Science.gov

Sample records for hard tooth tissue

  1. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  2. [Age and gender changes of apatites from human hard tooth tissues].

    PubMed

    Pikhur, O L; Ryzhak, G A; Iordanishvili, A K; Iankovskiĭ, V V; D'iakonov, M M

    2014-01-01

    Apatites of hard tissues of teeth of persons of different sex and age were studied in detail. It is shown that the crystal structure of apatites depends on changes in the composition of the enamel that happen during a person's life. Limits of the variations of the crystal lattice parameters of the enamel apatites connected with the complicate processes of de- and remineralization have been determined. On the basis of the identified correlations between chemical composition, crystal lattice parameters and age of patients, the complicated interrelated isomorphic replacements occurring in the crystal structure of apatites of hard tooth tissues during aging were analysed.

  3. Nuclear-chemical methods in a hard tooth tissue abrasion study

    NASA Astrophysics Data System (ADS)

    Gosman, A.; Spěváček, V.; Koníček, J.; Vopálka, D.; Houŝová, D.; Doležalová, L.

    1999-01-01

    The advanced method consists in implantation—labelling of the thin surface layers of the solid objects, e.g. hard tooth tissue, by atoms of suitable natural or artificial radionuclides. Nuclides from the uranium series were implanted into the surface by using nuclear recoil effect at alpha decay of 226Ra to 222Rn, alpha decay of 222Rn to RaA, alpha decay of RaA to RaB (beta-emitter) and further alpha or beta emitters. With regard to chosen alpha detection and to the half—lives of the radionuclides, there was actually measured the activity of 222Rn, RaA and RaC’ in the thin surface layer. This was followed by the laboratory simulation of the abrasion in the system of “toothbrush—various suspensions of the tooth-pastes—hard tooth tissue (or material standard—ivory)” in specially designed device—the dentoabrasionmeter. The activities of the tissue surface measured before and after abrasion were used for calculations of the relative drop of the surface activity. On this basis the influence of various tooth-pastes containing various abrasive substances was determined.

  4. Nuclear-chemical methods in a hard tooth tissue abrasion study

    NASA Astrophysics Data System (ADS)

    Gosman, A.; Spěváček, V.; Koníček, J.; Vopálka, D.; Houŝová, D.; Doležalová, L.

    1999-01-01

    The advanced method consists in implantation—labelling of the thin surface layers of the solid objects, e.g. hard tooth tissue, by atoms of suitable natural or artificial radionuclides. Nuclides from the uranium series were implanted into the surface by using nuclear recoil effect at alpha decay of 226Ra to 222Rn, alpha decay of 222Rn to RaA, alpha decay of RaA to RaB (beta-emitter) and further alpha or beta emitters. With regard to chosen alpha detection and to the half—lives of the radionuclides, there was actually measured the activity of 222Rn, RaA and RaC’ in the thin surface layer. This was followed by the laboratory simulation of the abrasion in the system of “toothbrush—various suspensions of the tooth-pastes—hard tooth tissue (or material standard—ivory)” in specially designed device—the dentoabrasionmeter. The activities of the tissue surface measured before and after abrasion were used for calculations of the relative drop of the surface activity. On this basis the influence of various tooth-pastes containing various abrasive substances was determined.

  5. [Optimization of treatment hard tissue defects of the tooth located near gingiva].

    PubMed

    Makeeva, I M; Voronkova, V V; Kuzin, A V

    2011-01-01

    Defects near gingiva--a common pathology of dental hard tissue, which adversely affects the health of marginal periodontium. Subgingival tooth cavity is the retention factor for parodontopatogenic microorganisms. Chronic inflammation in the marginal periodontium in response to microbial invasion may lead to local periodontitis (periodontal pocket/gingival recession). Treatment of defects near gingiva should include the removal of the main etiological factors of disease: supraocclusion, bad habits, normalization of individual oral hygiene. Substitution therapy is the defect filling. The most suitable filling material on physicochemical and mechanical properties of composite recognized. Treatment of gingival defects is carried out after surgical correction of gingiva. Optimal conditions are achieved using the sealing hemostatic and retraction paste.

  6. The study of laser induced fluorescence of tooth hard tissues with aluminum phthalocyanine nanoparticles

    NASA Astrophysics Data System (ADS)

    Farrakhova, D. S.; Kuznetsova, J. O.; Loschenov, V. B.

    2016-08-01

    This work is about the possibility of fluorescence diagnosis application with the use of aluminum phthalocyanine nanoparticles (nAlPc) in order to detect enamel microdamage. For the investigation, five human teeth samples of various age groups were removed for various reasons. The autofluorescence spectrums of these samples hard tissues and fluorescence spectrums of nAlPc mixed with enamel powder were obtained during the experiment. The research shows that sample pathogenic microflora causes nAlPc fluorescence. This fact will allow detecting enamel microdamage in future studies.

  7. Soft and hard tissue changes around laser microtexture single tooth implants--a clinical and radiographic evaluation.

    PubMed

    Gopalakrishnan, Dharmarajan; Joshi, Vaibhav; Romanos, Georgios E

    2014-10-01

    To investigate the periodontal parameters that affect the soft and hard tissues around Laser microtextured single tooth implants at 18 months after loading. Twenty Laser Lok implants were placed in 20 single missing tooth sites using a 2-stage protocol. Clinical Parameters included Plaque Index (PI), Gingival Index (GI), Probing Pocket Depth (PPD), Bleeding on Probing (BOP), and Crestal Bone Loss (CBL). Clinical and radiographic evaluation was done at loading, 12 months and 18 months after loading. The data collected were analyzed statistically. The PI and GI during the entire follow-up period were well controlled. Eighty-six percent of implant sites were free of BOP at loading and 87% of sites were free of BOP at 18 months. A significant increase in PPD was not observed. The mean CBL was 0.59 mm at the time of loading, 0.80 mm at 12 months, and 1.06 mm at 18 months. The Laser Lok implants showed minimal CBL at 18 months than the commonly accepted 1.5 to 2.0 mm. The periimplant soft tissue stability was maintained throughout the study.

  8. Comparison of hard tissue interrelationships at the cervical region of teeth based on tooth type and gender difference

    PubMed Central

    Astekar, Madhusudan; Kaur, Prabhpreet; Dhakar, Nidhi; Singh, Jappreet

    2014-01-01

    Context: Cementoenamel junction (CEJ) represents the anatomic limit between the crown and root surface. With advancing age and continuous eruption, this area becomes exposed in the oral media. Consequently, CEJ will be subjected to the action of various physical and chemical factors that might alter its morphology, with the cementum being affected in most cases. Aim: To identify the frequency of hard tissue interrelationships present at the CEJ in relation to different genders, positions and aspects of tooth using a light microscope. Materials and Methods: The cervical regions of 80 permanent teeth (40 male and 40 female), extracted for orthodontic or periodontal reasons, were analyzed after longitudinal ground sections were made in the mesio-distal plane. The CEJ of the prepared sections was then studied and their frequencies were categorized as: cementum overlapping enamel, enamel overlapping cementum, edge-to-edge relationship and the presence of gap junctions. Statistical Analysis: Chi-square test performed using SPSS 15 software. Results: Edge-to-edge contact of the cementum and enamel was most frequent, followed by gap junction and cementum overlapping the enamel, respectively. Chi-square test revealed no statistically significant differences with respect to the gender and tooth aspect, whereas the result was significant when the position of the tooth was studied. Conclusion: The observations of the study indicate a considerable morphological diversity in the anatomical pattern of CEJ. It can be concluded that the region should be protected against dentinal sensitivity, erosion, abrasion, abfraction and resorption, as it is more prone to cervical pathologies. PMID:25125914

  9. [Wear resistance of tooth hard tissue opposing dental alloy material in an adjustable wear simulator].

    PubMed

    Xiang, Nan; Ma, Zheng; Wei, Bin

    2013-04-01

    To evaluate wear resistance of human enamel by a customized adjustable wear simulator. Enamel specimens were prepared as experiment one which were divided into group A and B. The specimens were wear against soft Co-Cr alloy styli. Vertical loss were tested. The data was analyzed statistically by paired sample t test using SAS14.0 software package. The vertical substance loss of two groups were not significantly different (P=0.7464). The adjustable wear simulator works well. The coefficient of the wear test is adjustable, and the result is reliable. The simulator can be used in wear test of tooth and dental material.

  10. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  11. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    PubMed

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible

  12. Computer monitoring of the thermal effects induced by Er:YAG laser radiation during preparation of the hard tooth tissue

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel; Prochazka, Ivan; Bakule, Pavel

    1993-12-01

    We are presenting the results of the thermal changes of enamel, dentin and pulp temperature monitoring in extracted human teeth subjected to a pulsed Er:YAG laser radiation. We made a series of experiments irradiating the tooth using the pulsed Er:YAG laser and monitoring simultaneously the temperature of various parts of the tooth. The temperature was measured by the bead thermistor either in contact with the tooth surface or built in the pulp chamber. In the former experiments it was demonstrated, that the uncooled preparation can cause irreversible changes of the pulp. In the second part of the experiments the teeth have been cooled by flowing water. During the laser preparation of the enamel and the dentin the temperature did not increase more than 2 degree(s)C. In the moment of dentin perforation and hence laser irradiation of the pulp, the pulp temperature increased rapidly. The opening of the pulp coincides with the rapid temperature increase. These studies verified the feasibility of the pulsed Erbium:YAG laser use in stomatology.

  13. Assessment of the influence of vegetarian diet on the occurrence of erosive and abrasive cavities in hard tooth tissues.

    PubMed

    Herman, Katarzyna; Czajczyńska-Waszkiewicz, Agnieszka; Kowalczyk-Zając, Małgorzata; Dobrzyński, Maciej

    2011-11-25

    The aim of the study was to determine the potential relation between vegetarian diet and tooth erosion and abrasion. The examination included 46 vegetarians and the same number in the control group. Clinical research was carried out in order to detect the presence of abrasive and erosive changes and the level of hygiene in oral cavities. The questionnaire survey concerned dietary and hygienic habits. Statistical analysis of the data was conducted with Chi-square test and Mann-Whitney U test. The relations between following a vegetarian diet and the occurrence of non-carious cavities was tested with models of logistic regression. Tooth erosion was present among 39.1% of vegetarians and 23.9% of controls, while abrasion appeared among 26.1% and 10.9%, respectively, and the differences were statistically insignificant. The distribution of the changes was similar in both groups. Among vegetarians, significantly more frequent consumption of sour products (predominantly raw vegetables and fruit and tomatoes) was observed. The level of oral hygiene and hygienic habits were similar in both groups. The analysis of statistical regression did not reveal any relations between following a vegetarian diet and the occurrence of tooth erosion and abrasion. The results did not reveal any direct influence of vegetarian diet on the occurrence of erosive and abrasive changes. However, in the vegetarian group, more frequent consumption of some sour products and more commonly used horizontal brushing method were observed, with a slightly higher occurrence of non-carious cavities. Further research is required to obtain unambiguous conclusions.

  14. CHANGES IN TOOTH HARD TISSUE MINERALI-ZATION AND BLOOD RHEOLOGY IN HEALTHY ADOLESCENTS AND THOSE WITH THYROID DYSFUNCTION.

    PubMed

    Beriashvili, S; Nikolaishvili, M; Mantskava, M; Momtsemlidze, N; Franchuk, K

    2016-11-01

    Thyroid dysfunction causes spreading and development of caries in the teeth and changes in periodontal tissues. In addition, it causes changes in peripheral blood flow and mineralization, local transcapillary metabolism causes changes in blood rheology. There are only few works in this direction and, therefore, the purpose of our research was to find out how the mineralization and the rheological properties of blood are changed in lesion of periodontal tissue on a background of thyroid dysfunction. Accordingly, the stomatological study was conducted in 75 adolescents aged 12-18 years by the standard method, recommended by the World Health Organization. According to the study, 45 patients out of them suffered from thyroid dysfunction, in particular from hypothyroidism. The comparator group consisted of 30 children of the same age without endocrine abnormalities. By the gained results it is noted that in spite of different type lesions due to dental caries, the caries incidence and intensiveness is higher in children with hypothyroidism as compared to healthy children. Decrease in saliva excretion rate and increase in oral fluid viscosity was found in children with thyroid and endocrine diseases as compared to healthy children. In children with endocrine disorders concurrent increase in calcium content (1,43±0,08 mmol/l) and decrease in inorganic phosphate concentrations (4,54±0,15 mmol/l) is reliably established. In children with thyroid disfunction and while periodontal tissue pathology, rheological features are disordered more dramatically than in healthy children. Therefore, it can be said that the changes in the adolescents' thyroid function is one of the reasons for formation of periodontal tissue diseases.Therefore, at detecting even the first signs of the periodontal tissue diseases, it is desirable in adolescents to assess the thyroid functional condition, since it will be the precondition for effective treatment and management of dental disease, in

  15. [Effects of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) on the formation of dental hard tissue of mouse molar tooth germs in organ culture system].

    PubMed

    Daigo, Tsuyoshi

    2003-06-01

    In the developing tooth, 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) causes hypoplasia and hypomineralization of enamel and dentine. The present study was undertaken to clarify the effects of HEBP on the formation of dental tissues of tooth germs in an organ culture system. Mandibular first molars from 17.5-day-old mouse embryos were cultured with or without 250 microM HEBP in culture medium. Cultured tooth germs were analyzed by histological examination and by immunohistochemical localization using anti-amelogenin antibody. In cultured tooth germs treated with HEBP before the commencement of calcification in dentine, calcification of dentine matrix was inhibited completely and enamel formation was not observed. Ameloblasts were directly adjacent to dentine matrix. However, immunohistochemical data indicated that these ameloblasts secreted amelogenin. In the experiments of adding HEBP to cultured tooth germs on culture day 13, calcified dentine and enamel had formed before the administration of HEBP, but the dentine matrix newly formed after the administration of HEBP had not calcified. It was confirmed by immunohistochemical observations that enamel matrix-like material had penetrated into uncalcified dentine matrix and accumulated in dental papilla of tooth germs. However, no enamel matrix-like material was observed in calcified dentine and predentine underneath the calcified dentine by immunohistochemical staining. From these results, it might be concluded that ameloblasts secreted enamel matrix in the presence of HEBP and diffused through uncalcified dentine matrix into dental papilla. These findings suggests the calcification of dentine might be essential for the physical barrier to accumulate the enamel matrix and form a distinct layer of enamel as enamel.

  16. Histochemical and immunocytochemical study of hard tissue formation in dental pulp during the healing process in rat molars after tooth replantation.

    PubMed

    Tsukamoto-Tanaka, Hiroko; Ikegame, Mika; Takagi, Ritsuo; Harada, Hidemitsu; Ohshima, Hayato

    2006-08-01

    Dental pulp is assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. This study was undertaken to clarify the mechanism inducing bone formation in the dental pulp by investigating the pulpal healing process, after tooth replantation, by micro-computed tomography (mu-CT), immunocytochemistry for heat-shock protein (HSP)-25 and cathepsin K (CK), and histochemistry for both alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). Under deep anesthesia, the upper right first molar of 4-week-old Wistar rats was extracted and immediately repositioned in the original socket. In control teeth at this age, the periphery of the coronal dental pulp showed intense ALP-positive and HSP-25-positive reactions, whereas there were no TRAP-positive or CK-positive cells. Tooth replantation weakened or terminated ALP-positive and HSP-25-positive reactions in the pulp tissue at the initial stages. At 3-7 days after operation, the ALP-positive region recovered from the root apex to the coronal pulp followed by HSP-25-positive reactions in successful cases showing tertiary dentin formation. In other cases, TRAP-positive and CK-positive cells appeared in the pulp tissue of the replanted tooth at postoperative days 5-10 and remained associated with the bone tissue after 12-60 days. Immunoelectron microscopy clearly demonstrated that CK-positive osteoclast-lineage cells made contact with mesenchymal cells with prominent nucleoli and well-developed cell organelles. These data suggest that the appearance of TRAP-positive and CK-positive cells is involved in the induction of bone tissue formation in dental pulp.

  17. Evaluation of scaffold materials for tooth tissue engineering.

    PubMed

    Ohara, Takayuki; Itaya, Toshimitsu; Usami, Kazutada; Ando, Yusuke; Sakurai, Hiroya; Honda, Masaki J; Ueda, Minoru; Kagami, Hideaki

    2010-09-01

    Recently, the possibility of tooth tissue engineering has been reported. Although there are a number of available materials, information about scaffolds for tooth tissue engineering is still limited. To improve the manageability of tooth tissue engineering, the effect of scaffolds on in vivo tooth regeneration was evaluated. Collagen and fibrin were selected for this study based on the biocompatibility to dental papilla-derived cells and the results were compared with those of polyglycolic acid (PGA) fiber and beta-tricalcium phosphate (beta-TCP) porous block, which are commonly used for tooth, dentin and bone tissue engineering. Isolated porcine tooth germ-derived cells were seeded onto one of those scaffolds and transplanted to the back of nude mice. Tooth bud-like structures were observed more frequently in collagen and fibrin gels than on PGA or beta-TCP, while the amount of hard tissue formation was less. The results showed that collagen and fibrin gel support the initial regeneration process of tooth buds possibly due to their ability to support the growth of epithelial and mesenchymal cells. On the other hand, maturation of tooth buds was difficult in fibrin and collagen gels, which may require other factors. (c) 2010 Wiley Periodicals, Inc.

  18. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement.

    PubMed

    Oshima, Masamitsu; Tsuji, Takashi

    2014-07-01

    Oral and general health is compromised by irreversible dental problems, including dental caries, periodontal disease and tooth injury. Regenerative therapy for tooth tissue repair and whole-tooth replacement is currently considered a novel therapeutic concept with the potential for the full recovery of tooth function. Several types of stem cells and cell-activating cytokines have been identified in oral tissues. These cells are thought to be candidate cell sources for tooth tissue regenerative therapies because they have the ability to differentiate into tooth tissues in vitro and in vivo. Whole-tooth replacement therapy is regarded as an important model for the development of an organ regenerative concept. A novel three-dimensional cell-manipulation method, designated the organ germ method, has been developed to recapitulate organogenesis. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions. A bioengineered tooth germ can generate a structurally correct tooth in vitro and erupt successfully with the correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was successfully engrafted into an adult jawbone through bone integration. Such bioengineered teeth were able to perform normal physiological tooth functions, such as developing a masticatory potential in response to mechanical stress and a perceptive potential for noxious stimuli. In this review, we describe recent findings and technologies underpinning tooth regenerative therapy.

  19. Young's modulus and hardness of shark tooth biomaterials.

    PubMed

    Whitenack, Lisa B; Simkins, Daniel C; Motta, Philip J; Hirai, Makoto; Kumar, Ashok

    2010-03-01

    To date, the majority of studies on feeding mechanics in sharks have focused on the movement of cranial components and muscle function, with little attention to tooth properties or function. Attributes related to mechanical properties, such as structural strength, may also be subjected to natural selection. Additionally it is necessary to characterize these properties in order to construct biomechanical models of tooth function. The goal of this study was to determine hardness and elastic modulus for the shark tooth materials enameloid, osteodentine, and orthodentine. Five teeth each from one carcharhiniform species, the bonnethead Sphyrna tiburo, and one lamniform, the sand tiger shark Carcharias taurus, were utilized for nanoindentation testing. Each tooth was sectioned transversely, air-dried, and polished. Both enameloid and dentine were tested on each tooth via a Berkovich diamond tip, with nine 2 microm deep indentations per material. t-Tests were used to determine if there were differences in hardness and Young's modulus between the tooth materials of the two species. There was no significant difference between the two species for the material properties of enameloid, however both hardness and Young's modulus were higher for osteodentine than for orthodentine. This may be due to differences in microanatomy and chemical composition, however this needs to be studied in greater detail. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Surgical lasers and hard dental tissue.

    PubMed

    Parker, S

    2007-04-28

    The cutting of dental hard tissue during restorative procedures presents considerable demands on the ability to selectively remove diseased carious tissue, obtain outline and retention form and maintain the integrity of supporting tooth tissue without structural weakening. In addition, the requirement to preserve healthy tissue and prevent further breakdown of the restoration places the choice of instrumentation and clinical technique as prime factors for the dental surgeon. The quest for an alternative treatment modality to the conventional dental turbine has been, essentially, patient-driven and has led to the development of various mechanical and chemical devices. The review of the literature has endorsed the beneficial effects of current laser machines. However utopian, there is additional evidence to support the development of ultra-short (nano- and femto-second) pulsed lasers that are stable in use and commercially viable, to deliver more efficient hard tissue ablation with less risk of collateral thermal damage. This paper explores the interaction of laser energy with dental hard tissues and bone and the integration of current laser wavelengths into restorative and surgical dentistry.

  1. Surface modulation of dental hard tissues

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Daranee

    Tooth surfaces play a central role in the equilibrium of dental hard tissues, in which contrasting processes lead to loss or deposition of materials. The central interest of this Thesis was the modulation of tooth surfaces to control such equilibrium. Four specific studies were carried out to investigate different classes of surface modulating agents. These are: (1) Ionic modulation of the enamel surface to enhance stain removal . Dental stain is the most apparent form of tooth surface deposit. The nature of extrinsic stain in terms of spatial chemical composition was studied by using electron probe microanalysis. An ionic surface modulating agent, sodium tripolyphosphate (STPP), was evaluated. Image analysis methodologies were developed and the ability of STPP in stain removal was proved. (2) Thin film modulation with substantive polymeric coating and the effect on in vitro enamel de/re-mineralization . A novel polymeric coating that formed a thin film on the tooth surface was investigated for its inhibitory effect on artificial enamel caries, without interfering with the remineralization process. The preventive effect was distinct, but the mineral redeposition was questionable. (3) Thick film modulation with fluoride containing sealants and the effect on in vitro enamel and root caries development. Fluoride incorporated into resin material is an example of combining different classes of surface modulating agents to achieve an optimal outcome. A proper combination, such as in resin modified glass ionomer, showed in vitro caries inhibitory effect beyond the material boundary in both enamel and dentin. (4) Thick film modulation with dental adhesives and the determination of adhesion to dentin. Dentin adhesives modulate intracoronal tooth surfaces by enhancing adhesion to restorative materials. Conventional nominal bond tests were inadequate to determine the performance of current high strength adhesives. It was shown that interfacial fracture toughness test was more

  2. A simple and cost-effective method for preparing DNA from the hard tooth tissue, and its use in polymerase chain reaction amplification of amelogenin gene segment for sex determination in an Indian population.

    PubMed

    Sivagami, A V; Rao, A R; Varshney, U

    2000-05-15

    The use of teeth as an important resource in the analysis of forensic case history by polymerase chain reaction (PCR) or other related methods has been reported. However, a major drawback in using teeth has been that the DNA is present only in trace amounts, and the methods to recover DNA from the flinty material have not been efficient or cost effective. In this report, we describe a method to prepare DNA from the hard tooth tissues. Our studies show that ultrasonication of teeth samples yields sufficient amounts of good quality DNA useful for PCR-based diagnostic methods. The teeth could serve as a reliable source of DNA for amplification-based forensic methods in sex determination. DNA could be obtained from any tooth, regardless of the age of subject. Furthermore, by using the AMEL gene-based primers in PCR, we have shown that the AMEL gene serves as a good marker for sex determination in the Indian population. In our study, the PCR-based method was sensitive and proved to be successful for sex determination with a complete specificity.

  3. Tissue Interactions Regulating Tooth Development and Renewal.

    PubMed

    Balic, Anamaria; Thesleff, Irma

    2015-01-01

    Reciprocal interactions between epithelial and mesenchymal tissues play a fundamental role in the morphogenesis of teeth and regulate all aspects of tooth development. Extensive studies on mouse tooth development over the past 25 years have uncovered the molecular details of the signaling networks mediating these interactions (reviewed by Jussila & Thesleff, 2012; Lan, Jia, & Jiang, 2014). Five conserved signaling pathways, namely, the Wnt, BMP, FGF, Shh, and Eda, are involved in the mediation of the successive reciprocal epithelial-mesenchymal cross talk which follows the general principle of morphogenetic interactions (Davidson, 1993). The pathways regulate the expression of transcription factors which confer the identity of dental epithelium and mesenchyme. The signals and transcription factors are integrated in complex signaling networks whose fine-tuning allows the generation of the variation in tooth morphologies. In this review, we describe the principles and molecular mechanisms of the epithelial-mesenchymal interactions regulating successive stages of tooth formation: (i) the initiation of tooth development, with special reference to the shift of tooth-forming potential from epithelium to mesenchyme; (ii) the morphogenesis of the tooth crown, focusing on the roles of epithelial signaling centers; (iii) the differentiation of odontoblasts and ameloblasts, which produce dentin and enamel, respectively; and (iv) the maintenance of dental stem cells, which support the continuous growth of teeth. © 2015 Elsevier Inc. All rights reserved.

  4. CO2 laser milling of hard tissue

    NASA Astrophysics Data System (ADS)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  5. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  6. Nanoindentation hardness of mineralized tissues.

    PubMed

    Oyen, Michelle L

    2006-01-01

    A series elastic and plastic deformation model [Sakai, M., 1999. The Meyer hardness: a measure for plasticity? Journal of Materials Research 14(9), 3630-3639] is used to deconvolute the resistance to plastic deformation from the plane strain modulus and contact hardness parameters obtained in a nanoindentation test. Different functional dependencies of contact hardness on the plane strain modulus are examined. Plastic deformation resistance values are computed from the modulus and contact hardness for engineering materials and mineralized tissues. Elastic modulus and plastic deformation resistance parameters are used to calculate elastic and plastic deformation components, and to examine the partitioning of indentation deformation between elastic and plastic. Both the numerical values of plastic deformation resistance and the direct computation of deformation partitioning reveal the intermediate mechanical responses of mineralized composites when compared with homogeneous engineering materials.

  7. Effects of in-office tooth whiteners on hardness of tooth-colored restoratives.

    PubMed

    Yap, A U J; Wattanapayungkul, P

    2002-01-01

    This study investigated the effects of in-office tooth whiteners on the hardness of hybrid (Spectrum TPH), polyacid-modified (Dyract AP), PRG (Reactmer) composites and a resin-modified glass ionomer cement (Fuji II LC). Twenty-seven specimens of each material were fabricated, randomly divided into three groups of nine and treated as follows--Group 1: stored in distilled water at 37 degrees C for three weeks (control); Group 2: treated with carbamide peroxide (Opalescence Quick) for 30 minutes/week for three weeks; Group 3: treated with 35% hydrogen peroxide power bleach (Opalescence Xtra) for 30 minutes/week for three weeks. For Groups 2 and 3, specimens were stored in distilled water at 37 degrees C during the hiatus periods. The treated specimens were subsequently subjected to microhardness testing (load = 500gf; dwell time = 15 seconds). Results were analyzed using ANOVA/Scheffe's test (p<0.05). For all treatment groups, Spectrum was significantly harder than the other materials and Reactmer was significantly harder than Dyract and Fuji II LC. The effects of in-office tooth whiteners on microhardness were material-dependent. No significant difference in hardness was observed between treatment groups for Dyract and Reactmer. For Spectrum and Fuji II LC, specimens treated with Opalescence Quick were significantly harder than those treated with Opalescence Xtra. No significant difference in hardness was observed between the control and bleached groups for all materials. The hardness of resin-modified glass-ionomer cements, hybrid, polyacid-modified and PRG composites is therefore not significantly affected by the use of 35% carbamide peroxide and 35% hydrogen peroxide in-office tooth whiteners.

  8. Peroxide interactions with hard tissues: effects on surface hardness and surface/subsurface ultrastructural properties.

    PubMed

    White, Donald J; Kozak, Kathy M; Zoladz, James R; Duschner, Heinz; Götz, Hermann

    2002-01-01

    Laboratory studies were performed to assess the impact of peroxide bleaching on enamel surface and subsurface physical and ultrastructural properties. Human enamel blocks were prepared, polished, and measured for native color. Cyclic bleaching treatments were carried out with soaks in whole stimulated saliva interspersed with bleaching treatments using bulk bleaching gels from commercial bleaching systems including Opalescence (20% and 10% carbamide peroxide systems) and Crest Whitestrips, a hydrogen peroxide gel formula, at doses of 5.3% and 6.5% hydrogen peroxide. Treatments ranged from conditions of normal use (14 hours as recommended for Crest Whitestrips) to excessive bleaching (70 hours). Controls included nontreated as well as treatments with placebo (not containing peroxide) gels. Surface hardness and confocal laser scanning microscopy (CLSM) techniques were used to characterize the effects of bleaching on the physical properties and ultrastructure of the teeth. Tooth color measurements revealed dose-response bleaching in vitro with the increases in L* and decreases in b* normally expected with effective bleaching. Placebo control treatments did not bleach. Surface hardness measurements showed no decreases associated with tooth bleaching. CLSM measurements also showed no effects from tooth bleaches on the surface or subsurface prism architecture of enamel. This was opposed to significant changes seen with even moderate levels of demineralization associated with the caries process. These studies support: (1) the safety of Crest Whitestrips formulas for enamel surfaces and tooth subsurfaces; and (2) the generic safety of peroxide bleaching of hard tissues associated with conditions of both recommended use and overuse.

  9. Biomaterials in Tooth Tissue Engineering: A Review

    PubMed Central

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration. PMID:24596804

  10. Biomaterials in tooth tissue engineering: a review.

    PubMed

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration.

  11. Laser Ablatin of Dental Hard Tissue

    SciTech Connect

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.; Fried, D.

    2007-07-31

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  12. Quantitative analysis of incipient mineral loss in hard tissues

    NASA Astrophysics Data System (ADS)

    Matvienko, Anna; Mandelis, Andreas; Hellen, Adam; Jeon, Raymond; Abrams, Stephen; Amaechi, Bennett

    2009-02-01

    A coupled diffuse-photon-density-wave and thermal-wave theoretical model was developed to describe the biothermophotonic phenomena in multi-layered hard tissue structures. Photothermal Radiometry was applied as a safe, non-destructive, and highly sensitive tool for the detection of early tooth enamel demineralization to test the theory. Extracted human tooth was treated sequentially with an artificial demineralization gel to simulate controlled mineral loss in the enamel. The experimental setup included a semiconductor laser (659 nm, 120 mW) as the source of the photothermal signal. Modulated laser light generated infrared blackbody radiation from teeth upon absorption and nonradiative energy conversion. The infrared flux emitted by the treated region of the tooth surface and sub-surface was monitored with an infrared detector, both before and after treatment. Frequency scans with a laser beam size of 3 mm were performed in order to guarantee one-dimensionality of the photothermal field. TMR images showed clear differences between sound and demineralized enamel, however this technique is destructive. Dental radiographs did not indicate any changes. The photothermal signal showed clear change even after 1 min of gel treatment. As a result of the fittings, thermal and optical properties of sound and demineralized enamel were obtained, which allowed for quantitative differentiation of healthy and non-healthy regions. In conclusion, the developed model was shown to be a promising tool for non-invasive quantitative analysis of early demineralization of hard tissues.

  13. Laser radiation propagation in the hard and soft dental tissues

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Sulc, Jan; Cerny, Pavel; Nemec, Michal; Cech, Miroslav; Miyagi, Mitsunobu

    2000-03-01

    The objective of this study was to compare the penetration effect of the near and mid-infrared laser radiation. For this reason the Er:YAG, Nd:YAG, and alexandrite laser systems were used in the experiments. The spread of the laser radiation energy in the hard dental tissue surrounding the root canal was evaluated and the possible bactericidal effect of these various laser wavelengths was analyzed. During the measurements, three experimental arrangements were used. The energy transport through the tooth tissue was observed for the frontal and side experimental layout. It was demonstrated that due to the absorption in the hydroxyapatite and water content in the dentin, the Er:YAG laser radiation is fully, and the Nd:YAG is partly absorbed in the root canal's wall. On the other hand, it was proved that the alexandrite laser radiation spreads through the canal system space and leaks into the surrounding tooth tissues. All laser radiation can be efficiently used for killing dental bacteria but the spreading of their radiation in the tooth tissues is different.

  14. Orthodontic tooth extrusion to enhance soft tissue implant esthetics.

    PubMed

    Brindis, Marco A; Block, Michael S

    2009-11-01

    The purpose of this report was to review the published data on orthodontic extrusion and make recommendations for its use according to the evidence presented, including the technique for use by clinicians. A MEDLINE search was performed to identify reports in referenced journals in English. These studies were collated and reviewed for clinical and animal data on orthodontic extrusion. In addition, the experiences of our team using orthodontic extrusion was added to the evidence used to make the recommendations. From this background information, orthodontic tooth extrusion is able to move the soft tissues when the sulcular attachment apparatus is intact. Bone formation as the tooth is extruded is dependent on the vector of the movement of the tooth. The rate of tooth extrusion is effected by the bone-tooth attachment. When used as we have described, extrusion can effectively move the facial gingival margin to allow for esthetic restoration of implants placed in the extruded tooth position.

  15. Effects of bleaching agents and Tooth Mousse(™) on human enamel hardness.

    PubMed

    Alkhtib, Asmaa; Manton, David J; Burrow, Michael F; Saber-Samandari, Saeed; Palamara, Joseph E A; Gross, Kārlis A; Reynolds, Eric C

    2013-05-01

    The aim of this laboratory study was to investigate the effect of three commercial bleaching agents and Tooth Mousse(™) containing 10% w/w casein phosphopeptide-amorphous calcium phosphate on the hardness of tooth enamel. Sixteen human enamel specimens were exposed to one of three commercial bleaching agents with or without subsequent exposure to Tooth Mousse(™) . Nanoindentation was used to measure the hardness and reduced modulus before and after treatments. When bleaching materials were applied for a short period of time following the manufacturers' instructions, there was an increase in enamel hardness and reduced modulus for some bleaching groups, with no statistically significant difference from the baseline values. After extended bleaching periods a statistically significant decrease in enamel hardness and reduced modulus was found and after applying Tooth Mousse(™) post-bleaching, the hardness and reduced modulus returned to close to baseline values. The application of bleaching agents for an extended period of time significantly decreases enamel hardness and the reduced modulus. The application of Tooth Mousse(™) after bleaching was able to reestablish the baseline enamel hardness and reduced modulus, decreasing the adverse effects of bleaching enamel. © 2012 Wiley Publishing Asia Pty Ltd.

  16. CO II laser free-form processing of hard tissue

    NASA Astrophysics Data System (ADS)

    Werner, Martin; Klasing, Manfred; Ivanenko, Mikhail; Harbecke, Daniela; Steigerwald, Hendrik; Hering, Peter

    2007-07-01

    Drilling and surface processing of bone and tooth tissue belongs to standard medical procedures (bores and embeddings for implants, trepanation etc.). Small circular bores can be generally quickly produced with mechanical drills. However problems arise at angled drilling, the need to execute drilling procedures without damaging of sensitive soft tissue structures underneath the bone or the attempt to mill small non-circular cavities in hard tissue with high precision. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The processing of bone is done with a CO II laser (10.6 μm) with pulse durations of 50 - 100 μs, combined with a PC-controlled fast galvanic laser beam scanner and a fine water-spray, which helps keeping the ablation process effective and without thermal side-effects. Laser "milling" of non-circular cavities with 1 - 4 mm width and about 10 mm depth can be especially interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser processing of these cavities without thermal damage and with minimised tapering. It included the exploration of different filling patterns (concentric rings, crosshatch, parallel lines, etc.), definition of maximal pulse duration, repetition rate and laser power, and optimal water spray position. The optimised results give evidence for the applicability of pulsed CO II lasers for biologically tolerable effective processing of deep cavities in hard tissue.

  17. Tooth tissue engineering: tooth decellularization for natural scaffold.

    PubMed

    de Sousa Iwamoto, Luciana Aparecida; Duailibi, Monica Talarico; Iwamoto, Gerson Yoshinobu; Juliano, Yara; Duailibi, Michel Silvio; Ossamu Tanaka, Francisco André; Duailibi, Silvio Eduardo

    2016-06-01

    Tissue engineering is a multidisciplinary science that aims to produce replacement organs and biological substitutes. One of the techniques involves decellularizing a biological organ without altering its structure. One challenge is how to demonstrate which method would be better for this process. Fifty premolar teeth were divided into five groups: G1 (control): solution of 10% formaldehyde; G2: phosphate buffer saline (PBS), 28 g of tetrasodium ethylenediaminetetraacetic (EDTA), sodium hypochlorite 2.5% (SH); G3: PBS, EDTA and 40v hydrogen peroxide (HP); G4: PBS, EDTA, SH, enzymatic detergent (ED); and G5: PBS, EDTA, HP, ED. Each group was analyzed by scanning electron microscopy (SEM), x-ray, measured weights and color and received statistical analysis. This study demonstrated that G5 was the most appropriate method to obtain a natural scaffold.

  18. Tooth tissue engineering: tooth decellularization for natural scaffold

    PubMed Central

    de Sousa Iwamoto, Luciana Aparecida; Duailibi, Monica Talarico; Iwamoto, Gerson Yoshinobu; Juliano, Yara; Duailibi, Michel Silvio; Ossamu Tanaka, Francisco André; Duailibi, Silvio Eduardo

    2016-01-01

    Aim: Tissue engineering is a multidisciplinary science that aims to produce replacement organs and biological substitutes. One of the techniques involves decellularizing a biological organ without altering its structure. One challenge is how to demonstrate which method would be better for this process. Methodology: Fifty premolar teeth were divided into five groups: G1 (control): solution of 10% formaldehyde; G2: phosphate buffer saline (PBS), 28 g of tetrasodium ethylenediaminetetraacetic (EDTA), sodium hypochlorite 2.5% (SH); G3: PBS, EDTA and 40v hydrogen peroxide (HP); G4: PBS, EDTA, SH, enzymatic detergent (ED); and G5: PBS, EDTA, HP, ED. Each group was analyzed by scanning electron microscopy (SEM), x-ray, measured weights and color and received statistical analysis. Conclusion: This study demonstrated that G5 was the most appropriate method to obtain a natural scaffold. PMID:28031968

  19. PROTEIN TEMPLATES IN HARD TISSUE ENGINEERING

    PubMed Central

    George, Anne; Ravindran, Sriram

    2010-01-01

    Biomineralization processes such as formation of bones and teeth require controlled mineral deposition and self-assembly into hierarchical biocomposites with unique mechanical properties. Ideal biomaterials for regeneration and repair of hard tissues must be biocompatible, possess micro and macroporosity for vascular invasion, provide surface chemistry and texture that facilitate cell attachment, proliferation, differentiation of lineage specific progenitor cells, and induce deposition of calcium phosphate mineral. To expect in-vivo like cellular response several investigators have used extracellular matrix proteins as templates to recreate in-vivo microenvironment for regeneration of hard tissues. Recently, several novel methods of designing tissue repair and restoration materials using bioinspired strategies are currently being formulated. Nanoscale structured materials can be fabricated via the spontaneous organization of self-assembling proteins to construct hierarchically organized nanomaterials. The advantage of such a method is that polypeptides can be specifically designed as building blocks incorporated with molecular recognition features and spatially distributed bioactive ligands that would provide a physiological environment for cells in-vitro and in-vivo. This is a rapidly evolving area and provides a promising platform for future development of nanostructured templates for hard tissue engineering. In this review we try to highlight the importance of proteins as templates for regeneration and repair of hard tissues as well as the potential of peptide based nanomaterials for regenerative therapies. PMID:20802848

  20. Two Distinct Processes of Bone-like Tissue Formation by Dental Pulp Cells after Tooth Transplantation

    PubMed Central

    Yukita, Akira; Yoshiba, Kunihiko; Yoshiba, Nagako; Takahashi, Masafumi; Nakamura, Hiroaki

    2012-01-01

    Dental pulp is involved in the formation of bone-like tissue in response to external stimuli. However, the origin of osteoblast-like cells constructing this tissue and the mechanism of their induction remain unknown. We therefore evaluated pulp mineralization induced by transplantation of a green fluorescent protein (GFP)–labeled tooth into a GFP-negative hypodermis of host rats. Five days after the transplantation, the upper pulp cavity became necrotic; however, cell-rich hard tissue was observed adjacent to dentin at the root apex. At 10 days, woven bone-like tissue was formed apart from the dentin in the upper pulp. After 20 days, these hard tissues expanded and became histologically similar to bone. GFP immunoreactivity was detected in the hard tissue-forming cells within the root apex as well as in the upper pulp. Furthermore, immunohistochemical observation of α–smooth muscle actin, a marker for undifferentiated cells, showed a positive reaction in cells surrounding this bone-like tissue within the upper pulp but not in those within the root apex. Immunoreactivities of Smad4, Runx2, and Osterix were detected in the hard tissue-forming cells within both areas. These results collectively suggest that the dental pulp contains various types of osteoblast progenitors and that these cells might thus induce bone-like tissue in severely injured pulp. PMID:22899860

  1. The SCPP gene family and the complexity of hard tissues in vertebrates.

    PubMed

    Kawasaki, Kazuhiko

    2011-01-01

    Diverse hard tissues constituted a tooth-like skeletal element in extinct jawless vertebrates. Today, similar tissues are found in our teeth. These tissues mineralize in the extracellular matrix and involve various macromolecules. Among these molecules are secretory calcium-binding phosphoproteins (SCPPs) coded by genes that arose by duplication. Although the repertoire of SCPPs may vary in different lineages, some SCPPs are unusually acidic and are thought to participate in the mineralization of a collagenous matrix, principally either bone or dentin. Other SCPPs are rich in Pro and Gln (P/Q) and are employed to form the tooth surface. In tetrapods, the tooth surface is usually covered with enamel which develops in a matrix comprised of P/Q-rich SCPPs. By contrast, the tooth surface tissue in teleosts is called enameloid and it forms in a dentin-like collagenous matrix. Despite the difference in their matrix, both enamel and enameloid mature into hypermineralized inorganic tissues. Notably, some P/Q-rich SCPP genes are primarily expressed at this stage and their proteins localize between the tooth surface and overlying dental epithelium. Moreover, an orthologous gene is used for maturation of these 2 different tissues. These findings suggest distinct roles of acidic and P/Q-rich SCPPs during the evolution of hard tissues. Acidic SCPPs initially regulated the mineralization of bone, dentin, or a similar ancient collagenous tissue through interaction with calcium ions. P/Q-rich SCPPs arose next and originally assembled a structure or a space that facilitated the hypermineralization of dentin or a dentin-like tissue. Subsequently, some P/Q-rich SCPPs were coopted for the mineralizing enamel matrix. More recently, however, many SCPP genes were lost in toothless birds and mammals. Thus, it appears that, in vertebrates, the phenotypic complexity of hard tissues correlates with gain and loss of SCPP genes. Copyright © 2011 S. Karger AG, Basel.

