, assumes some background in physics and applicable technologies. Chapters contain unsolved problems. Bibliography and chapter notes appear at end of text.

  7. Graphitic carbon nitride based nanocomposites: a review.

    PubMed

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2015-01-07

    Graphitic carbon nitride (g-C(3)N(4)), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C(3)N(4) suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C(3)N(4) could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C(3)N(4)-based nanocomposites can be classified and summarized: namely, the g-C(3)N(4) based metal-free heterojunction, the g-C(3)N(4)/single metal oxide (metal sulfide) heterojunction, g-C(3)N(4)/composite oxide, the g-C(3)N(4)/halide heterojunction, g-C(3)N(4)/noble metal heterostructures, and the g-C(3)N(4) based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C(3)N(4)-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C(3)N(4)-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C(3)N(4)-based advanced nanomaterials.

  8. Graphitic carbon nitride based nanocomposites: a review

    NASA Astrophysics Data System (ADS)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  9. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  10. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  11. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  12. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  13. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  15. Emergent Higgsless Superconductivity

    NASA Astrophysics Data System (ADS)

    Cristina Diamantini, M.; Trugenberger, Carlo A.

    2017-03-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2) and the topological order (4) are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  16. Some Temperature Effects on AISI-304 Nitriding in an Inductively Coupled RF Plasma

    SciTech Connect

    Valencia-Alvarado, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.; Munoz-Castro, A. E.; Piedad-Beneitez, A. de la; Rosa-Vazquez, J. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.

    2006-12-04

    Some recent results obtained from nitriding AISI 304 stainless steel samples, 1.2 cm in diameter and 0.5 cm thick are reported here in the case of an 85% hydrogen and 15% nitrogen mixture work gas. The process was carried out from 300 to 400 W for (13.56 MHz) inductively coupled plasma within a 60 cm long pyrex glass tube 3.5 cm in diameter where the samples were biased up to -300 V with respect to earth. The resulting hardness appears to be a function of the substrate temperature which varied from 200 deg. C at a 0 V bias to 550 deg. C at -300 V. The plasma density at 400 W reached 3x1010 cm-3 with a 4 eV electron temperature. Prior to nitriding, all the samples were polished with 0.05 {mu}m diamond paste, leading to a 30 nm average roughness (Ra). After nitriding at -300 V, the Ra rose until {approx}400 nm while hardness values of 1500 HV under 300 g loads were measured. X ray diffraction indicates that the extended phase amplitude ({gamma}N), Fe and Cr nitride depends on the substrate temperature.

  17. Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Chuang, Ming-Hao; Lin, Su-Jien; Yeh, Jien-Wei

    2012-07-01

    This study investigates the effect of plasma nitriding at 798 K (525 °C) on microstructures and the mechanical performance of Al0.3CrFe1.5MnNi0.5 high-entropy alloys (HEAs) obtained using different cast and wrought processing. All the alloys can be well nitride, with a thickness of around 80 μm, and attain a peak hardness level around Hv 1300 near the surface. The main nitride phases are CrN, AlN, and (Mn, Fe)4N. Those of the substrates are bcc, fcc, Al-, and Ni-rich B2 precipitates, and ρ phase. Their relative amounts depend on the prior processing and also change under the heat treatment during nitriding. The formation of ρ phase during nitriding could in-situ harden the substrate to attain the suitable level required for wear applications. This gives the advantage in simplifying the processing for making a wear-resistance component or a mold since austenitizing, quench hardening, and tempering required for steels such as SACM and SKD steels are no longer required and final finishing can be accomplished before nitriding. Nitrided Al0.3CrFe1.5MnNi0.5 samples have much better wear resistance than un-nitrided ones by 49 to 80 times and also exhibit superior adhesive wear resistance to conventional nitrided alloys: nitriding steel SACM-645 (AISI 7140), 316 stainless steel, and hot-mold steel SKD-61 (AISI H13) by 22 to 55 times depending on prior processing. The superiority is due to the fact that the present nitrided alloys possess a much thicker highly hardened layer than the conventional alloys.

  18. The superconducting spin valve and triplet superconductivity

    NASA Astrophysics Data System (ADS)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  19. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  20. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons

    DTIC Science & Technology

    2011-05-24

    Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons Kris J. Erickson,†,‡,§ Ashley...We report the synthesis of BNNRs through the potassium-intercalation-induced longitudinal splitting of boron nitride nanotubes (BNNTs). This facile...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High

  1. A reduction nitridation route to boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, X.; Liu, J.; Wang, Z.; Qian, Y.

    2005-10-01

    Multiwalled boron nitride nanotubes were synthesized through a simple reduction nitridation route, in which boron trifluoride etherate ((C2H5)2OBF3) and sodium azide (NaN3) were used as reactants in the presence of Fe-Ni powder at 600 °C for 12 h. The obtained BN nanotubes have an average outer diameter of 60 nm, an average inner diameter of 30 nm, and an average length up to 300 nm. Some nanobamboo structured BN were found coexisting with the BN nanotubes. The experimental results show that the reaction temperature and Fe-Ni powder play important roles in the formation of BN nanotubes. Finally, a possible formation mechanism is also discussed.

  2. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  3. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  4. Aluminum Nitride Nanofibers fabricated using Electrospinning and Nitridation

    NASA Astrophysics Data System (ADS)

    Barbosa, Xenia; Campo, Eva; Santiago, Jorge; Ramos, Idalia

    2012-02-01

    Aluminum Nitride (AlN) and other nitride semiconductors are important materials in the fields of optoelectronics and electronics. AlN nanofibers were synthesized using electrospinning and subsequent heating under N2 and NH3 atmospheres. The precursor solution for electrospining contains aluminium nitrate and cellulose acetate. The electrospun nanofibers were heated in N2 to eliminate the polymer and produce Al2O3, and then nitridized at a temperature of 1200 C under NH3 flow. Scanning Electron Microscopy (SEM) observations demonstrate the production of fibers with diameters ranging from a few nanometers to several micrometers. X-Ray Diffraction and UV-VIs analyses show the production of AlN nanofibers with hexagonal wurzite structure and a band gap of approximately approximately 6 eV. Current-Voltage measurements on a single AlN fiber with gold electrodes suggest the formation of a Schottky contact The fabrication method and results from the fibers characterization will be presented.

  5. Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN

    NASA Astrophysics Data System (ADS)

    Mao, Huican; Wang, Cao; Maynard-Casely, Helen E.; Huang, Qingzhen; Wang, Zhicheng; Cao, Guanghan; Li, Shiliang; Luo, Huiqian

    2017-03-01

    We report neutron diffraction and transport results on the newly discovered superconducting nitride ThFeAsN with T_c= 30 \\text{K} . No magnetic transition, but a weak structural distortion around 160 K, is observed by cooling from 300 K to 6 K. Analysis on the resistivity, Hall transport and crystal structure suggests that this material behaves as an electron optimally doped pnictide superconductor due to extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site, which, together with the low arsenic height, may enhance the electron itinerancy and reduce the electron correlations, thus suppressing the static magnetic order.

  6. Analysis of plasma-nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1986-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  7. Thermodynamic hardness and the maximum hardness principle

    NASA Astrophysics Data System (ADS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2017-08-01

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  8. Thermodynamic hardness and the maximum hardness principle.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Ayers, Paul W; Vela, Alberto

    2017-08-21

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T(-1)(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  9. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  10. Topotactic synthesis of vanadium nitride solid foams

    SciTech Connect

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E. )

    1993-06-01

    Vanadium nitride has been synthesized with a surface area of 120 m[sup 2] g[sup [minus]1] by temperature programmed nitridation of a foam-like vanadium oxide (35 m[sup 2] g[sup [minus]1]), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was [l brace]200[r brace]//[l brace]001[r brace]. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies.

  11. The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Panfil, D.; Michalski, J.; Wach, P.

    2016-08-01

    Gas nitriding, together with gas carburizing and gas carbonitriding, was the most commonly used thermochemical treatment, resulting in many advantageous properties: high hardness, enhanced corrosion resistance, considerably improved wear resistance and fatigue strength. However, an unfavorable increase in the thickness of compound layer (ε+γ‧) close to the surface was observed after conventional gas nitriding. This was the reason for undesirable embrittlement and flaking. Therefore, a controlled gas nitriding was developed, reducing the thickness of compound layer. In this study, laser modification with or without re-melting was carried out after the controlled gas nitriding in order to change microstructure and to improve wear resistance. The effects of laser beam power on the dimensions of simple laser tracks were analyzed. It enabled to control the obtained microstructure and to select the laser processing parameters during producing the multiple tracks. Such a treatment was necessary to investigate wear resistance. Laser re-melting resulted in dissolving the majority of nitrides as well as in producing the martensitic structure in re-melted and heat-affected zones. This treatment required argon shielding in order to protect the surface against uncontrolled oxidation. Laser heat treatment without re-melting caused a modification of ε nitrides which became less porous and more compact. Simultaneously, it provided heat-affected zone with the partially martensitic structure of increased hardness below compound zone. Argon shielding was not necessary in this case because of the resistance of nitrides to oxidation during rapid heating and cooling. All the laser-modified layers, irrespective if the nitrided layer was re-melted or not, were characterized by the improved wear resistance compared to the typical gas-nitrided layer.

  12. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    DOE PAGES

    Henry, M. David; Wolfley, Steve; Young, Travis; ...

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. Asmore » a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.« less

  13. Effect of Temperature on Microstructure, Corrosion Resistance, and Toughness of Salt Bath Nitrided Tool Steel

    NASA Astrophysics Data System (ADS)

    Fu, Hangtao; Zhang, Jin; Huang, Jinfeng; Lian, Yong; Zhang, Cheng

    2016-01-01

    In this study, a type of hot work tool steel was modified through salt bath nitriding for 4 h at 540 and 560 °C, and post-oxidation was subsequently performed. Surface and cross-sectional hardness test results revealed that the surface hardness increased after the treatment because of the formation of compound layers and diffusion zones. Microstructures and phase analyses showed that more homogeneous compound layers and Fe3O4-phase could be generated after treatment at 560 than at 540 °C. As a result, the corrosion potential was elevated, and the corrosion current density was clearly reduced. The thickness and porosity of the compound layer were also increased with the elevated nitriding temperature. Because of the nitrogen atom solution, XRD diffraction peaks broadened, and the position of the peaks shifted to a lower angle in different degrees at different depths, thus showing the same tendency as the hardness curves. Salt bath nitriding significantly deteriorated the impact toughness from 32.3 to 5.2 J.

  14. Effect of nitrogen pressure on the hardness and chemical states of TiAlCrN coatings

    SciTech Connect

    Sullivan, Jonathan F.; Huang Feng; Barnard, John A.; Weaver, Mark L.

    2005-01-01

    TiAlCrN coatings were reactively sputtered from a Ti{sub 0.37}Al{sub 0.51}Cr{sub 0.12} alloy target in this study with a nitrogen partial pressure ranging from 0% to 25% of the total pressure. The effects of the incorporation of nitrogen into the coatings on the hardness, elastic modulus, and chemical state of the metal atoms in the coatings were investigated. The hardness and reduced modulus of the coatings increased with increasing nitrogen partial pressures. The formation of ternary nitrides was inferred from the noticeable difference in the chemical states from those for the corresponding binary nitrides.

  15. Carbothermal synthesis of aluminum nitride

    SciTech Connect

    Silverman, L.D. )

    1988-07-01

    A synthetic route is described for making carbothermally reduced powders from colloidal oxide precursors trapped in a polymer matrix. The entrapping resin, which is formed by polymerization of a monomer dissolved in the colloid, serves both to minimize particle agglomeration during reaction and as the source of carbon for reduction. Following reduction, the remaining carbon matrix is removed by oxidation. This strategy was used to synthesize aluminum nitride powder via trapping of colloidal alumina in poly(furfuryl alcohol) resin.

  16. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  17. Silicon nitride equation of state

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  18. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  19. Structural/magnetic phase transitions and superconductivity in Ba(Fe1-xTMx)2As2 (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals

    SciTech Connect

    Ni, Ni

    2009-01-01

    Since its discovery in 1911, superconductivity has been one of the most actively studied fields in condensed matter physics and has attracted immense experimental and theoretical effort. At this point in time, with more and more superconductors discovered in elements, alloys, intermetallic compounds and oxides, it is becoming clear that superconductivity is actually not so rare in nature. Almost half of the elements in the periodic table and hundreds of compounds have been found to be superconducting. Fig. 1.1 shows the milestones in discovering higher Tc superconductors. Among the elemental superconductors, Niobium has the highest superconducting transition temperature, Tc, of 9.5 K. This record held for more than ten years, until the discovery of niobium nitride which superconducts below 16 K. It took another thirty years for Tc to increase from 16 K in niobium nitride to 23 K in niobium germanium.

  20. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  1. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  2. Preparation of the highly dispersed powder of titanium carbonitride by SHS azide technology with previous partial nitriding

    NASA Astrophysics Data System (ADS)

    Amosov, A. P.; Markov, Yu M.; Dobrovolskaya, R. A.; Nikolaeva, E. N.

    2017-02-01

    It is shown that the powder of very hard refractory titanium carbonitride (TiC0.5N0.5) is the basis of tungsten-free hard alloys which are prospective for application as inexpensive cutting tools. The finer the powder of titanium carbonitrideis, the moreenhanced properties of hard alloys, sintered from the powder, are. An opportunity to reduce the particle size of the titanium carbonitride powder obtained by energy-saving azide technology of self-propagating high-temperature synthesis at the cost of reducing the particle size of the initial titanium powderwas investigated. To ensure the safety of the grinding process of the initial metal titanium powder, it was offered to nitride a Ti powder partially into a TiN0.2 compound. Such partial nitriding was performed by the azidetechnology with lack of sodium azide (NaN3) as a nitriding reagent. After intensive grinding in the planetary ball mill, the TiN0.2 powder turned into a superfine powder with an ultrafine structure. This powder was capable of nitriding and carburizing in the azide technology with formation of superfine pure powder agglomerates which are composed of ultrafine and nano-particles of TiC0.5N0.5.

  3. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  4. Superconductivity and future accelerators

    SciTech Connect

    Danby, G.T.; Jackson, J.W.