  2. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  3. Analysis of dental hard tissue by computerized microdensitometry.

    PubMed

    Mallon, D E; Mellberg, J R

    1985-02-01

    One method of quantitating mineral content in thin sections of dental hard tissue is microdensitometry of contact radiographs. This method is often applied to analysis of artificial caries lesions. Because there is great inter- and intra-tooth variability, a single microdensitometric scan will not accurately reflect the content or distribution of mineral within an individual lesion, or within a group of lesions. To increase the number of replicates than can be handled routinely, a computer-driven microdensitometer has been used with a step series of aluminum and enamel to quantitate mineral content values at approximately 1-micron intervals. Accurate assessment of an individual lesion was made possible by averaging multiple scans of the lesion on each of several thin sections prepared from the lesion. Mean mineral profiles of treatment groups were then made from the profiles of the individual lesion. These data reduction techniques allowed for a large number of replicates to be used in the measurement of remineralization. The computerized microdensitometric system described here was developed to allow for an objective, quantitative analysis of the mineral content of dental hard tissue.

  4. Dental hard tissue characterization using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  5. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    NASA Astrophysics Data System (ADS)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  6. Tooth tissue engineering: optimal dental stem cell harvest based on tooth development.

    PubMed

    Duailibi, Monica Talarico; Duailibi, Silvio Eduardo; Duailibi Neto, Eduardo Felippe; Negreiros, Renata Matalon; Jorge, Waldyr Antonio; Ferreira, Lydia Masako; Vacanti, Joseph Phillip; Yelick, Pamela Crotty

    2011-07-01

    Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  8. Intentional reim plantation of a tooth with severe periodontal involvement using enamel matrix derivative in combination with guided tissue regeneration and bone grafting: a case report.

    PubMed

    Sugai, Kenji; Sato, Shuichi; Suzuki, Kuniharu; Ito, Koichi

    2008-02-01

    This case involved the intentional reimplantation of a tooth with severe periodontal involvement using regenerative therapies. The maxillary left central incisor was intentionally extracted, enamel matrix derivative (EMD) was applied, and the tooth was repositioned accurately. The bone defect was filled with a xenograft and a demineralized freeze-dried bone allograft, and a guided tissue regeneration membrane was adapted over the site. After 5 years, a reduction in probing depth and a gain in clinical attachment were observed. Conventional radiographs and cone-beam computerized tomographs showed hard tissue improvement. Favorable clinical results were obtained with reimplantation with applied EMD, combined with regenerative therapies, for treating a tooth with severe periodontal involvement.

  9. The effect of bleaching agents on the surface hardness of tooth colored restorative materials.

    PubMed

    Taher, Nadia Malek

    2005-05-15

    The aim of this study was to evaluate the effect of at-home (Opalesence/Dr. kit 15%, Ultradent, Products, Inc. South Jordan, UT, USA) and in-office (Superoxol 35%, Sultan Chemists, Inc., Englewood, NJ, USA) bleaching on the surface hardness of the following tooth colored restorative materials: composite resin, Point-4 (P4), Kerr Corporation, Orange, CA, USA; ormocer, Admira (AD),VOCO, Germany; compomer Dyract AP (DY), Dentsply DeTrey GmbH, Germany; and resin modified glass ionomer cement, Fuji II LC (FL), GC Corporation, Japan. Sixty specimens were prepared; 15 specimens of each material (each group n = 5, control after 15 days, at-home and in-office). All specimens were stored in distilled water at room temperature for 24 hrs before testing. A universal testing machine (Micromet 2100 series micro hardness testers) was used for testing Vicker's surface hardness for the three groups for every tested material. All results were statistically analyzed with one way analysis of variance (ANOVA), Post hoc Tukey HSD tests (P < 0.05), and percentage changes for Tukey. All the tested materials showed an increase in Vicker's surface hardness between base line (24 hrs) and the control group after 15 days storage in distilled water except DY which showed a decrease in surface hardness. All tested materials showed a decrease in surface hardness from control group after 15 days and both at-home and in-office bleaching agents except DY which showed increased values. At-home as well as in-office bleaching agents have a softening effect on some tooth colored restorative material, and the patient must be aware before using them.

  10. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed.

  11. Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues

    SciTech Connect

    Jiang Huaidong; Liu Xiangyang; Lim, Chwee T.; Hsu, Chin Y.

    2005-04-18

    Biominerals in the hard tissues of many organisms exhibit superior mechanical properties due to their unique hierarchical nanostructures. In this article, we show the microstructure of human tooth enamel examined by position-resolved small-angle x-ray scattering and electron microscopy. It is found that the degree of ordering of the biominerals varies strikingly within the dental sample. Combined with nanoindentation, our results show that both the hardness and the elastic modulus increase predominantly with the ordering of the biomineral crystallites. This can be attributed to the fact that the ordered structure helps sustain a more complex mechanical stress.

  12. Comparison of tetrachromic VOF stain to other histochemical staining techniques for characterizing stromal soft and hard tissue components.

    PubMed

    Belaldavar, C; Hallikerimath, S; Angadi, P V; Kale, A D

    2014-11-01

    The components of hard tissues including dentin, enamel, cementum, bone and other calcified deposits, and mature and immature collagen pose problems for identification in routine hematoxylin and eosin (H & E) stained sections. Use of combinations of stains can demonstrate the components of hard tissues and soft tissues distinctly. We assessed the efficacy of the Verde Luz-orange G-acid fuchsin (VOF) stain for differentiating hard and soft connective tissues and compared results with other histochemical staining techniques. Eighty tissue sections comprising developing tooth (30), ossifying fibroma (30) and miscellaneous pathologies (20) expected to contain varying types of calcified tissues were stained with H & E, VOF, and Masson's trichrome (MT). In developing tooth, VOF demonstrated better differentiation of hard tissues, while it was comparable to MT for ossifying fibroma and miscellaneous pathologies. The intensity of staining was greater with VOF than with the other stains studied. VOF stains hard tissue components distinctly and gives good contrast with the surrounding connective tissue. VOF is comparable to MT, but has added advantages including single step staining, rapid and easy procedures, and it distinguishes the maturity of the tissues.

  13. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    PubMed Central

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  14. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    PubMed

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  15. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskoković, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials

  16. Tooth slice/scaffold model of dental pulp tissue engineering.

    PubMed

    Sakai, V T; Cordeiro, M M; Dong, Z; Zhang, Z; Zeitlin, B D; Nör, J E

    2011-07-01

    Multipotency is a defining characteristic of post-natal stem cells. The human dental pulp contains a small subpopulation of stem cells that exhibit multipotency, as demonstrated by their ability to differentiate into odontoblasts, neural cells, and vascular endothelial cells. These discoveries highlight the fundamental role of stem cells in the biology of the dental pulp and suggest that these cells are uniquely suited for dental pulp tissue-engineering purposes. The availability of experimental approaches specifically designed for studies of the differentiation potential of dental pulp stem cells has played an important role in these discoveries. The objective of this review is to describe the development and characterization of the Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering. In addition, we discuss the multipotency of dental pulp stem cells, focusing on the differentiation of these cells into functional odontoblasts and into vascular endothelial cells.

  17. Molecular markers of dental pulp tissue during orthodontic tooth movement: a pilot study.

    PubMed

    Abdul Wahab, Rohaya Megat; Zainal Ariffin, Shahrul Hisham; Yeen, Wong Woan; Ahmad, Nurul Atikah; Senafi, Sahidan

    2012-01-01

    Three specific orthodontic tooth movement genes, that is, FCRL1, HSPG2, and LAMB2 were detected at upper first premolar (with appliance) dental pulp tissue by using GeneFishing technique as compared to lower first premolar (without appliance). These three differentially expressed genes have the potential as molecular markers during orthodontic tooth movement by looking at molecular changes of pulp tissue.

  18. Tooth development in Ambystoma mexicanum: phosphatase activities, calcium accumulation and cell proliferation in the tooth-forming tissues.

    PubMed

    Wistuba, Joachim; Ehmcke, Jens; Clemen, Günter

    2003-06-01

    Prerequisites of tooth formation, cell proliferation in the tooth-forming tissues, calcium accumulation and the enzymatic activities of alkaline (ALP) and acid phosphatases (ACP) were investigated by immunohistochemical and histochemical methods in various developmental stages of the Mexican Axolotl, Ambystoma mexicanum. During the growth of replacement teeth, the tooth-forming tissues continually recruit cells from the surrounding regions. The basal layer of the oral epithelium, the dental lamina and sometimes even the outer enamel epithelium provide cells for the differentiated inner enamel epithelium, in which the active ameloblasts are localized. The differentiating odontoblasts are derived from proliferating cells situated basally to the replacement teeth in the mesenchymal tissue. When differentiation has started and the cells have become functional, proliferative activity can no longer be observed. Calcium is accumulated close to the site of mineralization in the inner enamel epithelium and in the odontoblasts as it is in mammals, elasmobranchii and teleostei. The activities of ACP and ALP related to the mineralization of the replacement teeth are separated spatially and not sequentially as they are in mammals. However, the results indicate a similar function of these enzymatic components in relation to tooth formation and maturation of mineral deposition. Most of the substantial processes related to tooth formation reported from other vertebrates occur in a manner similar to that in Ambystoma mexicanum, but there also seem to be basic mechanisms present that are realised in a unique way in this urodele.

  19. Hard-Soft Tissue Interface Engineering.

    PubMed

    Armitage, Oliver E; Oyen, Michelle L

    2015-01-01

    The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues - ligament, tendon and cartilage - meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

  20. Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models.

    PubMed

    Luukko, Keijo; Kettunen, Päivi

    2014-07-15

    In addition to being an advantageous model to investigate general molecular mechanisms of organ formation, the tooth is a distinct target organ for peripheral nerve innervation. These nerves are required for the function and protection of the teeth and, as shown in fish, also for their regeneration. This review focuses on recent findings of the local tissue interactions and molecular signaling mechanisms that regulate the early nerve arrival and patterning of mouse mandibular molar tooth sensory innervation. Dental sensory nerve growth and patterning is a stepwise process that is intimately linked to advancing tooth morphogenesis. In particular, nerve growth factor and semaphorin 3A serve as essential functions during and are iteratively used at different stages of tooth innervation. The tooth germ controls development of its own nerve supply, and similar to the development of the tooth organ proper, tissue interactions between dental epithelial and mesenchymal tissues control the establishment of tooth innervation. Tgf-β, Wnt, and Fgf signaling, which regulate tooth formation, are implicated to mediate these interactions. Therefore, tissue interactions mediated by conserved signal families may constitute key mechanism for the integration of tooth organogenesis and development of its peripheral nerve supply. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Tooth-Bleaching: A Review of the Efficacy and Adverse Effects of Various Tooth Whitening Products.

    PubMed

    Majeed, Abdul; Farooq, Imran; Grobler, Sias R; Rossouw, R J

    2015-12-01

    Tooth bleaching (whitening) is one of the most common and inexpensive method for treating discolouration of teeth. Dental aesthetics, especially tooth colour, is of great importance to majority of the people; and discolouration of even a single tooth can negatively influence the quality of life. Therefore, a review of the literature was carried out (limited to aesthetic tooth-bleaching) to provide a broad overview of the efficacy and adverse effects of various tooth whitening products on soft and hard oral tissues.

  2. Laser hard tissue interactions: energy transmission through human dental tissue using a holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Holt, Raleigh A.; Nordquist, Robert E.

    1995-05-01

    Laser energy transmission through hard tissue was investigated using a pulsed Holmium:YAG laser (2.12 micrometers wavelength). The surface of extracted human dental tissue, 200 micrometers to 700 micrometers in thickness, was irradiated by a laser beam of various fluences between 3 J/cm2 to 28 J/cm2. The transmitted energy through different dentinal components of the tooth was measured. For the mature teeth, the region of the dentinoenamel junction showed the least transmission and the coronal the most; the difference between the two regions could be as large as 20%. The unerupted or young teeth revealed the opposite transmission characteristics. Repeated laser treatment revealed an enhanced transmissibility and the transmitted energy reached a plateau after certain irradiation exposure. Also studied were the effects of various media on the dental transmissibility. For example, surface application of a smear layer of unfilled resin did not change the transmissibility but appeared to slow down the temperature build-up. Visible surface damage -- a yellow or a white spot on the treatment site -- appeared when the fluence reached beyond 20 J/cm2. SEM samples revealed three different surface structural changes: melting with tubule closures, surface removal with tubule exposures, and surface cracking with crater formation, depending on the level of irradiation.

  3. Effects of an Er, Cr:YSGG laser on canine oral hard tissues

    NASA Astrophysics Data System (ADS)

    Rizoiu, Ioana-Mihaela; Kimmel, Andrew I.; Eversole, Lewis R.

    1996-12-01

    Beagle dogs were utilized to assess the biologic effects of an Er, Cr:YSGG hard tissue cutting laser and results were compared with conventional mechanical preparations of enamel and dentin. Intraoperative pulpal temperature fluctuations were recorded with thermocouples. The laser cuts failed to induce inflammation in the pulps except in teeth with intentional pulp exposures for both methods. No increase in temperature was detected with the laser. It is concluded that this laser system may be safely employed for tooth preparations without causing adverse pulpal effects.

  4. Measurement of ultrasonic phase and group velocities in human dental hard tissue

    PubMed Central

    2013-01-01

    Background The development of ultrasound for use in dental tissues is hampered by the complex, multilayered nature of the teeth. The purpose of this preliminary study was to obtain the phase and group velocities associated with several directions of ultrasonic wave propagation in relation to the tooth structure, which would then lead to the determination of the elastic constants in dental hard tissue. Knowledge of these elastic constants can be used to feed back into numerical models (such as finite element) in order to simulate/predict ultrasonic wave propagation and behavior in the teeth. This will help to optimize ultrasonic protocols as potential noninvasive therapeutic tools for novel dental regenerative therapies. Methods An extracted human second molar was used to determine time-of-flight information from A-scan signatures obtained at various angles of inclination and rotation using a scanning acoustic microscope at 10 MHz. Phase and group velocities and associated slowness curves were calculated in order to determine the independent elastic constants in the human teeth. Results Results show that as the tooth was inclined at three azimuthal angles (Θin = 0°, 15°, and 30°) and rotated from Φin = 0° to 360° in order to cover the whole perimeter of the tooth, slowness curves constructed from the computed phase and group velocities versus angle of rotation confirm the inhomogeneous and anisotropic nature of the tooth as indicated by the nonuniform appearance of uneven circular shape patterns of the measurements when compared to those produced in a control isotropic fused quartz sample. Conclusions This study demonstrates that phase and group velocities of ultrasound as determined by acoustic microscopy change and are dependent on the direction of the tooth structure. Thus, these results confirm that the tooth is indeed a multilayered anisotropic structure underscoring that there is no single elastic constant sufficient to represent the complex structure

  5. Development of transplanted pulp tissue containing epithelial sheath into a tooth-like structure.

    PubMed

    Lyaruu, D M; van Croonenburg, E J; van Duin, M A; Bervoets, T J; Wöltgens, J H; de Blieck-Hogervorst, J M

    1999-08-01

    The aim of these studies was to find out whether intact neonatal pulp tissue containing residual epithelial cells can induce the development of a tooth-like structure in situ. First maxillary neonatal hamster molar pulps containing adhering undifferentiated epithelial cells were transplanted submucosally in the oral cavity of recipient mothers for periods ranging from 2-8 weeks and the tissues were then processed for light microscopy. Developing tooth-like structures containing mineralised tubular dentine, predentine and a vascularised pulp-like chamber lined with functional odontoblast-like cells were observed in the specimens within 2 weeks of transplantation. Enamel and root formation were not observed. These data indicate that neonatal dental pulp tissues containing epithelial cell remnants have the capacity to develop into tooth-like structures and that this could be the explanation for the development of tooth-like structures sometimes observed in infants after extraction of a natal tooth.

  6. Laser processing of dental hard tissues (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Fried, Daniel

    2005-04-01

    In addition to their use for the painless removal of dental decay, lasers are also well suited to modify the chemical composition of the mineral phase of dental hard tissues in order to render the tissues more resistant to acid dissolution and for the modification of the hard tissue morphology for better adhesion to restorative materials. In this paper the principal applications of lasers for the processing of dental hard tissues are discussed with an emphasis on the influence of an externally applied layer of water. The presence of an optically thick layer of water profoundly influences the phase composition of the laser irradiated tissue surface and the morphology resulting in more efficient ablation, better adhesion and improved resistance to acid dissolution.

  7. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy

    PubMed Central

    Dimitriu, Bogdan; Vârlan, Constantin; Suciu, Ioana; Vârlan, Virginia; Bodnar, Dana

    2009-01-01

    The aim of this general article is to present an overview of the current knowledge about composition and structural changes and also about specific biomechanical alterations related to vitality loss or endodontic therapy. For a long time, these issues have been controversially approached from a clinical standpoint and are therefore still confusing for many practitioners. Vitality loss or endodontic procedures seem to induce only negligible changes in hard dental tissue moisture. Physico-chemical properties of dentin can be modified by some of the endodontic chemical products used for chemo-mechanical debridement. On the other hand, tooth biomechanical behavior is affected, since tooth strength is reduced proportionally to coronal tissue loss, due to either pre-existent carious/non-carious lesions or cavity acces preparation, besides restorative procedures. The related literature shows the lack of accepted clinical standards and consensus regarding the optimal way of approaching the specific tooth biomechanics following endodontic therapy. PMID:20108492

  8. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy.

    PubMed

    Dimitriu, Bogdan; Vârlan, Constantin; Suciu, Ioana; Vârlan, Virginia; Bodnar, Dana

    2009-01-01

    The aim of this general article is to present an overview of the current knowledge about composition and structural changes and also about specific biomechanical alterations related to vitality loss or endodontic therapy. For a long time, these issues have been controversially approached from a clinical standpoint and are therefore still confusing for many practitioners. Vitality loss or endodontic procedures seem to induce only negligible changes in hard dental tissue moisture. Physico-chemical properties of dentin can be modified by some of the endodontic chemical products used for chemo-mechanical debridement. On the other hand, tooth biomechanical behavior is affected, since tooth strength is reduced proportionally to coronal tissue loss, due to either pre-existent carious/non-carious lesions or cavity acces preparation, besides restorative procedures. The related literature shows the lack of accepted clinical standards and consensus regarding the optimal way of approaching the specific tooth biomechanics following endodontic therapy.

  9. Probing microscopic mechanical properties of hard tissues with Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Yakovlev, Vladislav V.

    2015-02-01

    Mechanical properties of hard tissues play an important role in understanding underlying biological structures, as well as assessing the quality of artificial bone replacement materials. In this study, we employed Brillouin spectroscopy as a non-invasive approach to probe the microscopic elasticity of hard tissues, such as bones. Brillouin spectra were collected using a background free virtually imaged phased array spectrometer. As a reference, Raman spectra were also acquired for each imaging point. Experimental results reveal a positive correlation between the local concentration of the mineral content and the corresponding tissue stiffness, assessed through a Brillouin shift.

  10. X-ray microscopy of soft and hard human tissues

    SciTech Connect

    Müller, Bert Schulz, Georg Deyhle, Hans Stalder, Anja K. Ilgenstein, Bernd Holme, Margaret N. Hieber, Simone E.; Beckmann, Felix

    2016-01-28

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  11. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  12. Tooth abnormalities and soft tissue changes in patients with velocardiofacial syndrome.

    PubMed

    da Silva Dalben, Gisele; Richieri-Costa, Antonio; de Assis Taveira, Luís Antônio

    2008-08-01

    The objective of this study was to investigate the prevalence of tooth abnormalities and soft tissue changes in patients with velocardiofacial syndrome. Twenty-six patients with velocardiofacial syndrome were examined to investigate the presence of tooth abnormalities and soft tissue alterations. The occurrence of tooth agenesis and supernumerary teeth was compared to patients without morphofunctional alterations, matched for gender and age. Of all patients, 76.92% exhibited at least one tooth abnormality, with predominance of hypoplastic alterations, especially represented by hypodevelopment of the lingual cusp of mandibular first premolars and enamel opacities. The occurrence of tooth agenesis and supernumerary teeth was similar in both study and control groups. the present results suggest an association between hypodevelopment of the lingual cusp of mandibular first premolars and enamel opacities, yet these findings still require corroboration. Future studies should further investigate these aspects in larger samples compared to control groups, as well as employing molecular genetics techniques.

  13. Molecular Markers of Dental Pulp Tissue during Orthodontic Tooth Movement: A Pilot Study

    PubMed Central

    Abdul Wahab, Rohaya Megat; Zainal Ariffin, Shahrul Hisham; Yeen, Wong Woan; Ahmad, Nurul Atikah; Senafi, Sahidan

    2012-01-01

    Three specific orthodontic tooth movement genes, that is, FCRL1, HSPG2, and LAMB2 were detected at upper first premolar (with appliance) dental pulp tissue by using GeneFishing technique as compared to lower first premolar (without appliance). These three differentially expressed genes have the potential as molecular markers during orthodontic tooth movement by looking at molecular changes of pulp tissue. PMID:22629122

  14. Integration of tooth morphogenesis and innervation by local tissue interactions, signaling networks, and semaphorin 3A

    PubMed Central

    Luukko, Keijo; Kettunen, Päivi

    2016-01-01

    ABSTRACT The tooth, like many other organs, develops from both epithelial and mesenchymal tissues, and has proven to be a valuable tool with which to investigate organ formation and peripheral innervation. Tooth formation is regulated by local epithelial-mesenchymal tissue interactions, and is closely integrated with stereotypic dental nerve navigation and patterning. Recent analyses of the function and regulation of semaphorin 3A (SEMA3A) have shed light on the regulatory mechanisms that coordinate organogenesis and innervation at the tissue and molecular levels. In the tooth, SEM3A acts as a developmentally regulated secretory chemo-repellent, that controls tooth innervation during embryonic and postnatal development. The tooth germ governs its own innervation by a combination of local tissue interactions and SEMA3A expression. SEMA3A signaling, in turn, is controlled by a number of conserved signaling effectors, including TGF-β superfamily members, FGF, and WNT; all function in embryo and organ development, and are essential for tooth histo-morphogenesis. Thus, SEMA3A driven axon guidance is integrated into key odontogenic signaling networks, establishing this protein as a critical molecular tether between 2 distinct developmental processes (morphogenesis and sensory innervation), both of which are required to obtain a functional tooth. PMID:27715429

  15. Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray versus water surface film

    NASA Astrophysics Data System (ADS)

    Freiberg, Robert J.; Cozean, Colette D.

    2002-06-01

    It has been established that the ability of erbium lasers to ablate hard dental tissue is due primarily to the laser- initiated subsurface expansion of the interstitial water trapped within the enamel and that by maintaining a thin film of water on the surface of the tooth, the efficiency of the laser ablation is enhanced. It has recently been suggested that a more aggressive ablative mechanism, designated as a hydrokinetic effect, occurs when atomized water droplets, introduced between the erbium laser and the surface of the tooth, are accelerated in the laser's field and impact the tooth's surface. It is the objective of this study to determine if the proposed hydrokinetic effect exists and to establish its contribution to the dental hard tissue ablation process. Two commercially available dental laser systems were employed in the hard tissue ablation studies. One system employed a water irrigation system in which the water was applied directly to the tooth, forming a thin film of water on the tooth's surface. The other system employed pressurized air and water to create an atomized mist of water droplets between the laser hand piece and the tooth. The ablative properties of the two lasers were studied upon hard inorganic materials, which were void of any water content, as well as dental enamel, which contained interstitial water within its crystalline structure. In each case the erbium laser beam was moved across the surface of the target material at a constant velocity. When exposing material void of any water content, no ablation of the surfaces was observed with either laser system. In contrast, when the irrigated dental enamel was exposed to the laser radiation, a linear groove was formed in the enamel surface. The volume of ablated dental tissue associated with each irrigation method was measured and plotted as a function of the energy within the laser pulse. Both dental laser systems exhibited similar enamel ablation rates and comparable ablated surface

  16. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering.

    PubMed

    Lim, Ki-Taek; Suh, Je Duck; Kim, Jangho; Choung, Pill-Hoon; Chung, Jong Hoon

    2011-11-01

    Bioceramic tooth powders were prepared via heat treatment of extracted human teeth using sintering temperatures between 600°C and 1200°C, and their properties were investigated for potential tooth tissue engineering. The sintered human tooth powders were characterized using thermal analysis (thermogravimetric analysis (TG) and differential thermal analysis (DTA)), field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transformed infrared (FTIR) spectroscopy. Additionally, the phase constitutions and chemical homogeneities of the composite samples were examined using a quantitative chemical analysis with inductively coupled plasma spectroscopy. The results revealed that the annealing process produced useful hydroxyapatite-based bioceramic biomaterials when annealed above 1000°C. The FTIR spectra and the TG/DTA thermograms of the tooth powders indicated the presence of organic compounds, which were completely removed after annealing at temperatures above 1000°C. The tooth powders annealed between 1000°C and 1200°C had good characteristics as bioceramic biomaterials. Furthermore, the biocompatibility of each tooth powder was evaluated using in vitro and in vivo techniques; our results indicate that the prepared human tooth powders have great potential for tooth tissue engineering applications.

  17. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    PubMed Central

    Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H.

    2012-01-01

    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds. PMID:22919393

  18. Soft and hard tissue management using lasers in esthetic restoration.

    PubMed

    Flax, Hugh D

    2011-04-01

    Laser technology has become preeminent in the evolution of appearance enhancements. Dentistry has seen a huge breakthrough with the introduction of a combination hard-soft tissue erbium wavelength. The conservative nature of this technique has created a firm footing in the antiaging trend that is spanning the globe. Among the many benefits of this technique are less invasive care and quicker healing responses. In this article, conservative laser and cosmetic modalities are discussed that allows a clinician to be more comfortable in buying a soft/hard tissue laser and also to more quickly become adept with implementing these techniques. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Displacement of avulsed tooth into soft tissue of chin resulting from epileptic attack trauma.

    PubMed

    Karasu, Hakan Alpay; Uyanik, Lokman Onur; Koçyiğit, Ismail Doruk

    2005-04-01

    Maxillofacial trauma is the main cause of emergency admittance to dental clinics. Mental retardation and epileptic status are important factors in an increase in the risk of dental injuries. Tooth avulsion, which is the total displacement of a tooth out of its socket, is an infrequently observed entity. Maxillary central incisors are the most commonly affected teeth. The case of a patient with severe dental injury resulting from an epileptic attack is presented. He had several teeth avulsed and displacement of a tooth into the soft tissue of the chin.

  20. Soft and Hard Tissue Management in Implant Therapy—Part I: Surgical Concepts

    PubMed Central

    D'Addona, Antonio; Ghassemian, Marjan; Raffaelli, Luca; Manicone, Paolo Francesco

    2012-01-01

    Implant therapy has become a reliable and predictable treatment alternative for the replacement of missing teeth with conventional removable and fixed partial dentures. Recently though, in the pursuit for improved esthetics, the literature has dedicated a considerable amount of its research on the successful maintenance and regeneration of the surrounding gingiva and bone, which are lost following extraction of a tooth. Thoroughly analyzing the anatomic situation and well-planned treatment has become a requirement, because incorrectly planned and positioned implants may jeopardize long-term esthetic and functional prognosis. In addition, many types of biocompatible materials, autogenous hard and soft tissue grafts, and different surgical techniques have been developed, and their viability has been investigated. As a result, implant specialists have gained a greater understanding of the dynamics and anatomical and biological concepts of the periodontium and peri-implant tissues both at the surgical and prosthetic phases of treatment, which contributes to better soft and hard tissue management (SHTM). This may further contribute to achieving a superior final result which is obtained by having a harmonious soft tissue profile, a correctly placed and contoured final restoration, and the reestablishment of masticatory function and phonetics. PMID:22829828

  1. Investigation of formalin influence over hard and soft biological tissues fluorescent spectra in vitro

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Uzunov, Tz.; Vladimirov, B.; Avramov, L.

    2007-05-01

    In order to investigate the formalin influence over fluorescence properties of hard and soft biological tissues during conservation, emission spectra have been registered. Nitrogen laser at 337 nm and light-emitting diode with maximum at 405 nm have been used as excitation sources. For investigation of formalin influence over hard tissues, an experiment was made on teeth samples. Sound teeth were demineralized with a phosphoric acid for 10 seconds to obtain enamel structure near to the tooth lesion, and were fixed in formalin. Before and after teeth treatment spectra from the areas of interest were detected. There were not observed changes in the shape of the teeth spectra, related to the introduction of formalin fluorescence. Samples from mucosa of esophagus and stomach, where initially an ALA/Protoporphyrin IX diagnosis was applied, were used as soft tissue specimens. After fluorescent diagnosis in vivo biopsy samples were obtained from normal and cancerous areas and were conserved in formalin. Initially, spectrum observed has one autofluorescence maximum from the mucous tissue at 500-600 nm and secondary maxima from the protoporphyrin fluorescence at 635 nm and 720 nm, as well as pronounced minima at 540 and 575 nm related to hemoglobin absorption. After formalin conservation hemoglobin absorption was strongly reduced that increases mucous emission signal in green-yellow spectral region. Simultaneously the maxima at 635 nm and 720 nm were reduced. As conclusion we could say that formalin has negligible influence over fluorescence spectra of conserved hard tissues and has more pronounced influence over fluorescence spectra obtained in the case of soft tissue conservation, which has to be taking into account in measurements in vitro.

  2. [Expression and distribution of SDF-1 in the soft tissue healing of tooth extraction].

    PubMed

    Li, Lei; Cui, Jun; Huo, Yuan-yuan; Rong, Zhi-cheng; Zhang, Qiang; Li, Zhao-yuan

    2015-06-01

    To observe the expression and distribution of stromal cell derived factor -l (SDF-1) in the soft tissues after tooth extraction, in order to provide new ideas to promote wound healing of tooth extraction. Thirty male Wistar rats were randomly divided into 10 groups. After extracting the first molar of left mandibular respectively, immunohistochemistry and RT-PCR technique were used to evaluate the distribution and expression of SDF-1 1, 2, 4, 7 and 10 days after extraction. Data processing was performed using SPSS 12.0 software package. Immunohistochemical staining showed the SDF-1 protein was strongly expressed at the gingival tissues around tooth extraction wound at early stage, mainly in the cytoplasm and intercellular substance of the stratum spinosum and stratum basale, and stained more obviously closer to the stratum basale. Four days after tooth extraction, the expression of SDF-1 in the stratum basale became more evident, and it is also positive inside endothelial cells of granulation tissues. Seven days after tooth extraction, the staining became uniform in the gingival epithelium, and a few positive staining of vascular endothelial cells could be found in lamina propria; Ten days after tooth extraction, the staining characteristics were similar to the normal gingiva. RT-PCR results showed that SDF-1mRNA underwent a biphasic expression change during gingival wound healing. SDF-1 mRNA level reached peak at day 1 after tooth extraction (P<0.01) but decreased by day 2. However, the SDF-1 mRNA level increased again to a peak at day 4 and then returned to a normal level by day 10 (P>0.05). SDF-1 is involved in the early soft tissue healing process, and may play a role as a promoter in tooth extraction healing. Supported by Young Scientists Award Fund of Shangdong Province(BS2013YY056) and Sci-tech Development Planning Program of Jinan City (2013-60).

  3. [Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser].

    PubMed

    Beloica, Milos; Vulićević, Zoran R; Mandinić, Zoran; Radović, Ivana; Jovicić, Olivera; Carević, Momir; Tekić, Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient's discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient's adjustment to dental intervention which is of importance, especially in pediatric dentistry.

  4. Low-intensity lasers, modern filling materials, and bonding systems influence on mineral metabolism of hard dental tissues

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Yesaulenko, I. E.; Zoibelmann, M.; Pankova, Svetlana N.; Ippolitov, Yu. A.; Oleinik, Olga I.; Popova, T. A.; Koretskaya, I. V.; Shumilovitch, Bogdan R.; Podolskaya, Elana E.

    2001-10-01

    One of the main reasons of low quality filling is breaking Ca-P balance in hard tissues. Our research was done with the purpose of studying the influence of low intensity lasers, diodic radiation, the newest filling and bonding systems on the processes of mineral metabolism in hard dental tissues while filling a tooth. 250 patients having caries and its compli-cations were examined and treated. Our complex research included: visual and instrumental examination, finding out the level of oral cavity hygiene, acid enamel biopsy, scanning electronic microscopy and X-ray spectrum microanalysis. Filling processes may produce a negative effect on mineral metabolism of hard dental tissues the latter is less pronounced when applying fluoride-containing filling materials with bonding systems. It has also been found that bonding dentin and enamel systems are designed for both a better filling adhesion (i.e. mechanical adhesion) and migration of useful microelements present in them by their sinking into hard dental tissues (i.e. chemical adhesion). Our research showed a positive influence of low intensity laser and diodic beams accompanying the use of modern filling and bonding systems on mineral metabolism of hard dental tissues.

  5. Hard-tissue alterations following immediate implant placement in extraction sites.

    PubMed

    Botticelli, Daniele; Berglundh, Tord; Lindhe, Jan

    2004-10-01

    The marginal gap that may occur following implant installation in an extraction socket may be resolved by hard-tissue fill during healing. To study dimensional alterations of hard tissues that occur following tooth extraction and immediate placement of implants. Eighteen subjects with a total of 21 teeth scheduled for extraction were included. Following flap elevation and the removal of a tooth and implant installation, clinical measurements were made to characterize the dimension of the surrounding bone walls, as well as the marginal defect. No membranes or filler material was used. The flaps were subsequently replaced and secured with sutures in such a way that the healing cap of the implant was exposed to the oral environment. After 4 months of healing a re-entry procedure was performed and the clinical measurements were repeated. Fifty-two marginal defects exceeding 3 mm were present at baseline: 21 at buccal, 17 at lingual/palatal, and 14 at approximal surfaces. At the re-entry eight defects exceeding 3.0 mm remained. During the 4 months of healing, the bone walls of the extraction underwent marked change. The horizontal resorption of the buccal bone dimension amounted to about 56%. The corresponding resorption of the lingual/palatal bone was 30%. The vertical bone crest resorption amounted to 0.3+/-0.6 mm (buccal), 0.6+/-1.0 mm (lingual/palatal), 0.2+/-0.7 mm (mesial), and 0.5+/-0.9 mm (distal). The marginal gap that occurred between the metal rod and the bone tissue following implant installation in an extraction socket may predictably heal with new bone formation and defect resolution. The current results further documented that marginal gaps in buccal and palatal/lingual locations were resolved through new bone formation from the inside of the defects and substantial bone resorption from the outside of the ridge. Copyright Blackwell Munksgaard, 2004

  6. Photoacoustic imaging in both soft and hard biological tissue

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-03-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  7. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  8. Effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness: An in vitro study.

    PubMed

    Mali, Gaurao Vasant; Dodamani, Arun Suresh; Karibasappa, Gundabaktha Nagappa; Kumar, Prashanth Vishwakarma; Jain, Vardhaman Mulchand

    2015-01-01

    To assess and compare the effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness over a period of 14 days. An in vitro study was done on 40 noncarious deciduous teeth. 10 teeth in each group were dipped in 4 pediatric medicinal syrups (1 sugarfree and 3 conventional) for 1 min thrice daily for 14 days and the enamel surface micro hardness was checked at baseline, 7 th day and 14 th day by Vickers hardness testing machine. The pH, titratable acidity and buffering capacity of the syrups were assessed. The pH of syrups were above critical pH for demineralization of the tooth but tiratable acidity and buffering capacity differed. ANOVA test indicated that the reduction in mean micro hardness was maximum in Group D (Conventional Analgesic syrup) and least in Group A (Sugarfree cough syrup) on 7 th and 14 th day. On intergroup comparison there was no difference (P > 0.05) in micro hardness between Group B (Conventional Cough syrup) and Group C (Conventional Antibiotic). However, highly significant (P < 0.01) difference between the either pair of Group B with Group D, and Group C with Group D on 14 th day. The percentage reduction in micro hardness on 14 th day was maximum for Group D (24.4 ± 2.2) and minimum for Group A (14.0 ± 1.3) which was statistically significant (P < 0.01). Sugar free pediatric medicines can be effective in reducing dental erosion and efforts should be made to incorporate sugar substitutes in formulation of pediatric medicines.

  9. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    PubMed

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Early characterization of occlusal overloaded cervical dental hard tissues by en face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marcauteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Stoica, Eniko Tunde; Ionita, Ciprian; Florin, Topala; Vasile, Liliana; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2011-06-01

    Early diagnosis of occlusal overload is an important issue in dental medicine. The high occlusal forces can cause irreversible damage to the dental hard tissues. Our study proposes the early microstructural characterization of occlusal overloaded bicuspids, with abnormal crown morphology, by en face optical coherence tomography (eFOCT). The dental samples were investigated using an eFOCT system operating at 1300 nm in B-scan and C-scan mode. The eFOCT images obtained from these teeth visualized cracks, which didn't reach the tooth surface. The μCT and histological images confirmed the microstructural defects identified on eFOCT images. In conclusion, eFOCT is a promising imaging method for the early diagnosis of occlusal overload on bicuspids with normal crown morphology and for the prophylaxis of dental wear.

  11. Laser-induced autofluorescence of oral cavity hard tissues

    NASA Astrophysics Data System (ADS)

    Borisova, E. G.; Uzunov, Tz. T.; Avramov, L. A.