    1983-08-01

    With the absence, thus far, of charged particle beam accelerators, particle accelerators employing accelerating cavities and deflecting magnets applying superconductivity are still being developed. This paper discusses hadron colliders which involve 20 TeV rings with 40 TeV CM energy with an emphasis to obtain maximum GeV/$, which may be crucial for serious consideration of funding. The accelerator design and operating features are discussed with an emphasis placed on the superconducting magnets. Material and labor costs are discussed. A diagram is given which illustrates magnet superconductor requirements, comparing Fe dominated 2.5T with air core cos theta magnets.

  5. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  6. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  7. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  8. Superconducting Metastable Compounds.

    PubMed

    Luo, H L; Merriam, M F; Hamilton, D C

    1964-08-07

    A number of metastable phases, germanides and tellurides of gold and silver, have been prepared, analyzed by x-ray diffraction, and investigated for superconductivity. The new superconductors and their transition temperatures are AgTe(3) (2.6 degrees K), Ag(4)Ge (0.85 degrees K), Au(3)Te(5) (1.62 degrees K), and Au(1-x)Ge(x) (0.99 degrees K-1.63 degrees K) where (0.27 superconduct above 0.32 degrees K.

  9. Comparison between hot spot modeling and measurement of a superconducting hot electron bolometer mixer at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Miao, Wei; Delorme, Yan; Feret, Alexandre; Lefevre, Rolland; Lecomte, Benoit; Dauplay, Fred; Krieg, Jean-Michel; Beaudin, Gerard; Zhang, Wen; Ren, Yuan; Shi, Sheng-Cai

    2009-11-01

    This paper presents the modeling and measurement of a quasioptical niobium nitride superconducting hot electron bolometer mixer at submillimeter wavelengths. The modeling is performed with a distributed hot spot model which is based on solving a heat balance equation for electron temperature along the superconducting microbridge. Particular care has been taken during the modeling concerning the temperature-dependent resistance and the bias current dependence of the critical temperature of the device. The dc and mixing characteristics of this mixer have been computed and we have observed a quite good match between the predicted and the measured results for both dc characteristics and mixing performances at submillimeter wavelengths.

  10. Aluminum nitride, Scandium nitride, and Aluminum-Scandium-Nitride ternary alloys : Structural, optical, and electrical properties

    NASA Astrophysics Data System (ADS)

    Deng, Ruopeng

    Al and Sc are iso-electric, both of which have three valence electrons. Their nitrides AlN and ScN both have high melting points, high hardness, and good chemical inertness. And their distinct properties find applications in different areas: AlN in piezoelectric acoustic-wave devices, and ScN as candidate for high-temperature thermoelectricity. While there are unsettled problems to solve for AlN and ScN alone, which are to obtain tilted c-axis texture in AlN for shear mode acoustic-wave devices to maximize performance, and to determine electronic band structure of ScN that has been long debated due to free carrier effect, the alloying between AlN and ScN is also intriguing in that the ternary alloy Al-Sc-N connects their similarity and opens even wider possibility and greater potential. The significantly enhanced piezoelectric coefficient in the alloy compared to pure AlN is one of the best examples that is little understood, and alternate bandgap engineering in LED fabrication would probably be another contribution from the alloy. Structural, optical, and electrical properties of AlN, ScN, and Al-Sc-N ternary alloys are thus studied in order to answer these questions, and to explore more fundamental physics characteristics within these nitride materials. For the purpose of achieving tilted c-axis texture in AlN, off-axis deposition is conducted with a variable deposition angle α = 0-84° in 5 mTorr pure N2 at room temperature. XRD pole figure analysis show that layers deposited from a normal angle (α = 0°) exhibit fiber texture, with the c-axis tilted by 42+/-2° off the substrate normal. However, as α is increased to 45°, two preferred in-plane grain orientations emerge, with populations I and II having the c-axis tilted towards and away from the deposition flux, by 53+/-2° and 47+/-1° off the substrate normal, respectively. Increasing alpha further to 65 and 84°, results in the development of a single population II with a 43+/-1° tilt. The observed tilt

  11. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  12. Liquid-gated interface superconductivity on an atomically flat film.

    PubMed

    Ye, J T; Inoue, S; Kobayashi, K; Kasahara, Y; Yuan, H T; Shimotani, H; Iwasa, Y

    2010-02-01

    Liquid/solid interfaces are attracting growing interest not only for applications in catalytic activities and energy storage, but also for their new electronic functions in electric double-layer transistors (EDLTs) exemplified by high-performance organic electronics, field-induced electronic phase transitions, as well as superconductivity in SrTiO(3) (ref. 12). Broadening EDLTs to induce superconductivity within other materials is highly demanded for enriching the materials science of superconductors. However, it is severely hampered by inadequate choice of materials and processing techniques. Here we introduce an easy method using ionic liquids as gate dielectrics, mechanical micro-cleavage techniques for surface preparation, and report the observation of field-induced superconductivity showing a transition temperature T(c)=15.2 K on an atomically flat film of layered nitride compound, ZrNCl. The present result reveals that the EDLT is an extremely versatile tool to induce electronic phase transitions by electrostatic charge accumulation and provides new routes in the search for superconductors beyond those synthesized by traditional chemical methods.

  13. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  14. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  15. Infrared Plasmonics with Conductive Ternary Nitrides.

    PubMed

    Metaxa, C; Kassavetis, S; Pierson, J F; Gall, D; Patsalas, P

    2017-03-29

    Conductive transition metal nitrides are emerging as promising alternative plasmonic materials that are refractory and CMOS-compatible. In this work, we show that ternary transition metal nitrides of the B1 structure and consisting of a combination of group-IVb transition metal, such as Ti or Zr, and group III (Sc, Y, Al) or group II (Mg, Ca) elements can have tunable plasmonic activity in the infrared range in contrast to Ta-based ternary nitrides, which exhibit plasmonic performance in the visible and UV ranges. We consider the intrinsic quality factors of surface plasmon polariton for the ternary nitrides, and we calculate the dispersion of surface plasmon polariton and the field enhancement at the vicinity of nitride/silica interfaces. Based on these calculations, it is shown that among these nitrides the most promising are TixSc1-xN and TixMg1-xN. In particular, TixSc1-xN can have plasmonic activity in the usual telecom bands at 850, 1300, and 1550 nm. Still, these nitrides exhibit substantial electronic losses mostly due to fine crystalline grains that deteriorate the plasmonic field enhancement. This unequivocally calls for improved growth processes that would enable the fabrication of such ternary nitrides of high crystallinity.

  16. Low loss nitride ceramics for terahertz windows

    NASA Astrophysics Data System (ADS)

    Naftaly, M.; Greenslade, P. J.; Miles, R. E.; Evans, D.

    2009-09-01

    Terahertz frequency transmission measurements on ceramic boron nitride and aluminium nitride are described. The absorption coefficients and refractive indices of these materials show that they have high terahertz transparency, which together with their high melting temperatures and mechanical strength makes them particularly suitable for use as THz windows in high pressure and/or high temperature applications.

  17. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  18. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  19. Feasibility study of silicon nitride regenerators

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rao, V. D. N.

    1979-01-01

    The feasibility of silicon nitride as a regenerator matrix material for applications requiring inlet temperatures above 1000 C is examined. The present generation oxide ceramics are used as a reference to examine silicon nitride from a material characteristics, manufacturing, thermal stress and aerothermodynamic viewpoint.