    2007-03-01

    In current study oral cavity hard tissues autofluorescence was investigated to obtain more complete picture of their optical properties. As an excitation source nitrogen laser with parameters - 337,1 nm, 14 μJ, 10 Hz (ILGI-503, Russia) was used. In vitro spectra from enamel, dentine, cartilage, spongiosa and cortical part of the periodontal bones were registered using a fiber-optic microspectrometer (PC2000, "Ocean Optics" Inc., USA). Gingival fluorescence was also obtained for comparison of its spectral properties with that of hard oral tissues. Samples are characterized with significant differences of fluorescence properties one to another. It is clearly observed signal from different collagen types and collagen-cross links with maxima at 385, 430 and 480-490 nm. In dentine are observed only two maxima at 440 and 480 nm, related also to collagen structures. In samples of gingival and spongiosa were observed traces of hemoglobin - by its re-absorption at 545 and 575 nm, which distort the fluorescence spectra detected from these anatomic sites. Results, obtained in this study are foreseen to be used for development of algorithms for diagnosis and differentiation of teeth lesions and other problems of oral cavity hard tissues as periodontitis and gingivitis.

  12. [The elemental composition of teeth hard tissues depending on the state of the environment].

    PubMed

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  13. Tooth abnormalities and soft tissue alterations in patients with G/BBB syndrome.

    PubMed

    da Silva Dalben, G; Richieri-Costa, A; de Assis Taveira, L A

    2008-11-01

    The G/BBB syndrome is an X-linked recessive disorder characterized by eye anomalies, laryngotracheoesophageal cleft, congenital heart disease, genitourinary anomalies and gastrointestinal disorders. Patients may also present cleft lip and palate, high-arched palate and thin upper lip. This study aimed to investigate the occurrence of tooth abnormalities and soft tissue changes in patients with G/BBB syndrome. Cross-sectional. Twenty-one patients with G/BBB syndrome were analyzed as to the presence of tooth abnormalities and soft tissue alterations. The prevalence of tooth agenesis and supernumerary teeth was compared to patients without morphofunctional alterations, matched for gender and age. All patients had complete cleft lip and palate; 95.23% of patients presented tooth abnormalities, mainly hypoplastic alterations, with predominance of alterations of number, followed by alterations of structure, shape and position. The frequency of tooth agenesis and supernumerary teeth was significantly higher compared with the control group; 11 patients presented incisiform supernumerary teeth in the mandibular anterior region. Ankyloglossia was observed in 11 of 21 patients. The presence of mandibular anterior supernumerary teeth and ankyloglossia should be investigated in the clinical evaluation of patients with suspected diagnosis of the G/BBB syndrome.

  14. Soft-tissue alterations following exposure to tooth-whitening agents.

    PubMed

    Lucier, Rebekah N; Etienne, Olivier; Ferreira, Susana; Garlick, Jonathan A; Kugel, Gerard; Egles, Christophe

    2013-04-01

    Tooth-whitening agents are widely used, either as self-application products or under the supervision of a dentist. These products may be associated with transient gross morphologic changes in oral soft tissues. However, their potential effects on human keratinocytes and fibroblasts in a stratified squamous epithelium have yet to be elucidated. In this study, three-dimensional human tissue equivalents are exposed to varying concentrations of tooth-whitening agents for increasing time periods. Tissue alterations are investigated in terms of morphology, proliferation, apoptosis, and protein expression. All whitening agents tested altered tissue morphology, induced proliferation of basal keratinocytes, and caused apoptosis of cells in all epithelial strata. In addition, whitening agents induced alterations in the expression of cytokines that are linked to inflammation. These results suggest that whitening agents may induce similar changes in vivo and that these products should be used for limited periods of time or under the supervision of a dental professional.

  15. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  16. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  17. Microscopic characterization of bacteria-hard tissue interactions

    NASA Astrophysics Data System (ADS)

    George, S.; Kishen, A.

    2005-08-01

    Bacterial interaction with host tissues plays a major role in the cause and persistence of diseases. It has been confirmed by different clinical investigations that Enterococcus faecalis resist root canal treatment and commonly persist in tooth with post treatment infection. The purpose of this study is to apply different microscopic techniques to study the dynamics of the E. faecalis biofilm on root-canal-dentine tissues. Method- Ten intact non-carious human maxillary molars were prepared and incubated with bacterium in nutrient media under anaerobic condition for 16 weeks. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray microanalysis (EDX), Fluorescents microscopy Light microscopy and Laser Confocal Scanning Microscopy (LCSM) were carried out to characterize the ultrastructure of biofilm. In addition Fourier Transfer Infra Red Spectroscopy (FTIR) and Von-Kossa staining and Fluorescent microscopy were also carried out to confirm the biochemical characteristics of the biofilm structure. Result- The mature biofilm formed on the root-canal wall showed a honey-comb like structure with viable cells bacterial cells inside. The EDX and FTIR analysis showed a significant increase in the levels of Calcium (Ca) and Phosphorus (P) and evidence of biomineralization of the matured biofilm.

  18. Hard tissue compatibility of natural hydroxyapatite/chitosan composite.

    PubMed

    Tang, Xiao-Jun; Gui, Lai; Lü, Xiao-Ying

    2008-12-01

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  19. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt.

    PubMed

    Meikle, Murray C

    2006-06-01

    The first experimental investigation of orthodontic tooth movement was published by Sandstedt in 1904-1905. After 100 years, there is a good understanding of the sequence of events at both tissue and cellular levels and now the current focus of research is at the molecular level. The techniques of reverse transcription-polymerase chain reaction and in situ hybridization to detect mRNAs of interest have revolutionized tooth movement studies and an expanding list of antibodies and enzyme-linked immunosorbent assays directed against human and animal proteins will facilitate their identification in tissue sections and/or culture supernatants. Nevertheless, although this technology has greatly simplified research for the clinical and laboratory investigator, message is not always translated into protein, and the presence of a protein does not necessarily mean it is biologically active. In vivo and in vitro methods have been widely used in tooth movement studies. However, data from in vitro models, in which the mechanical stimulus can be carefully controlled (tension versus compression; intermittent versus continuous), should be correlated with in vivo data from animal models. The current evidence suggests that downstream from the initial mechanotransduction event at focal adhesions which link the extracellular matrix to the cytoskeleton, mechanically induced remodelling is mediated by a complex feedback mechanism involving the synthesis of cytokines such as interleukin-1 (IL-1), IL-6, and receptor activator of nuclear factor k B ligand by cells of the osteoblast and/or fibroblast lineages. These in turn act in an autocrine/paracrine fashion to regulate the expression of transcription factors, cytokines, growth factors, enzymes, and structural molecules involved in the differentiation, proliferation, and function of mesenchymal and other cell types. Contrary to the impression gained from the literature, tooth movement is not confined to events within the periodontal

  20. Tissue reaction to orthodontic tooth movement--a new paradigm.

    PubMed

    Melsen, B

    2001-12-01

    Direct or indirect resorption are both perceived as a reaction to an applied force. This is in contrast to orthopaedic surgeons who describe apposition as 'the reaction to loading of bone'. The article reviews the literature on intrusion of teeth with periodontal breakdown, and on the basis of clinical and experimental studies. The conclusion is reached that intrusion can lead to an improved attachment level, and that forces have to be to low and continuous. The tissue reaction to a force system generating translation of premolars and molars in the five Macaca fascicularis monkeys is described. Three force levels, 100, 200, and 300 cN were applied for a period of 11 weeks. Undecalcified serial sections were cut parallel to the occlusal plane and a grid consisting of three concentric outlines of the root intersected by six radii was placed on each section so that areas anticipated to be subject to differing stress/strain distributions were isolated. A posteriori tests were utilized in order to separate areas that differed with regard to parameters reflecting bone turnover. Based on these results and a finite element model simulating the loading, a new hypothesis regarding tissue reaction to change in the stress strain distribution generated by orthodontic forces is suggested. The direct resorption could be perceived as a result of lowering of the normal strain from the functioning periodontal ligament (PDL) and as such as a start of remodelling, in the bone biological sense of the word. Indirect remodelling could be perceived as sterile inflammation attempting to remove ischaemic bone under the hyalinized tissue. At a distance from the alveolus, dense woven bone was observed as a sign of a regional acceleratory phenomena (RAP). The results of the intrusion could, according to the new hypothesis, be perceived as bending of the alveolar wall produced by the pull from Sharpey's fibres.

  1. Determination of medicinal and illicit drugs in post mortem dental hard tissues and comparison with analytical results for body fluids and hair samples.

    PubMed

    Klima, Miriam; Altenburger, Markus J; Kempf, Jürgen; Auwärter, Volker; Neukamm, Merja A

    2016-08-01

    In burnt or skeletonized bodies dental hard tissue sometimes is the only remaining specimen available. Therefore, it could be used as an alternative matrix in post mortem toxicology. Additionally, analysis of dental tissues could provide a unique retrospective window of detection. For forensic interpretation, routes and rates of incorporation of different drugs as well as physicochemical differences between tooth root, tooth crown and carious material have to be taken into account. In a pilot study, one post mortem tooth each from three drug users was analyzed for medicinal and illicit drugs. The pulp was removed in two cases; in one case the tooth was root canal treated. The teeth were separated into root, crown and carious material and drugs were extracted from the powdered material with methanol under ultrasonication. The extracts were screened for drugs by LC-MS(n) (ToxTyper™) and quantitatively analyzed with LC-ESI-MS/MS in MRM mode. The findings were compared to the analytical results for cardiac blood, femoral blood, urine, stomach content and hair. In dental hard tissues, 11 drugs (amphetamine, MDMA, morphine, codeine, norcodeine, methadone, EDDP, fentanyl, tramadol, diazepam, nordazepam, and promethazine) could be detected and concentrations ranged from approximately 0.13pg/mg to 2,400pg/mg. The concentrations declined in the following order: carious material>root>crown. Only the root canal treated tooth showed higher concentrations in the crown than in the root. In post mortem toxicology, dental hard tissue could be a useful alternative matrix facilitating a more differentiated consideration of drug consumption patterns, as the window of detection seems to overlap those for body fluids and hair. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Nonlinear scattering in hard tissue studied with ultrashort laser pulses.

    PubMed

    Eichler, Jürgen; Kim, Beop-Min

    2002-01-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed.

  3. Preliminary characterization of hard dental tissue ablation with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Squier, Jeffrey A.

    1998-05-01

    Because of low operating speed and excessive collateral damage, lasers have not succeeded in replacing conventional tools in many surgical and dental applications. Recent developments now allow the new generation of amplified ultrashort pulse lasers to operate at high repetition rates and high single pulse energies. A Titanium:sapphire Chirped Pulse Regenerative Amplifier system operating at 1 KHz and 50 fs pulse duration, was used to demonstrate ultrashort pulse ablation of hard and soft tissue. Maximum ablation rates for enamel and dentin were approximately 0.650 micrometers /pulse and 1.2 micrometers /pulse respectively. Temperature measurements at both front and rear surface of a 1 mm dentin and enamel slices showed minimal increases. Scanning electron micrographs clearly show that little thermal damage is generate by the laser system. If an effective delivery system is developed, ultrashort pulse system may offer a viable alternative as a safe, low noise dental tool.

  4. Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.

    PubMed

    Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor

    2009-07-01

    Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.

  5. A method for rapid measurement of laser ablation rate of hard dental tissue

    NASA Astrophysics Data System (ADS)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to

  6. Age-related changes of dental pulp tissue after experimental tooth movement in rats.

    PubMed

    Von Böhl, Martina; Ren, Yijin; Kuijpers-Jagtman, Anne M; Fudalej, Piotr S; Maltha, Jaap C

    2016-01-01

    It is generally accepted that the effect of orthodontic tooth movement on the dental pulp in adolescents is reversible and that it has no long-lasting effect on pulpal physiology. However, it is not clear yet if the same conclusion is also valid for adult subjects. Thus, in two groups of rats, aged 6 and 40 weeks respectively, 3 molars at one side of the maxilla were moved together in a mesial direction with a standardized orthodontic appliance delivering a force of 10 cN. The contralateral side served as a control. Parasagittal histological sections were prepared after tooth movement for 1, 2, 4, 8, and 12 weeks. The pulp tissue was characterized for the different groups, with special emphasis on cell density, inflammatory cells, vascularity, and odontoblasts. Dimensions of dentin and the pulpal horns was determined and related with the duration of orthodontic force application and age ware evaluated. We found that neither in young nor in adult rats, force application led to long-lasting or irreversible changes in pulpal tissues. Dimensional variables showed significant age-related changes. In conclusion, orthodontic tooth movement per se has no long-lasting or irreversible effect on pulpal tissues, neither in the young nor in the adult animals.

  7. Age-related changes of dental pulp tissue after experimental tooth movement in rats

    PubMed Central

    Von Böhl, Martina; Ren, Yijin; Kuijpers-Jagtman, Anne M.; Maltha, Jaap C.

    2016-01-01

    It is generally accepted that the effect of orthodontic tooth movement on the dental pulp in adolescents is reversible and that it has no long-lasting effect on pulpal physiology. However, it is not clear yet if the same conclusion is also valid for adult subjects. Thus, in two groups of rats, aged 6 and 40 weeks respectively, 3 molars at one side of the maxilla were moved together in a mesial direction with a standardized orthodontic appliance delivering a force of 10 cN. The contralateral side served as a control. Parasagittal histological sections were prepared after tooth movement for 1, 2, 4, 8, and 12 weeks. The pulp tissue was characterized for the different groups, with special emphasis on cell density, inflammatory cells, vascularity, and odontoblasts. Dimensions of dentin and the pulpal horns was determined and related with the duration of orthodontic force application and age ware evaluated. We found that neither in young nor in adult rats, force application led to long-lasting or irreversible changes in pulpal tissues. Dimensional variables showed significant age-related changes. In conclusion, orthodontic tooth movement per se has no long-lasting or irreversible effect on pulpal tissues, neither in the young nor in the adult animals. PMID:26855867

  8. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-01-01

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6–7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats. PMID:25514392

  9. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  10. On tooth movements and associated tissue alterations related to edentulous areas and bone defects.

    PubMed

    Stokland, Birgitta Lindskog

    2011-01-01

    The aim of the thesis was to study orthodontic tooth movement in relation to edentulous areas and infrabony pockets as well as the physiological movement of teeth facing an edentulous area. A dog model was used in Studies I and II. Teeth were orthodontically moved into and out from inflamed, infrabony periodontal pockets (Study I) and into areas of reduced bone height (Study II). Clinical, radiographic and histometric analyses were made with respect to changes in tooth-supporting tissues. Study III involved clinical, radiographic and 3D model assessments of changes in periodontal conditions and alveolar ridge dimensions in adult patients subjected to tooth movement into areas with reduced ridge dimensions. In Study IV, panoramic radiographs of 292 subjects, taken at an interval of 12 years, were analyzed with regard to changes in the elongation of unopposed molars and tipping of molars facing a mesial edentulous space. In the animal study orthodontic bodily movement of teeth with inflamed, infrabony pockets caused an enhanced rate of progression of the periodontal lesion (Study 1), particularly when the tooth movement was directed towards the infrabony defect. Teeth with healthy periodontium that were orthodontically moved into areas of markedly reduced bone height maintained their periodontal tissue support (Study II). Corresponding orthodontic tooth movement in humans (Study III) resulted in minor dimensional alterations of the periodontal tissues and an increased bucco-lingual width of the alveolar ridge in the area into which the tooth had been moved, whereas a decreased width of the newly established edentulous area was noted. All teeth that were moved showed lateral root resorption at the level of the bone crest on the pressure side, but signs of repair were noticed 1-year post-treatment. In the 12-year radiographic study (Study IV) unopposed molars showed a significant increase in elongation over the 12 years of follow-up. The degree of elongation increased

  11. Thermal safety of Er:YAG and Er,Cr:YSGG lasers in hard tissue removal.

    PubMed

    Kilinc, Evren; Roshkind, David M; Antonson, Sibel A; Antonson, Donald E; Hardigan, Patrick C; Siegel, Sharon C; Thomas, James W

    2009-08-01

    The aim of this study was to compare the thermal safety of Er:YAG and Er,Cr:YSGG lasers with conventional multi-use and single-use diamond burs. Thermal effect of tooth preparation is mostly evaluated through the pulp chamber because it is difficult to measure the temperature of the preparation surface. A new in vitro method was introduced to simultaneously evaluate the heat increase of the preparation surface together with the pulp chamber. Six laser and bur instrument groups were used to make standardized preparations on buccal surfaces of 60 intact third molars. The preparations removed an equal volume of hard tissue from each tooth (4 mm occluso-gingival x 8 mm mesial-distal x 1.6 mm bucco-lingual). The teeth also included tunnel preparations from the opposite (lingual) surface, exposing the pulpal axial wall (axial dentin wall in contact with the pulp chamber from the preparation surface site). An infrared thermal camera was positioned to capture the preparation surface in direct vision, while the pulpal axial wall was indirectly reflected to the thermal camera via a minimal-energy-loss mirror. Data from both surfaces were analyzed statistically using Nested Least Squares Analysis. The laser groups generated significantly lower heat compared to bur groups on the preparation surfaces. In contrast, both lasers generated greater pulpal heat increase, and the Er:YAG laser group showed significance (p < 0.0001). Lasers produced less heat on the preparation surface but more on the pulpal axial wall. However the temperature rise was less than the 5.5 degrees C threshold margin of safety.

  12. [Investigations of centrifugal penetration of the tooth root hard substances by hydrogen peroxide].

    PubMed

    Hille, J; Glockmann, E; Lange, G

    1991-01-01

    After application of hydrogen peroxide into the root canal of extracted teeth of patients between the ages of 18 and 30 years the antiseptic could be detected on the root surface by means of iodometry and in tooth cross sections in dentine and cementum by means of staining reaction (benzidine-peroxidase solution). Out of the root canals which were apically not passable and coronally closed the first traces of the instilled 5% hydrogen peroxide appeared after 14 min 45 sec on the root surface. In the dentine a mean penetration depth of hydrogen peroxide up to 1.28 mm (apical root area), 1.45 mm (middle root third) and 1.95 mm (coronal root area) could be measured. Best results were obtained after rinsing/suction treatment of the root canal, especially in combination with low-frequency ultrasound.

  13. Interaction of slow highly charged ions with hard dental tissue: studies of fluoride uptake and reminalization efficacy

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Kasperski, G.; Rousseau, P.; Domaracka, A.; Lawicki, A.

    2014-05-01

    TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129Xe20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C27H60F2N2O3) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.

  14. Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants.

    PubMed

    Schofield, Robert M S; Nesson, Michael H; Richardson, Kathleen A

    2002-12-01

    A wide variety of arthropods and members of other phyla have elevated concentrations of Zn, Mn, other heavy metals and halogens in their jaws, leg claws, and other "tools" for interacting with the environment. While measured Zn concentrations reach 25% of dry mass in scorpion stings, concentrations are often lower than this and the enriched structures are not heavily biomineralized like vertebrate teeth and the radula of mollusks. For this reason, the degree to which the inorganic components of these structures modify their mechanical properties is in question. Here we address this problem by measuring hardness during the development of Zn accumulations in ant mandibles. We found that Zn is incorporated into the mandibular teeth of leaf-cutter ants during early adult life, reaching concentrations of about 16% of dry mass. We show that the hardness of the mandibular teeth increases nearly three-fold as the adults age and that hardness correlates with Zn content ( r=0.91). We suggest that young adults rarely cut leaves partly because their mandibles are not yet rich in Zn. Zinc enrichment (along with enrichment by other heavy metals and halogens) may play an unrecognized role in the behavioral ecology and evolution of a wide variety of invertebrates.

  15. Systemic disorders and their influence on the development of dental hard tissues: a literature review.

    PubMed

    Atar, Michael; Körperich, Egbert J

    2010-04-01

    This report highlights the influence of a number of disorders with systemic physiological effects that impact on the development of dental hard tissues. It focuses in particular, on the pathological effects of systemic conditions with less well recognised, but no less important, impacts on dental development. Such conditions, include cystic fibrosis, HIV/AIDS, leukaemia, Alstrom syndrome, hypophosphatasia, Prader-Willi syndrome, Tricho-dento-osseous syndrome, tuberous sclerosis, familial steroid dehydrogenase deficiency and epidermolysis bullosa. These, along with developmental and environmental causes of enamel and dentine defects, are discussed and the possible aetiology of such effects are proposed. Furthermore, the dental management and long-term dental care of these patients is outlined. MEDLINE/PubMed. Enamel and dentine defects can present with a wide spectrum of clinical features and may be caused by a variety of factors occurring throughout tooth development from before birth to adulthood. These may include host traits, genetic factors, immunological responses to cariogenic bacteria, saliva composition, environmental and behavioural factors and systemic diseases. These diseases and their spectrum of clinical manifestations on the organs affected (including the dentition) require an increased knowledge by dental practitioners of the disease processes, aetiology, relevant treatment strategies and prognosis, and must encompass more than simply the management of the dental requirements of the patient. It is important that the impact of the disease and its treatment, particularly in respect of immunosuppression where dental interventions may become life-threatening, is also taken into consideration. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    NASA Astrophysics Data System (ADS)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  17. Tooth abscess

    MedlinePlus

    ... tissue swelling within the tooth. This causes a toothache . The toothache may stop if pressure is relieved. But the ... tissue. Symptoms The main symptom is a severe toothache. The pain is continuous. It does not stop. ...

  18. Three-dimensional Micro-culture System for Tooth Tissue Engineering.

    PubMed

    Kuchler-Bopp, S; Bécavin, T; Kökten, T; Weickert, J L; Keller, L; Lesot, H; Deveaux, E; Benkirane-Jessel, N

    2016-06-01

    The arrangement of cells within a tissue plays an essential role in organogenesis, including tooth development. Progress is being made to regenerate teeth by reassociating dissociated embryonic dental cells and implanting them in vivo. In the present study, we tested the hanging drop method to study mixed epithelial-mesenchymal cell reorganization in a liquid instead of semisolid medium to see whether it could lead to tooth histogenesis and organogenesis. This method allowed the control of the proportion and number of cells to be used, and the forming microtissues showed homogeneous size. The liquid environment favored cell migrations as compared with collagen gels. Three protocols were compared. The one that sequentially combined the hanging drop and semisolid medium cultures prior to in vivo implantation gave the best results. Indeed, after implantation, teeth developed, showing a well-formed crown, mineralization of dentin and enamel, and the initiation of root formation. Vascularization and the cellular heterogeneity in the mesenchyme were similar to what was observed in developing molars. Finally, after coimplantation with a trigeminal ganglion, the dental mesenchyme, including the odontoblast layer, became innervated. The real advantage of this technique is the small number of cells required to make a tooth. This experimental model can be employed to study the development, physiology, metabolism, or toxicology in forming teeth and test other cell sources. © International & American Associations for Dental Research 2016.

  19. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.

    PubMed

    Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C

    2014-02-01

    Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.

  20. Comparative soft and hard tissue responses to titanium and polymer healing abutments.

    PubMed

    Koutouzis, Theofilos; Richardson, Joseph; Lundgren, Tord

    2011-03-01

    Limited information exists regarding soft tissue and hard tissue responses to abutments with different material composition. The aim of this study is to evaluate soft and hard tissue responses to titanium and polymer healing abutments over a 3-month period. Sixteen patients were included in this prospective trial. Implants were provisionalized with either titanium or polymer healing abutments. Changes of marginal bone level and soft tissue dimensions were recorded at implant installation and at 3 months.

  1. Management of Hard Tissue Avulsive Wounds and Management of Orofacial Fractures.

    DTIC Science & Technology

    1981-05-31

    OROFACIAL FRACTURES(U) BATTELLE COLUMBUS LABS OH C R HASSLER ET AL...8217, ,,, . ’ ’. - . - -,-. . . .. .- . . ."’ " . . . . . . . .. . ,+ + , , ,+. . .+, - , . . . ..+ • , , ,. ,, . • . . . - V.- #/sa REPORT NUMBER 7 VIMAANA WENT OF HARD TISSUE AVULSIMV WOUNDS AND MNAGEMENT OF OROFACIAL FRACTURES . ~ I) ANNUAL REPORT Craig 1. Hassler...authorized documents. -*. o . C,. °. *.. .. . . . REPORT NUMBER 7 MANAGEMENT OF HARD TISSUE AVULSIVE WOUNDS AND MANAGEMENT OF OROFACIAL

  2. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development.

    PubMed

    Kratochwil, K; Dull, M; Farinas, I; Galceran, J; Grosschedl, R

    1996-06-01

    Targeted inactivation of the murine gene encoding the transcription factor LEF-1 abrogates the formation of organs that depend on epithelial-mesenchymal tissue interactions. In this study we have recombined epithelial and mesenchymal tissues from normal and LEF-1-deficient embryos at different stages of development to define the LEF-1-dependent steps in tooth and whisker organogenesis. At the initiation of organ development, formation of the epithelial primordium of the whisker but not tooth is dependent on mesenchymal Lef1 gene expression. Subsequent formation of a whisker and tooth mesenchymal papilla and completion of organogenesis require transient expression of Lef1 in the epithelium. These experiments indicate that the effect of Lef1 expression is transmitted from one tissue to the other. In addition, the finding that the expression of Lef1 can be activated by bone morphogenetic protein 4 (BMP-4) suggests a regulatory role of this transcription factor in BMP-mediated inductive tissue interactions.

  3. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  4. Cavities/Tooth Decay

    MedlinePlus

    ... minerals in your tooth's hard, outer enamel. This erosion causes tiny openings or holes in the enamel — ... Anorexia and bulimia can lead to significant tooth erosion and cavities. Stomach acid from repeated vomiting (purging) ...

  5. Elemental composition of liver and kidney tissues of rough-toothed dolphins (Steno bredanensis).

    PubMed

    Mackey, E A; Oflaz, R D; Epstein, M S; Buehler, B; Porter, B J; Rowles, T; Wise, S A; Becker, P R

    2003-05-01

    On December 14, 1997, 62 rough-toothed dolphins (Steno bredanensis) stranded on Cape San Blas, on the Florida coast of the Gulf of Mexico. Approximately 30 animals died either on the beach or in rehabilitation facilities. Two were successfully rehabilitated and released. Liver, kidney, blubber, and muscle tissues were collected from 15 animals that died on the beach. Portions of the liver and kidney from each dolphin were analyzed using instrumental neutron activation analysis and inductively coupled plasma mass spectrometry to determine mass fractions of 37 elements. Levels of several electrolytes (Na, Cl, K, Br, Rb, I, Cs) and of the essential trace elements Fe, Cu, and Zn in both tissues were similar to those found in other Odontoceti. Mass fractions of Ca ranged from 60 mg/kg to 1,200 mg/kg (wet mass basis), indicating significant inhomogeneity in the kidney tissues of several animals. Necropsy reports noted that the kidneys of many of these animals contained fibrous nodules. The measured Ca inhomogeneity may be due to mineralization of the fibrous kidney tissue. Hepatic levels of Hg and Se were at the high end of the ranges generally found in livers of other Odontoceti and were slightly higher in animals with fibrous kidneys than in the others. Mass fractions of Se, Ag, and Hg in liver tissues increased with the size and age of the animals indicating accumulation of these elements in the liver with age. Results also indicate that Se and Hg accumulate in rough-toothed dolphin kidney. Accumulation of these elements with age has been reported commonly for marine mammals and other species.

  6. Current update on the diagnosis and management of head and neck hard tissue sarcomas.

    PubMed

    Tudor-Green, Ben; Fonseca, Felipe Paiva; Gomez, Ricardo S; Brennan, Peter A

    2017-10-01

    Head and neck hard tissue sarcomas form a rare group of mesenchymal-derived tumours that comprise less than 1% of all head and neck neoplasms. Hard tissue sarcomas account for 20% of head and neck sarcomas and they form a heterogeneous group with a diverse origin. Unlike head and neck soft-tissue sarcomas, they have lower recurrence and mortality rates. In this study, we review the current management of head and neck hard tissue sarcomas. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Astra Tech single-tooth implants: an audit of patient satisfaction and soft tissue form.

    PubMed

    Palmer, R M; Farkondeh, N; Palmer, P J; Wilson, R F

    2007-07-01

    To investigate patient centred outcomes, soft tissue morphology, and bone levels. Sixty-six subjects, who had completed treatment for a single implant restoration at least l year previously. Appearance was recorded photographically and bone levels and interdental contact points measured from intra-oral radiographs using a x 7 scale loupe. Subjects completed a satisfaction questionnaire. Subjects were highly satisfied with all aspects of the restoration including the appearance of the soft tissue (median shape/colour score 6 on scale 1-6). Twenty-eight sites in 20 subjects had no contact point between implant crown and adjacent tooth. A normal height papilla was judged to be present in 19 of these sites. These were excluded from the subsequent analysis. In the remaining 46 subjects with contact points the presence (JEMT score 3) or deficiency (score 1/2) of the papilla was significantly related to the distance to the bone level on the adjacent tooth and implant head. Differences were observed between the mesial and distal aspects of the implant restoration. Examining clinicians were more critical of the restorations than the patients. The presence of a complete papilla was associated with a slightly greater distance from contact point to bone level than previously reported.

  8. Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue.

    PubMed

    Cieplik, Fabian; Pummer, Andreas; Leibl, Christoph; Regensburger, Johannes; Schmalz, Gottfried; Buchalla, Wolfgang; Hiller, Karl-Anton; Maisch, Tim

    2016-01-01

    Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria. A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm(2); λem = 400-460 nm) or PDT 1200L (37.8 mW/cm(2); λem = 570-680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer. PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm. This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics.

  9. Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue

    PubMed Central

    Cieplik, Fabian; Pummer, Andreas; Leibl, Christoph; Regensburger, Johannes; Schmalz, Gottfried; Buchalla, Wolfgang; Hiller, Karl-Anton; Maisch, Tim

    2016-01-01

    Introduction: Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria. Methods: A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm2; λem = 400–460 nm) or PDT 1200L (37.8 mW/cm2; λem = 570–680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer. Results: PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm. Conclusion: This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics. PMID:27379059

  10. Dinosaur’s feather and chicken’s tooth? Tissue engineering of the integument

    PubMed Central

    Chuong, Cheng-Ming; Hou, Lianhai; Chen, Pei-Ji; Wu, Ping; Patel, Nila; Chen, Yiping

    2015-01-01

    The integument forms the interface between animals and the environment. During evolution, diverse integument and integument appendages have evolved to adapt animals to different niches. The formation of these different integument forms is based on the acquisition of novel developmental mechanisms. This is the way Nature does her tissue/organ engineering and experiments. To do tissue engineering of the integument in the new century for medical applications, we need to learn more principles from developmental and evolutionary studies. A novel diagram showing the evolution and development of integument complexity is presented, and the molecular pathways involved discussed. We then discuss two examples in which the gain and loss of appendages are modulated: transformation of avian scale epidermis into feathers with mutated beta catenin, and induction of chicken tooth like appendages with FGF, BMP and feather mesenchyme. PMID:11399531

  11. Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis.

    PubMed

    Dall'Ara, Enrico; Ohman, Caroline; Baleani, Massimiliano; Viceconti, Marco

    2011-05-17

    This study investigated whether changes in hardness of human trabecular bone are associated with osteoarthritis. Twenty femoral heads extracted from subjects without musculoskeletal diseases (subject age: 49-83 years) and twenty femoral heads extracted from osteoarthritic subjects (subject age: 42-85 years) were tested. Sixty indentations were performed along the main trabecular direction of each sample at a fixed relative distance. Two microstructures were found on the indenting locations: packs of parallel-lamellae (PL) and secondary osteons (SO). A 25gf load was applied for 15s and the Vickers Hardness (HV) was assessed. Trabecular tissue extracted from osteoarthritic subjects was found to be about 13% less hard compared to tissue extracted from non-pathologic subjects. However, tissue hardness was not significantly affected by gender or age. The SO was 10% less hard than the PL for both pathologic and non-pathologic tissues. A hardness of 34.1HV for PL and 30.8HV for SO was found for the non-pathologic tissue. For osteoarthritic tissue, the hardness was 30.2HV for PL and 27.1HV for SO. In the bone tissue extracted from osteoarthritic subjects the occurrence of indenting a SO (28%) was higher than that observed in the non-pathological tissue (15%). Osteoarthritis is associated with reduced tissue hardness and alterations in microstructure of the trabecular bone tissue. Gender does not significantly affect trabecular bone hardness either in non-pathological or osteoarthritic subjects. A similar conclusion can be drawn for age, although a larger donor sample size would be necessary to definitively exclude the existence of a slight effect.

  12. Hardness Changes of Tissue Conditioners in Various Storage Media: An in Vitro Study.

    PubMed

    Ntounis, Athanasios; Kamposiora, Phophi; Papavasiliou, George; Divaris, Kimon; Zinelis, Spiros

    2015-03-01

    The aim of the present study was to evaluate the effects of storage media on the longitudinal hardness changes of tissue conditioning materials. Four tissue-conditioning materials were used for fabrication of 80 disc-shaped specimens and divided in four groups, stored in four storage media. The specimens underwent artificial ageing corresponding to 30 nights of extra-oral storage. Hardness measurements were obtained at nine intervals between 8 and 240 hours after specimen fabrication. To test the effects of storage media on hardness we employed multivariate modelling (Bonferroni correction; α = 0.05). The materials exhibited varying hardness changes, most pronounced when stored in ambient air.

  13. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    PubMed Central

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success. PMID:25147746

  14. Anticaries and hard tissue abrasion effects of a "dual-action" whitening, sodium hexametaphosphate tartar control dentifrice.

    PubMed

    Pfarrer, Aaron M; White, Donald J; Rapozo-Hilo, Marcia; Featherstone, John D B

    2002-01-01

    A series of "profile" laboratory studies was conducted to confirm the anticaries potential and hard tissue safety of a novel sodium hexametaphosphate dentifrice technology which provides dual-action tooth whitening (i.e., stain prevention as well as stain removal), while simultaneously providing improved anticalculus action. Under remineralization pH cycling conditions, the dual-action whitening dentifrice produced lesion fluoridation comparable to a conventional NaF dentifrice. Under lesion progression pH cycling conditions, the dual-action whitening dentifrice produced enamel protection against caries initiation and progression comparable to a conventional NaF dentifrice, as well as comparable to a conventional tartar control dentifrice, also containing NaF. These results are consistent with clinical data supporting the anticaries effectiveness of NaF dentifrices combined with anionic tartar control inhibitors, such as pyrophosphate. Abrasion assessments were made using Radioactive Dentin and Enamel Abrasivity (RDA and REA) methods. These laboratory studies demonstrated that the new, dual-action whitening dentifrice produces dentin and enamel abrasivity similar to conventional silica-based dentifrice formulations. These in vitro studies verify the anticaries potential and demonstrate the hard tissue safety of the dual-action, sodium hexametaphosphate dentifrice.

  15. Dynamics of water-mediated hard dental tissue ablation with Ho:YAG laser visualized by high speed photography

    NASA Astrophysics Data System (ADS)

    Zhan, Zhenlin; Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Xie, Shusen

    2015-03-01

    The goal of this study was to evaluate the dynamic process of water-mediated hard dental tissue ablation induced by Ho:YAG laser with high-speed camera. Human molars in vitro of yellow race were cut into tooth sections and irradiated with pulsed Ho:YAG laser with a wavelength of 2.08μm. The pulse repetition rate was 3 Hz and laser energy ranged from 300 to 2000 mJ. The frame rate of high-speed camera used in the experiment was 50525 fps. Based on the observation by high-speed camera, the dynamic process of the oscillating cavitation bubble and water-mediated ablation induced by Ho:YAG laser was efficiently recorded and graphically described. The pulsation period, the maximum length and width of vapor channel increased with laser energy. The results showed that the external water played multiple roles in laser ablation of hard dental tissue, not only acting as a channel to transmit laser energy, but also helping to improve the regularity of the ablation shape.

  16. The Rachitic Tooth

    PubMed Central

    Nociti, Francisco H.; Somerman, Martha J.

    2014-01-01

    Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820

  17. Effect of erbium, chromium: yttrium, scandium, gallium, garnet laser and casein phosphopeptide-amorphous calcium phosphate on surface micro-hardness of primary tooth enamel

    PubMed Central

    Subramaniam, Priya; Pandey, Annu

    2014-01-01

    Objective: The aim was to evaluate the effect of Er, Cr: YSGG laser and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on surface micro-hardness of primary tooth enamel. Materials and Methods: A total of 30 freshly extracted caries free primary anterior teeth were cleaned and stored in 1% thymol. Teeth were embedded in acrylic resin such that only their buccal surfaces were exposed and were divided into four groups. Group I: Five intact teeth (negative control). The remaining 25 teeth were immersed for 30 min in 1% citric acid for demineralization. Group II: Five demineralized teeth (positive control), Group III: CPP-ACP (GC tooth mousse-GC International, Itabashi-Ku, Tokyo, Japan) application and Group IV: Etching using Er, Cr: YSGG laser + CPP-ACP application. Groups III and IV were subjected to pH cycling for 5 days. Surface micro-hardness of all the teeth was measured using Brinell hardness tester (Fuel Instruments and Engineers Pvt. Ltd.). Data were analyzed using ANOVA. Results: Mean surface micro-hardness of Groups I and II were 177.43 kgf/mm2 and 164.86 kgf/mm2, respectively. Group IV showed a higher mean surface micro-hardness (230.68 kgf/mm2) compared with that of Group III (190.28 kgf/mm2). In comparison to all other groups, laser etching prior to CPP-ACP application increased surface micro-hardness significantly (P < 0.001). Conclusion: Laser irradiation of primary teeth followed by CPP-ACP application increased surface micro-hardness of enamel. PMID:25202223

  18. Effect of erbium, chromium: yttrium, scandium, gallium, garnet laser and casein phosphopeptide-amorphous calcium phosphate on surface micro-hardness of primary tooth enamel.

    PubMed

    Subramaniam, Priya; Pandey, Annu

    2014-07-01

    THE AIM WAS TO EVALUATE THE EFFECT OF ER, CR: YSGG laser and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on surface micro-hardness of primary tooth enamel. A total of 30 freshly extracted caries free primary anterior teeth were cleaned and stored in 1% thymol. Teeth were embedded in acrylic resin such that only their buccal surfaces were exposed and were divided into four groups. Group I: Five intact teeth (negative control). The remaining 25 teeth were immersed for 30 min in 1% citric acid for demineralization. Group II: Five demineralized teeth (positive control), Group III: CPP-ACP (GC tooth mousse-GC International, Itabashi-Ku, Tokyo, Japan) application and Group IV: Etching using Er, Cr: YSGG laser + CPP-ACP application. Groups III and IV were subjected to pH cycling for 5 days. Surface micro-hardness of all the teeth was measured using Brinell hardness tester (Fuel Instruments and Engineers Pvt. Ltd.). Data were analyzed using ANOVA. Mean surface micro-hardness of Groups I and II were 177.43 kgf/mm(2) and 164.86 kgf/mm(2), respectively. Group IV showed a higher mean surface micro-hardness (230.68 kgf/mm(2)) compared with that of Group III (190.28 kgf/mm(2)). In comparison to all other groups, laser etching prior to CPP-ACP application increased surface micro-hardness significantly (P < 0.001). Laser irradiation of primary teeth followed by CPP-ACP application increased surface micro-hardness of enamel.

  19. 2D beam hardening correction for micro-CT of immersed hard tissue

    NASA Astrophysics Data System (ADS)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  20. Comparison of hard tissues that are useful for DNA analysis in forensic autopsy.

    PubMed

    Kaneko, Yu; Ohira, Hiroshi; Tsuda, Yukio; Yamada, Yoshihiro

    2015-11-01

    Forensic analysis of DNA from hard tissues can be important when investigating a variety of cases resulting from mass disaster or criminal cases. This study was conducted to evaluate the most suitable tissues, method and sample size for processing of hard tissues prior to DNA isolation. We also evaluated the elapsed time after death in relation to the quantity of DNA extracted. Samples of hard tissues (37 teeth, 42 skull, 42 rib, and 39 nails) from 42 individuals aged between 50 and 83 years were used. The samples were taken from remains following forensic autopsy (from 2 days to 2 years after death). To evaluate the integrity of the nuclear DNA isolated, the percentage of allele calls for short tandem repeat profiles were compared between the hard tissues. DNA typing results indicated that until 1 month after death, any of the four hard tissue samples could be used as an alternative to teeth, allowing analysis of all of the loci. However, in terms of the sampling site, collection method and sample size adjustment, the rib appeared to be the best choice in view of the ease of specimen preparation. Our data suggest that the rib could be an alternative hard tissue sample for DNA analysis of human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Management of Hard Tissue Avulsive Wounds and Management of Orofacial Fractures.