  20. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  1. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    NASA Astrophysics Data System (ADS)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  2. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  3. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  4. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  5. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  6. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  7. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  8. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  9. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  10. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  11. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  12. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  13. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  14. Magnetoquenched superconducting valve

    NASA Astrophysics Data System (ADS)

    Clinton, T. W.; Johnson, Mark

    1998-06-01

    A superconducting switch has been developed in a simple bilayer cross strip geometry using the magnetic fringe field of a ferromagnetic film to control the critical current in an underlying superconducting bridge. The magnetization of the ferromagnet is rotated in the plane of the film to vary the magnitude of the fringe field locally applied to the superconductor from negligible to substantial values. In the latter case, the magnetization is oriented such that the magnetic poles are along the edges of the cross strip directly above the superconductor. The large fringe field near the poles suppresses superconductivity over a length of order microns, giving rise to superconducting weak link behavior. A large modulation of the critical current is observed. The effect is demonstrated in the low Tc superconductors Pb (Tc=7.3 K) and Sn (Tc=3.9 K). Fabrication of the device involves minimal processing. Applications as a high speed switch, amplifier, nonvolatile storage cell, and controllable weak link are possible.

  15. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  16. Fatigue life of silicon nitride balls

    SciTech Connect

    Galbato, A.T.; Cundill, R.T.; Harris, T.A. SKF Engineering and Research Center, Nieuwegein Pennsylvania State Univ., University Park )

    1992-11-01

    Because its specific weight is 40 percent that of steel, silicon nitride has been considered as a rolling element material in very high speed ball and roller bearings. Furthermore, similar to steel components, hot pressed silicon nitride rolling components, when properly manufactured, have demonstrated the capacity to fail in a non-catastrophic manner, i.e., fatigue of the rolling contact surfaces. In this investigation, hot isostatically-pressed silicon nitride balls were endurance-tested using a NASA 5-ball rig and the results were compared against similarly tested VIMVAR M50 balls. The silicon nitride balls demonstrated fatigue lives many times those obtained for the M50 balls. Therefore it is concluded that silicon nitride can be effectively employed in applications where steel rolling element life has previously proved to be a limiting factor. 12 refs.

  17. Nitridation of chromium powder in ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhen, Qiang; Li, Rong

    2015-03-01

    CrN powder was synthesized by nitriding Cr metal in ammonia gas flow, and its chemical reaction mechanism and nitridation process were studied. Through thermodynamic calculations, the Cr-N-O predominance diagrams were constructed for different temperatures. Chromium nitride formed at 7002-1200°C under relatively higher nitrogen and lower oxygen partial pressures. Phases in the products were then investigated using X-ray diffraction (XRD), and the Cr2N content varied with reaction temperature and holding time. The results indicate that the Cr metal powder nitridation process can be explained by a diffusion model. Further, Cr2N formed as an intermediate product because of an incomplete reaction, which was observed by high-resolution transmission electron microscopy (HRTEM). After nitriding at 1000°C for 20 h, CrN powder with an average grain size of 63 nm was obtained, and the obtained sample was analyzed by using a scanning electron microscope (SEM).

  18. Super-Hard induced gap in InSb nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Yu, Peng; Hocevar, Moïra; Plissard, Sébastien; Car, Diana; Bakkers, Erik; Frolov, Sergey

    In recent years, Majorana bound states were observed experimentally in InSb nanowire-superconductor hybrid devices, which manifested themselves as a zero-bias conductance peak (ZBP). However, there was still significant conductance inside the superconducting gap, which would smear sub-gap features. Moreover, fermionic states inside the gap would also break topological protection. Therefore, a hard gap is required in search of more deterministic signatures of Majorana bound states, and building up Majorana qubits. We report the observation of a hard induced gap in an InSb Josephson junction with an optimized superconducting contact recipe. The gap is resolved in magnetic field up to 2 Tesla, and demonstrates a peculiar kinked field dependence. In addition, we observed rich sub-gap features: Andreev levels appeared close to pinch off regime, while multiple Andreev reflection appeared in open regime.

  19. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  20. An evaluation of indentation and finishing properties of bearing grade silicon nitrides

    SciTech Connect

    Dill, J.F.; Gardos, M.N.; Hardisty, R.G.

    1997-01-01

    This paper describes the results of studies of the machining performance and the indentation hardness and fracture toughness of different silicon nitride materials as part of an effort to better define the optimum machining conditions for bearing components. This work builds on prior efforts by two of the authors, Gardos and Hardisty (1993) who formulated a simple relationship between diamond grinding performance of silicon nitride bearing balls and a wear equation first detailed by Evans and Wilshaw (1976). The goal of this present work was to determine the general applicability of such a relationship, i.e., could simple indentation studies be used to define finishing conditions for different silicon nitride materials? The availability of such a simple test would reduce the time required for developing an acceptable process when a supplier changes his formulation, or when a new material becomes available. Quicker development of optimum finishing conditions would eventually result in a lower-cost product for users. The initial study by Gardos and Hardisty (1993) was based on limited data taken at a fixed set of conditions. This study expanded the range of conditions evaluated and the number of ceramic materials studied in an effort to define the universality of the relationship between grinding wear, hardness, and toughness. This study has shown that no simple relationship like that first envisioned by the authors exists. The results showed that the grinding wear of the individual silicon nitride materials increased at different rates as a function of load. Because of the differences found in the load dependence of grinding rates, no simple relationship between hardness, fracture toughness, and grinding rate could be found that fit the data over the range of conditions studied.

  1. Superstructures and superconductivity

    SciTech Connect

    Fisk, Z.; Aeppli, G.

    1993-04-02

    Heavy fermion materials - so named because their conduction electrons behave as though they had extra mass - are like the cuprates in that they exhibit unusual superconducting properties. By the time the cuprates had been discovered, a good understanding of these materials was in hand. Unlike theories of high-[Tc] superconductivity, however, ideas about heavy fermions have not been the subject of great controversy. Thus, most of the effort in this backwater of condensed matter physics has focused on certain details of the behavior of one particularly well-studied compounds, UPt[sub 3]. The cause for sustained interest was that the process of developing ever more elaborate explanations for ever more elaborate experiments did not seem to converage. A recent paper by Midgley et al. reporting modulations in the crystal lattice of UPt[sub 3] suggests that theory and experiment might finally converge in a way that, while it does not threaten the broad understanding of heavy fermion systems, involves a degree of freedom ignored until now even in the face of past experience with elemental metallic uranium. Their transmission electron micrograph evidence for the existence of an incommensurate lattice modulation in UPt[sub 3] implicates this modulation as a probable source of the double superconducting transitions. Remarkably, the superconducting and magnetic coherence lengths, and the now discovered modulation period, are all of the same magnitude. For some time people have felt that stacking faults might be relevant to the properties of UPt[sub 3], but these new results are distinct from this. What Midgley et al. suggest is that the complicated superconducting phase diagram of UPt[sub 3] derives from the internal strain field caused by the modulation, and that this strain field lifts the degeneracy associated with unconventional pairing.

  2. A study of the tribological characteristics of titanium nitride film prepared by the dynamic ion beam mixing method for application on sliding bearings

    SciTech Connect

    Nagasaka, H.; Koizumi, T.