    DTIC Science & Technology

    1985-04-30

    D-AiBB 265 MANAGEMENT OF HARD TISSUE AVULSIVE WOUNDS AND / MANAGEMENT OF OROFACIAL FRACTURESLU) BATTELLE COLUMBUS DIV ON C R HASSLER 30 APR 85 DAMD17...AVULSIVE WOUNDS AND MANAGEMENT OF OROFACIAL FRACTURES Annual Report April 30, 1985 nSupported by U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort...775A825 AA 044 11. TITLE (Include Security Clasification) (U) Management of Hard Tissue Avulsive Wounds and Management of Orofacial Fractures 12

  2. Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity

    NASA Astrophysics Data System (ADS)

    Majd, Hessam

    With the progressive increase in partially and fully dentate seniors, fracture has become an increasingly common form of restored tooth failure. Dentin undergoes progressive changes in microstructure with patient age, and studies are now suggesting that there is a reduction in fatigue strength and fatigue crack growth resistance of this tissue. This dissertation explores aging of dentin, the influence of flaws that are introduced during restorative processes on the fatigue properties of dentin, and proposes models for characterizing the damage initiation and growth process during fatigue of dentin. Results from this investigation show that the fatigue crack growth properties (Paris Law parameters (C, m) andDeltaKth) of human dentin undergo the most significant changes at a patient age of 42 years. Based on the fatigue crack growth responses, three age groups were established including young (age≤33), aged (34≤age ≤49) and old (50≤age) patients for further analysis. There were significant differences in the initiation and growth behavior between the tissues of patients from the three age groups. With regards to the influence of restorative processes, there was no influence on the quasi-static responses of dentin. However, the endurance limit of dentin treated with the dental burs (28 MPa) and abrasive air jet (35 MPa) were approximately 36% and 20% lower than that of the control (44 MPa), respectively. Both cutting processes caused a significant reduction (p≤0.0001) in fatigue strength. An accumulative damage model was developed to characterize fatigue of the control and bur treated dentin as well as provide a model for fatigue life prediction. The damage models were derived as a function of number of loading cycles (N), and ratio of applied stress to ultimate strength (r). The developed models provide estimations for the initial state of damage, the state of damage during the life, as well as the damage accumulation rate for cyclic loading of dentin

  3. [Definitive injuries to the teeth. Lesions of hard tissue and pulp].

    PubMed

    Vinckier, F; Peumans, M; Declerck, D; Aelbrecht, M; Joachum, H; Reekmans, K; Vandelaere, I

    1998-01-01

    Tooth infraction and enamel fracture are the most simple traumatic crown lesions. When necessary the lesions can be covered with composite material. Follow-up of the traumatized tooth is necessary since pulp necrosis and obliteration can develop. In case of an uncomplicated fracture involving enamel and dentine immediate protection of the dentinal wound is important for the preservation of tooth vitality. In case of a negative vitality test, an endodontic treatment will be performed in case of a tooth with open apex only when supplemental clinical and or radiological signs of pulp necrosis are present. When a complicated enamel-dentine fracture is present, an endodontic treatment will be performed when root formation is complete. In case of a wide open apex, a pulp capping, partial pulpotomy or cervical pulpotomy will be performed in order to preserve vitality of pulpal tissues at the level of the root. Crown root fractures can be superficial, deep or vertical. In case of a superficial localisation of the fracture line, restoration with composite material or with the fractured tooth segment is indicated. Deep crown-root fractures can only be restored when the fracture line is localized not deeper than at 1/3 of the length of the root. In case of a vertical fracture, extraction is the only possibility. Root fractures on immature teeth are in most cases unilateral and have a good prognosis. In teeth with completed root formation, fractures at the level of the cervix have a poor prognosis. The fractured segment will be removed. Only when the remaining root segment is long enough, this part can be maintained. In case of a fracture at the mid-root level, repositioning and rigid splinting for a period of 8 weeks is necessary. When the tooth becomes non-vital, endodontic treatment is performed on the coronal part. Root fracture in the apical part does not necessary result in enhanced tooth mobility and immobilisation is not always necessary. Healing of a root fracture is

  4. The effects of acid etching time on surface mechanical properties of dental hard tissues.

    PubMed

    Zafar, Muhammad Sohail; Ahmed, Naseer

    2015-01-01

    The objective of this study was to evaluate the effect of etching time on the surface properties of dental hard tissues including enamel and dentin. For this purpose, samples were prepared using extracted human teeth and treated with 37% phosphoric acid for various length of time using the set protocol. The effects of etching time on surface roughness were assessed using non-contact surface roughness profilometer and surface hardness was measured using nanoindentation technique. All results were analyzed statistically using SPSS computer software. Within the limitation of this study, it was concluded that etching time influences on the surface properties of dental hard tissues particularly the enamel. Enamel surface properties such as roughness and hardness can be altered remarkable as a matter of few seconds. Prolonged etching time than recommended is likely to increase the surface roughness and decrease surface hardness; compromising the bond strength of adhesive materials in clinical applications.

  5. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  6. Nature of Hard Tissues in Oral Pathological Lesions -Using Modified Gallego's Stain.

    PubMed

    Mudhiraj, Panthala Veenila; Vanje, Manjushri Madhukar; Reddy, Bachamgari Narender; Ahmed, Syed Afroz; Suri, Charu; Taveer, Shahela; Kumar, Shravan

    2017-04-01

    Histological stains are dyes that bind to various tissues. Special stains form an integral part of routine histopathology as an adjunct to Haematoxylin and Eosin (H&E), and give meaningful diagnostic information of the tissues available. By using routine histological procedure like H&E alone, it is difficult to differentiate the various hard tissues present in the oral pathological lesions. Modified Gallego's stain can be used as one of the differential stain for these hard tissues. To differentiate various hard tissues of teeth and to identify the presence of hard tissue components in different oral pathological lesions using Modified Gallego's stain under light microscope. A total sample of 20 cases, amongst which 10 were human extracted teeth and 10 oral pathological lesions were included. From 10 human extracted teeth, five ground sections and five decalcified sections were prepared. From pathological lesions, two slides of each lesion were prepared. All the sections were stained with Modified Gallego's stain and viewed under light microscopy. In properly stained slides, cementum stained red, dentin and bone stained green and enamel stained pink in colour. Modified Gallego's stain can be used as a differential stain for various hard tissues in oral pathological lesions and also for ground sections for which histochemical stains are very rare.

  7. Novel use of the CO2 laser on dental hard tissues: an SEM study

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Gilbert, Jeremy L.; Chomsky, Doron; Raif, Joshua

    1997-05-01

    There is great interest in dentistry to find a replacement for the dental drill which is a great source fear in dental patients. Lasers have been considered a potential replacement. Hard tissue use of lasers on dental tissues has been slow in development has had very limited acceptance by the dental community. The ultimate goal is to develop a laser which can remove both healthy and diseased dental hard tissues and dental materials. The CO2 laser surgical applications on sot tissues has been reported by many authors. It is hard tissue applications have had very few published reports. The thermal effects of this laser on hard tissues precluded its use on hard tissues. A new CO2 laser has been developed to reduce the thermal effects on dentin and enamel. Powers of 3-5 watts were used to ablate the buccal surface of extracted human molar teeth. These teeth were gold coated and evaluated under scanning electron microscopy. The results show some melting of the dentin and enamel, however patent dentinal tubules are evident and there appears to be a non-thermal cutting of the enamel at the boarder of the cut surface. In conclusion these very preliminary results appear to show that this new CO2 laser can cut dentin and enamel efficiently and with very little thermal effect as seen under SEM.

  8. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of

  9. Tissue mimicking materials for dental ultrasound

    PubMed Central

    Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.; White, Shane N.

    2008-01-01

    While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth. PMID:18396919

  10. Tissue mimicking materials for dental ultrasound.

    PubMed

    Singh, Rahul S; Culjat, Martin O; Grundfest, Warren S; Brown, Elliott R; White, Shane N

    2008-04-01

    While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth.

  11. Fully functional bioengineered tooth replacement as an organ replacement therapy

    PubMed Central

    Ikeda, Etsuko; Morita, Ritsuko; Nakao, Kazuhisa; Ishida, Kentaro; Nakamura, Takashi; Takano-Yamamoto, Teruko; Ogawa, Miho; Mizuno, Mitsumasa; Kasugai, Shohei; Tsuji, Takashi

    2009-01-01

    Current approaches to the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs which work in cooperation with surrounding tissues to replace organs that were lost or damaged as a result of disease, injury, or aging. Here, we report a successful fully functioning tooth replacement in an adult mouse achieved through the transplantation of bioengineered tooth germ into the alveolar bone in the lost tooth region. We propose this technology as a model for future organ replacement therapies. The bioengineered tooth, which was erupted and occluded, had the correct tooth structure, hardness of mineralized tissues for mastication, and response to noxious stimulations such as mechanical stress and pain in cooperation with other oral and maxillofacial tissues. This study represents a substantial advance and emphasizes the potential for bioengineered organ replacement in future regenerative therapies. PMID:19666587

  12. Fully functional bioengineered tooth replacement as an organ replacement therapy.

    PubMed

    Ikeda, Etsuko; Morita, Ritsuko; Nakao, Kazuhisa; Ishida, Kentaro; Nakamura, Takashi; Takano-Yamamoto, Teruko; Ogawa, Miho; Mizuno, Mitsumasa; Kasugai, Shohei; Tsuji, Takashi

    2009-08-11

    Current approaches to the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs which work in cooperation with surrounding tissues to replace organs that were lost or damaged as a result of disease, injury, or aging. Here, we report a successful fully functioning tooth replacement in an adult mouse achieved through the transplantation of bioengineered tooth germ into the alveolar bone in the lost tooth region. We propose this technology as a model for future organ replacement therapies. The bioengineered tooth, which was erupted and occluded, had the correct tooth structure, hardness of mineralized tissues for mastication, and response to noxious stimulations such as mechanical stress and pain in cooperation with other oral and maxillofacial tissues. This study represents a substantial advance and emphasizes the potential for bioengineered organ replacement in future regenerative therapies.

  13. Management of Hard Tissue Avulsive Wounds and Management of Orofacial Fractures.

    DTIC Science & Technology

    1980-08-01

    D-A134 143 MANAGEMENT OF HARD TISSUE AVULSIVE WOUNDS AND i/I MANAGEMENT OF OROFACIAL FRACTURES(U) BATTELLE COLUMBUS LABS OH L G MCCOV El AL- AUG 88...TISSUE AVULSIVE WOUNDS AND MANAGEMENT OF OROFACIAL FRACTURES . 4 •ANNUAL REPORT Larry G. McCoy and Craig R. Hasuler .9 A August 1980 ". Supported by U.S...10 28 006 REPORT NUMBER 6 MANAGEMENT OF HARD TISSUE AVULSIVE WOUNDS AND MANAGEMENT OF OROFACIAL FRACTURES -4., ANNUAL REPORT Larry G. McCoy and Craig R

  14. Pain and Tissue Damage in Response to Orthodontic Tooth Movement: Are They Correlated?

    PubMed

    Cuoghi, Osmar A; Topolski, Francielle; de Faria, Lorraine P; de Mendonça, Marcos R

    2016-09-01

    To evaluate the correlation between pain and tissue damage in response to orthodontic tooth movement (OTM), such as hyalinization and external apical root resorption (EARR). The literature review was used as a methodological strategy, following the knowledge development process - constructivist (ProKnow-C). Study axes were defined and keywords that best represented each axis were selected. The terms were submitted to an adherence test and validation, resulting in 12 keyword combinations. Searches were carried out in the most representative databases for the selected terms, without restriction as for language or publication dates. Retrieved studies were filtered using the EndNote X6 program and classified according to analysis of title, abstract, and keywords. The final portfolio of articles was submitted to bibliometric and systematic analysis. A total of 1,091 studies were retrieved, out of which 719 were repeated and 335 were removed in the classification stage. A total of 37 articles remained in the final portfolio. Only one article was in line with the purpose of this study, indicating absence of correlation between pain and EARR in response to OTM. Further studies are necessary to confirm whether orthodontic pain might serve as a criterion for the use of appropriate mechanical forces, contributing to minimize tissue damage following OTM. This article presents a systematic literature review, in which scientific evidence of the correlation between pain and tissue damage during orthodontic movement was studied, providing a scientific answer for the following question: Is pain reported by patients associated with application of inappropriate orthodontic force? Thus, it aims at aiding the orthodontist in the definition of clinical parameters for the use of optimal orthodontic force.

  15. Er:YAG clinical results on hard tissue: phase I

    NASA Astrophysics Data System (ADS)

    Cozean, Colette D.; Powell, G. L.

    1998-04-01

    Objective: This study was performed in order to establish that the pulpal and dentinal tissue are safe when exposed to the 2.94 micron pulsed Er:YAG laser radiation for the procedures of caries removal, cavity preparation, and etching prior to acid etching. This presentation discusses the histological results of a double-blind study comparing a pulsed Er:YAG with a standard dental drill. Methods: A double-blind histological evaluation of the pulpal and dentinal tissue changes induced by the Erbium laser and the dental drill was conducted on teeth extracted immediately following the dental procedure and at various intervals up to 1 year post-treatment. A statistical analysis was used to determine if any statistically significant clinical differences in dental tissue response could be observed between the Er:YAG laser and the standard dental drill. Conclusions: Analysis of the results indicated there were no significant differences observed between the laser and control groups in this study.

  16. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  17. Mosasaurs and snakes have a periodontal ligament: timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles.

    PubMed

    LeBlanc, Aaron R H; Lamoureux, Denis O; Caldwell, Michael W

    2017-09-12

    Squamates present a unique challenge to our understanding of dental evolution in amniotes because they are the only extant tooth-bearing group for which a ligamentous tooth attachment is considered to be absent. This has led to the assumption that mammals and crocodilians have convergently evolved a ligamentous tooth attachment, composed of root cementum, periodontal ligament, and alveolar bone, whereas squamates are thought to possess a single bone of attachment tissue that fuses teeth to the jaws. The identity and homology of tooth attachment tissues between squamates, crocodilians, and mammals have thus been a focal point of debate for decades. We provide a novel interpretation of the mineralized attachment tissues in two focal taxa in this debate, mosasaurids and snakes, and compare dental tissue histology with that of the extant crocodilian Caiman sclerops. We identify a periodontal ligament in these squamates that usually exists temporarily as a soft connective tissue anchoring each tooth to the alveolar bone. We also identify two instances where complete calcification of the periodontal ligament does not occur: in a durophagous mosasaur, and in the hinged teeth of fossil and modern snakes. We propose that the periodontal ligament rapidly calcifies in the majority of mosasaurids and snakes, ankylosing the tooth to the jaw. This gives the appearance of a single, bone-like tissue fusing the tooth to the jaw in ankylosed teeth, but is simply the end stage of dental tissue ontogeny in most snakes and mosasaurids. © 2017 Anatomical Society.

  18. [Effect of irradiation on tooth hard tissue and its resistance to acid].

    PubMed

    Zhang, Xue; Li, Yu-Jing; Wang, Song-Ling; Xie, Jian-Yun

    2004-11-01

    To study the effect of irradiation on the susceptibility of radiation caries. The structures of 56 teeth enamel and dentin of 63 roots were observed using SEM and the collagen fibre and the resistance to the acid were also investigated after irradiation of 30 Gy, 50 Gy and 70 Gy. The enamel structure changes were found after irradiation with different doses. The significant difference was found in the enamel changes between high or middle dose group and low dose group or control. The dentin morphology changed, some collagen fibre vanished and resistance to acid was reduced after irradiation with 50 Gy and 70 Gy. The radiation reduced the resistance of teeth to the acid and increased the caries susceptibility.

  19. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy - a prospect for tissue specific laser surgery.

    PubMed

    Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian

    2017-10-01

    Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  1. Tooth brushing, oil pulling and tissue regeneration: A review of holistic approaches to oral health

    PubMed Central

    Singh, Abhinav; Purohit, Bharathi

    2011-01-01

    Even though dentistry was not a specialized branch of Ayurveda, it is included in its Shalakya Tantra (system of surgery). Problems such as deformities of the oral cavity, plaques and infections were managed in ancient India. Traditional medicine can treat various infectious and chronic conditions. Research has shown that all kinds of chewing sticks described in ancient Ayurveda texts have medicinal and anti-cariogenic properties. Its oil pulling (Kaval, Gandush) practice is claimed to cure about 30 systemic diseases. Amla (Emblic myrobalan), is a general rebuilder of oral health. Bilberry fruit (Vaccinium myrtillus) and hawthorn berry (Crateagus oxycanthus) stabilize collagen, strengthening the gum tissue. Liquorice root (Glycyrrhiza glabral) promotes anti-cavity action, reduces plaque, and has an antibacterial effect. Use of safe, quality products and practices should be ensured based on available evidence if traditional medicine is to be acknowledged as part of primary health care. Scientific validations of the Ayurveda dental health practices could justify their incorporation into modern dental care. Publicity of these techniques using appropriate media would benefit the general population by giving more confidence in the ancient practices, thus preventing tooth decay and loss. PMID:21760690

  2. Development of a multi-layered virtual tooth model for the haptic dental training system.

    PubMed

    Yoshida, Yoshinori; Yamaguchi, Satoshi; Kawamoto, Yusuke; Noborio, Hiroshi; Murakami, Shinya; Sohmura, Taiji

    2011-01-01

    A virtual reality (VR) haptic dental training system could be a promising tool for future dental education. One major challenge is to develop a virtual tooth model which similarly reflected a real tooth having multiple layers with different mechanical hardness in each layer. The multi-layered virtual tooth model was successfully constructed in our virtual system. The constructed model allows us to feel tooth cutting which is similar to that with a real tooth. Through a cutting experiment by using the real tooth, a spring coefficient and a damping coefficient of a dental hard tissue were determined 0.8 N/mm and 1.79 Nsec/mm respectively. The feedback force smoothly altered when crossing the border of regions having different mechanical hardnesses. The constructed model introduced in this study could be a promising tool for acquiring dental hand skills in a virtual learning system.

  3. Development of oral osteomucosal tissue constructs in vitro and localization of fluorescently-labeled bisphosphonates to hard and soft tissue.

    PubMed

    Bae, Susan; Sun, Shuting; Aghaloo, Tara; Oh, Ju-Eun; McKenna, Charles E; Kang, Mo K; Shin, Ki-Hyuk; Tetradis, Sotirios; Park, No-Hee; Kim, Reuben H

    2014-08-01

    Bisphosphonates (BPs) are anti-resorptive agents commonly used to treat bone-related diseases; however, soft tissue-related side-effects are frequently reported in some BP users, such as oral or gastrointestinal (GI) ulcerations. BPs are stable analogs of pyrophosphate and have high affinity to hydroxyapatite, allowing them to bind to the bone surfaces and exert suppressive effects on osteoclast functions. However, the underlying mechanisms as to how bone-seeking BPs also exert cytotoxic effects on soft tissue remain unknown. In the present study, we investigated the localization of nitrogen-containing BPs (N-BPs) in hard and soft tissue using fluorescently-labeled N-BPs in vitro. We developed osteomucosal tissue constructs in vitro to recapitulate the hard and soft tissue of the oral cavity. A histological examination of the osteomucosal tissue constructs revealed a differentiated epithelium over the bone containing osteocytes and the periosteum, similar to that observed in the rat palatal tissues. Following treatment with the fluorescently-labeled bisphosphonate, AF647-ZOL, the osteomucosal constructs exhibited fluorescent signals, not only in the bone, but also in the epithelium. No fluorescent signals were observed from the control- or ZOL-treated constructs, as expected. Collectively, the data from the present study suggest that N-BPs localize to epithelial tissue and that such a localization and subsequent toxicity of N-BPs may be associated, at least in part, with soft tissue-related side-effects.

  4. Development of oral osteomucosal tissue constructs in vitro and localization of fluorescently-labeled bisphosphonates to hard and soft tissue

    PubMed Central

    BAE, SUSAN; SUN, SHUTING; AGHALOO, TARA; OH, JU-EUN; McKENNA, CHARLES E.; KANG, MO K.; SHIN, KI-HYUK; TETRADIS, SOTIRIOS; PARK, NO-HEE; KIM, REUBEN H.

    2014-01-01

    Bisphosphonates (BPs) are anti-resorptive agents commonly used to treat bone-related diseases; however, soft tissue-related side-effects are frequently reported in some BP users, such as oral or gastrointestinal (GI) ulcerations. BPs are stable analogs of pyrophosphate and have high affinity to hydroxyapatite, allowing them to bind to the bone surfaces and exert suppressive effects on osteoclast functions. However, the underlying mechanisms as to how bone-seeking BPs also exert cytotoxic effects on soft tissue remain unknown. In the present study, we investigated the localization of nitrogen-containing BPs (N-BPs) in hard and soft tissue using fluorescently-labeled N-BPs in vitro. We developed osteomucosal tissue constructs in vitro to recapitulate the hard and soft tissue of the oral cavity. A histological examination of the osteomucosal tissue constructs revealed a differentiated epithelium over the bone containing osteocytes and the periosteum, similar to that observed in the rat palatal tissues. Following treatment with the fluorescently-labeled bisphosphonate, AF647-ZOL, the osteomucosal constructs exhibited fluorescent signals, not only in the bone, but also in the epithelium. No fluorescent signals were observed from the control- or ZOL-treated constructs, as expected. Collectively, the data from the present study suggest that N-BPs localize to epithelial tissue and that such a localization and subsequent toxicity of N-BPs may be associated, at least in part, with soft tissue-related side-effects. PMID:24920042

  5. Hard tissue regeneration using bone substitutes: an update on innovations in materials

    PubMed Central

    Sarkar, Swapan Kumar

    2015-01-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  6. Soft Tissue Schwannomas of the Hard Palate and the Mandibular Mentum

    PubMed Central

    Keskin Tunc, Serap; Gunhan, Omer

    2017-01-01

    Schwannomas are benign, slow growing, encapsulated tumours that originate from the Schwann cells. Intraoral schwannomas are rare, and most of these tumours involve the tongue. They are rarely located in the hard palate or in the facial soft tissue. Herein, we present the clinical and histological features as well as the prognoses of two male patients with schwannoma, one of which was localized to the hard palate and the other to the facial soft tissue around the mandibular mentum and caused swelling. PMID:28133552

  7. [Evaluation of biological safety of continuous carbon-fiber reinforced polyolefin as hard tissue repair].

    PubMed

    Hou, Chunlin; Feng, Xue; Cen, Qingquan; Zhang, Wei; Yang, Guisheng; Sun, Jiao

    2005-01-01

    To evaluate the biological safety of continuous carbon-fiber reinforced polyolefin as hard tissue repair material. Biocompatibility of the material was evaluated through hemolysis test, pyrogen test, skin irritation test, cytotoxicity test, ames test, in vitro chromosome aberration test, and bone marrow cells Micronuclei test. No obvious hemolysis, pyrogenic characteristics, sensitivity, cytotoxicity, and mutagenicity were observed. The continuous carbon-fiber reinforced polyolefin composite material is of good biological safety. It meets all the demand made by biological safety as hard tissue repair material.

  8. Investigations on laser hard tissue ablation under various environments.

    PubMed

    Kang, H W; Oh, J; Welch, A J

    2008-06-21

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 microm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.

  9. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Akrivou, M; Featherstone, J D; Murray, M W; Dickenson, K M

    2001-04-01

    Pulsed CO(2) lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 microm wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1-4 micros. The pulse duration is well matched to the 1-2 micros thermal relaxation time of the deposited laser energy at 9.6 microm and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm(2). Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO(2) laser system for caries ablation and surface modification.

  10. Differential diagnosis for inappropriate upper incisal display during posed smile: contribution of soft tissue and underlying hard tissue.

    PubMed

    Suh, Ye-Jin; Nahm, Dong-Seok; Choi, Jin-Young; Baek, Seung-Hak

    2009-11-01

    The amount of upper incisor display (UID) during smile and conversation is one of the most decisive components in aesthetic judgment. The purpose of this study was to find which soft tissue and underlying hard tissue factors contributed to the amount of UID during posed smile (PS) and at rest posture (RP). The subjects consisted of 76 young adults (33 men and 43 women; mean [SD] age, 24.79 [2.29] y) with skeletal and dental class I relationship, normal overbite/overjet, and minor crowding (<2 mm). After checking reproducibility of the amounts of UID during PS and at RP in lateral cephalograms with facial photographs, 15 hard and soft tissue variables were measured, and statistical analysis was done. There was no significant sex difference in the amount of UID during PS and at RP. The amount of UID during PS significantly increased when anterior maxillary height was longer, lower gonial angle was larger, occlusal plane to sella-to-nasion plane angle was steeper, interlabial gap at RP was larger, upper lip length at RP was shorter and upper lip elevation during PS was larger. Multiple linear regression analysis to predict the degree of UID during PS generated a 4-variable model (adjusted R = 0.607): upper lip elevation (the dynamic soft tissue variable), interlabial gap and upper lip length (the static soft tissue ones), and anterior maxillary height (the hard tissue one). The diverse causes of inappropriate UID according to the soft and hard tissue factors need different treatment approaches such as orthodontic treatment, periodontal treatment, orthognathic surgery, botulinum toxin, or myectomy. The clinician can use these variables as a guideline for differential diagnosis of inappropriate UID.

  11. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    PubMed

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  12. Effect of chlorhexidine mouth rinse on Streptococci counts of tooth-tissue-borne palatal expander biofilm.

    PubMed

    Maruo, I T; Rosa, E A R; Maruo, H; Tanaka, O; Guariza Filho, O; Ignácio, S A; Camargo, E S

    2008-08-01

    To assess total Streptococci (TS) counts and biofilm mass over tooth-tissue-borne palatal expander (TTBPE), as well as the effect of chlorhexidine (CHX) mouth rinse on these variables. A cross-sectional study design employed clinical procedures and laboratorial techniques. Patients who had TTBPE removal indicated were divided into two groups: a CHX group (n = 26) in which three times a day of 0.2% CHX digluconate mouth rinses were prescribed 7 days before TTBPE removal; and a control (CON) group (n = 25) in which no antimicrobial treatment was applied. 'Gender', 'Age', and 'TTBPE wear time' were recorded. After TTBPE removal, biofilm mass was determined by the difference between (TTBPE + biofilm) and (TTBPE only) masses. TS counts were determined by biofilm suspension followed by progressive dilutions and culture on Mitis Salivarius agar with incubation at 37 degrees C for 72 h. Biofilm mass (mg) and Colony Forming Units of TS / mg of biofilm (CFU-TS / mg) were calculated. Results - Total Streptococci mean values in CHX (6.77 x 10(6)CFU-TS / mg) were statistically lower (p < 0.01) than those in CON (3.82 x 10(7)CFU-TS / mg), but there was no statistical difference (p > 0.05) between CHX (168.88 mg) and CON (182.04 mg) masses nor statistical correlation (p > 0.05) between biofilm mass and CFU-TS / mg in the two groups. Chlorhexidine reduces the TS counts in TTBPE, but has no effect on biofilm mass.

  13. A study to evaluate cephalometric hard tissue profile of Tamil population for orthognathic surgery.

    PubMed

    Nachiappan, S; Tharanikumar, S; Chandran, Ajay; Anusudha, P; Nandini, G D; Balasubramaniam, Murali

    2015-08-01

    The primary aim of this study is to compare, the cephalometric hard tissue profile values and analysis between Tamil and Caucasian population. The study also aims to create a better understanding in the facial proportions of Tamil Nadu population and to have better diagnosis and treatment planning for orthognathic surgery for Tamil population in Tamil Nadu.

  14. A study to evaluate cephalometric hard tissue profile of Tamil population for orthognathic surgery

    PubMed Central

    Nachiappan, S.; Tharanikumar, S.; Chandran, Ajay; Anusudha, P.; Nandini, G. D.; Balasubramaniam, Murali

    2015-01-01

    The primary aim of this study is to compare, the cephalometric hard tissue profile values and analysis between Tamil and Caucasian population. The study also aims to create a better understanding in the facial proportions of Tamil Nadu population and to have better diagnosis and treatment planning for orthognathic surgery for Tamil population in Tamil Nadu. PMID:26538943

  15. [A histological study of hard dental tissues in nondecalcified sections using the cutting-grinding technic].

    PubMed

    Trisi, P; Scogna, G; Piattelli, M; Romasco, N; Figliolia, A

    1991-01-01

    With the cutting-grinding technique (Exakt System) it is possible to obtain sections with a width of less than 10 microns of specimens such as teeth, crowns, bridges, implants, mineralized structures, which cannot be cut with routine histological techniques. In the present paper the authors study the efficacy of this technique in hard dental tissues.

  16. Two-photon-excited autofluorescence and second-harmonic generation microscopy for the visualization of penetration of TiO2 and ZnO nanoparticles into human tooth tissue ex vivo

    NASA Astrophysics Data System (ADS)

    Trunina, Natalia A.; Popov, Alexey P.; Lademann, Jürgen; Tuchin, Valery V.; Myllylä, Risto; Darvin, Maxim E.

    2012-06-01

    Penetration of nanoparticles into tooth tissues is of significant interest in solving problems related to reduction of tooth sensitivity, enamel strengthening and restoration and cosmetic bleaching. In this work we demonstrate two-photonexcited autofluorescence and second-harmonic generation microscopy for visualization of penetration of TiO2 and ZnO nanoparticles into tooth tissues.

  17. Hardness and elasticity of caries-affected and sound primary tooth dentin bonded with 4-META one-step self-etch adhesives

    PubMed Central

    Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.

    2013-01-01

    Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517

  18. Root hard-tissue demineralization rate measured by sup 125 I absorptiometry: Comparison with lesion-depth measurements

    SciTech Connect

    Almqvist, H.; Wefel, J.S.; Lagerloef, F. )

    1990-08-01

    The aim of the present study was to compare demineralization of root hard tissue, monitored by {sup 125}I absorptiometry, with lesion-depth measurements under polarized light microscopy. The intact roots of ten human molars, which had not been exposed to the oral environment, were divided into 39 cementum/dentin blocks and exposed to a buffer solution of pH 4.5 containing 2.2 mmol/L calcium and inorganic phosphate. After demineralization for 3.5, 7, 14, and 21 days, transmission measurements by {sup 125}I absorptiometry were performed, and one block from each tooth was taken out of the solution for lesion-depth measurement. The results showed a high degree of correlation (r = 0.952) between lesion depth and change in transmission, with a more rapid increase initially in both variables. A linear relationship with the square root of time was found. Conversion of transmission data to lesion-depth data was possible when this caries model system was used on cementum dentin blocks.

  19. Temporal sequence of hard and soft tissue healing around titanium dental implants.

    PubMed

    Salvi, Giovanni E; Bosshardt, Dieter D; Lang, Niklaus P; Abrahamsson, Ingemar; Berglundh, Tord; Lindhe, Jan; Ivanovski, Saso; Donos, Nikos

    2015-06-01

    The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.

  20. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

  1. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  2. Clinical measurement of tooth wear: Tooth wear indices

    PubMed Central

    López-Frías, Francisco J.; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Llamas-Carreras, José M.

    2012-01-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, the interpretation and comparison of clinical and epidemiological studies, it is increasingly difficult because of differences in terminology and the large number of indicators/indices that have been developed for the diagnosis, classification and monitoring of the loss of dental hard tissue. These indices have been designed to identify increasing severity and are usually numerical, none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. A literature review is conducted with the aim of analyzing the evolution of the indices used today and discuss whether they meet the clinical needs and research in dentistry. Key words:Tooth wear, tooth wear indices, attrition, erosion, abrasion, abfraction. PMID:24558525

  3. Clinical measurement of tooth wear: Tooth wear indices.

    PubMed

    López-Frías, Francisco J; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Llamas-Carreras, José M; Segura-Egea, Juan J

    2012-02-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, the interpretation and comparison of clinical and epidemiological studies, it is increasingly difficult because of differences in terminology and the large number of indicators/indices that have been developed for the diagnosis, classification and monitoring of the loss of dental hard tissue. These indices have been designed to identify increasing severity and are usually numerical, none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. A literature review is conducted with the aim of analyzing the evolution of the indices used today and discuss whether they meet the clinical needs and research in dentistry. Key words:Tooth wear, tooth wear indices, attrition, erosion, abrasion, abfraction.

  4. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects.

    PubMed

    Sándor, George K; Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-04-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.

  5. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

    PubMed Central

    Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J.; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-01-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient’s uncontrolled nasal picking habit. PMID:24558162

  6. Imaging of cochlear tissue with a grating interferometer and hard X-rays

    SciTech Connect

    Richter, Claus-Peter; Shintani-Smith, Stephanie; Fishman, Andrew; David, Christian; Robinson, Ian; Rau, Christoph

    2010-01-28

    This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone. For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>10{sup 12} photons/s) at high-photon energies (5-70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-{micro}m thick tissue slice induces a phase shift between 1/3{pi} and 2/3{pi}.

  7. Influence of post system and remaining coronal tooth tissue on biomechanical behaviour of root filled molar teeth.

    PubMed

    Santana, F R; Castro, C G; Simamoto-Júnior, P C; Soares, P V; Quagliatto, P S; Estrela, C; Soares, C J

    2011-05-01

    To investigate ex vivo the influence of post system and amount of remaining coronal tooth tissue on the fracture resistance, fracture mode and strain of root filled molar teeth. Seventy mandibular human molar teeth were divided into seven groups (n = 10), one control (sound teeth) and six experimental groups resulting from the interaction between the two study factors: post system (Pa, post absence; Gfp, glass fibre post; Cmp, cast Ni-Cr alloy post and core) and amount of remaining coronal tooth tissue (Fe, 2 mm of ferrule; NFe, no ferrule). Teeth in the experimental groups were restored with metal crowns. For the strain gauge test, two strain gauges per sample were attached on the buccal and proximal root surfaces, and the samples of each group (n = 5) were submitted to a load of 0-100N. Fracture resistance (N) was assessed in a mechanical testing device (n = 10). Strain gauge and fracture resistance data were analysed by two-way anova (3 × 2) followed by the Tukey's HSD and Duncan's test (α = 0.05). The failure mode was evaluated using an optical stereomicroscope and classified according to the location of the failure. The absence of ferrule was associated with lower fracture resistance regardless of the post system. Groups restored with glass fibre post and cast Ni-Cr alloy post and core had similar fracture resistance and higher values than groups without posts, regardless of the remaining coronal tooth tissue. Teeth with no ferrule and cast Ni-Cr alloy post and core resulted in catastrophic fractures and those with no ferrule and glass fibre post or no ferrule and post absence resulted in restorable failures. Buccal strain was higher in sound teeth and lower in teeth without posts. Glass fibre post insertion decreased the buccal strain compared to the teeth with ferrule and absence of post. Two millimetre of ferrule had a significant influence on cusp strain, fracture resistance and failure mode. The glass fibre post was as effective as the cast Ni-Cr alloy

  8. [Research development of hydroxyapatite-based composites used as hard tissue replacement].

    PubMed

    Ning, Congqin; Dai, Kerong

    2003-09-01

    Hydroxyapatite has been considered as the most promising materials for hard tissue replacements, due to its similar chemical composition and crystallographic structure to that of bone mineral. But the brittleness is one of the most serious obstacles for its wider applications as load-bearing implants. Therefore, various HA composites get much attention. In the present paper, HA composites were introduced according to the kind of reinforcement. Although bioactive ceramics, bioactive glass or glass-ceramic, bio-inactive ceramics, polymers and metals all have been used to fabricate HA composites, no one can well satisfy the requirements for hard tissue replacement. The vital problem of the existing HA composites is that the biological properties cannot match with the mechanical properties well.

  9. Soft- and hard-tissue facial anthropometry in three dimensions: what's new.

    PubMed

    Sforza, Chiarella; de Menezes, Marcio; Ferrario, Virgilio

    2013-01-01

    In the last few years, technology has provided new instruments for the three-dimensional analysis of human facial morphology. Currently, quantitative assessments of dimensions, spatial positions and relative proportions of distinctive facial features can be obtained for both soft- and hard- (skeletal and dental) tissues. New mathematical tools allow to fuse digital data obtained from various image analyzers, thus providing quantitative information for anatomical and nthropometric descriptions, medical evaluations (clinical genetics, orthodontics, maxillo-facial and plastic surgery), and forensic medicine.

  10. Ablation of hard dental tissues with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Vickers, Vicki A.; Jacques, Steven L.; Schwartz, Jon A.; Motamedi, Massoud; Rastegar, Sohi; Martin, J. W.

    1992-08-01

    The Er:YAG laser ablation of hard dental tissues and artificial dental stones was studied. The hole depth after ablation was measured as a function of pulse energy and pulse number. The dental gypsum products allowed systematic study of how pulse energy, pulse number, and water content affected ablation. The studies on human teeth compared teeth stored in saline vs teeth stored in formalin.

  11. Development of sol-gel bioactive glass for hard tissue regeneration

    NASA Astrophysics Data System (ADS)

    Noor, Siti Noor Fazliah Mohd; Zain, Nurul Shazwani Mohd; Wei, Poh Yong; Azizan, Nur Syazana; Mohamad, Hasmaliza

    2016-12-01

    The regeneration of hard tissues requires various contributing factors such as cells, scaffolds and growth factors. Bioactive glasses are known for its properties to stimulate hard tissue regeneration. In this study, sol-gel bioactive glasses (BG) were prepared and characterized. Sol-gel BG powders having particle size less than 25 µm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 µm syringe filters. Prior to use, the SGBG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The human dental pulp stem cells (DPSC) were incubated with the BG-conditioned media and their viability and proliferation were assessed at day 1, 2, 4 and 7 using Alamar Blue and MTT assays. The results showed that BG at various powders to liquid ratio concentrations promoted DPSC growth. The BG have potential to be used for hard tissue regeneration especially in the field of regenerative dentistry.

  12. Hard tissue as a composite material. I - Bounds on the elastic behavior.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.

    1971-01-01

    Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.

  13. Hard tissue as a composite material. I - Bounds on the elastic behavior.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.

    1971-01-01

    Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.

  14. One year postoperative hard and soft tissue volumetric changes after a BSSO mandibular advancement.

    PubMed

    Maal, T J J; de Koning, M J J; Plooij, J M; Verhamme, L M; Rangel, F A; Bergé, S J; Borstlap, W A

    2012-09-01

    In this study, cone beam computed tomography (CBCT) and three dimensional (3D) stereophotogrammetry are used to compare the 3D skeletal and soft tissue changes caused by a bilateral sagittal split osteotomy (BSSO) 1 year after a mandibular advancement. Eighteen consecutive patients with a hypoplastic mandible were treated with a BSSO according to the Hunsuck modification. Preoperatively and 1 year postoperatively, a CBCT scan was acquired and a 3D photograph. The pre- and postoperative CBCT scans were matched using voxel based registration. After registration, the mandible could be segmented in the pre- and postoperative scans. The preoperative scan was subtracted from the postoperative scan, resulting in the hard tissue difference. To investigate the soft tissue changes, the pre- and postoperative 3D photographs were registered using surface based registration. After registration the preoperative surface could be subtracted from the postoperative surface, resulting in the overall volumetric difference. As expected, a correlation between mandibular advancent and volumetric changes of the hard tissues was found. The correlation between advancement and soft tissues was weak. The labial mental fold stretched after surgery. This study proved that using 3D imaging techniques it is possible to document volumetric surgical changes accurately and objectively.

  15. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.

    2015-01-01

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.

  16. Design and implementation of therapeutic ultrasound generating circuit for dental tissue formation and tooth-root healing.

    PubMed

    Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen

    2010-02-01

    Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.