    1997-12-01

    Titanium nitride (TiN) film for the bearings and seals used in rotating machinery has been developed by the dynamic-ion-beam-mixing (DM) process, which combines Ti vapor deposition with simultaneous nitrogen ion beam irradiation. In this study, the tribological properties of the DM-TiN film on martensitic stainless steel (SS) were investigated for application on the bearings of submerged pumps. The critical contact pressure for seizure, wear resistance and friction coefficient properties of DM-TiN film paired with cast iron were investigated under practical sliding conditions, and compared with the hard surface materials of nitriding AISI 420 SS and nitriding 41CrAlMo74 (CrAlMo) steel. The results show that DM-TiN film is superior to these nitriding steels in surface contact pressure for seizure and wear resistance.

  3. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  4. Synthesis of transition metal nitride by nitridation of metastable oxide precursor

    SciTech Connect

    Wang, Huamin; Wu, Zijie; Kong, Jing; Wang, Zhiqiang; Zhang, Minghui

    2012-10-15

    Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

  5. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction

    PubMed Central

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Lin, Yangzheng; Hu, Qingyang; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang

    2016-01-01

    First-principles calculations were performed to understand the structural stability, synthesis routes, mechanical and electronic properties of diverse ruthenium nitrides. RuN with a new I-4m2 symmetry stabilized by pressure is found to be energetically preferred over the experimental NaCl-type and ZnS-type ones. The Pnnm-RuN2 is found to be stable above 1.1 GPa, in agreement with the experimental results. Specifically, new stoichiometries like RuN3 and RuN4 are proposed firstly to be thermodynamically stable, and the dynamical and mechanical stabilities of the newly predicted structures have been verified by checking their phonon spectra and elastic constants. A phase transition from P4/mmm-RuN4 to C2/c-RuN4 is also uncovered at 23.0 GPa. Drawn from bonding and band structure analysis, P4/mmm-RuN4 exhibits semi-metal-like behavior and becomes a semiconductor for the high-pressure C2/c-RuN4 phase. Meanwhile the P21/c-RuN3 shows metallic feature. Highly directional covalent N-N and Ru-N bonds are formed and dominating in N-enriched Ru nitrides, making them promising hard materials. PMID:27627856

  6. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  7. Cytocompatibility of implants coated with titanium nitride and zirconium nitride.

    PubMed

    Prachar, P; Bartakova, S; Brezina, V; Cvrcek, L; Vanek, J

    2015-01-01

    The positive cell response to the implant material is reflected by the capacity of cells to divide, which leads to the tissue regeneration and osseointegration. Technically pure titanium and its alloys are mostly used for implant manufacturing. These alloys have the adequate mechanical, physical and biological properties; nevertheless, the superior biocompatibility of bioceramics has been proven. With the arrival of new coating techniques, surface modification of materials used for implants has become a widely investigated issue. The paper studied properties of titanium nitride (TiN) and zirconium nitride (ZrN) coatings deposited by PVD (Physical Vapour Deposition). Coatings were applied to substrates of pure titanium, Ti6Al4V, Ti35Nb6Ta titanium alloys and CoCrMo dental alloy. Different treatments of substrate surfaces were used: polishing, etching and grit blasting. Cytocompatibility tests assessed the cell colonization and their adherence to substrates. Results showed that TiN layers deposited by PVD are suitable for coating all substrates studied. The polished samples and those with TiN coating exhibited a higher cell colonization. This coating technique meets the requirements for the biocompatibility of the implanted materials; furthermore, their colour range solves the issue of red aesthetics in oral implantology as the colour of these coatings prevents titanium from showing through the gingiva. This is one the most important criteria for the aesthetic success of implant therapy (Tab. 5, Ref. 18).

  8. Preface: Bulk nitride workshop 2015

    NASA Astrophysics Data System (ADS)

    Freitas, Jaime A.; Pasova, Tania; Bockowski, Michal; Fujioka, Hiroshi

    2016-12-01

    The 9th ;International Workshop on Bulk Nitride Semiconductors; (IWBNS-IX) was held in Wonju, South Korea, from November 2-6, 2015, following the eight previous workshops held in November 2000 (Brazil), May 2002 (Brazil), September 2004 (Poland), October 2006 (Japan), September 2007 (Brazil), August 2009 (Poland), March 2011 (Japan), and October 2013 (Germany). The quietude and the beautiful surrounding nature of the Hansol Oak Valley provided the right environment to host the latest edition of this workshop series, the first one held in South Korea.

  9. Ordering of hard particles between hard walls

    NASA Astrophysics Data System (ADS)

    Chrzanowska, A.; Teixeira, P. I. C.; Ehrentraut, H.; Cleaver, D. J.

    2001-05-01

    The structure of a fluid of hard Gaussian overlap particles of elongation κ = 5, confined between two hard walls, has been calculated from density-functional theory and Monte Carlo simulations. By using the exact expression for the excluded volume kernel (Velasco E and Mederos L 1998 J. Chem. Phys. 109 2361) and solving the appropriate Euler-Lagrange equation entirely numerically, we have been able to extend our theoretical predictions into the nematic phase, which had up till now remained relatively unexplored due to the high computational cost. Simulation reveals a rich adsorption behaviour with increasing bulk density, which is described semi-quantitatively by the theory without any adjustable parameters.

  10. Growth and superconductivity of lead and lead-bismuth alloys in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ozer, Mustafa Murat

    Superconductivity is a collective quantum phenomenon that is inevitably suppressed in reduced dimensionality. Questions of how thin superconducting wires or films can be before they lose their superconducting properties have important technological ramifications and go to the heart of understanding formation, coherence, and robustness of the superconducting state in quantum confined geometries. Suppression of superconductivity in low dimensions is usually attributed to thermal or quantum fluctuations, or to pair-breaking Coulomb interactions in the presence of strong disorder. Control and quantification of a film's disorder length scale remained a critical experimental obstacle, however. Here, we exploit quantum confinement of itinerant electrons in a soft metal (Pb), to stabilize atomically-flat superconductors with lateral dimensions of the order of a few millimeters and vertical dimensions of only a few atomic layers. These extremely thin superconductors show no indication of defect- or fluctuation-driven suppression of superconductivity and sustain macroscopic super-currents of up to ˜10% of the theoretical depairing current density. The extreme hardness of the critical state can be attributed to the presence of intrinsic vortex traps that are stabilized by quantum confinement. We furthermore show that the quantum growth and superconductive properties of the films can be tailored by Fermi surface engineering via controlled alloying. The present study paints a conceptually appealing, elegant picture of a model nano-scale superconductor with calculable critical state properties. It furthermore indicates the intriguing possibility of achieving and exploiting superconductivity in the ultimate low-dimensional limit.

  11. TEM studies of the nitrided/oxided Ni-Ti surface layer.

    PubMed

    Lelatko, J; Goryczka, T; Paczkowski, P; Wierzchoń, T; Morawiec, H

    2010-03-01

    TiN and TiO(2) coatings, which are known from their low chemical reactivity, high hardness and wear and corrosion resistance, are used for protecting the NiTi surface. In the present work, nearly equiatomic NiTi (50.6 at.%) shape memory alloy was covered with the layers obtained by nitriding under glow discharge at 1073 K. Additionally, at the end of the process some amount of oxygen was added. Characterization of the nitrided/oxided layers structure was carried out using transmission and scanning electron microscopy. The investigations were focused on the structure of the multilayer nitrided/oxided NiTi surface. The surface is formed from nanocrystalline and columnar grains of the TiN phase. Between the top layer and beta-NiTi substrate the interface Ti(2)Ni layer was formed. Addition of oxygen at the end of the process created a thin layer of TiO(2) phase nanograins at the surface of the TiN phase. In the same areas, small amount of amorphous phase was identified. The combination of nitriding and oxidation formed layers that reveal relatively high corrosion resistance.

  12. Effect of pulsed plasma nitriding on mechanical and tribological performance of Ck45 steel.

    PubMed

    Rastkar, A R; Kiani, A; Alvand, F; Shokri, B; Amirzadeh, M

    2011-06-01

    We studied the mechanical properties and wear performance of AISI 1045 (Ck45) carbon steel under the influence of pulsed plasma nitriding. The treatments were performed at temperatures of 500 and 550 degrees C in N2:H2 gas ratios of 1:3 and 3:1 and the working pressure of 10 mbar for 1 to 4 hours. Samples were examined by X-ray diffraction, optical, electron and atomic force microscopy, microhardness tests, roughness measurements and wear tests. Nitride layers were mainly composed of epsilon-(Fe2-3N) or gamma'-(Fe4N) depending on the gas ratio and/or temperature and time. When the nitriding time is increased, the composition of the compound layer varies from monophase gamma'-(Fe4N) to the two phase of epsilon-(Fe2-3N) and gamma'-(Fe4N). The highest thickness and hardness of the layers were obtained at 550 degrees C in the N2:H2 gas ratios of 3:1 for 4 h. The topographical evolution and surface roughness of the samples showed that all the roughness parameters increase with increasing the temperature. The friction coefficient of all samples was higher than that of untreated material. Wear performance of all nitrided samples was significantly better than that of untreated material.

  13. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  14. Z-BN: a novel superhard boron nitride phase.

    PubMed

    He, Chaoyu; Sun, Lizhong; Zhang, Chunxiao; Peng, Xiangyang; Zhang, Kaiwang; Zhong, Jianxin

    2012-08-21

    A superhard boron nitride phase dubbed as Z-BN is proposed as a possible intermediate phase between h-BN and zinc blende BN (c-BN), and investigated using first-principles calculations within the framework of density functional theory. Although the structure of Z-BN is similar to that of bct-BN containing four-eight BN rings, it is more energetically favorable than bct-BN. Our study reveals that Z-BN, with a considerable structural stability and high density comparable to c-BN, is a transparent insulator with an indirect band gap of about 5.27 eV. Amazingly, its Vickers hardness is 55.88 GPa which is comparable to that of c-BN. This new BN phase may be produced in experiments through cold compressing AB stacking h-BN due to its low transition pressure point of 3.3 GPa.

  15. Weak morphology dependent valence band structure of boron nitride

    NASA Astrophysics Data System (ADS)

    Zhi, Chunyi; Ueda, Shigenori; Zeng, Haibo; Wang, Xuebin; Tian, Wei; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2013-08-01

    We report a hard X-ray photoelectron spectroscopy (HX-PES) investigation on valence band structure of Boron Nitrides (BN) having different morphologies, including nanosheets, nanotubes, and micro-sized particles. Very weak morphology/valence band structure dependence was observed. For each case, the B-N π-band overlapping with σ-band between 0 to -12.5 eV and the s-band below -15 eV were identified. No obvious morphology-induced band shifts and intensity variations were observed. First-principles calculations based on density functional theory were performed and the results were compared with the experimental data. This theoretical analysis well explains the weak morphology dependent valence band spectra of BN nanomaterials obtained during HX-PES measurements.

  16. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  17. Pressure-stabilized hafnium nitrides and their properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Niu, Haiyang

    2017-01-01

    We report hafnium nitrides under pressure using first-principles evolutionary calculations. Metallic P 63/m m c -HfN (calculated Vickers hardness 23.8 GPa) is found to be more energetically favorable than NaCl-type HfN at zero and high pressure. Moreover, NaCl-type HfN actually undergoes a phase transition to P 63/m m c -HfN below 670 K at ambient pressure. HfN10, which simultaneously has infinite armchairlike polymeric N chains and N2 molecules in its crystal structure, is discovered to be stable at moderate pressure above 23 GPa and can be preserved as a metastable phase at ambient pressure. At ambient conditions (298 K, 0 GPa), the gravimetric energy densities and the volumetric energy densities of HfN10 are 2.8 kJ/g and 14.1 kJ/cm3, respectively.

  18. Nanotribological performance of fullerene-like carbon nitride films

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier

    2014-09-01

    Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  19. Microstructure and abrasive wear in silicon nitride ceramics

    SciTech Connect

    Dogan, Cynthia P.; Hawk, Jeffrey A.

    2001-10-01

    It is well known that abrasive wear resistance is not strictly a materials property, but also depends upon the specific conditions of the wear environment. Nonetheless, characteristics of the ceramic microstructure do influence its hardness and fracture toughness and must, therefore, play an active role in determining howa ceramic will respond to the specific stress states imposed upon it by the wear environment. In this study, the ways in which composition and microstructure influence the abrasive wear behavior of six commercially-produced silicon nitride based ceramics are examined. Results indicate that microstructural parameters, such as matrix grain size and orientation, porosity, and grain boundary microstructure, and thermal expansion mismatch stresses created as the result of second phase formation, influence the wear rate through their effect on wear sheet formation and subsurface fracture. It is also noted that the potential impact of these variables on the wear rate may not be reflected in conventional fracture toughness measurements.

  20. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  1. Nanotwinned diamond with unprecedented hardness and stability.

    PubMed

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-12

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  2. Nanotwinned diamond with unprecedented hardness and stability

    NASA Astrophysics Data System (ADS)

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-01

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ~3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ~5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ~200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  3. Nitridation and CVD reactions with hydrazine

    SciTech Connect

    Vogt, K.W.; Kohl, P.A.; Abys, J.A.

    1995-10-01

    The low-temperature nitridation of gallium arsenide, silicon and transition metals was investigated using hydrazine. Gallium nitride films were grown on gallium arsenide (GaAs) by direct reaction of the semiconductor surface layers with hydrazine at 200--400 C. Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses show that the films are primarily gallium nitride with a small oxide impurity. Thin nitride films ({approximately}15{angstrom}) were grown on silicon by reaction with hydrazine at 300--500 C. Ellipsometry results suggest that the film growth goes through different phases following linear, parabolic and logarithmic functions with time. XPS analysis shows that the nitride films could be formed at much lower temperatures than possible with ammonia (300 vs. 600 C). The formation of numerous transition metal nitrides (Co, Cr, Fe, Mo, Si, Ta, Ti, V, and W) by reaction with hydrazine at 400 C is demonstrated, as well as the chemical vapor deposition of boron nitride films from diborane and hydrazine reactants. The temperature at the mixing point was critical in determining the final composition of the film. A 1-D transport model suggests that the reaction rate at 400 C was kinetically limited. The results also agree qualitatively with thermodynamic equilibrium calculations.

  4. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  5. Transparent polycrystalline cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  6. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  7. Transparent polycrystalline cubic silicon nitride.

    PubMed

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-17

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  8. Transparent polycrystalline cubic silicon nitride

    PubMed Central

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  9. Internal grinding of high-speed steels: Shorter processing times with boron nitride grinding tools

    NASA Astrophysics Data System (ADS)

    Borse, D.