  17. Periapical tissue reactions to calcium hydroxide and MTA after external root resorption as a sequela of delayed tooth replantation.

    PubMed

    Marão, Heloisa Fonseca; Panzarini, Sônia Regina; Aranega, Alessandra Marcondes; Sonoda, Celso Koogi; Poi, Wilson Roberto; Esteves, Jônatas Caldeiras; Silva, Pedro Ivo Santos

    2012-08-01

    Clinical experience has shown that most avulsed teeth are replanted after a long extra-alveolar time and dry or inadequate wet storage, causing necrosis of periodontal ligament cells. This condition invariably leads to development of external root resorption, leaving the filling material in contact with the periapical connective tissues. In this study, the periapical tissue reactions to calcium hydroxide (CH) and mineral trioxide aggregate (MTA) were evaluated after occurrence of external root resorption as an expected sequela of delayed tooth replantation. Twenty male Wistar rats (Rattus norvegicus, albinus) had their right upper incisor extracted and maintained in dry storage for 60 min. Then, the dental papilla, enamel organ, pulp tissue, and periodontal ligament were removed, and the teeth were immersed in a 2% acidulated phosphate sodium fluoride solution, pH 5.5, for 10 min. The teeth were randomly assigned into two groups (n = 10), in which the canals were filled with either a CH and saline paste (CH group) or MTA (MTA group). The sockets were irrigated with saline, and the teeth were replanted. After 80 days, it was possible to observe large areas of replacement root resorption and some areas of inflammatory root resorption in both groups. More severe inflammatory tissue reaction was observed in contact with calcium hydroxide compared with the mineral trioxide aggregate. New bone formation was more intense at the bottom of the socket in the MTA group. In conclusion, as far as periapical tissue compatibility is concerned, intracanal MTA can be considered as a viable option for root canal filling in delayed tooth replantation, in which external root resorption is an expected sequela.

  18. Influence of the hydration state on the ultrashort laser ablation of dental hard tissues.

    PubMed

    Rego Filho, Francisco de Assis M G; Dutra-Corrêa, Maristela; Nicolodelli, Gustavo; Bagnato, Vanderlei S; de Araujo, Maria Tereza

    2013-01-01

    Since about 40 years, laser-based surgical tools have been used in medicine and dentistry to improve clinical protocols. In dentistry, femtosecond lasers have been claimed to be a potential ablation tool. It would, however, be good to perform a more fundamental investigation to understand ablation interaction mechanisms and possible side effects, depending on different specific components of the target tissue. The goal of this study is to show the changes of ablation characteristics in the femtosecond regime at different levels of structural water within dental hard tissues. Thirty human teeth samples were split into three hydration groups and subdivided into dentin and enamel groups (n = 5). The specimens were irradiated using a 70-fs Ti:sapphire laser (with a 1-kHz repetition rate and a 801-nm wavelength output). Ablation was performed using five different power levels and three exposure times. The results clearly show an inversely proportional dependence of the ablation threshold to the hydration level of the tissues. A known mathematical model was adapted in order to include the influence of the changes on the relative fractional composition of dental hard tissues. This analysis was consistent with the experimental results regarding the ablation threshold. High thermal and mechanical damages were observed as a high repetition rate had been applied. Macroscopic images and scanning electron microscopy images were used to preliminarily analyze both the thermal and mechanical damage thresholds, and their variations according to the hydration level present. By manipulating the hydration states, the modifications in the proportions of the molecules that build dental hard tissues clearly shift, and therefore, the characteristics of a plasma-induced ablation change.

  19. Application of 4-META/MMA-TBB resin for fixation of membrane to tooth in guided tissue regeneration in dog.

    PubMed

    Tomita, Sachiyo; Yamamoto, Shigeki; Shibukawa, Yoshihiro; Kaneko, Tadashi; Miyakoshi, Shoichi; Shimono, Masaki; Yamada, Satoru

    2010-11-01

    The aim of this study was to evaluate 4-META/MMA-TBB resin as an alternative to sling sutures for fixation of membrane to tooth in GTR in terms of its effect on tissue regeneration. Dehiscence periodontal defects were created in 6 dogs which were divided at random into two groups, 3 dogs in each group: an experimental group, in which non-absorbable or absorbable membrane was fixed to the teeth with 4-META/MMA-TBB resin; and a control group, in which sling sutures were applied to fix the two types of membrane. Histologic and histometric evaluation was carried out at 8 weeks post-operatively to determine healing response in each group. Both methods of achieving membrane fixation to tooth were effective in inhibiting epithelial migration and encouraging formation of regenerated periodontal tissues around the root surfaces. These results suggest that 4-META/MMA-TBB resin is as effective as sling sutures in achieving membrane fixation in GTR and is, moreover, easier to apply.

  20. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M.; Neev, J.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  1. Tissue preservation strategies for fostering long-term soft and hard tissue stability.

    PubMed

    Romanos, Georgios E

    2015-01-01

    As placement of functionally stable dental implants has become routine, concerns have shifted to maintenance of crestal bone and soft tissue stability. This article proposes the development of a tissue preservation philosophy to avoid crestal bone loss and gingival recession and thus foster long-term esthetics around implants. Pillars of this philosophy must include avoidance or minimization of an implant-abutment microgap and micromovement, use of platform switching, appropriate implant positioning relative to the bone crest, and preservation of the papillae when placing both single and multiple implants.

  2. Abiotic tooth enamel.

    PubMed

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  3. Emotional stress and orthodontic tooth movement: effects on apical root resorption, tooth movement, and dental tissue expression of interleukin-1 alpha and calcitonin gene-related peptide immunoreactive nerve fibres in rats.

    PubMed

    Vandevska-Radunovic, Vaska; Murison, Robert

    2010-06-01

    The aim of the study was to investigate the effect of emotional stress on apical root resorption (ARR) and tooth displacement during orthodontic tooth movement in rats. A further area of interest was to evaluate if the expression of interleukin-1 alpha (IL-1alpha) as well as the density and distribution of peptidergic nerve fibres immunoreactive to calcitonin gene-related peptide (CGRP) in the periodontal ligament (PDL) are associated with possible stress-induced changes in root resorption and tooth movement. A total of 52 male Wistar rats, aged 6 weeks, were divided in three experimental and one control group (n = 4). Group 1 had orthodontic tooth movement and received foot shocks (OTMS; n = 16), group 2 had orthodontic tooth movement but received no foot shocks (OTMNS; n = 16), and group 3 had no orthodontic tooth movement and received foot shocks (NOTMS; n = 16). Each group was further divided into four subgroups (n = 4), corresponding to the period of the experiment, i.e. 3, 7, 13, and 21 days. At the end of each experimental period, the blood samples were taken, the animals were sacrificed, and the jaws excised, deminerialized, and processed for immunocytochemistry. One-way analysis of variance was used to detect inter-group differences for all investigated variables. CGRP immunopositive nerve fibres were evaluated qualitatively. All the experimental groups demonstrated higher corticosterone levels than the control group, suggesting a stress-induced experience by orthodontic treatment per se. The OTMS group had the least amount of cellular cementum throughout the experimental periods and showed significant reduction in tooth displacement, especially at 3 and 7 days. No obvious changes were observed in the dental tissue expression of IL-1alpha and CGRP immunoreactive nerve fibres between the stressed and non-stressed orthodontically treated groups.

  4. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences.

    PubMed

    Flügge, Tabea; Hövener, Jan-Bernd; Ludwig, Ute; Eisenbeiss, Anne-Kathrin; Spittau, Björn; Hennig, Jürgen; Schmelzeisen, Rainer; Nelson, Katja

    2016-12-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 × 250 × 500 μm(3), FOV of 64 × 64 × 28 mm(3) and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm(3) and FOV of 34 cm(3) in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm(3) and FOV of 36.5 cm(3). Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (cv). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. • MRI is a clinically available diagnostic tool in dentistry • Intraoral hard and soft tissues can be imaged with a high resolution with MRI • The dimensional accuracy of MRI is comparable to cone beam CT.

  5. Histological analysis of soft and hard tissues in a periimplantitis lesion: a human case report.

    PubMed

    Jung, Soong-Ryong; Bashutski, Jill D; Jandali, Rami; Prasad, Hari; Rohrer, Michael; Wang, Hom-Lay

    2012-06-01

    Little is known regarding the histologic hard and soft tissue changes that occur in chronic periimplantitis situations in humans. It is critical to gain an understanding of all aspects of periimplantitis to develop appropriate therapeutic approaches. An 83-year-old African American man presented with a fractured implant affected by severe, chronic periimplantitis and surrounded by keratinized gingiva. A trephine biopsy of the implant and surrounding tissues was analyzed histologically. Histological analysis of the periimplantitis specimen revealed significant inflammatory infiltrate consisting predominantly of lymphocytes and plasma cells. In addition, epithelial migration and bone loss to the apical vent were noted. This case report documents a single case of periimplantitis that was left untreated for 7 years. The presence of significant keratinized tissue and a smooth surface implant failed to prevent fibrous encapsulation of the implant.

  6. Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique.

    PubMed

    Willbold, Elmar; Witte, Frank

    2010-11-01

    Calcified tissues, like bones and teeth, are among the most challenging tissues for histological research. However, especially with respect to dental or orthopaedic research, powerful histological techniques are necessary to study pathological conditions or traumatic injuries, and to investigate the molecular and cellular mechanisms of regeneration processes and functional recovery. The situation is even more complicated in orthopaedic research because here metallic implants or other devices made of various materials are often present, and the hard tissue-implant interface is of crucial interest in both biocompatibility and functional recovery research. After the cutting-grinding technique, embedding in technical resins is the most promising approach. Here we describe an optimized and standardized embedding and cutting technique using Technovit 9100 New. Using this technique, we are able to perform enzyme histochemistry, immunohistochemistry, a great variety of classical histological stains and even in situ hybridization. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. [PREVALENCE OF NON-CARIOUS CERVICAL LESIONS AND ABFRACTIONS OF DENTAL HARD TISSUES IN AN ADULT IN DIFFERENT AGES].

    PubMed

    Iordanishvili, A K; Chernyj, D A; Jankovskij, V V; Orlov, A K; Drobkova, K O

    2015-01-01

    The article is devoted to gerontostomatological and gender-specific prevalence of non-carious lesions of the hard tissue of teeth in adults. The paper presents data of epidemiological study on prevalence of non-carious lesions of dental hard tissues (high abrasion, erosion, wedge-shaped defects, hyperesthesia). Allocated to four age groups: young adults surveyed--from 22 to 39 years; middle ages--from 40 to 59 years; older--from 60 to 74 years of age; senile age--from 75 to 87 years. To determine the frequency of occurrence of different forms of non-carious lesions of the hard tissue of teeth we have used the following: general scientific and special methods: poll, dental examination, groupings, statistical and mathematical methods of processing sample. We have ranked low incidence of non-carious lesions of the hard tissue of the teeth in the sample surveyed: high abrasion, erosion, wedge-shaped defects of solid tissues, hyperesthesia. The features of clinical course of non-carious lesions have been determined. In particular a rare combined lesion of the teeth with advanced erasibility, wedge defects and erosion has been noted. Significant combination of the pathological processes of the hard tissue of teeth with their hyperesthesia has been found. Features of different forms of non-carious lesions of the hard tissue of teeth in different age periods of life have been determined. Noted that older people, due to non-carious esions of the hard tissue of teeth were more likely to require medical intervention aimed at addressing the ncreased sensitivity and loss of hard tissue of teeth by dental therapeutic activities or dental prosthetics.

  8. Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Z. A.; Nanjing, Z.; Anglos, D.; Harith, M. A.

    2009-01-01

    This paper reports on the effects of LIBS experimental conditions on the measurement of the surface hardness of calcified tissues. The technique mainly depends on a previously demonstrated correlation between the intensity ratio of ionic to atomic spectral lines and the hardness of the target material. Three types of calcified tissues have been examined, namely enamel of human teeth, shells, and eggshells. Laser-induced breakdown spectra were obtained under two different experimental conditions. In the first nano and picoseconds, laser pulses were used in a single-pulse arrangement, while in the second, single- and double-pulse regimes with nanosecond laser excitation were utilized. The results show that the ionic to atomic spectral line intensity ratios are higher in the case of picosecond laser pulse for both Ca and Mg spectral lines. This effect has been justified in view of the repulsive force of the laser-induced shock waves which depends clearly on the target surface hardness and on the laser irradiance. The electron densities ratio (pico/nano) is shown to be strongly depending on the laser irradiance too. In the case of calcium, single-pulse ratios are higher than the double-pulse ratios, while there is no appreciable difference between both in the case of magnesium. The results obtained herein suggest that double-pulse nanosecond arrangement and the choice of a minor element such as Mg furnishes the best experimental conditions for estimating the surface hardness via LIBS spectra. To validate this method, it has been applied on two previously measured groups of teeth enamel, the first is of ancient Egyptians, and the second from Nubians and Ugandans. The results support the usefulness of this method for similar real-life applications.

  9. The critical apical diameter to obtain regeneration of the pulp tissue after tooth transplantation, replantation, or regenerative endodontic treatment.

    PubMed

    Laureys, Wim G M; Cuvelier, Claude A; Dermaut, Luc R; De Pauw, Guy A M

    2013-06-01

    Regeneration of pulp-like tissue in the pulp chamber after tooth transplantation, replantation, or in regenerative endodontic treatment is only possible if the apical foramen is open. According to the literature, the success of regeneration decreases considerably if the foramen is smaller than 1 mm when measured on radiographs. The aim of this study was to study histologically the relation between the width of the apical foramen and regeneration of tissue in the pulp chamber after autotransplantation. Fifteen single-rooted mature teeth of 3 adult beagle dogs were used. All experimental teeth were extracted and underwent apicoectomy. The teeth were photographed from the apical side, and the width of the foramen was calculated. The foramen width ranged from 0.24-1.09 mm. All teeth were replanted in infraocclusion. The observation period was 90 days after transplantation. The 10 teeth with the smallest apical diameter, ranging between 0.24 and 0.53 mm, showed vital tissue in at least one third of the pulp chamber. The 6 most successful teeth showing vital tissue in the entire pulp chamber had an apical diameter between 0.32 and 0.65 mm, and 80% of the experimental teeth with a diameter varying between 1.09 and 0.31 mm showed vital tissue in at least one third of the pulp chamber 90 days after transplantation. The size of the apical foramen seems not to be the all decisive factor for successful revascularization and ingrowth of new tissue after transplantation. The minimum width of the apical foramen has not been determined, but a size smaller than 1 mm does not prevent revascularization and ingrowth of vital tissue. In this animal study an apical foramen of 0.32 mm did not prevent ingrowth of new tissue in two-thirds of the pulp chamber 90 days after transplantation. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  11. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  12. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  13. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  14. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser.

    PubMed

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO(2) laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm(2), respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  15. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells.

    PubMed

    Liu, Fen; Zhou, Zhi-Fei; An, Ying; Yu, Yang; Wu, Rui-Xin; Yin, Yuan; Xue, Yang; Chen, Fa-Ming

    2016-07-12

    Recent studies have shown that patients with pycnodysostosis caused by cathepsin K (CTSK) genetic mutations exhibit significantly abnormal periodontal hard tissue structure. This finding suggests that CTSK may play a role in regulating the development of alveolar bone and cementum. However, the source of CTSK in the periodontal environment and the role of CTSK in periodontal regeneration, particularly hard tissue regeneration and development, remain unclear. After the isolation, cultivation, identification, and multi-lineage induction of human periodontal ligament stem cells (hPDLSCs), the present study used light and scanning electron microscopy, reverse-transcription quantitative polymerase chain reaction, western blotting, micro-computed tomography, immunohistochemical assays and ectopic hard tissue formation experiments to examine CTSK expression in hPDLSCs. The results indicated that CTSK expression was significantly upregulated in hPDLSCs during Emdogain induction but underwent minimal change during osteogenic or adipogenic induction. The present study also showed that the downregulation of CTSK expression inhibited osteogenic/cementogenic differentiation and ectopic hard tissue formation of hPDLSCs. It is therefore concluded that hPDLSCs expressed CTSK and that CTSK levels were significantly upregulated during Emdogain induction. Furthermore, CTSK promoted not only the osteogenic/cementogenic differentiation of hPDLSCs but also their ability to form ectopic hard tissue. These new findings may enhance the understanding of periodontal hard tissue development and functional regeneration. However, the specific underlying mechanisms require further investigation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Stem cells for tooth engineering.

    PubMed

    Bluteau, G; Luder, H U; De Bari, C; Mitsiadis, T A

    2008-07-31

    Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  17. Expression of aquaporin isoforms during human and mouse tooth development.

    PubMed

    Felszeghy, S; Módis, L; Németh, P; Nagy, G; Zelles, T; Agre, P; Laurikkala, J; Fejerskov, O; Thesleff, I; Nielsen, S

    2004-04-01

    Previously, we described the development of hyaluronan (HA) deposition in human tooth germ tissues that are consistent with water transport in different stages of tooth development. The aquaporins (AQP) constitute a family of membrane water channels that are expressed in many organs. However, there are no data available about the expression pattern of aquaporin water channels in dental structures. In the present study we have characterised the expression of six different aquaporin isoforms (AQP1-5, AQP-9) in developing human and mouse tooth germs by immunohistochemistry using isoform specific antibodies. In the "bell stage" AQP1 was expressed in endothelial cells of small vessels whereas no other structures of the tooth primordial were labeled. AQP2, AQP3 and AQP9 immunoreactivity was not observed in tooth germs, whereas strong AQP4 and AQP5 expression was observed in dental lamina, inner enamel epithelium, stratum intermedium, stellate reticulum and the outer enamel epithelium. Oral epithelium also exhibited AQP4 and AQP5 immunolabeling. During development of the matrices of the dental hard tissues AQP4 and AQP5 immunostaining was observed in the odontoblasts and their processes, as well as in the secretory ameloblast and their apical processes. Immunolabeling controls were negative. In conclusion, AQP4 and AQP5 are expressed in tooth germ tissues in early development in cells that previously have been shown to express HA and/or CD44, indicating that AQP water channels may play a role for ECM hydration during tooth development.

  18. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study.

    PubMed

    Yanagisawa, O; Niitsu, M; Kurihara, T; Fukubayashi, T

    2011-09-01

    To assess the feasibility of ultrasound real-time tissue elastography (RTE) for measuring exercise-induced changes in muscle hardness and to compare the findings of RTE with those of a tissue hardness meter for semi-quantitative assessment of the hardness of exercised muscles. Nine male participants performed an arm-curl exercise. RTE measurements were performed by manually applying repetitive compression with the transducer on the scan position before exercise, immediately after exercise, and at 30 min after exercise; strain ratios between muscle and a reference material (hydrogel) were calculated (muscle strain/material strain). A tissue hardness meter was also used to evaluate muscle hardness. The intraclass correlation coefficients (ICCs) for the three repeated measurements at each measurement time were calculated to evaluate the intra-observer reproducibility of each technique. Immediately after exercise, the strain ratio and the value obtained using the tissue hardness meter significantly decreased (from 1.65 to 1.35) and increased (from 51.8 to 54.3), respectively. Both parameters returned to their pre-exercise value 30 min after exercise. The ICCs of the RTE (and the ICCs of the muscle hardness meter) were 0.971 (0.816) before exercise, 0.939 (0.776) immediately after exercise, and 0.959 (0.882) at 30 min after exercise. Similar to the muscle hardness meter, RTE revealed the exercise-induced changes of muscle hardness semi-quantitatively. The intra-observer reproducibility of RTE was very high at each measurement time. These findings suggest that RTE is a clinically useful technique for assessing hardness of specific exercised muscles. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Control of guided hard-tissue regeneration using phosphorylated gelatin and OCT imaging of calcification

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Ma, Zhenhe; Ninomiya, Yoshihisa; Takegoshi, Minori; Kushibiki, Toshihiro; Yamamoto, Masaya; Hinds, Monica; Tabata, Yasuhiko; Wang, Ruikang K.; Awazu, Kunio

    2007-02-01

    Tendon and ligament are the transition tissues from a hard tissue to a soft tissue. The regenerative medicine of tendons needs reasonable biomaterials to regenerate precisely from the view point of composition and adhesion properties. In regenerative medicine of hard tissues, it has been reported that calcifications are influenced by phosphorylated proteins (phosphate groups) and the biomaterial possessing phosphate groups promote or inhibit the formation of HAP. We have studied to develop and evaluate the phosphorylated soft biomaterials, which is possible to control a calcification by the introduction ratio of phosphate groups, as biomaterials for tendon regeneration. In addition, we have studied measurement technologies. In the present study, we studied a FT-IR analysis of gelatins with different introduction ratio of phosphate groups, an evaluation of calcifications by the difference of introduction ratio of phosphate groups, and a fundamental survey on OCT imaging for calcifications of a gelatin and a phosphorylated gelatin. We use phosphorylated gelatins with different introduction ratios of phosphate group linked by ester bonds. The introduction ratios are measured by the FT-IR calibrated by a molybdenum blue method. Phosphorylated gelatin sheets were calcified using 1.5SBF soaking process and alternative soaking process. These gelatin sheets with different calcification conditions were measured using SD-OCT systems with 843nm centered wavelength SLD. As a result, we demonstrated that it was possible to measure the calcification on/in the gelatin sheets and sponges and phosphorylated using OCT. The main mechanism is the strong back scattering and the high scattering of deposited calcium particles.

  20. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    PubMed

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  1. Effects of facial hard tissue surgery on facial aesthetics: changes in facial content and frames.

    PubMed

    Choi, Jin-Young; Lee, Sang-Hoon; Baek, Seung-Hak

    2012-11-01

    Aesthetic units of the face can be divided into facial content (FC; eyes, nose, lips, and mouth), anterior facial frame (AFF; a contour line from the trichion, the temporal line of the frontal bone, the lateral orbital rim, the most lateral line of the anterior part of the zygomatic body, the anterior border of the masseter muscle, to the inferior border of the chin), and posterior facial frame (PFF; a contour line from the hairline, the zygomatic arch, to the ramus and gonial angle area of the mandible). The size and shape of each FC and the balance and proportion between FCs create a unique appearance for each person. The facial form can be determined through the combination of AFF and PFF. In the Asian population, clinicians frequently encounter problems of FC (eg, acute nasolabial angle, protrusive and everted lips, nonconsonant lip line, or lip canting), AFF (eg, midface hypoplasia, protrusive and asymmetric chin, vertical deficiency/excess of the anterior maxilla and symphysis, or prominent zygoma), and PFF (eg, square mandibular angle). These problems can be efficiently and effectively corrected through the combination of hard tissue surgery such as anterior segmental osteotomy, genioplasty, mandibular angle reduction, malarplasty, and orthognathic surgery. Therefore, the purposes of this article were to introduce the concepts of FC, AFF, and PFF, and to explain the effects of facial hard tissue surgery on facial aesthetics.

  2. Method and device for bio-impedance measurement with hard-tissue applications.

    PubMed

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  3. Oleic acid-added embedding medium for histological analysis of hard tissue.

    PubMed

    Lim, Jin Ik; Lee, Yong-Keun

    2009-10-01

    For the histological analysis of hard tissue such as bone, various acrylate-based materials have been used as an embedding medium. However, commercial embedding media are expensive, and cutting the embedded block takes a long time. In this study, mixtures of methyl methacrylate (MMA), di-butyl-phthalate (DBP), and oleic acid (OA) were tested for possible application as an embedding medium for large and small undecalcified bone specimens. Mechanical properties were tested in a compressive mode. We investigated the change of hydrophilicity in the sectioned surface by measuring the contact angle depending on the OA. Crystallinity was analyzed using a X-ray diffractometer (XRD). Surface analysis was performed using a confocal laser scanning microscope. To determine the staining efficiency of staining dyes, hamatoxylin-eosin (H&E) and Masson's trichrome (MT) staining methods were performed for the histological analysis of bone-implant complex. We confirmed that the investigated embedding media showed good properties such as optimal mechanical strength appropriate for cutting the embedded block and proper staining efficiency for histological analysis. Therefore, the MMA/DBP/OA mixtures can be used as an embedding media appropriate for various hard tissues and bone-implant complex.

  4. Soft and hard tissue changes after bimaxillary surgery in Japanese class III asymmetric patients

    PubMed Central

    Al-Gunaid, Talat; Yamaki, Masaki; Takagi, Ritsuo; Saito, Isao

    2012-01-01

    Objectives: To assess the effects of bimaxillary surgery on Class III subjects with mandibular asymmetry, and to compare the effects of the type of surgery performed in the mandible on the facial profile especially in the presence of facial asymmetry. Materials and Methods: Thirty-six patients in whom imbalance between the maxilla and the mandible were corrected by Le Fort I osteotomy combined with bilateral intraoral vertical ramus osteotomy (BIVRO group, n=9), bilateral sagittal split ramus osteotomy (BSSRO group, n=14), or a combination of intraoral vertical ramus osteotomy (IVRO) and sagittal split ramus osteotomy (SSRO) (IVRO + SSRO group, n=13). Cephalograms were taken before surgery (T1), and 1 year after surgery (T2). Hard and soft-tissue changes were compared. Results: The postsurgical findings showed that greater mandibular backward displacement and greater upper lip forward movement were more pronounced among BIVRO group when compared with BSSRO group. Upper lip relation to E-line showed greater improvement in BIVRO group than BSSRO and IVRO + SSRO groups. The ratios of corresponding mandibular soft to hard tissue movements were higher than that of maxillary movements and were more pronounced in IVRO + SSRO and BSSRO groups when compared with BIVRO group. Conclusion: IVRO surgical technique appears to be more effective in positioning the mandible more posteriorly and improving upper and lower lips position and competence. PMID:24987630

  5. Analysis of dental hard tissues exposed to high temperatures for forensic applications: An in vitro study

    PubMed Central

    Shekhawat, Kuldeep Singh; Chauhan, Arunima

    2016-01-01

    Aim: The aim of this study was to observe and record the macroscopic, radiographic, and microscopic findings obtained after subjecting the teeth to high temperatures. Materials and Methods: An in vitro study was conducted to observe macroscopic, radiographic, and microscopic changes in dental hard tissues in 60 unrestored non carious extracted human teeth. The teeth were grouped based on age: Below 30 years, 30–40 years, and above 40 years The teeth from each age group were further divided into five subgroups, and each subgroup was subjected to a particular temperature: 200°C, 400°C, 600°C, 800°C, and 1000°C. [C = Celsius]. Results: Various degrees of changes in relation to temperature were observed macroscopically, radiographically, and microscopically. The histological examination was limited for teeth exposed to 200°C. Conclusion: This investigation was carried out to study the gross changes, radiographic changes and histological changes in dental hard tissues exposed to high temperatures, which is an important part of forensic science. The aforementioned alterations caused by heat may provide useful information about temperature ranges and duration of exposure to high temperatures. PMID:27555725

  6. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland

    PubMed Central

    Wychowanski, Piotr

    2017-01-01

    Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α = 0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution. PMID:28197416

  7. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland.

    PubMed

    Wychowanski, Piotr; Malkiewicz, Konrad

    2017-01-01

    Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α = 0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution.

  8. Hard and soft tissue augmentation in a postorthodontic patient: a case report.

    PubMed

    Bonacci, Fred J

    2011-02-01

    A combination of hard and soft tissue grafting is used to augment a thin biotype. A 26-year-old woman with mandibular anterior flaring and Miller Class I and III recessions requested interceptive treatment. Surgery included a full-thickness buccal flap, intramarrow penetrations, bone graft placement, and primary flap closure. Postoperative visits were at 2 and 4 weeks and 2, 3, and 6 months. Stage-two surgery consisted of submerged connective tissue graft placement. Postoperative visits were completed at 2, 4, 6, and 8 weeks and 1 year. Follow-up was completed 3 years after the initial surgery. Interradicular concavities were resolved and gingival biotype was augmented. Soft tissue recession remained at 6 months. Reentry revealed clinical labial plate augmentation; 2 mm was achieved at the lateral incisors and the left central incisor and 3 mm was achieved at the right canine. No bone augmentation was achieved on the left canine and right central incisor. The dehiscence at the right central incisor appeared narrower. Overall, a 2- to 3-mm gain in alveolar bone thickness/height was observed. Two months after stage-two surgery, near complete root coverage was achieved; 1 mm of recession remained on the left central incisor. There was a soft tissue thickness gain of 2 mm without any visual difference in keratinized tissue height. Interradicular concavities were eliminated; the soft tissue was augmented and the gingival biotype was altered. Interdental soft tissue craters remained. One year after connective tissue graft placement, there was near complete root coverage at the left central incisor, which at 2 months experienced residual recession. Interradicular concavities and interdental soft tissue craters were eliminated with soft tissue augmentation, including clinical reestablishment of the mucogingival junction. Clinical stability remained 3 years after the initial surgery, with the patient noting comfort during mastication and routine oral hygiene. A clinical

  9. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development.

    PubMed

    Li, Lu; Lin, Minkui; Wang, Ying; Cserjesi, Peter; Chen, Zhi; Chen, YiPing

    2011-01-15

    The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate. BmprIa and BmprIb exhibit partially overlapping and distinct expression patterns in the developing tooth and palatal shelf. Neural crest-specific inactivation of BmprIa leads to formation of an unusual type of anterior clefting of the secondary palate, an arrest of tooth development at the bud/early cap stages, and severe hypoplasia of the mandible. Defective tooth and palate development is accompanied by the down-regulation of BMP-responsive genes and reduced cell proliferation levels in the palatal and dental mesenchyme. To determine if BmprIb could substitute for BmprIa during tooth and palate development, we expressed a constitutively active form of BmprIb (caBmprIb) in the neural crest cells in which BmprIa was simultaneously inactivated. We found that substitution of BmprIa by caBmprIb in neural rest cells rescues the development of molars and maxillary incisor, but the rescued teeth exhibit a delayed odontoblast and ameloblast differentiation. In contrast, caBmprIb fails to rescue the palatal and mandibular defects including the lack of lower incisors. Our results demonstrate an essential role for BmprIa in the mesenchymal component and a limited functional redundancy between BmprIa and BmprIb in a tissue-specific manner during tooth and palate development. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development

    PubMed Central

    Li, Lu; Lin, Minkui; Wang, Ying; Cserjesi, Peter; Chen, Zhi; Chen, YiPing

    2010-01-01

    The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate. BmprIa and BmprIb exhibit partially overlapping and distinct expression patterns in the developing tooth and palatal shelf. Neural crest specific inactivation of BmprIa leads to formation of an unusual type of anterior clefting of the secondary palate, an arrest of tooth development at the bud/early cap stages, and severe hypoplasia of the mandible. Defective tooth and palate development is accompanied by the down-regulation of BMP responsive genes and reduced cell proliferation levels in the palatal and dental mesenchyme. To determine if BmprIb could substitute for BmprIa during tooth and palate development, we expressed a constitutively active form of BmprIb (caBmprIb) in the neural crest cells in which BmprIa was simultaneously inactivated. We found that substitution of BmprIa by caBmprIb in neural rest cells rescues the development of molars and maxillary incisor, but the rescued teeth exhibit a delayed odontoblast and ameloblast differentiation. In contrast, caBmprIb fails to rescue the palatal and mandibular defects including the lack of lower incisors. Our results demonstrate an essential role for BmprIa in the mesenchymal component and a limited functional redundancy between BmprIa and BmprIb in a tissue specific manner during tooth and palate development. PMID:21034733

  11. Determination of nitrogen balance in goats fed a meal produced from hydrolyzed spent hen hard tissues.

    PubMed

    Freeman, S R; Poore, M H; Huntington, G B; Middleton, T F; Ferket, P R

    2009-03-01

    To provide an economically viable and environmentally sound method for disposing of spent laying hens, we manufactured a proteinaceous meal from the hard tissue fraction of mechanically deboned laying hens (primarily feathers, bones, and connective tissue). We hydrolyzed the hard tissue and coextruded it with soybean hulls to create a novel feather and bone meal (FBM) containing 94.2% DM, 23.1% CP, 54.5% NDF, and 7.3% fat (DM basis). We evaluated the FBM in supplements for meat goats in which it provided 0, 20, 40, or 60% of the N added to the supplement compared with a negative control supplement with no added N source. The remainder of the N was contributed by soybean meal (SBM). Supplementation of N resulted in greater DMI than the negative control (P = 0.005), and DMI changed quadratically (P = 0.11) as FBM increased in the supplement. Digestibility of DM was similar in all diets, including the negative control (P > 0.10). Fiber digestibility increased linearly as dietary inclusion of FBM increased (P = 0.04 for NDF, P = 0.05 for ADF), probably as a result of the soybean hulls in the FBM. Nitrogen digestibility declined linearly from 60.5% with 0% FBM to 55.6% with 60% FBM (P = 0.07), but N retention changed by a quadratic function as FBM replaced SBM (P = 0.06). Negative control goats had less N digestibility (P < 0.001) and N retention (P = 0.008) than N-supplemented goats. Feather and bone meal had a greater proportion of ruminally undegradable B(3) protein than SBM (23.1 vs. 0.3% of CP, respectively). Ruminal VFA and pH were unaffected by replacing SBM with FBM, but supplying no source of N in the concentrate resulted in reduced total VFA in ruminal fluid (P = 0.04). Ruminal ammonia concentration increased quadratically (P = 0.07) as FBM increased, reflecting increased intake, and it was much less in unsupplemented goats (P < 0.001). Serum urea had less variation between 0 and 4 h after feeding in goats receiving 40 or 60% of added N as FBM in comparison

  12. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  13. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications.

    PubMed

    Aizawa, Mamoru; Matsuura, Tomokazu; Zhuang, Zhi

    2013-01-01

    Hydroxyapatite [Ca10(PO4)6(OH)2; HAp] is the mineral component of vertebrate hard tissues and an important raw material for biomaterials. The HAp crystal belongs to a hexagonal system and has two types of crystal plane with different atomic arrangements: positively charged calcium ions are mainly present in the a(b)-planes, while negatively charged phosphate ions and hydroxyl groups are mainly present in the c-planes. In vertebrate long bone surfaces, HAp crystals have a c-axis orientation, which leads to the development of the a(b)-plane; while in tooth enamel surfaces, they have an a(b)-axis orientation, which leads to the development of the c-plane. However, it is not clear why the orientations of long bone and tooth enamel are in different crystal planes. In order to clarify this question, we have synthesized single-crystal apatite particles with preferred orientation to the a- and c-axes as models for bone and teeth enamel. This review first describes the syntheses process of single-crystal apatite particles with preferred orientation to a(b)- and c-axes and then discusses specific protein adsorption to the crystal surface of the resulting plate- and fiber-shaped apatite particles with different surface charges. In addition, porous apatite-fiber scaffolds (AFSs) fabricated using the fiber-shaped apatite particles and their application to tissue engineering of bone are described on the basis of the three-dimensional cell culture of mesenchymal stem cells derived from rat bone marrow using the AFS settled into a radial-flow bioreactor.

  14. In vivo differentiation of human periodontal ligament cells leads to formation of dental hard tissue.

    PubMed

    Wolf, M; Lossdörfer, S; Abuduwali, N; Meyer, R; Kebir, S; Götz, W; Jäger, A

    2013-11-01

    Following trauma, periodontal disease, or orthodontic tooth movement, residual periodontal ligament (PDL) cells at the defect site are considered mandatory for successful regeneration of the injured structures. Recent developments in tissue engineering focus, as one pillar, on the transplantation of PDL cells to support periodontal regeneration processes. Here, we examined the ability of osteogenically predifferentiated PDL cells to undergo further osteoblastic or cementoblastic differentiation and to mineralize their extracellular matrix when transplanted in an in vivo microenvironment. Using collagen sponges as carriers, osteogenically predifferentiated human PDL cells were transplanted subcutaneously into six immunocompromised CD-1® nude mice. Following explantation after 28 days, osteogenic and cementogenic marker protein expression was visualized immunohistochemically. After 28 days, transplanted PDL cells revealed both cellular, cytoplasmatic and extracellular immunoreactivity for the chosen markers alkaline phosphatase, osteopontin, PTH-receptor 1, and osteocalcin. Specific osteogenic and cementoblastic differentiation was demonstrated by RUNX2 and CEMP1 immunoreactivity. Early stages of mineralization were demonstrated by calcium and phosphate staining. Our results reinforce the previously published reports of PDL cell mineralization in vivo and further demonstrate the successful induction of specific osteogenic and cementogenic differentiation of transplanted human PDL cells in vivo. These findings reveal promising possibilities for supporting periodontal remodeling and regeneration processes with PDL cells being potential target cells with which to influence the process of orthodontically induced root resorption.

  15. Prospective randomized clinical trial comparing the effects of a masticatory bite wafer and avoidance of hard food on pain associated with initial orthodontic tooth movement.

    PubMed

    Otasevic, Mladen; Naini, Farhad B; Gill, Daljit S; Lee, Robert T

    2006-07-01

    The purpose of this prospective, randomized clinical trial was to compare the use of masticatory bite wafers with the avoidance of mastication in reducing pain and discomfort associated with initial orthodontic tooth movement. Eighty-four subjects (mean age, 14.1 years), randomly allocated to a bite-wafer group (BWG) or a reduced-mastication group (RMG), completed the study. In each subject, 1 arch was bonded and ligated with a round austenitic active 0.016-in nickel-titanium wire, and placebo instructions were given. The subjects in the BWG then performed immediate supervised mastication of the wafers for 10 minutes, and they were instructed thereafter to bite on the wafers to prevent pain for the next 7 days. The subjects in the RMG were instructed not to masticate for 3 hours after placement of the fixed appliance and to avoid masticating hard food for 7 days. Each patient's level of anxiety was assessed before treatment with standard psychometric questionnaires. Each patient recorded the level of pain immediately after archwire ligation on a 100-mm visual analogue scale (VAS) and used a pain diary with a verbal rating scale for the next 7 days. No statistically significant differences in the VAS immediately after ligation of the archwires were observed between the 2 groups. The median pain score for the BWG was higher for the first 4 days. The median peak difference was reached on the evening of the first day. At this maximum value, the median pain score of the BWG was higher and statistically significant (P = .006). Although the amount of pain and discomfort reported by the patients undergoing fixed orthodontic therapy varied, more pain was reported by those using bite wafers than by those who avoided masticatory activity after placement of fixed appliances.).

  16. A three-dimensional analysis of soft and hard tissue changes after a mandibular setback surgery.

    PubMed

    Kim, Nam-Kug; Lee, Cheol; Kang, Suk-Ho; Park, Jae-Woo; Kim, Myung-Jin; Chang, Young-Il

    2006-09-01

    This paper is concerned with a three-dimensional (3D) analysis on soft and hard tissue changes after mandibular setback surgery. For comparing with previous two-dimensional (2D) cephalometric data, we proposed a three-dimensional registration and analysis method based on the cephalometric knowledge. The 3D changes of bone, soft tissue and the ratio of soft tissue to bony movement were investigated in eight skeletal class III mandibular prognathism patients. CT scans of each patient were taken at pre- and post-operative states. Each scan was registered to a universal 3D coordinate system defined by cephalometric landmarks. A grid, parallel to the coronal plane, was also designed for the comparison of the changes. The bone and soft tissue was intersected by the projected line from each point on the grid. The coordinate values of intersected point were measured and compared between the pre- and post-operative models. In addition, the reproducibility of the universal coordinate system and the grid was evaluated. The facial surface changes after setback surgery occurred not only in the mandible but also in the mouth corner region. The soft tissue changes of the mandible were measured relatively by the proportional ratios to the bone changes. The ratios at the mid-sagittal plane were 77-102% (p<0.05). The ratios at all other sagittal planes had similar patterns to the mid-sagittal plane with decreased values. All the results conformed to the previous 2D based clinical knowledge and instinct of orthodontists. It is expected that the proposed approach would be applicable to other oral and maxillofacial surgeries as well as plastic surgeries.