    Boron nitride grinding tools can be used to advantage for the grinding of high speed steel (HSS) with a high vanadium content. the abrasives available to date are of limited value because the HSS materials contain very hard carbides, grinding of which, and of vanadium carbide in particular, results in very rapid wear in silicon carbide or corundum grinding wheels. The hardness of these steels is usually 62 RC to 70 RC. Boron nitride grinding tools are advantageous for internal grinding of workpieces made of high speed steel for example, sockets, milling tool bores, cutting wheels and crushing rollers. To date, boron nitride grinding wheels or pencil grinders were bonded with synthetic resin. Consequently internal grinding is usually carried out as wet grinding. In the meantime grinding tools bonded with electrodeposited metal bonds (GSS) were developed and proved to be successful for internal grinding. The abrasive grains which are arranged in a single layer protrude freely from the electrobond. During grinding very little heat is generated, so that dry grinding is possible.

  10. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  11. Superconductivity in graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-07-01

    The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC6 and YbC6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  12. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  13. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Unconventional pairing in doped band insulators on a honeycomb lattice: the role of the disconnected Fermi surface and a possible application to superconducting β-MNCl (M=Hf, Zr).

    PubMed

    Kuroki, Kazuhiko

    2008-12-01

    We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr). Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.

  15. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  16. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  17. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  18. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  19. Superconducting miniaturized planar antennas

    NASA Astrophysics Data System (ADS)

    Pischke, A.; Chaloupka, H.; Klein, N.; Splitt, G.

    This contribution reports on experimental as well as theoretical investigations of superconducting 2.4 GHz microstrip antenna. Due to both a new stepped-impedance patch shape and a high permittivity substrate (LaAlO3) the size was reduced to an area of only 6x6 mm. The measured radiation efficiency of antennas fabricated from YBa2Cu3O(7-delta) is at 77 K in the order of 45 and 65 percent for a substrate height of 0.5 mm and 1 mm respectively. In contrast, a copper antenna yields an efficiency of 3 and 6 percent only. Deviations from a linear transmission behavior of the superconducting antenna can be observed at a current density of 500,000 A/sq cm. An increase in frequency bandwidth from 4 MHz to over 9 MHz results from replacing the single-patch structure by a double-patch structure (stacked patches).

  20. Modification of the structure and properties of commercially pure titanium through nitriding and subsequent TiN coating deposition in a single vacuum cycle

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Krysina, O. V.; Petrikova, E. A.; Shugurov, V. V.; Tolkachev, O. S.; Teresov, A. D.; Koval, N. N.

    2017-05-01

    The modification of titanium by ion plasma methods consisting of hard coatings deposition on a specimen surface subjected to nitriding is carried out. It is shown that complex modification of the titanium in a single vacuum cycle is followed by formation of multilayered multiphase structure which tribological properties multiply exceed the corresponding properties of the material treated on two vacuum separated setups.

  1. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  2. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  3. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  4. Boron Nitride Nanoribbons: Synthesis and Future Directions

    NASA Astrophysics Data System (ADS)

    Gibb, Ashley; Erikson, Kris; Sinitskii, Alex; Rousseas, Michael; Alem, Nasim; Tour, James; Zettl, Alex

    2012-02-01

    Boron Nitride Nanoribbons (BNNR) have been theorized to have many interesting electrical and magnetic properties and edge states, but these characteristics have not been experimentally verified due to challenges in synthesis and purification. We have produced BNNRs by longitudinally splitting boron nitride nanotubes (BNNT) using potassium vapor as an intercalant. Due to the strong interactions between boron nitride sheets, separation of nanoribbons from their parent tubes is challenging. We have used various solvent systems to assist with separation of the ribbons with the goal of probing their properties.

  5. Silicon Nitride Membranes for Filtration and Separation

    SciTech Connect

    Galambos, Paul; Zavadil, Kevin; Shul, Randy; Willison, Christi Gober; Miller, Sam

    1999-07-19

    Semi-Permeable silicon nitride membranes have been developed using a Bosch etch process followed by a reactive ion etch (NE) process. These membranes were observed to allow air but not water to pass through them into surface micromachined, silicon nitride microfluidic channels. Membranes with this property have potential use in microfluidic systems as gas bubble traps and vents, filters to remove particles and gas partitioning membranes. Membrane permeation was measured as 1.6 x 10{sup {minus}8} mol/m{sup 2}Pa s of helium for inline membranes at the entrance and exit of the silicon nitride microfluidic channels.

  6. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  7. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  8. Surface photovoltage spectroscopy of carbon nitride powder

    SciTech Connect

    Dittrich, Th.; Fiechter, S.; Thomas, A.

    2011-08-22

    Powder of carbon nitride has been investigated by surface photovoltage spectroscopy at temperatures between 30 deg. C and 150 deg. C. Photo-generated holes were preferentially separated towards the external surface. Electronic states below the optical band gap from which charge separation may be possible have not been observed. The band gap of the investigated carbon nitride decreased from 2.93 to 2.80 eV with increasing temperature from 30 deg. C to 150 deg. C. The material exhibits a higher optical transition at E = 3.6 eV. Results are discussed from the point of view of photo-catalytic water splitting with carbon nitride.

  9. Uranium nitride behavior at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.

  10. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  11. Toward room temperature superconductivity?

    PubMed Central

    Patel, C. K. N.; Dynes, R. C.

    1988-01-01

    The last 12 months have witnessed frenzied activity in condensed matter physics, unmatched by any other since the invention of the laser. In this article, we summarize the status, promise, and problems in the field of high-temperature superconductivity. We also comment on the mechanisms and policies needed for the United States to economically benefit from the recent discoveries in the face of what can be best described as an international race to win the battle. Images

  12. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  13. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  14. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  15. Fringe Field Superconducting Switch

    DTIC Science & Technology

    1997-10-31

    superconducting smp ,ine 10, and a ferromagnet ferromagnet 14 preferably has at least two easy axes of magnetization, shown here by the double- headed arrows...magnetic field of control current **p6fCooductor- S4 ’’/ eonteol^cun 7* insulator ■O Jöpptyzcöwem supercuiKhttstog-^2 ^ FIG.^ 4 //■ r.»~r

  16. TPX superconducting PF magnets

    SciTech Connect

    Calvin, H.; Christiansen, O.; Cizek, J.

    1995-12-31

    The Westinghouse team has extended the Lawrence Livermore National Laboratory advanced conceptual design for the TPX PF magnets through preliminary design. This is the first time superconducting PF magnets have been designed for application in a tokamak. Particular challenges were encountered and solved in developing the coil insulation system, welding the helium stubs, and winding the coil. The authors fabricated a coil using copper stranded CIC conductor, to surface manufacturability issues and demonstrate the solutions.

  17. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  18. Superconducting Analog to Digital Converters

    DTIC Science & Technology

    1991-09-01

    superconductivity, Josephson junctions, and superconducting quantum interference devices ( SQUIDs ) are briefly described. Various techniques to perform analog-to...deployment in the 1990s may require a dynamic range in excess of 90 dB (15- bit precision) [3]. However, at the present time, A/D conversion with 16-bit...Interference Devices ( SQUIDs ). JOSEPHSON EFFECTS AND JUNCTIONS Consider a very thin, non-superconducting region separating two superconductors. In 1962

  19. The hard metal diseases

    SciTech Connect

    Cugell, D.W. )

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.66 references.