  17. Palpation force modulation strategies to identify hard regions in soft tissue organs

    PubMed Central

    Konstantinova, Jelizaveta; Cotugno, Giuseppe; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2017-01-01

    This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe. PMID:28199349

  18. Functional micro-imaging of soft and hard tissue using synchrotron light

    NASA Astrophysics Data System (ADS)

    Thurner, Philipp J.; Wyss, Peter; Voide, Romain; Stauber, Martin; Muller, Bert; Stampanoni, Marco; Hubbell, Jeffrey A.; Muller, Ralph; Sennhauser, Urs

    2004-10-01

    In current biological and biomedical research, quantitative endpoints have become an important factor of success. Classically, such endpoints were investigated with 2D imaging, which is usually destructive and the 3D character of tissue gets lost. 3D imaging has gained in importance as a tool for both, qualitative and quantitative assessment of biological systems. In this context synchrotron radiation based tomography has become a very effective tool for opaque 3D tissue systems. Cell cultures and adherent scaffolds are visualized in 3D in a hydrated environment, even uncovering the shape of individual cells. Advanced morphometry allows to characterize the differences between the cell cultures of two distinct phenotypes. Moreover, a new device is presented enabling the 3D investigation of trabecular bone under mechanical load in a time-lapsed fashion. Using the highly brilliant X-rays from a synchrotron radiation source, bone microcracks and an indication for un-cracked ligament bridging are uncovered. 3D microcrack analysis proves that the classification of microcracks from 2D images is ambiguous. Fatigued bone was found to fail in burst-like fashion, whereas non-fatigued bone exhibited a distinct failure band. Additionally, a higher increase in microcrack volume was detected in fatigued in comparison to non-fatigued bone. The developed technologies prove to be very effective tools for advanced 3D imaging of both hard and soft tissue.

  19. Palpation force modulation strategies to identify hard regions in soft tissue organs.

    PubMed

    Konstantinova, Jelizaveta; Cotugno, Giuseppe; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2017-01-01

    This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe.

  20. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    PubMed

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology.

  1. Tissue concentrations of four Taiwanese toothed cetaceans indicating the silver and cadmium pollution in the western Pacific Ocean.

    PubMed

    Chen, Meng-Hsien; Zhuang, Ming-Feng; Chou, Lien-Siang; Liu, Jean-Yi; Shih, Chieh-Chih; Chen, Chiee-Young

    2017-04-22

    Muscle, lung, kidney and liver tissues of 45 bycatch and stranded cetaceans, including 14 Grampus griseus (Gg), 7 Kogia simus (Ks), 10 Lagenodelphis hosei (Lh), and 14 Stenella attenuata (Sa), were collected in the waters off Taiwan from 1994 to 1995, and from 2001 to 2012. Baseline concentrations (in μgg(-1) dry weight) of the cetaceans were lung (<0.05)=muscle (<0.05)tissue concentrations in the toothed cetaceans are suggested. Marked high concentrations of Ag and Cd found in Gg and Lh are highly related to their squid-eating and deep diving habits. The highest ever recorded concentrations of liver-Ag and kidney-Cd were found in two Lh. These Taiwanese cetaceans indicate marked Ag and Cd pollution in the recent two decades in the western Pacific Ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition.

    PubMed

    Cobourne, Martyn T; Sharpe, Paul T

    2013-01-01

    In humans, inherited variation in the number, size, and shape of teeth within the dentitions are relatively common, while rarer defects of hard tissue formation, including amelogenesis and dentinogenesis imperfecta, and problems associated with tooth eruption are also seen. In many cases, these anomalies occur in isolation, but they can also present as a feature of numerous well-characterized developmental syndromes. Complex reiterative signaling between the epithelium and mesenchyme is a feature of normal tooth development in the embryo, occurring from early patterning through morphogenesis, hard tissue formation and during root development. Significant events also occur during postnatal development of the dentition, including hard tissue maturation and tooth eruption. In the last decade, advances in human and mouse genetics have meant that in many cases candidate genes have been identified for these anomalies. These genes have provided a useful platform for developmental biologists, allowing them to begin elucidating how these signals interact to generate a functional dentition and understand the mechanisms underlying many of the anomalies that are seen in human populations. In this article, we review current concepts relating to the developmental biology of tooth number, size, and shape, formation of the dental hard tissues and eruption of the tooth into the oral cavity. We will focus on the molecular mechanisms underlying these processes in both health and disease.

  3. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  4. Infrared spectroscopy of laser-irradiated dental hard tissues using the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Breunig, Thomas

    2001-04-01

    FTIR spectroscopy used in the specular reflectance mode is well suited for resolving thermally induced changes in dental hard tissue as a result of laser irradiation. High spatial resolution is achievable with a high brightness synchrotron radiation source such as the ALS at Lawrence Berkeley National Laboratory. IR spectra of modified enamel were acquired after laser ablation using several laser wavelengths from the UV to the mid-IR. Specific areas of laser ablation craters were probed non-destructively with 10-micrometers spatial resolution. The chemical composition of the crater walls deviates markedly from that of hydroxyapatite after Er:YAG and CO2 laser irradiation without added water. New mineral phases were resolved that have not been previously observed using conventional IR spectroscopy.

  5. Smile analysis in different facial patterns and its correlation with underlying hard tissues.

    PubMed

    Grover, Neha; Kapoor, D N; Verma, Santosh; Bharadwaj, Preeti

    2015-01-01

    The subject's inherent growth pattern can be an effective factor in characteristics of smile. More vertical growth in the posterior maxilla than in the anterior maxilla could result in a changed relationship between the occlusal plane and the curvature of the lower lip upon smile. In order to broaden the understanding of how smile gets affected by growth pattern and the underlying hard tissues, the present study was undertaken to compare smile in various growth patterns, to determine sexual dimorphism, if any; as well as to correlate smile with underlying hard tissues. One hundred and fifty subjects were selected amongst the students in the Dental Institute and from the outpatient department of Department Orthodontics and Dentofacial Orthopedics. Sample selected for the study ranged in the age group of 17 to 25 years. Selected individuals were subjected to lateral head cephalometric radiography in the Department of Oral Medicine and Radiology and videography. Cephalograms were traced and the subjects were divided into horizontal, average, and vertical growth pattern on the basis of GoGn-SN, lower anterior facial height, and Jaraback's ratio. The video clip was downloaded to obtain frame of posed smile. Cephalometric and photographic measurements were recorded and subjected to statistical analysis. The mean values of smile parameters were significantly higher in males as compared to females irrespective of the growth pattern. The mean incisal display, interlabial gap, lower lip to incisal edge distance, upper vertical lip length, and occlusal plane angle was highest in both males and females of vertical facial growth pattern group; whereas, the smile index, posterior corridor (left and right) were less in vertical facial growth pattern group in both males and females. Thus, the parameters in vertical dimension were increased in vertical growers whereas, the parameters in transverse dimension decreased. The facial growth pattern has significant influence on the

  6. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.

    PubMed

    Kim, Hae-Won; Lee, Eun-Jung; Jun, In-Kook; Kim, Hyoun-Ee; Knowles, Jonathan C

    2005-10-01

    Phosphate-based glass (P-glass) and poly(epsilon-caprolactone) (PCL) composites were fabricated in a sheet form by solvent extraction and thermal pressing methods, and the antibiotic drug Vancomycin was loaded within the composites for use as a hard-tissue regenerative. The degradation and drug-release rate of the composites in vitro were tailored by modifying the glass composition: 0.45 P(2)O(5)-x CaO-(0.55-x)Na(2)O, where x=0.2, 0.3, 0.4, and 0.5. Compared to pure PCL, all the P-glass/PCL composites degraded to a higher degree, and the composite with lower-CaO glass showed a higher material loss. This was attributed mainly to the dissolution of the glass component. The glass dissolution also increased the degradation of PCL component in the composites. The Vancomycin release from the composites was strongly dependent on the glass composition. Drug release in pure PCL was initially abrupt and flattened out over a prolonged period. However, glass/PCL composites (particularly in the glass containing higher-CaO) exhibited a reduced initial burst and a higher release rate later. Preliminary cell tests on the extracts from the glass/PCL composites showed favorable cell proliferation, but the level was dependent on the ionic concentration of the extracts. The cell proliferation on the diluted extracts from the composite with higher-CaO glass was significantly higher than that on the blank culture dish. These observations confirmed that the P-glass/PCL composites are potentially applicable for use as hard-tissue regeneration and wound-healing materials because of their controlled degradation and drug-release profile as well as enhanced cell viability.

  7. OCT monitoring of diffusion of clearing agents within tooth dentin

    NASA Astrophysics Data System (ADS)

    Trunina, N. A.; Lychagov, V. V.; Tuchin, V. V.

    2009-08-01

    Monitoring of agent diffusion within tooth tissues is important in a wide context of tooth therapy (diffusion of medicinal preparations) and cosmetics (chemical whitening agents). We report here the results of optical coherence tomography (OCT) monitoring of diffusion of water and glycerol as clearing agents in samples of human tooth tissue. The diffusion process is analyzed by monitoring the changes in the OCT signal slope and the depth-resolved amplitude of OCT signal from a sample. Slow temporal kinetics of the mean attenuation coefficient was measured to monitor a saturable optical clearing due to the diffusion of the agent. The average permeability coefficient was estimated by dividing the measured thickness of the selected region by the time it took for the agent to diffuse through. The experimental results demonstrate that OCT can be an efficient tool in the study of agent diffusion through hard tissues.

  8. Short-term hard and soft tissue changes after mandibular advancement surgery in Class II patients: a retrospective cephalometric study.

    PubMed

    Storms, A S; Miclotte, A; Grosjean, L; Cadenas de Llano-Pérula, M; Alqerban, A; Fieuws, S; Sun, Y; Politis, C; Verdonck, A; Willems, G

    2017-10-01

    The aim of this study was to describe hard and soft tissue changes after mandibular advancement surgery and to investigate the possible differences between Class II facial patterns. Lateral cephalograms of 109 patients who underwent combined orthodontic treatment and bilateral sagittal split osteotomy (BSSO) were studied. Radiographs were taken within 6 weeks before surgery (T0) and at least 6 months postoperatively (T1). Patients were classified into 3 groups according to the preoperative mandibular plane angle. Hard- and soft-tissue changes were analysed with an x-y cranial base coordinate system. Measurements were evaluated statistically. Soft and hard tissues of the chin moved forward and downward. The position of the upper lip remained unchanged, while the lower lip moved forward and upward and decreased in thickness. The soft tissue points of the chin follow their corresponding skeletal points almost completely, while the change of the lower lip was only 76 per cent of the movement of the underlying hard tissue. The increase of SNB was more evident in the low-angle group, as well as improvement of the facial convexity. Stomium superius moved more forward in the low- and medium-angle cases. Ratios of hard and soft tissue changes showed no differences for different facial patterns. Limitations derived from the retrospective study design. Only short-term changes could be addressed. The distinction between surgical changes and changes due to skeletal relapse is difficult to assess. Also, the difficulty to reproduce a relaxed lip position during imaging may influence our results. Class II characteristics improved after mandibular advancement. Soft tissues of the chin follow their skeletal structures almost in a 1:1 relationship, while movement of the lower lip was less predictable. The facial pattern of Class II patients should be considered in treatment planning.

  9. Tooth Decay

    MedlinePlus

    You call it a cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole in your tooth. The cause of tooth decay is plaque, a sticky substance in your mouth made up mostly of germs. Tooth decay starts in the outer layer, called the enamel. Without ...

  10. Testing adhesion of direct restoratives to dental hard tissue - a review.

    PubMed

    Salz, Ulrich; Bock, Thorsten

    2010-10-01

    This articles concerns itself with the testing of adhesion between direct restoratives and dental hard tissue, ie, enamel and dentin. The aim is to survey available methods for adhesion testing and influential parameters affecting experimental outcome. The testing of adhesion to indirect restorative materials, eg, ceramics and metals, is beyond the scope of this article and shall be discussed elsewhere. The longevity and success of modern dental restorations very often relies on potent dental adhesives to provide durable bonds between the dental hard substance and the restorative composite. To predict the clinical outcome of such restorative treatment, a large variety of in vitro laboratory tests and clinical in vivo experiments have been devised, analyzed, and published. The purpose of this review is to provide a current overview of bond strength testing methods and their applicability to the characterization of dental adhesives. Regardless of the method employed, subtle variations in sample preparation may already severely impact test results, usually necessitating at least co-testing of a well-known internal reference to allow conclusive interpretation. This article attempts to list and discuss the most influential parameters, such as substrate nature, age, health status, storage, clinically relevant pre-treatment, and sample preparation. Special attention is devoted to the last aspect, as numerous publications have stressed the tremendous influence of preparatory parameters on the validity and scope of obtained data. Added to the large variety of such factors, an equally large diversity of load-applying procedures exists to actually quantify adhesion between composites and dental hard substance. This article summarizes the basics of macro and micro approaches to shear and tensile bond strength testing, as well as push- and pull-out tests. The strengths and weaknesses inherent to each method and influential test parameters are reviewed and methods for

  11. [Soft tissue angle evaluation of fixed Twin-Block appliance treatment and tooth extraction treatment in skeletal Class II malocclusion].

    PubMed

    Gong, Yao; Li, Pei-lun; Wang, Hong-hong; Yu, Quan; Wei, Bin; Shen, Gang

    2016-02-01

    This cephalometric study was designed to evaluate the soft tissue profile effects of Twin-Block combined with straight wire appliances in the treatment of skeletal Class II malocclusion with mandibular retrognathia in growing individuals by angulation. The sample comprised 31 growing individuals with skeletal Class II and mandibular retrognathia, which were divided into 2 groups. One group (18 patients) was treated with fixed Twin-Block combined with fixed appliance, the other group (13 patients) was only treated with fixed appliance after tooth extraction. Pretreatment and posttreatment lateral cephalograms were taken before and after Twin-Block treatment and after all the fixed appliance treatment. Angular cephalometric measurements of soft tissue were analyzed statistically. Intragroup and intergroup changes of the 2 groups were evaluated by Student's t test using SPSS 15.0 software package. Significant difference of FH-N'Pg', G-Pn-Pg', LiSi-SN and SnLs-SiLi were discovered in both groups (P<0.05). With Twin-Block combined with fixed appliance, N'-Sn-Pg', Sn-N'-Si and Si-N'-S changed significantly, while LsSn-SN and Z angle differed significantly before and after treatment with extraction and fixed appliance. After treatment of Twin-Block combined with fixed appliance, Sn-N'-Si decreased significantly, and the difference between the change of the 2 groups was significant. Meanwhile LsSn-SN was stable in combined treatment group while it decreased greatly after extraction. Compared with extraction with fixed appliance treatment, Twin-Block combined with fixed appliance treatment is more favorable in promoting lower facial profile in growing skeletal Class II individuals with mandibular retrognathia.

  12. Images of Soft-bodied Animals with External Hard Shell: 3D Visualization of the Embedded Soft Tissue

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Images of soft-bodied animals (snails) of various types with external hard shell are obtained for 25, 27 and 29 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The interior properties of the embedded soft tissue are analysed utilizing the software. From the reconstructed images, the soft tissue distribution, void spaces associated with the soft tissue and external hard shell are identified. 3D images are reconstructed at these energies and optimum energy is chosen based on the quality of the image for further analysis. The optimum energy allowed us to visualize the visibility of low absorbing details and interior microstructure of the embedded soft tissue.

  13. Combined soft and hard tissue peri-implant plastic surgery techniques to enhance implant rehabilitation: a case report.

    PubMed

    Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora

    2014-01-01

    This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation.

  14. Combined Soft and Hard Tissue Peri-Implant Plastic Surgery Techniques to Enhance Implant Rehabilitation: A Case Report

    PubMed Central

    Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora

    2014-01-01

    This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation. PMID:25489351

  15. Combined effects of estrogen deficiency and cadmium exposure on calcified hard tissues: animal model relating to itai-itai disease in postmenopausal women.

    PubMed

    Kakei, Mitsuo; Sakae, Toshiro; Yoshikawa, Masayoshi

    2013-01-01

    Using ovariectomized rats as a model of postmenopausal women, we studied the effects of estrogen (Es) deficiency and in combination with cadmium (Cd) exposure on the calcified hard tissues related to the development of itai-itai disease. Es deficiency suppressed the synthesis of carbonic anhydrase required for the crystal nucleation process, causing the crystal structure defects in the tooth enamel. Regarding the combined effects of Es deficiency and Cd exposure on the bone, in which rats were given drinking water containing Cd ions, soft X-ray radiography revealed a development of labyrinthine pattern in the calvaria, and micro-computed tomography demonstrated the declining trabecular architecture of the tibia, suggesting Cd-induced osteoporotic change. Further, electron microscopy showed the increase of amorphous minerals in the calvaria. In conclusion, the combined effects of Es deficiency and Cd exposure can be responsible for accelerating the declining bone strength together with the crystal structure defects resulting in the preferential occurrence of itai-itai disease in postmenopausal women.(Communicated by Tatsuo SUDA, M.J.A.).

  16. Combined effects of estrogen deficiency and cadmium exposure on calcified hard tissues: Animal model relating to itai-itai disease in postmenopausal women

    PubMed Central

    KAKEI, Mitsuo; SAKAE, Toshiro; YOSHIKAWA, Masayoshi

    2013-01-01

    Using ovariectomized rats as a model of postmenopausal women, we studied the effects of estrogen (Es) deficiency and in combination with cadmium (Cd) exposure on the calcified hard tissues related to the development of itai-itai disease. Es deficiency suppressed the synthesis of carbonic anhydrase required for the crystal nucleation process, causing the crystal structure defects in the tooth enamel. Regarding the combined effects of Es deficiency and Cd exposure on the bone, in which rats were given drinking water containing Cd ions, soft X-ray radiography revealed a development of labyrinthine pattern in the calvaria, and micro-computed tomography demonstrated the declining trabecular architecture of the tibia, suggesting Cd–induced osteoporotic change. Further, electron microscopy showed the increase of amorphous minerals in the calvaria. In conclusion, the combined effects of Es deficiency and Cd exposure can be responsible for accelerating the declining bone strength together with the crystal structure defects resulting in the preferential occurrence of itai-itai disease in postmenopausal women. PMID:23883612

  17. Comparison of Cephalometric Hard and Soft Tissues 
of Adolescents with Angle Class II Division 1 Malocclusion between Northern Chinese Population and Northern Indian Population.

    PubMed

    Rana, Naman; Qu, Yin Ying; Wei, Yao; Liu, Lin

    To determine if there was a difference in hard and soft tissue between northern Chinese and northern Indian adolescents with Angle Class II division 1 malocclusion. A total of 40 Angle Class II division 1 patients, including 20 boys and 20 girls aged 10 to 13 years with no prior treatment, were selected from northern China and northern India, respectively. Overall, 80 cephalometric data were analysed based on two-sample t-test with SPSS software. The Chinese subjects had larger anterior facial height and mandibular plane angle. Analysis of dentoalveolar complex showed that the Chinese subjects had more proclined incisors, protruding upper lips and more upper posterior tooth height than that of the Indian subjects. The length of the maxilla and mandible was larger in the Indian subjects than that of the Chinese subjects, but the length of mandible was not significantly different between the two groups. Compared with the Indian subjects, the Chinese subjects with Class II division 1 malocclusion had less prognathic maxillas, more protruding lips, steeper mandibular plane angles and more proclined maxillary incisors. Within the same gender, the Indian boys had more protruded faces and Indian girls had more protruded maxillas, steeper mandibular plane angles and fuller lips.

  18. Rapid ablation of dental hard tissue using promoter-assisted pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Frederickson, Christopher J.; Lu, Quiang; Hayes, Donald J.; Wallace, David B.; Grove, Michael E.; Bell, Brent A.; Motamedi, Massoud; Rastegar, Sohi; Wright, C. G.; Arcoria, Charles J.

    1997-05-01

    Nd:YAG lasers have been used previously for selective removal of various material from teeth. To permit ablation of healthy enamel with the Nd:YAG laser, we have adopted a strategy in which micro-drops of photoabsorptive 'promoters' are placed on the enamel to enhance absorption of individual laser pulses. Ink-jet technology dispenses the micro-drops with micron- and millisecond-scale precision. Various promoters using drug and cosmetic dyes, indocyanine green, or carbon-black pigments have been studied. Typical ablation parameters are 1.064 micrometers ; 20-180 mJ per pulse; 100 microsecond(s) ; 10-30 pulses/sec; 0.2-2.0 nl drops. Recent results from the program include: (1) For a variety of promoters, a monotonic relationship obtains between absorption coefficient at 1.064 micrometers and the efficiency of ablation of enamel. (2) With different promoter volumes, the efficiency of ablation rises, plateaus, then falls with increasing volume. (3) At drilling rates of 30 pulses/sec, ablation efficiency approaches rates of 0.1 mm3/sec. LM and SEM observations show a glassy 'pebbled' crater surface indicative of hydroxyapatite that has cooled, condensed, and solidified on the crater walls. Together these results favor the view that a micro-drop promoter-assisted Nd:YAG drill can five clinically useful ablations hard dental tissue.

  19. Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues.

    PubMed

    Mehdizadeh, Saeed; Austeng, Andreas; Johansen, Tonni F; Holm, Sverre

    2012-10-01

    Minimum variance (MV) based beamforming techniques have been successfully applied to medical ultrasound imaging. These adaptive methods offer higher lateral resolution, lower sidelobes, and better definition of edges compared to delay and sum beamforming (DAS). In standard medical ultrasound, the bone surface is often visualized poorly, and the boundaries region appears unclear. This may happen due to fundamental limitations of the DAS beamformer, and different artifacts due to, e.g., specular reflection, and shadowing. The latter can degrade the robustness of the MV beamformers as the statistics across the imaging aperture is violated because of the obstruction of the imaging beams. In this study, we employ forward/backward averaging to improve the robustness of the MV beamforming techniques. Further, we use an eigen-spaced minimum variance technique (ESMV) to enhance the edge detection of hard tissues. In simulation, in vitro, and in vivo studies, we show that performance of the ESMV beamformer depends on estimation of the signal subspace rank. The lower ranks of the signal subspace can enhance edges and reduce noise in ultrasound images but the speckle pattern can be distorted.

  20. Molecular, cellular and pharmaceutical aspects of autologous grafts for peri-implant hard and soft tissue defects.

    PubMed

    Lu, Jiayu; Hao, Yongming; Zhao, Wei; Lv, Chengqi; Zou, Derong

    2016-12-01

    The lack of supporting hard and soft tissues always prevents the rehabilitation with dental implants. Among various hard and soft tissue augmentation procedures, autologous grafts have been considered to be the gold standard. Autologous mesenchymal stem cells (MSCs) from bone marrow, dental tissue and adipose tissue have been described as promising alternatives for bone regeneration in the field of dental implantation. Mucosal cells, gingival fibroblasts and dental progenitor cells (DPS) can enhance peri-implant soft tissue augmentation and regenerate periodontal tissues around dental implants. Obtained from patients, platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are enriched in autologous platelets, which contain a great deal of growth factors and cytokines that are conducive to the regeneration of both hand and soft tissues around dental implants. Pharmaceutical treatments for osteoporosis and diabetes should be locally applied with implant procedures to restrict the resorption of autologous bone grafts and reduction of bone volume. Although autografts hold great potentials for dental implants, new approaches should also be explored with minimally invasion donor sites methods such as tissue engineering combined with autologous three factors and bio-3D printing involving self-assembling cell aggregates.

  1. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied.

    PubMed

    Miyoshi, K; Igarashi, K; Saeki, S; Shinoda, H; Mitani, H

    2001-08-01

    The purpose of this study was to investigate whether there are any differences in tooth movement or in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day. One hundred 6-week-old male Wistar rats were divided into one control group without force application and three experimental groups based on the time of day the force was applied to the upper first molars. Animals in the whole-day group received force continuously throughout the experimental period, while animals in the light- and dark-period groups received force only during the light (07:00-19:00) or dark period (19:00-07:00), respectively. Tooth movement was measured using the occlusal view of a precise plaster model with a profile projector. Periodontal tissues were evaluated histologically. The time course of tooth movement varied among the groups. Tooth movement over 21 days in the whole-day and light-period groups was about twice that as in the dark-period group. The formation of new bone on the tension side in the whole-day and light-period groups was more than twice that as in the dark-period group. On the pressure side, more osteoclasts appeared on the alveolar bone in the whole-day and light-period groups than in the dark-period group. The light-period group showed less extensive hyalinization of the periodontal ligament (PDL) than the whole-day group. The area of root resorption on day 21 also varied among the groups. Interference by masticatory forces did not seem to be a principal cause of the decreased tooth movement in the dark-period group. These results indicate that there are considerable variations in tooth movement and in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day in rats. The results suggest that diurnal rhythms in bone metabolism have important implications in orthodontic treatment.

  2. Tooth embedded in tongue following firearm trauma: report of two cases.

    PubMed

    de Santana Santos, Thiago; Melo, Auremir Rocha; Pinheiro, Roberto Tiago Alves; Antunes, Antonio Azoubel; de Carvalho, Ricardo Wathson Feitosa; Dourado, Edwaldo

    2011-08-01

    Injuries caused by projectiles from firearms involve diverse patterns of dentoalveolar trauma due to the different types of wound and extent of tissue damage. This article reports two cases in which tooth fragments were embedded in the tongue following aggression from a firearm projectile in the facial region. Radiographs confirmed the presence of foreign bodies, which were surgically removed under local anesthesia. When dentoalveolar trauma occurs in facial injuries, both hard and soft tissues must be carefully examined to avoid overlooking embedded tooth fragments not located immediately in the soft tissue. © 2011 John Wiley & Sons A/S.

  3. Bioceramic/poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue.

    PubMed

    Gala-Garcia, Alfonso; Teixeira, Karina Imaculada Rosa; Wykrota, Francisco Henrique Lana; Sinisterra, Rubén Dario; Cortés, Maria Esperanza

    2010-01-01

    The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC) and poly (glycolic)-poly (lactic acid) (PLGA) material or a calcium hydroxide [Ca(OH)2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH)2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH)2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  4. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  5. Bioengineered teeth from cultured rat tooth bud cells.

    PubMed

    Duailibi, M T; Duailibi, S E; Young, C S; Bartlett, J D; Vacanti, J P; Yelick, P C

    2004-07-01

    The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.

  6. Tooth Disorders

    MedlinePlus

    ... include eating, speaking and even smiling. But tooth disorders are nothing to smile about. They include problems ... your teeth. Fortunately, you can prevent many tooth disorders by taking care of your teeth and keeping ...

  7. Tooth anatomy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002214.htm Tooth anatomy To use the sharing features on this page, ... upper jawbone is called the maxilla. Images Tooth anatomy References Lingen MW. Head and neck. In: Kumar ...

  8. [Tooth erosion - a multidisciplinary approach].

    PubMed

    Strużycka, Izabela; Rusyan, Ewa; Bogusławska-Kapała, Agnieszka

    2016-02-01

    During the last decades, an increasingly greater interest in dental erosion has been observed in clinical dental practice, in dental public health and in dental research because prevalence of erosive tooth wear is still increasing especially in young age group of population. Erosive tooth wear is a multifactorial etiology process characterized by progressive loss of hard dental tissue. It is defined as the exogenous and/or endogenous acids dissolution of the dental tissue, without bacterial involvement. In the development of dental erosive wear, interactions are required which include chemical, biological, behavioral, diet, time, socioeconomic, knowledge, education, and general health factors. Examples of risk groups could be patients with eating disorders, like anorexia nervosa or bulimia nervosa, gastroesophageal reflux disease, chronic alcohol abuse or dependence. Special nutrition habits groups with high consumption of soft or sport drinks, special diets like vegetarian, vegan or raw food diet, the regular intake of drugs, medications and food supplements can also increase the risk for dental erosion. Comprehensive knowledge of the different risk and protective factors is a perquisite for initiating adequate preventive measures. © 2016 MEDPRESS.

  9. Investigation into the interaction of a XeCl excimer laser with hard tissue

    NASA Astrophysics Data System (ADS)

    Murray, Andrea K.; Dickinson, Mark R.

    2000-06-01

    An investigation into the interaction of a fiber deliverable, long pulse, xenon chloride (308 nm) excimer laser with hard biotissue has been carried out. The laser produces pulses of 200+ ns as opposed to around 10 - 20 ns for most of the previously reported data. The threshold of ablation and the maximum ablation depth (AD) in human molar dentine were found to be 0.30 +/- 0.05 J/cm2 and 1.57 +/- 0.04 micrometer/pulse respectively. The threshold for enamel was found to be above the achievable fluence with the available optics. The ablation process was investigated as a function of fluence (approximately 0.1 - 6 J/cm2), pulse repetition rate (PRR) (5 - 25 Hz) and number of pulses (500 - 4000). Each variable was altered independently of the other two. At a constant number of pulses, ablation depth per pulse was found to increase linearly as a function of fluence, up to a saturation fluence of approximately 4 J/cm2. Variation of the PRR alone was found to affect both the ablation threshold and the AD. For constant fluence and PRR, AD decreases non- linearly with an increasing number of pulses. This could be because at high pulse numbers the craters are deep, the walls of the crater absorb more energy and as it is increasingly difficult for the debris to escape, shielding of the tissue occurs. Shielding may also be due to absorption in a luminescent plume. At high fluence and PRR, sharp holes were formed in the dentine although charring was sometimes found around the edges. High PRR also induced considerable mechanical damage.

  10. Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation.

    PubMed

    Mrozik, Krzysztof Marek; Gronthos, Stan; Menicanin, Danijela; Marino, Victor; Bartold, P Mark

    2012-06-01

    Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared

  11. Hard and Soft Tissue Management of a Localized Alveolar Ridge Atrophy with Autogenous Sources and Biomaterials: A Challenging Clinical Case

    PubMed Central

    Andreoni, D.

    2016-01-01

    Particularly in the premaxillary area, the stability of hard and soft tissues plays a pivotal role in the success of the rehabilitation from both a functional and aesthetic aspect. The present case report describes the clinical management of a localized alveolar ridge atrophy in the area of the upper right canine associated with a thin gingival biotype with a lack of keratinized tissue. An autogenous bone block harvested from the chin associated with heterologous bone particles was used to replace the missing bone, allowing for a prosthetic driven implant placement. Soft tissues deficiency was corrected by means of a combined epithelialized and subepithelial connective tissue graft. The 3-year clinical and radiological follow-up demonstrated symmetric gingival levels of the upper canines, with physiological peri-implant probing depths and bone loss. Thus, the use of autogenous tissues combined with biomaterials might be considered a reliable technique in case of highly aesthetic demanding cases. PMID:27738534

  12. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids.

    PubMed

    Robino, C; Pazzi, M; Di Vella, G; Martinelli, D; Mazzola, L; Ricci, U; Testi, R; Vincenti, M

    2015-11-01

    Identification of human remains can be hindered by several factors (e.g., traumatic mutilation, carbonization or decomposition). Moreover, in some criminal cases, offenders may purposely adopt various expedients to thwart the victim's identification, including the dissolution of body tissues by the use of corrosive reagents, as repeatedly reported in the past for Mafia-related murders. By means of an animal model, namely porcine samples, we evaluated standard DNA typing as a method for identifying soft (muscle) and hard (bone and teeth) tissues immersed in strong acids (hydrochloric, nitric and sulfuric acid) or in mixtures of acids (aqua regia). Samples were tested at different time intervals, ranging between 2 and 6h (soft tissues) and 2-28 days (hard tissues). It was shown that, in every type of acid, complete degradation of the DNA extracted from soft tissues preceded tissue dissolution and could be observed within 4h of immersion. Conversely, high molecular weight DNA amenable to STR analysis could be isolated from hard tissues as long as cortical bone fragments were still present (28 days for sulfuric acid, 7 days for nitric acid, 2 days for hydrochloric acid and aqua regia), or the integrity of the dental pulp chamber was preserved (7 days, in sulfuric acid only). The results indicate that DNA profiling of acid-treated body parts (in particular, cortical bone) is still feasible at advanced stages of corrosion, even when the morphological methods used in forensic anthropology and odontology can no longer be applied for identification purposes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Effects of thread size in the implant neck area on peri-implant hard and soft tissues: an animal study.

    PubMed

    Choi, Jay-Yong; Moon, Ik-Sang; Yun, Jeong-Ho; Park, Kwang-Ho; Huh, Jong-Ki; Lee, Dong-Won

    2016-09-01

    The aim of this animal study was to examine the effects of thread size in the implant neck area on peri-implant tissues in terms of BIC and hard- and soft-tissue dimensions. Six Beagle dogs received experimental implants in the mandible 3 month after the removal of premolars and first molars (P2, P3, P4, and M1). Two different types of implants were installed in each animal: Anyone microthread(®) as Group 1 and Anyone(®) as Group 2. Resonance frequency test, intraoral radiography, micro-CT, and histomorphometry were used to evaluate peri-implant tissue after implantation periods of 4 and 8 weeks. No remarkable complication was observed during the healing period in either group. Resonance frequency testing revealed no significant difference between groups. In radiographic evaluation, Group 2 showed more bone loss than Group 1. However, this difference was not statistically significant. In the micro-CT analysis, BIC and BIV values and soft-tissue height were not significant in both groups. Histological analysis revealed no significant difference in BIC ratio, bone density, or bone loss between groups. However, soft-tissue height was significantly greater in Group 2 than in Group 1 (P = 0.0004). No difference in peri-implant hard or soft tissues was observed according to thread size in the implant neck area. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. 3D imaging of dental hard tissues with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yueli L.; Yang, Yi; Ma, Jing; Yan, Jun; Shou, Yuanxin; Wang, Tianheng; Ramesh, Aruna; Zhao, Jing; Zhu, Quing

    2011-03-01

    A fiber optical coherence tomography (OCT) probe is used for three dimensional dental imaging. The probe has a lightweight miniaturized design with a size of a pen to facilitate clinic in vivo diagnostics. The probe is interfaced with a swept-source / Fourier domain optical coherence tomography at 20K axial scanning rate. The tooth samples were scanned from occlusal, buccal, lingual, mesial, and distal orientations. Three dimensional imaging covers tooth surface area up to 10 mm x 10 mm with a depth about 5 mm, where a majority of caries affection occurs. OCT image provides better resolution and contrast compared to gold standard dental radiography (X-ray). In particular, the technology is well suited for occlusal caries detection. This is complementary to X-ray as occlusal caries affection is difficult to be detected due to the X-ray projectile scan geometry. The 3D topology of occlusal surface as well as the dentin-enamel junction (DEJ) surface inside the tooth can be visualized. The lesion area appears with much stronger back scattering signal intensity.

  15. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    PubMed

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  16. Microanatomy of Passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; Blake, J.; Swor, Rhonda; O'Hara, Todd M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  17. Microanatomy of passerine hard-cornified tissues: Beak and claw structure of the black-capped chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, C.; Handel, C.M.; Blake, J.E.; Swor, R.M.; O'Hara, T. M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as "avian keratin disorder." We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species. ?? 2011 Wiley Periodicals, Inc.

  18. Microanatomy of passerine hard-cornified tissues: beak and claw structure of the black-capped chickadee (Poecile atricapillus).

    PubMed

    Van Hemert, Caroline; Handel, Colleen M; Blake, John E; Swor, Rhonda M; O'Hara, Todd M

    2012-02-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as "avian keratin disorder." We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  19. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis.

    PubMed

    De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei

    2014-02-01

    The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.

  20. Reduction of hard-tissue debris accumulation during rotary root canal instrumentation by etidronic acid in a sodium hypochlorite irrigant.

    PubMed

    Paqué, Frank; Rechenberg, Dan-Krister; Zehnder, Matthias

    2012-05-01

    Hard-tissue debris is accumulated during rotary instrumentation. This study investigated to what extent a calcium-complexing agent that has good short-term compatibility with sodium hypochlorite (NaOCl) could reduce debris accumulation when applied in an all-in-one irrigant during root canal instrumentation. Sixty extracted mandibular molars with isthmuses in the mesial root canal system were selected based on prescans using a micro-computed tomography system. Thirty teeth each were randomly assigned to be instrumented with a rotary system and irrigated with either 2.5% NaOCl or 2.5% NaOCl containing 9% (wt/vol) etidronic acid (HEBP). Using a side-vented irrigating tip, 2 mL of irrigant was applied by 1 blinded investigator to the mesial canals after each instrument. Five milliliters of irrigant was applied per canal as the final rinse. Mesial root canal systems were scanned at high resolution before and after treatment, and accumulated hard-tissue debris was calculated as vol% of the original canal anatomy. Values between groups were compared using the Student's t test (α < .05). Irrigation with 2.5% NaOCl resulted in 5.5 ± 3.6 vol% accumulated hard-tissue debris compared with 3.8 ± 1.8 vol% when HEBP was contained in the irrigant (P < .05). A hypochlorite-compatible chelator can reduce but not completely prevent hard-tissue debris accumulation during rotary root canal instrumentation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Comparative assessment of the interfacial soft and hard tissues investing implants and natural teeth in the macaque mandible.

    PubMed

    Siar, Chong Huat; Toh, Chooi Gait; Romanos, Georgios E; Ng, Kok Han

    2015-07-01

    The aim of this study was to conduct a comparative qualitative and quantitative assessment of the interfacial soft and hard tissues investing implants and natural teeth. The test sample consisted of six adult healthy male Macaca fascicularis with three-unit splinted crowns, each crown supported by an Ankylos screw-shaped titanium implant. These implants were placed in the mandibular premolar-second molar region, one side by an immediate-loading (IL) and the other by delayed-loading (DL) protocol. The animals were sacrificed after 3 months of functional loading. Another two monkeys with natural dentition served as controls. Nondecalcified sections were prepared for assessment of optical intensities (OI) under a confocal laser scanning microscope. In both the test (IL and DL) and control, the soft tissue complexes demonstrated a highly fluorescent keratinized layer and diminished cytoplasmic and enhanced membranous fluorescence in the remaining epithelium. Peri-implant mucosa was further characterized by an intense fluorescence at the junctional epithelium-implant interface and in the stromal mononuclear infiltrate. Connective tissue contact and periodontal ligament were weakly fluorescent. In hard tissues, a high fluorescence was observed in peri-implant woven bone and along the implant-bone interface. Mean OI was significantly higher in peri-implant woven bone than around teeth (P < 0.05). In the remaining soft and hard tissue complexes, no significant differences in mean OI between the test and control were observed (P > 0.05). Present findings suggest that peri-implant woven bone is highly mineralized, while the peri-implant and gingival mucosa share structural similarities. Optical intensities of interfacial tissues investing implants and teeth are related to their biological properties.

  2. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: A pilot study.

    PubMed

    Pinchi, Vilma; Pradella, Francesco; Buti, Jacopo; Baldinotti, Claudio; Focardi, Martina; Norelli, Gian-Aristide

    2015-11-01

    Dental age of adults can be estimated by the analysis of the progressive physiological and degenerative phenomena which affect dental tissues. The pulp-dentinal complex is one of the dental structures that show modifications related to age, mainly resulting in the reduction of the pulp chamber volume due to the continual deposition of secondary dentin. The study aims to evaluate the accuracy of a simple and conservative method for estimating the age of adults based on CBCT (Cone Beam Computed Tomography) analysis of the narrowing of the pulp chamber caused by secondary dentin deposition. Two operators have randomly analyzed 148 CBCT (Scanora 3D - Soredex) and considered the upper left central incisor. The sample consists of 57 male individuals and 91 females aged between 10 and 80 years. This research was designed to simplify dental volume measurement through geometric approximation of the different parts of the tooth. The root and the pulp were assimilated to elliptical based cones and the crown to an elliptical based truncated cone and these volumes were calculated through measurements using Osirix(®) software (OnDemand 3D software CyberMed Inc.). The ratio between the pulp volume and the hard tissues volume (PHr) was assumed as a variable according to the following formula: PHr = V pulp/V ht. The proposed method based on geometric approximation of dental volumes was validated comparing volumes calculated using CBCT with physical measurements of real volumes of 3 teeth. The physical measurements revealed that the measurement procedures using CBCT produce a regular underestimation of real volumes, that ranges from 53% to 70%. Since the error occurs quite regularly both for pulp and for hard tissue volume, it tends to be eliminated when their ratio is considered. The PHr was statistically significant (p-value < 0.001) as a predictor for age estimation. The gender variable was not significantly correlated with age (p = 0.7694) and it was, therefore, excluded

  3. A rapid plastic embedding technique for preparation of three-micron thick sections of decalcified hard tissue.

    PubMed

    Kimmel, D; Jee, W S

    1975-03-01

    A 24 hour start-to-finish method is described for the preparation of three-micron-thick sections of decalcified hard tissues. Following acetone dehydration, the tissue to be embedded is infiltrated under vacuum with a series of graded clearing solutions which approach the content of the final methyl methacrylate mixture. After overnight in a 35 C oven, the plastic is polymerized by four hours heating at 42 C. Three-micron-thick sections are then easily prepared by using a Jung microtome for high resolution histologic or detailed autoradiographic procedures.