  20. The hard metal diseases.

    PubMed

    Cugell, D W

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.

  1. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect

    Toledo, N. G.; Friedman, D..J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell

  2. Chiral magnetic superconductivity

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2017-03-01

    Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  3. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  4. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  5. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  6. Navy superconductivity efforts

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  7. Low Temperature Unbalanced Magnetron Deposition of Hard, Wear-Resistant Coatings for Liquid-Film Bearing Applications

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1996-01-01

    The original program for evaluating the tribological properties several different hard coatings for liquid film bearing applications was curtailed when the time for the program was reduced from 3 years to 1. Of the several different coatings originally planned for evaluation, we decided to concentrate on one coating, carbon nitride. At BIRL, we have been instrumental in the development of reactively sputtered carbon nitride coatings, and we have found that it is a very interesting new material with very good tribological properties. In this program, we found that the reactively sputtered carbon nitride does not bond well directly to hardened 440C stainless steel; but if an interlayer of titanium nitride is added between the carbon nitride and the 440C, the adhesion of the dual coating combination is very good. Statistically designed experiments were run with the dual layer combination, and 3 variables were chosen for the Box-Benken design, which were the titanium nitride interlayer thickness, the nitrogen partial pressure during the reactive sputtering of the carbon nitride, and the carbon nitride substrate bias voltage. Two responses were studied from these three variables; the adhesion of the dual coating combination to the 440C substrate and the friction coefficient of the carbon nitride in dry sliding contact with 52100 steel in air. The best adhesion came with the thickness interlayer thickness studied, which was 4 micrometers, and the lowest coefficient of friction was 0.1, which was achieved when the bias voltage was in the range of -80 to - 120 V and the nitrogen partial pressure was 3 mTorr.

  8. Computational Search for Novel Hard Chromium-Based Materials.

    PubMed

    Kvashnin, Alexander G; Oganov, Artem R; Samtsevich, Artem I; Allahyari, Zahed

    2017-02-16

    Nitrides, carbides, and borides of transition metals are an attractive class of hard materials. Our recent preliminary explorations of the binary chemical compounds indicated that chromium-based materials are among the hardest transition metal compounds. Motivated by this, here we explore in detail the binary Cr-B, Cr-C, and Cr-N systems using global optimization techniques. Calculated enthalpy of formation and hardness of predicted materials were used for Pareto optimization to define the hardest materials with the lowest energy. Our calculations recover all numerous known stable compounds (except Cr23C6 with its large unit cell) and discover a novel stable phase Pmn21-Cr2C. We resolve the structure of Cr2N and find it to be of anti-CaCl2 type (space group Pnnm). Many of these phases possess remarkable hardness, but only CrB4 is superhard (Vickers hardness 48 GPa). Among chromium compounds, borides generally possess the highest hardnesses and greatest stability. Under pressure, we predict stabilization of a layered TMDC-like phase of Cr2N, a WC-type phase of CrN, and a new compound CrN4. Nitrogen-rich chromium nitride CrN4 is a high-energy-density material featuring polymeric nitrogen chains. In the presence of metal atoms (e.g., Cr), polymerization of nitrogen takes place at much lower pressures; CrN4 becomes stable at ∼15 GPa (cf. 110 GPa for synthesis of pure polymeric nitrogen).

  9. Superconductivity in CVD diamond films.

    PubMed

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  10. Superconductivity-related insulating behavior.

    PubMed

    Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D

    2004-03-12

    We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.

  11. Topological Superconductivity in Dirac Semimetals.

    PubMed

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  12. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  13. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  14. Reduced microwave loss in trenched superconducting coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Vissers, Michael R.; Kline, Jeffrey S.; Gao, Jiansong; Wisbey, David S.; Pappas, David P.

    2012-02-01

    Reducing the contribution of all sources of microwave loss is important for increasing coherence times in superconducting qubits. In this paper we investigate reducing the loss by systematically removing Si substrate material from the gap region in titanium nitride coplanar waveguides fabricated on intrinsic Si substrates. By exploiting the radial dependence of the etch rate in a parallel plate reactive ion etcher, otherwise identical coplanar waveguides with only the Si gaps etched to varying depth, i.e., trenched, were created in a single TiN film within a single processing step. Measurements at these multiple depths permit the study of the loss reduction in isolation to the unintentional effects caused by any single processing step. When comparing the loss from all trench depths we found that the high power loss was similar, but in the single photon limit the loss was reduced by a factor of two for deeper trenches in agreement with predictions from finite element analysis.

  15. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  16. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  17. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    SciTech Connect

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  18. Nanoindentation measurements of a highly oriented wurtzite-type boron nitride bulk crystal

    NASA Astrophysics Data System (ADS)

    Deura, Momoko; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro; Taniguchi, Takashi

    2017-03-01

    We succeeded in synthesizing a bulk crystal of wurtzite-type boron nitride (w-BN) by the direct conversion method. The synthesized crystal was approximately 2 mm wide and 350 µm thick, and highly oriented to the c-axis. We performed nanoindentation measurements on the c-plane of the w-BN crystal at room temperature to evaluate the mechanical properties of w-BN. The hardness and Young’s modulus of w-BN from the obtained curves were simultaneously determined to be 54 ± 2 and 860 ± 40 GPa, respectively. The underlying physical mechanism that dominates the mechanical properties of group-III nitride semiconductors is also examined.

  19. Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films

    NASA Astrophysics Data System (ADS)

    Das, Soham; Guha, Spandan; Ghadai, Ranjan; Kumar, Dhruva; Swain, Bibhu P.

    2017-06-01

    Titanium aluminium nitride (TiAlN) thin films were deposited by chemical vapour deposition using TiO2 powder, Al powder and N2 gas. The morphology and mechanical properties of the films were characterized by scanning electron microscopy and nanoindentation technique, respectively. The structural properties were characterized by Raman spectroscopy and X-ray diffraction. The XRD result shows TiAlN films are of NaCl-type metal nitride structure. Micro-Raman peaks of the TiAlN thin film were observed within 450 and 642 cm-1 for acoustic and optic range, respectively. A maximum hardness and Young modulus up to 22 and 272.15 GPa, respectively, were observed in the TiAlN film deposited at 1200 °C.

  20. Tribological properties of reactively sputtered nitrides and carbides of titanium, zirconium and hafnium. Final report

    SciTech Connect

    Graham, M.E.; Chang, P.; Sproul, W.D.

    1994-06-01

    Objective was to determine the tribological properties of hard, wear-resistant coatings on steel substrates in order to expedite their use on coated roller bearings, transmission gears, cams, etc. Specific coatings investigated were TiN, TiC, ZrN, ZrC, HfN, and HfC; they were deposited by high-rate-reactive magnetron sputtering. Both nitrides and carbides improved the wear performance of steel, often by orders of magnitude. These coatings have proven to be beneficial for dry sliding, lubricated sliding, rolling, and mixed rolling/sliding wear. The rolling contact fatigue studies showed remarkable improvements of lifetime that could be achieved with very thin coatings (less than one micron); thicker coatings were not useful. Coating and substrate properties (hardness) should be matched for best performance. Properties and performance of the hard coatings are controlled by process parameter settings; these parameters can be controlled in magnetron sputtering to achieve excellent results.