  4. Comparative quantitative chromatographic determination of formaldehyde in different groups of physiological and pathological hard tissues of teeth.

    PubMed

    Rózylo, T K; Siembida, R

    1998-01-01

    Taking into consideration that HCHO level in cells of plant, animal and human tissues as well as in body fluids depends from physiological state of an organism in the current study it was decided to find out if there are changes of HCHO level in different physiological and pathological hard tissues of teeth. The obtained results showed in all 4 groups of teeth separately analysed that there were some regularities in the level of HCHO as far as similar physiological or pathological states are concerned. This was best seen when comparing the obtained results with mean HCHO level of the studied groups of teeth.

  5. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    NASA Astrophysics Data System (ADS)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  6. Supplementary Steps for Removing Hard Tissue Debris from Isthmus-containing Canal Systems.

    PubMed

    Keleş, Ali; Alçin, Hatice; Sousa-Neto, Manoel D; Versiani, Marco A

    2016-11-01

    The purpose of this ex vivo study was to evaluate the percentage reduction of accumulated hard tissue debris (AHTD) in the mesial root canal system of mandibular molars under different final irrigation regimens by means of micro-computed tomographic imaging. Sixty curved mesial roots of mandibular molars with 2 independent canals joint apically by an isthmus (Vertucci type II) were selected. Specimens were scanned at a resolution of 12.5 μm, anatomically matched, and distributed into 3 groups (n = 20) according to the preparation protocol: Self-Adjusting File (SAF; ReDent Nova, Ra'anana, Israel), Reciproc (VDW GmbH, Munich, Germany), and Revo-S (Micro-Mega, Besançon, France) systems. Then, each group was subdivided into 2 subgroups (n = 10) according to the final irrigation protocol with the SAF or EndoVac system (Discus Dental, Culver City, CA). The percentage volume and percentage reduction of AHTD after root canal preparation and final irrigation protocols were statistically compared using 1-way analysis of variance, the paired sample and the independent Student's t tests. The level of significance was set at 5%. Within groups, the mean percentage volume was significantly reduced after the final irrigation procedures in either the SAF (from 1.52%-1.78% to 1.01%-1.20%) or EndoVac (from 2.11%-2.23% to 1.31%-1.52%) subgroups (P < .05). In the experimental groups, the mean percentage reduction of AHTD ranged from 29.15%-39.90% after the irrigation protocols, with no statistical difference between groups (P > .05). None of the irrigation approaches succeeded in rendering the mesial root canal system free of AHTD. A similar percentage reduction of AHTD was achieved after final irrigation protocols using either the SAF or EndoVac system. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Performance of fast-setting impression materials in the reproduction of subgingival tooth surfaces without soft tissue retraction.

    PubMed

    Rudolph, Heike; Röhl, Andreas; Walter, Michael H; Luthardt, Ralph G; Quaas, Sebastian

    2014-01-01

    Fast-setting impression materials may be prone to inaccuracies due to accidental divergence from the recommended mixing protocol. This prospective randomized clinical trial aimed to assess three-dimensional (3D) deviations in the reproduction of subgingival tooth surfaces and to determine the effect of either following or purposely diverging from the recommended mixing procedure for a fast-setting addition-curing silicone (AS) and fast-setting polyether (PE). After three impressions each were taken from 96 participants, sawcut gypsum casts were fabricated with a standardized procedure and then optically digitized. Data were assessed with a computer-aided 3D analysis. For AS impressions, multivariate analysis of variance revealed a significant influence of the individual tooth and the degree to which the recommended mixing protocol was violated. For PE impressions, the ambient air temperature and individual tooth showed significant effects, while divergence from the recommended mixing protocol was not of significance. The fast-setting PE material was not affected by changes in the recommended mixing protocol. For the two fast-setting materials examined, no divergences from the recommended mixing protocol of less than 2 minutes led to failures in the reproduction of the subgingival tooth surfaces.

  8. Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue.

    PubMed

    Kirschneck, Christian; Meier, Matthias; Bauer, Kathrin; Proff, Peter; Fanghänel, Jochen

    2017-04-01

    Non-steroidal anti-inflammatory drugs (NSAID) are used to alleviate pain sensations during orthodontic therapy but are also assumed to interfere with associated pseudo-inflammatory reactions. In particular, the effects of partially selective COX-2 inhibition over the constitutively expressed COX-1 (11:1) on periodontal cells and tissue, as induced by the NSAID meloxicam, remain unclear. We investigate possible adverse side-effects and potentially useful beneficial effects during orthodontic therapy and examine underlying cellular and tissue reactions. We randomly assigned 63 male Fischer344 rats to three consecutive experiments of 21 animals each (cone-beam computed tomography; histology/serology; reverse-transcription quantitative real-time polymerase chain reaction) in three experimental groups (n = 7; control; orthodontic tooth movement [OTM] of the first/second upper left molars [NiTi coil spring, 0.25 N]; OTM with a daily oral meloxicam dose of 3 mg/kg). In vitro, we stimulated human periodontal ligament fibroblasts (hPDL) with orthodontic pressure (2 g/cm(2)) with/without meloxicam (10 μM). In vivo, meloxicam significantly reduced serum C-reactive protein concentration, tooth movement velocity, orthodontically induced dentine root resorption (OIRR), osteoclast activity and the relative expression of inflammatory/osteoclast marker genes within the dental-periodontal tissue, while presenting good gastric tolerance. In vitro, we observed a corresponding significant decrease of prostaglandin E2/interleukin-6/RANKL(-OPG) expression and of hPDL-mediated osteoclastogenesis. By inhibiting prostaglandin synthesis, meloxicam seems to downregulate hPDL-mediated inflammation, RANKL-induced osteoclastogenesis and, consequently, tooth movement velocity by about 50%, thus limiting its suitability for analgesia during orthodontic therapy. However, its protective effects regarding OIRR and good tolerance profile suggest future prophylactic application, which merits

  9. Multidisciplinary Treatment Options of Tooth Avulsion Considering Different Therapy Concepts

    PubMed Central

    Kostka, Eckehard; Meissner, Simon; Finke, Christian H; Mandirola, Manlio; Preissner, Saskia

    2014-01-01

    Background: Avulsion of permanent front teeth is a rare accident, mostly affecting children between seven and nine years of age. Replanted and splinted, these teeth often develop inflammation, severe resorption or ankylosis affecting alveolar bone development and have to be extracted sooner or later. Objectives: The purpose of this study was to evaluate different therapy concepts to create a structured concept for the treatment of avulsions. Results: Based on existing therapy concepts, a concept for different initial conditions (dry time, age, growth, tooth, hard and soft tissues) was developed and is presented here. Conclusion: A great deal of research has been performed during recent years and guidelines for the management of avulsions have been published. With the help of this literature it is possible to identify the best treatment procedure for each tooth. Clinical Relevance: The prognosis of avulsed teeth can be improved by considering evidence-based therapy concepts. Resorption, ankylosis and tooth loss could be minimized. PMID:25352922

  10. Bizarre tooth surface loss and the Miswak stick.

    PubMed

    Karia, Roshni; Kelleher, Martin G

    2014-05-01

    Tooth surface loss can present in a variety of ways, some of which can appear rather strange on first examination. This case report demonstrates an unusual presentation of tooth surface loss (TSL) and its subsequent treatment. This loss of hard dental tissue appeared to be affecting the whole of the patient's remaining dentition, both lingually and buccally. Detailed questioning revealed the origins of this problem which turned out to be due to excessive use of an intra-oral Miswak chewing stick. Cinical Relevance: This article will enable clinicians to understand the importance of specific, targeted history-taking, involving a rare case of tooth surface loss as well as the use of minimally destructive restoration composites and a fibre-reinforced composite bridge.

  11. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    NASA Astrophysics Data System (ADS)

    Modzelewski, Tomasz

    The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion

  12. En-face OCT microleakage investigation after laser-assisted dental hard tissue treatment

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Balabuc, Cosmin; Sinescu, Cosmin; Negrutiu, Meda; Filip, Laura; Bradu, Adrian; Podoleanu, Adrian Gh.

    2008-09-01

    Purpose: To investigate using en-face Optical Coherence Tomography (OCT) the microleakage after Er:YAG laser cavity preparation. Material and Methods: Thirty single- and multi-rooted freshly extracted human teeth divided into two study groups, group I (laser) and group II (control), were used in this study. In group I, Class V cavities were prepared using laser on the buccal surface of each tooth. The laser device used was an Er:YAG laser (2940 nm, VSP, 250-320 mJ, 10-20 Hz). In group II, cavities were prepared conventionally and acid etched on the oral surface of the same tooth. All cavities were filled with composite resin. The cavity microleakage was investigated using en-face Optical Coherence Tomography prototype, based on transverse scanning and operating at 1300 nm. Results: The investigation demonstrated qualitatively the reduction of microleakage in cavities prepared with Er:YAG laser as compared to the control group, in which cavities were prepared conventionally. Conclusion: The en-face OCT method provided a superior non-invasive and real time investigation method, thus reducing the occurrence of secondary caries by early detection. Moreover, based on the results of this investigation, it may be concluded that Er:YAG laser-assisted cavity preparation leads to reduction of microleakage.

  13. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  14. A systematic review on soft-to-hard tissue ratios in orthognathic surgery part II: Chin procedures.

    PubMed

    San Miguel Moragas, Joan; Oth, Olivier; Büttner, Michael; Mommaerts, Maurice Y

    2015-10-01

    Precise soft-to-hard tissue ratios in orthofacial chin procedures are not well established. The aim of this study was to determine useful soft-to-hard tissue ratios for planning the magnitude of sliding genioplasty (chin osteotomy), osseous chin recontouring and alloplastic chin augmentation. A systematic review of English and non-English articles using PubMed central, ProQuest Dissertations and Theses, Science Citation Index, Elsevier Science Direct Complete, Highwire Press, Springer Standard Collection, SAGE premier 2011, DOAJ Directory of Open Access Journals, Sweetswise, Free E-Journals, Ovid Lippincott Williams & Wilkins total Access Collection, Wiley Online Library Journals, and Cochrane Plus databases from their onset until July 2014. Additional studies were identified by searching the references. Search terms included soft tissue, ratios, genioplasty, mentoplasty, chin, genial AND advancement, augmentation, setback, retrusion, impaction, reduction, vertical deficit, widening, narrowing, and expansion. Study selection criteria were as follows: only academic publications; human patients; no reviews; systematic reviews or meta-analyses; no cadavers; no syndromic patients; no pathology at the chin or mandible region; only articles of level of evidence from I to IV; number of patients must be cited in the articles; hard-to-soft tissue ratios must be cited in the articles or at least are able to be calculated with the quantitative data available in the article; if all patients of one article have had bilateral sagittal split osteotomy (BSSO) performed along with chin osteotomy, there should be an independent group evaluation of the data concerning to the chin; and no restriction regarding the size of the group. Independent extraction of articles by two authors using predefined data fields, including study quality indicators (level of evidence). The search identified 22 articles. Eleven additional articles were found in their reference sections. Of these, two were

  15. Assessment of Tooth Proportions in an Aesthetically Acceptable Smile

    PubMed Central

    Reddy, Munish; Raghav, Pradeep; Jain, Shalu; Anjum, Arbab; Misra, Vaibhav; Suri, Ragini

    2015-01-01

    Introduction: Aesthetic facial animation is mostly reported to be due to a close relationship between soft and hard tissue i.e. dynamic smile with appropriate tooth proportions. But variations in tooth size have been seen among various ethnic populations globally. Aim: To evaluate the size and morphology of maxillary anterior teeth, the tooth with maximum variation both mesiodistally and cervicoincisally. Also, the tooth to tooth ratio in percentage of the mean tooth sizes in both genders in patients with aesthetically acceptable smile decided by a panel in North Indian population. Materials and Methods: A total of 100 subjects (50 males and 50 females) were taken and a video clip of their dynamic smile was captured .The smiles were analyzed by a panel and the tooth proportions of the selected attractive smiles were evaluated in both males and females separately. Statistical analysis: Data obtained was subjected to statistical analysis using Microsoft Excel 2007 software; test used was Unpaired t-test and also Mean ± S.D., Variance, Ratio of W/L and its ranges were calculated. Significance is assessed at 5% level of significance. Results: The mesiodistal width and cervicoincisal length of maxillary central incisor was greater compared to lateral incisor and canine in both males and females. There was a statistically significant difference between the width/length ratio of maxillary anterior teeth between males and females.Canine and Lateral incisor showed maximum variation mesio-distally and cervico-incisally. Conclusion: A smile is more pleasing if the visible teeth are in proper morphological proportions. Thus, it relates that teeth play a vital role in increasing the attractiveness of a smile. The mean coronal width/length ratio displayed a more square like tooth form for both males and females. PMID:26023632

  16. Assessment of tooth proportions in an aesthetically acceptable smile.

    PubMed

    Jain, Sambhav; Reddy, Munish; Raghav, Pradeep; Jain, Shalu; Anjum, Arbab; Misra, Vaibhav; Suri, Ragini

    2015-04-01

    Aesthetic facial animation is mostly reported to be due to a close relationship between soft and hard tissue i.e. dynamic smile with appropriate tooth proportions. But variations in tooth size have been seen among various ethnic populations globally. To evaluate the size and morphology of maxillary anterior teeth, the tooth with maximum variation both mesiodistally and cervicoincisally. Also, the tooth to tooth ratio in percentage of the mean tooth sizes in both genders in patients with aesthetically acceptable smile decided by a panel in North Indian population. A total of 100 subjects (50 males and 50 females) were taken and a video clip of their dynamic smile was captured .The smiles were analyzed by a panel and the tooth proportions of the selected attractive smiles were evaluated in both males and females separately. Data obtained was subjected to statistical analysis using Microsoft Excel 2007 software; test used was Unpaired t-test and also Mean ± S.D., Variance, Ratio of W/L and its ranges were calculated. Significance is assessed at 5% level of significance. The mesiodistal width and cervicoincisal length of maxillary central incisor was greater compared to lateral incisor and canine in both males and females. There was a statistically significant difference between the width/length ratio of maxillary anterior teeth between males and females.Canine and Lateral incisor showed maximum variation mesio-distally and cervico-incisally. A smile is more pleasing if the visible teeth are in proper morphological proportions. Thus, it relates that teeth play a vital role in increasing the attractiveness of a smile. The mean coronal width/length ratio displayed a more square like tooth form for both males and females.

  17. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.

    PubMed

    Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas

    2013-04-01

    This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.

  18. Management of maxillofacial hard and soft tissue discrepancy in Möbius sequence: clinical report and review of the literature.

    PubMed

    Guijarro-Martínez, Raquel; Hernández-Alfaro, Federico

    2012-01-01

    Möbius sequence implies significant maxillofacial hard and soft tissue anomalies which nevertheless have not been addressed thoroughly in the scientific literature. To report a case of complete Möbius sequence and discuss the management of maxillofacial hard and soft tissue anomalies. A 15-year-old girl with complete Möbius underwent bimaxillary orthognathic surgery, horizontal sliding genioplasty and mentalis muscles reinsertion. Vestibuloplasty and bilateral canthopexy were performed to address lip deficiency and attenuate hypotonic depression of the lower eyelids, respectively. Cheekbone augmentation was achieved with an autologous fat transfer. The authors review the scientific literature and discuss surgical planning for the correction of maxillofacial discrepancy. The patient exhibits significant functional and aesthetic improvement, with excellent integration of the transferred fat and adequate bone healing. Orthognathic bimaxillary surgery combined to soft tissue management can improve aesthetics and orofacial function in Möbius patients, thereby contributing to facilitate social interaction and increase patients' self-esteem. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Effects of the GaAlAs diode laser (780 nm) on the periodontal tissues during orthodontic tooth movement in diabetes rats: histomorphological and immunohistochemical analysis.

    PubMed

    Gomes, Mônica Fernandes; da Graças Vilela Goulart, Maria; Giannasi, Lilian Chrystiane; Hiraoka, Cybelle Mori; de Fátima Santana Melo, Gabriela; de Sousa, Aretha Graziela Vilela; Nóbrega, Celestino José Prudente; Zangaro, Renato Amaro; Salgado, Miguel Angel Castillo

    2017-07-03

    The purposes of the present study are to assess the effects of the GaAlAs diode laser on the periodontal tissues and to investigate its action on the alveolar bone remodeling process during orthodontic tooth movement in normoglycemic and diabetic rats. Sixty adult male Wistar rats were divided into four groups of 15 rats: normoglycemic (N), diabetic (D), laser-normoglycemic (LN), and laser-diabetic (LD) rats. Diabetes mellitus was induced by a single intravenous injection of 40 mg/kg monohydrated alloxan. The orthodontically moved tooth underwent a force magnitude of 20 cN. The laser irradiation with a continuous emission of a 780-nm wavelength, an output power of 20 mW, and a fiber probe with a spot size of 0.04 cm in diameter and an area of 0.00126 cm(2) were used. Moreover, an energy density of 640 J/cm(2) was applied in an exposition time of 40 s. Histomorphological and immunohistochemical analysis was performed. The photobiomodulation (PBM) strongly stimulated the periodontal tissue response, establishing mainly the balance between the bone formation and resorption. Intense inflammatory cell infiltration and extensive loss of bone tissue were mainly found in the D group from 14 days. The number of osteopontin-positive osteocytes was significantly greater in the LN group, followed by the LD, especially at 7 and 14 days, whereas osteoprotegerin-positive osteoblasts were significantly higher in the LN and LD groups than in the N and D groups, respectively, in all periods. The PBM strongly stimulated the alveolar bone remodeling and favored the continuous reorganization of the soft periodontal tissues, leading to the maintenance and integrity of the periodontal microstructure under orthodontic force, especially in uncontrolled diabetic rats.

  20. Tooth Problems

    MedlinePlus

    ... saved.Start OverDiagnosisYour pain may be from a FRACTURED, CRACKED or LOOSE TOOTH.Self CareSave any pieces of the tooth, wrap ... OverDiagnosisYour pain may be from TEMPOROMANDIBULAR JOINT (TMJ) syndrome, a condition that affects the jaw.Self CareTry ...

  1. Ridge alterations following tooth extraction with and without flap elevation: an experimental study in the dog.

    PubMed

    Araújo, Mauricio G; Lindhe, Jan

    2009-06-01

    Different approaches were advocated to preserve or improve the dimension and contour of the ridge following tooth extraction. In some of studies, socket 'flapless extraction' apparently had a successful outcome. The objective of the present experiment was to compare hard tissue healing following tooth extraction with or without the prior elevation of mucosal full-thickness flaps. Five mongrel dogs were used. The two second mandibular premolars ((2)P(2)) were hemi-sected. The mesial roots were retained. By random selection the distal root in one side was removed after the elevation of full-thickness flaps while on the contralateral side, root extraction was performed in a flapless procedure. The soft tissue wound was closed with interrupted sutures. After 6 months of healing, the dogs were euthanized and biopsies were sampled. From each experimental site, four ground sections - two from the mesial root and two from the healed socket - were prepared, stained and examined in the microscope. The data showed that the removal of a single tooth (root) during healing caused a marked change in the edentulous ridge. In the apical and middle portions of the socket site minor dimensional alterations occurred while in the coronal portion of the ridge the reduction of the hard tissue volume was substantial. Similar amounts of hard tissue loss occurred during healing irrespective of the procedure used to remove the tooth was, i.e. flapless or following flap elevation. Tooth loss (extraction) resulted in marked alterations of the ridge. The size of the alveolar process was reduced. The procedure used for tooth extraction - flapless or following flap elevation - apparently did not influence the more long-term outcome of healing.

  2. Environmentally induced tissue responses of hematopoietic system in abu mullet (Liza abu) and tiger tooth croaker (Otolithes ruber) from the Persian Gulf.

    PubMed

    Salamat, Negin; Movahedinia, Abdolali; Kheradmand, Parvin

    2017-02-01

    The present investigation aimed to assess the possibility of using plasma levels of erythropoietin (EPO) hormone and tissue changes of hematopoietic organs as biomarkers of environmental pollution in abu mullet (Liza abu) and tiger tooth croaker (Otolithes ruber) collected from Musa Creek (northwest of the Persian Gulf). 120 L. abu and O. ruber were collected from five stations at the Musa Creek: Petrochemical, Ghanam, Doragh, Zangi and Patil stations. Blood samples were obtained from the caudal vein. Tissue samples were also taken from the spleen and head kidney, and tissue sections were prepared according to routine histological methods. The concentrations of Hg, Pb, Zn, Cu, and Cd were also measured in the sediment samples. The minimum level of EPO and the most severe tissue changes were determined in fish collected near a Petrochemical station. This station is adjacent to the Imam Khomeini Petrochemical Complex and receives highly contaminated effluents from this complex. The highest degree of contamination (Cd) also belonged to this station. The fish collected from the Patil station represented the highest EPO level and the least tissue changes. This station exhibited a lesser degree of contamination. Based on the results, there was a significant correlation between the plasma level of EPO hormone and the degree of environmental contamination.

  3. Decellularized Tooth Bud Scaffolds for Tooth Regeneration.

    PubMed

    Zhang, W; Vazquez, B; Oreadi, D; Yelick, P C

    2017-01-01

    Whole tooth regeneration approaches currently are limited by our inability to bioengineer full-sized, living replacement teeth. Recently, decellularized organ scaffolds have shown promise for applications in regenerative medicine by providing a natural extracellular matrix environment that promotes cell attachment and tissue-specific differentiation leading to full-sized organ regeneration. We hypothesize that decellularized tooth buds (dTBs) created from unerupted porcine tooth buds (TBs) can be used to guide reseeded dental cell differentiation to form whole bioengineered teeth, thereby providing a potential off-the-shelf scaffold for whole tooth regeneration. Porcine TBs were harvested from discarded 6-mo-old pig jaws, and decellularized by successive sodium dodecyl sulfate/Triton-X cycles. Four types of replicate implants were used in this study: 1) acellular dTBs; 2) recellularized dTBs seeded with porcine dental epithelial cells, human dental pulp cells, and human umbilical vein endothelial cells (recell-dTBs); 3) dTBs seeded with bone morphogenetic protein (BMP)-2 (dTB-BMPs); and 4) freshly isolated nondecellularized natural TBs (nTBs). Replicate samples were implanted into the mandibles of host Yucatan mini-pigs and grown for 3 or 6 mo. Harvested mandibles with implanted TB constructs were fixed in formalin, decalcified, embedded in paraffin, sectioned, and analyzed via histological methods. Micro-computed tomography (CT) analysis was performed on harvested 6-mo samples prior to decalcification. All harvested constructs exhibited a high degree of cellularity. Significant production of organized dentin and enamel-like tissues was observed in dTB-recell and nTB implants, but not in dTB or dTB-BMP implants. Micro-CT analyses of 6-mo implants showed the formation of organized, bioengineered teeth of comparable size to natural teeth. To our knowledge, these results are the first to describe the potential use of dTBs for functional whole tooth regeneration.

  4. Methods for studying tooth root cementum by light microscopy.

    PubMed

    Foster, Brian L

    2012-09-01

    The tooth root cementum is a thin, mineralized tissue covering the root dentin that is present primarily as acellular cementum on the cervical root and cellular cementum covering the apical root. While cementum shares many properties in common with bone and dentin, it is a unique mineralized tissue and acellular cementum is critical for attachment of the tooth to the surrounding periodontal ligament (PDL). Resources for methodologies for hard tissues often overlook cementum and approaches that may be of value for studying this tissue. To address this issue, this report offers detailed methodology, as well as comparisons of several histological and immunohistochemical stains available for imaging the cementum-PDL complex by light microscopy. Notably, the infrequently used Alcian blue stain with nuclear fast red counterstain provided utility in imaging cementum in mouse, porcine and human teeth. While no truly unique extracellular matrix markers have been identified to differentiate cementum from the other hard tissues, immunohistochemistry for detection of bone sialoprotein (BSP), osteopontin (OPN), and dentin matrix protein 1 (DMP1) is a reliable approach for studying both acellular and cellular cementum and providing insight into developmental biology of these tissues. Histological and immunohistochemical approaches provide insight on developmental biology of cementum.

  5. Methods for studying tooth root cementum by light microscopy

    PubMed Central

    Foster, Brian L

    2012-01-01

    The tooth root cementum is a thin, mineralized tissue covering the root dentin that is present primarily as acellular cementum on the cervical root and cellular cementum covering the apical root. While cementum shares many properties in common with bone and dentin, it is a unique mineralized tissue and acellular cementum is critical for attachment of the tooth to the surrounding periodontal ligament (PDL). Resources for methodologies for hard tissues often overlook cementum and approaches that may be of value for studying this tissue. To address this issue, this report offers detailed methodology, as well as comparisons of several histological and immunohistochemical stains available for imaging the cementum–PDL complex by light microscopy. Notably, the infrequently used Alcian blue stain with nuclear fast red counterstain provided utility in imaging cementum in mouse, porcine and human teeth. While no truly unique extracellular matrix markers have been identified to differentiate cementum from the other hard tissues, immunohistochemistry for detection of bone sialoprotein (BSP), osteopontin (OPN), and dentin matrix protein 1 (DMP1) is a reliable approach for studying both acellular and cellular cementum and providing insight into developmental biology of these tissues. Histological and immunohistochemical approaches provide insight on developmental biology of cementum. PMID:22996273

  6. Three-dimensional hard tissue palatal size and shape: a 10-year longitudinal evaluation in healthy adults.

    PubMed

    Ferrario, Virgilio F; Sforza, Chiarella; Dellavia, Claudia; Colombo, Anna; Ferrari, Raffaella P

    2002-01-01

    A 10-year longitudinal evaluation of the morphology (size and shape) of hard tissue palate was performed in 6 female and 6 male healthy adults (mean age at the second evaluation was 33 years, SD = 2.2). All subjects had a complete permanent dentition, including the second molars, and were free from respiratory problems. Palatal landmarks were digitized with a computerized 3D instrument, and their coordinates were used to derive a mathematical model of palatal form. Palatal shape (size-independent) was assessed by a fourth-grade polynomial in the sagittal and frontal plane projections. Palatal dimensions in the frontal and sagittal planes were computed and compared between the 2 evaluations by paired Student t tests. A great variability was observed, and no significant modifications in size were found (P > .05 for all variables). No variations in shape were observed. Sex had no significant effect for any variable (Student t for independent samples, P > .05). This study showed that in healthy subjects, hard tissue palatal morphology does not seem to change between the third and the fourth decades of life.

  7. Effects of gamma radiation on hard dental tissues of albino rats using scanning electron microscope - Part 1

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat

    2011-12-01

    In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.

  8. Identification of three common Loliginidae squid species in the South China Sea by analyzing hard tissues with geometric outline method

    NASA Astrophysics Data System (ADS)

    Jin, Yue; Liu, Bilin; Li, Jianhua; Chen, Xinjun

    2017-10-01

    The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. edulis in the South China Sea. Because of the highly overlapping habitat and similar body morphology of the three squid species, we explored four different ways to identify them, by using statolith, upper beak, lower beak and a combination of statolith and beak. An outline geometric morphometric method and stepwise discriminant analysis were used to evaluate the most suitable method for the identification. We found that the combination of statolith and beak had the highest cross validation rate that was 75.0%, 87.5% and 88.7% for U. duvaucelii, L. beka and U. edulis, respectively. Using two beaks had similar results and the lowest cross validation rate was 60.0%, 50.0%, and 73.7% for the upper beak, 46.9%, 58.5% and 75.3% for the lower beak of U. duvaucelii, L. beka and U. edulis, respectively. Analyzing with the statolith had moderate cross validation which was 72.2%, 80.0%, and 87.7% for U. duvaucelii, L. beka and U. edulis, respectively. From the results it is suggested when the entire body of a squid is available, a combination of statolith and beak should be used for the identification. When only one hard tissue is available, species identification can be subjected to large errors.

  9. Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials.

    PubMed

    Singh, Vivek K; Kumar, Vinay; Sharma, Jitendra

    2015-08-01

    Laser-induced breakdown spectroscopy (LIBS) as a sensitive optical technique capable of fast multielemental analysis proved to be a versatile tool in different applications. It became visible in the analytical atomic spectroscopy scene in the late 1980s and since then, its applications having been developed continuously in different field of science and technology including biomedical science. Here, we review the use and importance of LIBS for trace element determination in different calcified tissue materials. In this article, we have also reported a comprehensive review of the recent progress of biomedical applications of LIBS.

  10. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads

    PubMed Central

    Lee, Jong Yeop

    2014-01-01

    There are two objectives. One is to show the differences in the mechanical properties of various dental restorative materials compared to those of enamel and dentin. The other is to ascertain which dental restorative materials are more suitable for clinical treatments. Amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were processed as dental restorative material specimens. The specimens (width, height, and length of 1.2, 1.2, and 3.0 mm, respectively) were compressed at a constant loading speed of 0.1 mm/min. The maximum stress (115.0 ± 40.6, 55.0 ± 24.8, 291.2 ± 45.3, 274.6 ± 52.2, 2206.0 ± 522.9, and 953.4 ± 132.1 MPa), maximum strain (7.8% ± 0.5%, 4.0% ± 0.1%, 12.7% ± 0.8%, 32.8% ± 0.5%, 63.5% ± 14.0%, and 45.3% ± 7.4%), and elastic modulus (1437.5 ± 507.2, 1548.4 ± 583.5, 2323.4 ± 322.4, 833.1 ± 92.4, 3895.2 ± 202.9, and 2222.7 ± 277.6 MPa) were evident for amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy, respectively. The reference hardness value of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy was 90, 420, 130–135, 86.6–124.2, 1250, and 349, respectively. Since enamel grinds food, its abrasion resistance is important. Therefore, hardness value should be prioritized for enamel. Since dentin absorbs bite forces, mechanical properties should be prioritized for dentin. The results suggest that gold alloy simultaneously has a hardness value lower than enamel (74.8 ± 18.1), which is important in the wear of the opposing natural teeth, and higher maximum stress, maximum strain, and elastic modulus than dentin (193.7 ± 30.6 MPa, 11.9% ± 0.1%, 1653.7 ± 277.9 MPa, respectively), which are important considering the rigidity to absorb bite forces. PMID:25352921

  11. Effects of Thread Depth in the Neck Area on Peri-Implant Hard and Soft Tissues: An Animal Study.

    PubMed

    Sun, Shan-Pao; Lee, Dong-Won; Yun, Jeong-Ho; Park, Kwang-Ho; Park, Kwang-Bum; Moon, Ik-Sang

    2016-11-01

    Implants with deep thread depth have been developed for the purpose of increasing total implant surface area. However, effects of implant thread depth remain controversial. The aim of this study is to examine effects of thread depth on peri-implant tissues in terms of bone-implant contact (BIC), bone-implant volume (BIV), and hard and soft tissue dimensions using comprehensive analyses, including microcomputed tomography (micro-CT). Five beagle dogs received experimental intramandibular implants 3 months after removal of their premolars and first molars (P2, P3, P4, and M1). Two different types of implants were installed in each animal: deep threaded (DT) and shallow threaded (ST). Resonance frequency testing was performed on the day of implantation as well as 4 and 8 weeks after implantation. Intraoral radiography, micro-CT, and histomorphometry were used to evaluate peri-implant tissues 4 and 8 weeks after implantation. There were no significant differences in resonance frequency test results between the two groups. Although radiographic analysis showed no group differences, micro-CT (P = 0.01) and histomorphometry (P = 0.003) revealed the DT group had significantly lower BIC values than the ST group at 4 weeks. However, by 8 weeks, BIC values of the two groups did not differ significantly. No significant differences in BIV or soft tissue height were observed between the two groups at either time point. DT implants showed no benefits over ST implants when inserted in dog mandibles.

  12. Temporal evolution of liquid-assisted hard bio-tissue ablation with infrared pulsed lasers under a liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng

    2016-10-01

    Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.

  13. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    SciTech Connect

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-19

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  14. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-01

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  15. Immediate total tooth replacement.

    PubMed

    Garber, D A; Salama, M A; Salama, H

    2001-03-01

    Successful implant placement at the time of extraction has been documented. Implant placement at the time of extraction was initially performed as a two-stage procedure often with barrier membranes and sophisticated second-stage surgical uncoverings. The authors describe the next generation of this technique, including atraumatic tooth removal with simultaneous root form, implant placement, and temporization at one appointment. This technique of "Immediate Total Tooth Replacement" allows for the maintenance of the bony housing and soft-tissue form that existed before extraction, while at the same time establishing a root form anchor in the bone for an esthetic restoration.

  16. A high repetition rate TEA CO II laser operating at λ=9.3-μm for the rapid and conservative ablation and modification of dental hard tissues

    NASA Astrophysics Data System (ADS)

    Fan, Kenneth; Fried, Daniel

    2006-02-01

    TEA CO II lasers tuned to the strong mineral absorption of hydroxyapatite near λ=9-μm are ideally suited for the efficient ablation of dental hard tissues if the laser-pulse is stretched to greater than 5-10-μs to avoid plasma shielding phenomena. Such CO II lasers are capable of operating at high repetition rates for the rapid removal of dental hard tissues. An Impact 2500 TEA CO II laser system from GSI Lumonics (Rugby, UK) custom modified by LightMachinery (Ottawa, Canada) with a repetition rate of 0-500 Hz was used for rapid tissue removal. The single pulse ablation rates through enamel were determined for incident fluence ranging from (1-160 J/cm2). Lateral incisions using a computer controlled scanning stage and water spray were produced and the crater morphology and chemical composition were measured using optical microscopy and high-resolution synchrotron radiation infrared spectromicroscopy. The transmission through 2-meter length 300, 500, 750 and 1000-μm silica hollow waveguides was measured and 80% transmission was achieved with 40-mJ per pulse. The λ=9.3-μm laser pulses efficiently removed dental enamel at rates exceeding 15-μm per pulses with minimal heat accumulation. The residual energy remaining in tooth samples was measured to be 30-40% without water cooling, significantly lower than for longer CO II laser pulses. These results suggest that high repetition rate TEA CO II laser systems operating at λ=9.3-μm with pulse durations of 10-20-μs are ideally suited for dental application.

  17. Hydrogen peroxide tooth-whitening (bleaching): review of safety in relation to possible carcinogenesis.

    PubMed

    Naik, Supritha; Tredwin, Christopher Jeremy; Scully, Crispian

    2006-08-01

    Hydrogen peroxide in the form of carbamide peroxide is widely used in professionally and self-administered products for tooth whitening. Hydrogen peroxide is a highly reactive substance that can damage oral soft and hard tissues when present in high concentrations and with exposures of prolonged duration. This review examines the issue of oral mucosal damage and possible carcinogenicity relating to the use of hydrogen peroxide in the mouth for tooth whitening, with an emphasis on safety with prolonged exposure to low concentrations of peroxide products.

  18. Supernumerary tooth with associated dentigerous cyst in an infant. A case report and review of differential diagnosis.

    PubMed

    Vucicevic Boras, V; Mohamad Zaini, Z; Savage, N W

    2007-06-01

    This paper reviews the topic of dental structures present at birth or erupting prior to the deciduous incisor teeth. A literature review shows a prevalence of one in every 2000 live births. At this rate of occurrence it is likely that the general dental practitioner may be called upon to offer advice. This review is supported by the presentation of an unusual case of a supernumerary maxillary incisor tooth with the hallmarks of a neonatal tooth and the development of a soft tissue dentigerous cyst. The differential diagnosis of soft and hard tissue swellings in infants is also presented together with rare syndromal associations of natal and neonatal teeth.

  19. Intra-oral PTH administration promotes tooth extraction socket healing.

    PubMed

    Kuroshima, S; Kovacic, B L; Kozloff, K M; McCauley, L K; Yamashita, J

    2013-06-01

    Intermittent parathyroid hormone (PTH) administration increases systemic and craniofacial bone mass. However, the effect of PTH therapy on healing of tooth extraction sites is unknown. The aims of this study were to determine the effect of PTH therapy on tooth extraction socket healing and to examine whether PTH intra-oral injection promotes healing. The mandibular first molars were extracted in rats, and subcutaneous PTH was administered intermittently for 7, 14, and 28 days. In a second study, maxillary second molars were extracted, and PTH was administered by either subcutaneous or intra-oral injection to determine the efficacy of intra-oral PTH administration. Healing was assessed by micro-computed tomography and histomorphometric analyses. PTH therapy accelerated the entire healing process and promoted both hard- and soft-tissue healing by increasing bone fill and connective tissue maturation. PTH therapy by intra-oral injection was as effective as subcutaneous injection in promoting tooth extraction socket healing. The findings suggest that PTH therapy promotes tooth extraction socket healing and that intra-oral injections can be used to administer PTH.

  20. Intra-oral PTH Administration Promotes Tooth Extraction Socket Healing

    PubMed Central

    Kuroshima, S.; Kovacic, B.L.; Kozloff, K.M.; McCauley, L.K.; Yamashita, J.

    2013-01-01

    Intermittent parathyroid hormone (PTH) administration increases systemic and craniofacial bone mass. However, the effect of PTH therapy on healing of tooth extraction sites is unknown. The aims of this study were to determine the effect of PTH therapy on tooth extraction socket healing and to examine whether PTH intra-oral injection promotes healing. The mandibular first molars were extracted in rats, and subcutaneous PTH was administered intermittently for 7, 14, and 28 days. In a second study, maxillary second molars were extracted, and PTH was administered by either subcutaneous or intra-oral injection to determine the efficacy of intra-oral PTH administration. Healing was assessed by micro-computed tomography and histomorphometric analyses. PTH therapy accelerated the entire healing process and promoted both hard- and soft-tissue healing by increasing bone fill and connective tissue maturation. PTH therapy by intra-oral injection was as effective as subcutaneous injection in promoting tooth extraction socket healing. The findings suggest that PTH therapy promotes tooth extraction socket healing and that intra-oral injections can be used to administer PTH. PMID:23611925

  1. Multifactorial comparison of disk displacement with and without reduction to normals according to temporomandibular joint hard tissue anatomic relationships.

    PubMed

    Pullinger, Andrew G; Seligman, Donald A; John, Mike T; Harkins, Stephen

    2002-03-01

    There is disagreement about the predictive value of temporomandibular joint tomographic anatomy in the diagnosis of internal derangements. This study aimed to identify multifactorial temporomandibular hard tissue relationships that differentiate disk displacement with reduction and disk displacement without reduction from normals. Temporomandibular joint tomograms from females diagnosed with unilateral disk displacement with (n=84) or without (n=78) reduction were compared to 42 asymptomatic normal joints with the use of 14 linear and angular measurements and 8 ratios. A validated classification tree model was tested for accuracy with sensitivity, specificity, goodness of fit, and the amount of log likelihood accounted for. The tree model was compared with a multiple logistic regression model and univariate testing. The disk displacement with reduction tree model consisted of 3 disease and 2 normal pathways with interactions between fossa width to depth ratio, condyle position, and linear posterior joint space. This class was characterized by either a much wider- and shallower-than-average fossa shape and/or by a moderately posterior condyle position when the fossa shape was average to deeper and/or narrower. The logistic regression and univariate models also suggested wider and/or shallower fossae, as well as longer eminence length. The disk displacement without reduction tree model consisted of 2 disease pathways and 1 normal pathway. Interactions characterized this class by either a posterior to very posterior condyle position or by a much deeper than average fossa depth when the condyle position was concentric to anterior. The logistic regression model emphasized greater fossa depth and width versus normals. The tree models conservatively predicted the disease classes: Rescaled Cox and Snell R(2) 37.0%, sensitivity 70.2%, and specificity 90.5% for disk displacement with reduction; R(2) 28.8%, sensitivity 66.7%, and specificity 85.7% for disk displacement

  2. Multifactorial analysis of differences in temporomandibular joint hard tissue anatomic relationships between disk displacement with and without reduction in women.

    PubMed

    Pullinger, A G; Seligman, D A

    2001-10-01

    Without multifactorial models, it is difficult to resolve whether hard tissue tomographic relationships can distinguish differences between temporomandibular joint (TMJ) internal derangement diagnoses. The purpose of this study was to use multifactorial models to examine whether there are hard tissue anatomic and orthopedic characteristics that distinguish temporomandibular joints with disk displacement with reduction from disk displacement without reduction. . TMJ tomograms from female patients who had unilateral disk displacement diagnosed with (n = 84) or without (n = 78) reduction were compared with the use of 14 linear and angular measurements and 8 ratios. A representative classification tree model was tested for fit with sensitivity, specificity, accuracy, and likelihood accountability, and the results were compared with a multiple stepwise logistic regression model and univariate analysis. Disk displacement without reduction joints had longer mean postglenoid fossa heights (P<.0005), greater mean fossa depth (P<.017), and narrower mean absolute superior joint spaces (P<.041) than disk displacement with reduction joints (univariate t test). The classification tree had 4 terminal nodes; to differentiate the joints, it used the eminence radius and the absolute superior joint space to anterior joint space ratio subordinate to the postglenoid process height. The tree model accounted for 31.4% of the likelihood (Rescaled Cox and Snell R(2)) with 73.5% accuracy (sensitivity 82.6% and specificity 65.4%). Disk displacement without reduction joints had either deeper posterior fossa walls or posterior walls of average length combined with a superior-to-anterior joint space ratio of less than 0.83; this suggests a more open-wedge-shaped anterior joint space combined with a less-rounded articular eminence. In contrast, most disk displacement with reduction joints had shorter posterior fossa wall height combined with more equal or larger superior-to-anterior joint spaces

  3. Hard and soft tissue responses to the platform-switching technique.

    PubMed

    Luongo, Roberto; Traini, Tonino; Guidone, Placido Carlo; Bianco, Giuseppe; Cocchetto, Roberto; Celletti, Renato

    2008-12-01

    Platform switching is a concept recently introduced in implant dentistry. It is intended to reduce the crestal bone loss that is commonly found around implants exposed to the oral environment. The aim of this study was to examine biopsy specimens to help explain the biologic processes occurring around a platform-switched implant. A mandibular implant was removed 2 months after placement because of prosthetic rehabilitation difficulties. The implant was then sectioned and subjected to histologic and histomorphometric analysis. An inflammatory connective tissue infiltrate was localized over the entire surface of the implant platform and approximately 0.35 mm coronal to the implant-abutment junction, along the healing abutment. A possible reason for bone preservation around a platform-switched implant may lie in the inward shift of the inflammatory connective tissue zone at the implant-abutment junction, which reduces its injurious effect on the alveolar bone.

  4. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.

    PubMed

    Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

    2010-01-01

    To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.

  5. Influence of steel implant surface microtopography on soft and hard tissue integration.

    PubMed

    Hayes, J S; Klöppel, H; Wieling, R; Sprecher, C M; Richards, R G

    2017-03-21

    After implantation of an internal fracture fixation device, blood contacts the surface, followed by protein adsorption, resulting in either soft-tissue adhesion or matrix adhesion and mineralization. Without protein adsorption and cell adhesion under the presence of micro-motion, fibrous capsule formation can occur, often surrounding a liquid filled void at the implant-tissue interface. Clinically, fibrous capsule formation is more prevalent with electropolished stainless steel (EPSS) plates than with current commercially pure titanium (cpTi) plates. We hypothesize that this is due to lack of micro-discontinuities on the standard EPSS plates. To test our hypothesis, four EPSS experimental surfaces with varying microtopographies were produced and characterized for morphology using the scanning electron microscope, quantitative roughness analysis using laser profilometry and chemical analysis using X-ray photoelectron spectroscopy. Clinically used EPSS (smooth) and cpTi (microrough) were included as controls. Six plates of each type were randomly implanted, one on both the left and right intact tibia of 18 white New Zealand rabbits for 12 weeks, to allow for a surface interface study. The results demonstrate that the micro-discontinuities on the upper surface of internal steel fixation plates reduced the presence of liquid filled voids within soft-tissue capsules. The micro-discontinuities on the plate under-surface increased bony integration without the presence of fibrous tissue interface. These results support the hypothesis that the fibrous capsule and the liquid filled void formation occurs mainly due to lack of micro-discontinuities on the polished smooth steel plates and that bony integration is increased to surfaces with higher amounts of micro-discontinuities. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  6. Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard tissues using plaque-containing blood vessels as examples.

    PubMed

    Holme, Margaret N; Schulz, Georg; Deyhle, Hans; Weitkamp, Timm; Beckmann, Felix; Lobrinus, Johannes A; Rikhtegar, Farhad; Kurtcuoglu, Vartan; Zanette, Irene; Saxer, Till; Müller, Bert

    2014-01-01

    A key problem in X-ray computed tomography is choosing photon energies for postmortem specimens containing both soft and hard tissues. Increasing X-ray energy reduces image artifacts from highly absorbing hard tissues including plaque, but it simultaneously decreases contrast in soft tissues including the endothelium. Therefore, identifying the lumen within plaque-containing vessels is challenging. Destructive histology, the gold standard for tissue evaluation, reaches submicron resolution in two dimensions, whereas slice thickness limits spatial resolution in the third. We present a protocol to systematically analyze heterogeneous tissues containing weakly and highly absorbing components in the original wet state, postmortem. Taking the example of atherosclerotic human coronary arteries, the successively acquired 3D data of benchtop and synchrotron radiation-based tomography are validated by histology. The entire protocol requires ∼20 working days, enables differentiation between plaque, muscle and fat tissues without using contrast agents and permits blood flow simulations in vessels with plaque-induced constrictions.

  7. Guidance of hard tissue ablation by forward-viewing optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Webster, Paul J. L.; Leung, Benjamin Y. C.; Yang, Victor X. D.; Fraser, James M.

    2010-02-01

    A key issue in laser surgery is the inability for the human operator to stop the laser irradiation in time while cutting/ablating delicate tissue layers. In the present work, we forward-image through the laser machining front in complex biological tissue (dense bovine bone) to monitor the incision's approach to subsurface interfaces in real-time (47-312 kHz line rate). Feedback from imaging is used to stop the drilling process within 150 micron of a targeted interface. This is accomplished by combining the high temporal and spatial resolution of infrared optical coherence tomography (OCT) with a robust, turn-key, high brightness fiber laser. The high sensitivity of the imaging system (~100 dB) permit imaging through the rapidly changing beam path even with the additional scattering caused by the thermal cutting process. In spectral-domain OCT, the imaging acquisition period is easily locked to the machining laser exposure. Though motion-induced artifacts reduce interface contrast, they do not introduce incorrect depth measurements as found in other OCT variants. Standard tomography imaging of the tissue (B-scans) is also recorded in situ before and after laser processing to highlight morphology changes.

  8. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  9. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application.

    PubMed

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  10. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation

    PubMed Central

    Margolis, Henry C.; Kwak, Seo-Young; Yamazaki, Hajime

    2014-01-01

    Vertebrate mineralized tissues, i.e., enamel, dentin, cementum, and bone, have unique hierarchical structures and chemical compositions. Although these tissues are similarly comprised of a crystalline calcium apatite mineral phase and a protein component, they differ with respect to crystal size and shape, level and distribution of trace mineral ions, the nature of the proteins present, and their relative proportions of mineral and protein components. Despite apparent differences, mineralized tissues are similarly derived by highly concerted extracellular processes involving matrix proteins, proteases, and mineral ion fluxes that collectively regulate the nucleation, growth and organization of forming mineral crystals. Nature, however, provides multiple ways to control the onset, rate, location, and organization of mineral deposits in developing mineralized tissues. Although our knowledge is quite limited in some of these areas, recent evidence suggests that hard tissue formation is, in part, controlled through the regulation of specific molecules that inhibit the mineralization process. This paper addresses the role of mineralization inhibitors in the regulation of biological mineralization with emphasis on the relevance of current findings to the process of amelogenesis. Mineralization inhibitors can also serve to maintain driving forces for calcium phosphate precipitation and prevent unwanted mineralization. Recent evidence shows that native phosphorylated amelogenins have the capacity to prevent mineralization through the stabilization of an amorphous calcium phosphate precursor phase, as observed in vitro and in developing teeth. Based on present findings, the authors propose that the transformation of initially formed amorphous mineral deposits to enamel crystals is an active process associated with the enzymatic processing of amelogenins. Such processing may serve to control both initial enamel crystal formation and subsequent maturation. PMID:25309443

  11. [Soft and hard tissue changes in Class II division 1 patients treated with Tip-Edge plus appliance].

    PubMed

    Xu, Lu-lu; Chen, Li-li; Xu, Juan; E, Ling-ling; Bei, Dan-dan; Liu, Hong-chen

    2012-04-01

    To investigate the soft and hard tissue changes in Class II division 1 patients treated with Tip-Edge plus technique. Sixteen Class II division 1 patients (7 boys and 9 girls) with mandibular retrusion in permanent dentition were selected and treated with Tip-Edge plus appliance. Lateral cephalometric films were analyzed before and after treatment. The effects were evaluated with Holdaway soft tissues analysis and routine cephalometric analysis methods. The arithmetic mean and standard deviation were calculated for each variable. Paired t-test was performed. The average treatment time was 16 months. Normal overjet and overbite were established with retroclination of upper incisors and proclination of lower incisors. U1-NA(°) and U1-NA (mm) decreaed by (15.40 ± 5.31)° and (4.16 ± 1.82) mm (P < 0.01). NLA showed an average increase of (-16.60 ± 5.29)° (P < 0.01). Remarkable soft tissue change was noted after the treatment. The profile in Class II division 1 patients could be quickly and efficiently improved after treatment with Tip-Edge plus technique.

  12. Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement.

    PubMed

    Chu, Chenglin; Xue, Xiaoyan; Zhu, Jingchuan; Yin, Zhongda

    2004-06-01

    Hydroxyapatite (HA)-based composite reinforced with 40 vol. % Ti particles was fabricated by the optimal technical condition of hot pressing technique. The mechanical and biological properties of the composite were studied by mechanical and in vivo methods. The experimental results show that HA and Ti phases are the predominant phases of the composite with partially decomposition of HA phase into alpha-Ca3(PO4)2 and Ca4O(PO4)2. Comparing with HA-20 vol. % Ti composite manufactured under the same conditions, HA-40 vol. % Ti composite with similar elastic modulus (79.3 GPa) and Vicker's hardness (2.94GPa) has a higher bending strength (92.1 MPa). Moreover, fracture toughness of HA-40 vol. % Ti composite with crack bridging as the chief toughening mechanisms can reach 2.692 MPa m(-1) , which can meet the basic toughness demand of the replaced hard tissues for heavy load-bearing applications. Work of fracture of HA-40 vol. % Ti composite is 91.2J m2, which is 22.9 times that of pure HA ceramic and even 2.4 times that of Al2O3 bioceramic. The results of in vivo studies show HA-40 vol. % Ti composite has excellent biocompatibility and could integrate with bone. In the early stage after the implantation of the samples, the osteointegration ability of the composite is better than that of pure titanium.

  13. Cephalometric analysis of hard and soft tissues in a 12-year-old syndromic child: a case report and update on dentofacial features of Crouzon syndrome.

    PubMed

    Nagaraju, K; Ranadheer, E; Suresh, P; Tarun, S P

    2011-01-01

    Crouzon syndrome or craniofacial dysostosis is a rare syndrome characterized by craniosynostosis, midfacial hypoplasia and exophthalmia. The abnormalities found in this syndrome change too much from case to case depending on the suture fusion order. We report a case of a 12 year old child and a mother showing variations in the dentofacial tissues clinically and radiographically. Subsequently, the application of digital software [Dolphin Imaging 11] enabled us to solve out the case as Crouzon syndrome by analyzing the skeletal and soft tissue alterations. An update of the effects of this syndrome on various systems and dentofacial features with emphasis on tooth abnormalities is documented.

  14. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice.

    PubMed

    Thompson, Khari D; Weiss-Bilka, Holly E; McGough, Elizabeth B; Ravosa, Matthew J

    2017-01-29

    The presence of regional variation in the osteogenic abilities of cranial bones underscores the fact that the mechanobiology of the mammalian skull is more complex than previously recognized. However, the relationship between patterns of cranial bone formation and biomineralization remains incompletely understood. In four strains of mice, micro-computed tomography was used to measure tissue mineral density during perinatal development in three skull regions (calvarium, basicranium, mandible) noted for variation in loading environment, embryological origin, and ossification mode. Biomineralization levels increased during perinatal ontogeny in the mandible and calvarium, but did not increase in the basicranium. Tissue mineral density levels also varied intracranially, with density in the mandible being highest, in the basicranium intermediate, and in the calvarium lowest. Perinatal increases in, and elevated levels of, mandibular biomineralization appear related to the impending postweaning need to resist elevated masticatory stresses. Similarly, perinatal increases in calvarial biomineralization may be linked to ongoing brain expansion, which is known to stimulate sutural bone formation in this region. The lack of perinatal increase in basicranial biomineralization could be a result of earlier developmental maturity in the cranial base relative to other skull regions due to its role in supporting the brain's mass throughout ontogeny. These results suggest that biomineralization levels and age-related trajectories throughout the skull are influenced by the functional environment and ontogenetic processes affecting each region, e.g., onset of masticatory loads in the mandible, whereas variation in embryology and ossification mode may only have secondary effects on patterns of biomineralization. Knowledge of perinatal variation in tissue mineral density, and of normal cranial bone formation early in development, may benefit clinical therapies aiming to correct

  15. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.

    PubMed

    Dorj, Biligzaya; Won, Jong-Eun; Kim, Joong-Hyun; Choi, Seong-Jun; Shin, Ueon Sang; Kim, Hae-Won

    2013-06-01

    Nanocomposite scaffolds with tailored 3D pore configuration are promising candidates for the reconstruction of bone. Here we fabricated novel nanocomposite bone scaffolds through robocasting. Poly(caprolactone) (PCL)-hydroxyapatite (HA) slurry containing ionically modified carbon nanotubes (imCNTs) was robotic-dispensed and structured layer-by-layer into macrochanneled 3D scaffolds under adjusted processing conditions. Homogeneous dispersion of imCNTs (0.2 wt % relative to PCL-HA) was achieved in acetone, aiding in the preparation of PCL-HA-imCNTs slurry with good mixing property. Incorporation of imCNTs into PCL-HA composition significantly improved the compressive strength and elastic modulus of the robotic-dispensed scaffolds (~1.5-fold in strength and ~2.5-fold in elastic modulus). When incubated in simulated body fluid (SBF), PCL-HA-imCNT nanocomposite scaffold induced substantial mineralization of apatite in a similar manner to the PCL-HA scaffold, which was contrasted in pure PCL scaffold. MC3T3-E1 cell culture on the scaffolds demonstrated that cell proliferation levels were significantly higher in both PCL-HA-imCNT and PCL-HA than in pure PCL, and no significant difference was found between the nanocomposite scaffolds. When the PCL-HA-imCNT scaffold was implanted into a rat subcutaneous tissue for 4 weeks, soft fibrous tissues with neo-blood vessels formed well in the pore channels of the scaffolds without any significant inflammatory signs. Tissue reactions in PCL-HA-imCNT scaffold were similar to those in PCL-HA scaffold, suggesting incorporated imCNT did not negate the beneficial biological roles of HA. While more long-term in vivo research in bone defect models is needed to confirm clinical availability, our results suggest robotic-dispensed PCL-HA-imCNT nanocomposite scaffolds can be considered promising new candidate matrices for bone regeneration.

  16. Soft tissue biological response to zirconia and metal implant abutments compared with natural tooth: microcirculation monitoring as a novel bioindicator.

    PubMed

    Kajiwara, Norihiro; Masaki, Chihiro; Mukaibo, Taro; Kondo, Yusuke; Nakamoto, Tetsuji; Hosokawa, Ryuji

    2015-02-01

    Zirconia is often used for implant abutments for esthetics. The aim of this clinical study was to compare the effects of zirconia and metal abutments on periimplant soft tissue. Ten maxillary anterior implant patients, 5 with metal abutments and 5 with zirconia abutments, were enrolled in this trial. The soft tissue around the implant abutments was evaluated by 2-dimensional laser speckle imaging and thermography. The blood flow in soft tissue around natural teeth was also measured to correct for differences among the subjects. Significantly greater blood flow was detected in the zirconia abutment group (95.64 ± 5.17%) relative to the metal abutment group (82.25 ± 8.92%) in free gingiva (P = 0.0317). Reduced blood flow (by almost 18%) was detected in the tissue surrounding metal abutments compared with the tissue surrounding natural teeth. The surface temperature showed no significant difference for all measurements. These results suggest that blood flow in tissue surrounding zirconia abutments is similar to that in soft tissue around natural teeth. Moreover, zirconia abutments could be advantageous for the maintenance of immune function by improving blood circulation.

  17. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications.

    PubMed

    Sadeghzade, Sorour; Emadi, Rahmatollah; Tavangarian, Fariborz; Naderi, Mozhgan

    2017-02-01

    In recent decades, bone scaffolds have received a great attention in biomedical applications due to their critical roles in bone tissue regeneration, vascularization, and healing process. One of the main challenges of using scaffolds in bone defects is the mechanical strength mismatch between the implant and surrounding host tissue which causes stress shielding or failure of the implant during the course of treatment. In this paper, space holder method was applied to synthesize diopside/forsterite composite scaffolds with different diopside content. During the sintering process, NaCl, as spacer agent, gradually evaporated from the system and produced desirable pore size in the scaffolds. The results showed that adding 10wt.% diopside to forsterite can enormously improve the bioactivity, biodegradability, and mechanical properties of the composite scaffolds. The size of crystals and pores of the obtained scaffolds were measured to be in the range 70-100nm and 100-250μm, respectively. Composite scaffolds containing 10wt.% diopside showed similar compressive strength and Young's modulus (4.36±0.3 and 308.15±7MPa, respectively) to that of bone. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The peri-implant hard and soft tissues at different implant systems. A comparative study in the dog.

    PubMed

    Abrahamsson, I; Berglundh, T; Wennström, J; Lindhe, J

    1996-09-01

    The aim of this study of the present experiment was to study the marginal periimplant tissues at intentionally non-submerged (1-stage implants) and initially submerged and subsequently exposed implants (2-stage implants). 5 beagle dogs, about 1-year-old, were used, 3 months after the extraction of the mandibular premolars, fixtures of the Astra Tech Implants Dental System, the Brånemark System and the Bonefit--ITI system were installed. In each mandibular quadrant, 1 fixture of each implant system was installed in a randomised order. The installation procedure followed the recommendations given in the manuals for each system. Thus, following installation, the bone crest coincided with the fixture margin of the Astra Tech Implants Dental System and the Brånemark System, whereas the border between the plasma sprayed and the machined surface of the Bonefit-ITI implant system was positioned at the level of the bone crest. Following a healing period of 3 months, abutment connection was carried out in the 2-stage systems (the Astra Tech Implants Dental System and the Brånemark system). A 6-month period of plaque control was initiated. The animals were sacrificed and biopsies representing each important region dissected. The tissue samples were prepared for light microscopy and exposed to histometric and morphometric measurements. The mucosal barrier which formed to the titanium surface following 1-stage and 2-stage implant installations comprised an epithelial and a connective tissue component, which for that 3 systems studied, had similar dimensions and composition. The amount of lamellar bone contained in the periimplant region close to the fixture part of the 3-implant systems was almost identical. It is suggested that correctly performed implant installation may ensure proper conditions for both and hard tissue healing, and that the geometry of the titanium implant seems to be of limited importance.

  19. [Study on the appropriate parameters of automatic full crown tooth preparation for dental tooth preparation robot].

    PubMed

    Yuan, F S; Wang, Y; Zhang, Y P; Sun, Y C; Wang, D X; Lyu, P J

    2017-05-09

    Objective: To further study the most suitable parameters for automatic full crown preparation using oral clinical micro robot. Its purpose is to improve the quality of automated tooth preparing for the system and to lay the foundation for clinical application. Methods: Twenty selected artificial resin teeth were used as sample teeth. The micro robot automatic tooth preparation system was used in dental clinic to control the picosecond laser beam to complete two dimensional cutting on the resin tooth sample according to the motion planning path. Using the laser scanning measuring microscope, each layer of cutting depth values was obtained and the average value was calculated. The monolayer cutting depth was determined. The three-dimensional (3D) data of the target resin teeth was obtained using internal scanner, and the CAD data of full-crown tooth preparation was designed by CAD self-develged software. According to the depth of the single layer, 11 complete resin teeth in phantom head were automatically prepared by the robot controlling the laser focused spot in accordance with the layer-cutting way. And the accuracy of resin tooth preparation was evaluated with the software. Using the same method, monolayer cutting depth parameter for cutting dental hard tissue was obtained. Then 15 extracted mandibular and maxillary first molars went through automatic full crown tooth preparation. And the 3D data of tooth preparations were obtained with intra oral scanner. The software was used to evaluate the accuracy of tooth preparation. Results: The results indicated that the single cutting depth of cutting resin teeth and in vitro teeth by picosecond laser were (60.0±2.6) and (45.0±3.6) μm, respectively. Using the tooth preparation robot, 11 artificial resin teeth and 15 complete natural teeth were automatically prepared, and the average time were (13.0±0.7), (17.0±1.8) min respectively. Through software evaluation, the average preparation depth of the occlusal surface

  20. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  1. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    PubMed

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  2. Hard tissue debris removal from the mesial root canal system of mandibular molars with ultrasonically and laser-activated irrigation: a micro-computed tomography study.

    PubMed

    Verstraeten, J; Jacquet, W; De Moor, R J G; Meire, M A

    2017-08-07

    This study is to investigate the efficacy of different irrigant activation techniques on removal of accumulated hard tissue debris (AHTD) in mesial roots of human mandibular molars. Extracted human mandibular molars with an isthmus between the mesial root canals were selected based on micro-CT (μCT) scans. The mesial canals were instrumented to an apical diameter ISO30 using ProTaper rotary files. Teeth were randomly assigned to three irrigant activation groups (n = 10): ultrasonically activated irrigation (UAI) using a size 20 Irrisafe for 3 × 20 s, laser-activated irrigation (LAI) with an Er:YAG laser (2940 nm) and plain 300 μm fiber tip inside the canal (20 mJ, 20 Hz, 3 × 20 s), and laser-activated irrigation with identical parameters with a 400 μm photon-induced photoacoustic streaming (PIPS) tip held at the canal entrance. All teeth were scanned with μCT before and after instrumentation and after irrigant activation. After reconstruction and image processing, the canal system volume filled with hard tissue debris before and after irrigant activation was calculated. Changes in hard tissue debris volumes were compared between groups using one-way ANOVA. The percentage volume of hard tissue debris (vol%) was significantly lower after irrigant activation in all groups. Although the lowest debris values were observed in the laser groups, no significant differences in the vol% of accumulated hard tissue debris after activation were observed between groups. Accumulated hard tissue debris was reduced significantly in all activation groups. Ultrasonically and laser-activated irrigation regimens performed similarly in this respect. None of the tested methods was able to render the root canal systems free of debris.

  3. Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Lineages

    PubMed Central

    Jussila, Maria; Thesleff, Irma

    2012-01-01

    SUMMARY Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell–cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered. PMID:22415375

  4. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  5. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    NASA Astrophysics Data System (ADS)

    Lang, S.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Schulz, G.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Müller, B.; Weitkamp, T.

    2014-10-01

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  6. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    SciTech Connect

    Lang, S.; Schulz, G.; Müller, B.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2014-10-21

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  7. Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Shori, Ramesh K.; Duhn, Clifford W.

    1998-04-01

    The purpose of this study was to evaluate the suitability of Q-switched Er:YAG radiation with a pulse duration of approximately 150 ns for caries ablation in dental enamel and dentin. The rate and efficiency of ablation were determined at various laser fluences via perforation of enamel and dentin thin slabs. Peripheral thermal and acoustic damage was evaluated using optical and electron microscopy. Enamel and dentin were ablated with extremely high precision without peripheral thermal damage using these short laser pulses. However, mechanical damage resulted from stress transients produced during the ablative process which caused fracture s in dentin and enamel on the back side of the perforated tissue samples. The thickness of the layer of spallated dentin increased linearly with deposited energy consistent with proposed models. The possibility of acoustic-mechanical damage may limit the maximum single pulse energy that may be deposited when using short pulsed Er:YAG lasers for hard tissue use. This work was supported by NIH/NIDR Grant R29DE12091.

  8. The Measurement and Research of Surface Potentials of Human Tooth in vitro

    DTIC Science & Technology

    2007-11-02

    dental hard tissue, no mater enamel , dentin or cementum, is formed mostly by the mineral, hydroxyapatite . It is soaked in the electrolyte surroundings...of the potentials, the surface potentials between mid-spots of enamel crown’s buccal side and tooth root were measured with electrochemical...property made by Klein and Amberson, 1932, had suggested that the dental enamel was an electrostatic ion screen and it had permselectivity[1]. Then

  9. Hard tissue ablation with a spray-assisted mid-IR laser.

    PubMed

    Kang, H W; Rizoiu, I; Welch, A J

    2007-12-21

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  10. Multiple-pulse irradiation of dental hard tissues at CO2 laser wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf D.

    1995-05-01

    Surface temperatures were monitored using pulsed photothermal radiometry (PPTR) during multiple pulse carbon dioxide laser irradiation ((lambda) equals 9.3, 9.6, 10.3 and 10.6 micrometers ). Permanent changes in the optical properties (reflectance and absorption) were observed at fluences greater than 2 J/cm2 for dentin and 5 J/cm2 for enamel. The laser irradiation changes the thermal and the optical properties of these tissues, substantially changing the energy deposition for subsequent laser pulses. The temperature response of enamel and dentin and the reflectance of dentin changed considerably with successive laser pulses. After 10 to 50 pulses the surface stabilized and no further changes were noted. Scanning electron micrographs of the laser conditioned surfaces showed large crystals of modified hydroxyapatite (approximately equals 500 nm) devoid of the organic matrix. Presumably, the water and the interwoven biopolymer matrix had been carbonized nd vaporized. Caries inhibition measurements after multiple pulse irradiation of enamel indicate that the stable laser conditioned surface is more resistant to acid dissolution than untreated enamel.

  11. Tooth fragment embedded in the lower lip for 10 months following dentoalveolar trauma: A case report with literature review.

    PubMed

    Nagaveni, N B; Umashankara, K V

    2014-01-01

    Traumatic injuries to maxillary anterior teeth are a common finding in children because of falls while playing. Sequelae of trauma to dental hard tissue include broken, lost, aspirated and swallowed teeth. One additional hazard is the embedding of fractured tooth fragments in the soft tissues, particularly in the lip. A 10-year-old male patient complained of pain in the lower lip. There was a history of trauma to the upper anterior tooth 10 months previously. Clinical examination showed scarring and discoloration over the lower lip, and the presence of a hard mass was felt on palpation. Intraoral examination revealed an Ellis and Davey class II fracture of number 11. A radiograph of the lip was taken, which showed a radiopaque structure similar to the shape of the missing tooth fragment. Under local anesthesia, the tooth fragment was removed successfully, and the class II fracture was restored with composite. Therefore, proper clinical and complete radiographic examination of both hard and soft tissues following dental trauma is essential to rule out such occurrences.

  12. Self-setting particle-stabilized emulsion for hard-tissue engineering.

    PubMed

    Iwasaki, Yasuhiko; Takahata, Yusuke; Fujii, Syuji

    2015-02-01

    Injectable self-setting materials have recently attracted interest for use in minimally invasive medical treatments and tissue engineering. In particular, calcium phosphate cements (CPCs) offer certain specific advantages for the treatment of bone defects. Although the inner structures of set CPCs are important for the apposition and remodeling of new bone, there are still limitations to the design of cements with a well-controlled inner structure. In the present study, we explored self-setting CPCs that generate interconnected macroporous matrices using solid-particle-stabilized emulsion templates. α-Tricalcium phosphate (α-TCP) and poly(ethylene phosphate) sodium salt-coated poly(D,L-lactide-co-glycolide) (PLGA) microparticles were mixed with castor oil and water to form an oil-in-water (o/w) emulsion. The α-TCP and PLGA microparticles functioned as an effective particulate emulsifier by adsorption at the oil-water interface. The resulting emulsion spontaneously set in a humidified atmosphere at ambient temperature. The setting behaviors of different emulsions were characterized through X-ray diffraction analysis and compressive-strength measurements. The PLGA microparticles did not hinder the rate of hardening of the emulsions, and they improved the compressive strengths of the set cements. The PLGA particles incorporated within the set cements were hydrolytically degraded, and the degradation of the PLGA particles resulted in the formation of an interconnected pore structure in the set cement. Finally, mouse osteoblastic (MC3T3-E1) cells were cultivated on the set CPCs. The adherent MC3T3-E1 cells adopted a spindle shape, and significant cellular invasion into the set CPCs was observed after degradation of the PLGA microparticles. In conclusion, self-setting emulsions stabilized with α-TCP and PLGA microparticles constitute a novel candidate material for bone regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Test Tube Tooth: The Next Big Thing

    PubMed Central

    Tahir, Mohammed; Yadav, Harsh; Sureka, Rakshit; Garg, Aarti

    2016-01-01

    Unlike some vertebrates and fishes, humans do not have the capacity for tooth regeneration after the loss of permanent teeth. Although artificial replacement with removable dentures, fixed prosthesis and implants is possible through advances in the field of prosthetic dentistry, it would be ideal to recreate a third set of natural teeth to replace lost dentition. For many years now, researchers in the field of tissue engineering have been trying to bioengineer dental tissues as well as whole teeth. In order to attain a whole tooth through dental engineering, that has the same or nearly same biological, mechanical and physical properties of a natural tooth, it’s necessary to deal with all the cells and tissues which are concerned with the formation, maintenance and repair of the tooth. In this article we review the steps involved in odontogenesis or organogenesis of a tooth and progress in the bioengineering of a whole tooth. PMID:27504430

  14. Stem cell mediated tooth regeneration: new vistas in dentistry.

    PubMed

    Sujesh, M; Rangarajan, V; Ravi Kumar, C; Sunil Kumar, G

    2012-03-01

    The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal and adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field.

  15. Selective formation of metastable ferrihydrite in the chiton tooth.

    PubMed

    Gordon, Lyle M; Román, Jessica K; Everly, R Michael; Cohen, Michael J; Wilker, Jonathan J; Joester, Derk

    2014-10-20

    Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.

  16. Primary B-Cell Mucosa-Associated Lymphoid Tissue Lymphoma of the Hard Palate and Parotid Gland: Report of One Case and Review of the Literature.

    PubMed

    Yonal-Hindilerden, Ipek; Hindilerden, Fehmi; Arslan, Serkan; Turan-Guzel, Nalan; Dogan, Ibrahim Oner; Nalcaci, Meliha

    2016-11-01

    A 61-year-old woman was admitted to our hospital with an ulcerated palate mass and swelling of the right parotid gland. Incisional biopsy from the hard palate revealed an extranodal marginal zone B-cell lymphoma, also called mucosa-associated lymphoid tissue (MALT) lymphoma. Final diagnosis was MALT lymphoma of the parotid gland with concomitant involvement of an extremely seldom site of involvement: the hard palate. To our knowledge, this report illustrates the first case of MALT lymphoma of the hard palate and parotid gland without an underlying autoimmune disease. Rituximab-based combination regimen (R-CHOP) provided complete remission with total regression of mass lesions at the hard palate and parotid gland. At 44-month follow-up, there is no disease relapse. We adressed the manifestations and management of MALT lymphoma patients with involvement of salivary gland and oral cavity.

  17. Primary B-Cell Mucosa-Associated Lymphoid Tissue Lymphoma of the Hard Palate and Parotid Gland: Report of One Case and Review of the Literature

    PubMed Central

    Yonal-Hindilerden, Ipek; Hindilerden, Fehmi; Arslan, Serkan; Turan-Guzel, Nalan; Dogan, Ibrahim Oner; Nalcaci, Meliha

    2016-01-01

    A 61-year-old woman was admitted to our hospital with an ulcerated palate mass and swelling of the right parotid gland. Incisional biopsy from the hard palate revealed an extranodal marginal zone B-cell lymphoma, also called mucosa-associated lymphoid tissue (MALT) lymphoma. Final diagnosis was MALT lymphoma of the parotid gland with concomitant involvement of an extremely seldom site of involvement: the hard palate. To our knowledge, this report illustrates the first case of MALT lymphoma of the hard palate and parotid gland without an underlying autoimmune disease. Rituximab-based combination regimen (R-CHOP) provided complete remission with total regression of mass lesions at the hard palate and parotid gland. At 44-month follow-up, there is no disease relapse. We adressed the manifestations and management of MALT lymphoma patients with involvement of salivary gland and oral cavity. PMID:27738485

  18. Ritual tooth modification among the Baka pygmies in Cameroon.

    PubMed

    Agbor, A M; Azodo, C C; Naidoo, S

    2015-09-01

    Ritual tooth mutilation is a relatively understudied human body mutilatory practices. The purpose of the study was to examine the effects of ritual tooth modification, teeth cleaning measures and herbal medications for their oral health problems among the Baka pygmies in Cameroon. This cross-sectional study was conducted between January and March, 2012 using semi-structured questionnaire as the tool of data collection. Intra-oral examinations were carried out to determine the dental hard tissue loss using Smith and Knight Tooth Wear Index (TWI). Fifty-six pygmies with ritual tooth modification made of 34 males (60.7%) and 22 females (39.3%) with a mean age of 31 years were interviewed and had oral health examination. The reported age at which the tooth modification was done was between 10 and 15 years with mean age as 12 ± 1.66 years. More than half (58.9%) of the participants reported the tooth filing as painful and nearly two-thirds (64.3%) of the participants reported having persistent pain afterwards. The upper right central and lateral incisors were the most commonly modified teeth. A total of 42.9%, 12.5% and 7.1% of the participants had Smith and Knight TWI scores of 2, 3 and 4 respectively. All the participants reported cleaning their teeth at least once-daily with about two-thirds (66.1%) of them doing so with chewing stick. The majority (67.9%) of the participants reported cleaning their teeth for cosmetic reasons [to remove dirt' (60.7%) and 'to remove stains' (7.1%)]. The oral health problems among the participants in form of tooth sensitivity, toothache and dental abscess were treated with plant-based traditional medicines from Irvingia gabonensis, Ricinodendron heudoletti, Pterocarpus soyauxii, Alchornea cordifolia and Piptadeniastrum africanum. Ritual tooth modification is a painful mutilatory practice which is culturally significant for the Baka pygmies without health benefit. There is need for intervention to stop this harmful traditional

  19. Tooth mobility changes subsequent to root fractures: a longitudinal clinical study of 44 permanent teeth.

    PubMed

    Andreasen, Jens Ove; Ahrensburg, Søren Steno; Tsilingaridis, Georgios

    2012-10-01

    The purpose of this study was to analyze tooth mobility changes in root-fractured permanent teeth and relate this to type of interfragment healing (hard tissue healing (HT), interfragment healing with periodontal ligament (PDL) and nonhealing with interposition of granulation tissue (GT) because of pulp necrosis in the coronal fragment. Furthermore, the effect of age, location of the fracture on the root, and observation period on mobility values was analyzed. Mobility values were measured for 44 of 95 previous reported root-fractured permanent incisors. Mobility changes were measured with a Mühlemanns periodontometer and noninjured incisors served as controls. The mobility values represented the labial-lingual excursion of the root measured in μm when the tooth received a frontal and a palatal impact of 100 g force. In 18 cases of hard tissue healing (HT), a slightly increased mobility was seen after 3 months and 1 year, and a normalization of mobility value was usually found after 5 and 10 years. In 17 cases of PDL healing, generally a higher mobility was found in comparison with root fractures healing with hard tissue, and a consistent decrease in mobility value was found in the course of the 10 year observation period. A tendency for reduced mobility over time was found, a relation that could possibly be explained by the known general decrease in tooth mobility with increasing age. Finally, nine cases of nonhealing with initial interposition of granulation tissue (GT) because of pulp necrosis in the coronal fragment resulted in increasing mobility values possibly related to a lateral breakdown of the PDL in relation to the fracture line. In control teeth, a lowering of mobility was found over the course of a 10-year observation period. In conclusion, mobility changes appeared to reflect the radiographic healing stages and known age effects upon tooth mobility.

  20. Distinctive Tooth-Extraction Socket Healing: Bisphosphonate Versus Parathyroid Hormone Therapy

    PubMed Central

    Kuroshima, Shinichiro; Mecano, Rodan B.; Tanoue, Ryuichiro; Koi, Kiyono; Yamashita, Junro

    2014-01-01

    Background Patients with osteoporosis who receive tooth extractions are typically on either oral bisphosphonate or parathyroid hormone (PTH) therapy. Currently, the consequence of these therapies on hard- and soft-tissue healing in the oral cavity is not clearly defined. The aim of this study is to determine the differences in the therapeutic effect on tooth-extraction wound healing between bisphosphonate and PTH therapies. Methods Maxillary second molars were extracted in Sprague Dawley rats (n = 30), and either bisphosphonate (zoledronate [Zol]), PTH, or saline (vehicle control [VC]) was administered for 10 days (n = 10 per group). Hard-tissue healing was evaluated by microcomputed tomography and histomorphometric analyses. Collagen, blood vessels, inflammatory cell infiltration, and cathepsin K expression were assessed in soft tissue using immunohistochemistry, quantitative polymerase chain reaction, and immunoblotting. Results Both therapies significantly increased bone fill and suppressed vertical bone loss. However, considerably more devital bone was observed in the sockets of rats on Zol versus VC. Although Zol increased the numbers of blood vessels, the total blood vessel area in soft tissue was significantly smaller than in VC. PTH therapy increased osteoblastic bone formation and suppressed osteoclasts. PTH therapy promoted soft-tissue maturation by suppressing inflammation and stimulating collagen deposition. Conclusion Zoledronate therapy deters whereas PTH therapy promotes hard- and soft-tissue healing in the oral cavity, and both therapies prevent vertical bone loss. PMID:23688101

  1. Preserved microstructure and mineral distribution in tooth and periodontal tissues in early fossil hominin material from Koobi Fora, Kenya.

    PubMed

    Klinge, R Furseth; Dean, M C; Risnes, S; Erambert, M; Gunnaes, A E

    2009-01-01

    The aim of this study was to explore further the preservation of tissues and the mineral distribution in 1.6 million-year-old fossil hominin material from Koobi Fora, Kenya attributed to Paranthropus boisei (KNM-ER 1817). Bone, dentine and cementum microstructure were well preserved. Electron microprobe analysis of dentine and bone revealed an F-bearing apatite. Calcite now filled the original soft tissue spaces. The average Ca/P atomic ratio was 1.93, as compared to 1.67 in biological hydroxyapatite, indicating that the Ca-content had increased during fossilization. Analytical sums for mineral content were approximately 90 wt%. Some of the remaining 10 wt% may be preserved organic material. Demineralized dentine fragments showed irregularly distributed tubules encircled with a fibrous-like electron-dense material. A similar material was observed in demineralized dentine. Within this, structures resembling bacteria were seen. In demineralized bone an electron-dense material with a fibrous appearance and a banding pattern that repeated every 64 nm, similar to that of collagen, was noted. SEM of an enamel fragment (KNM-ER 6081) showed signs of demineralization/remineralization. Retzius lines, Hunter-Schreger bands and prism cross-striations spaced 3.7-7.1.microm apart were noted. Prisms were arranged in a pattern 3 configuration and deeper areas containing aprismatic enamel were occasionally observed. We conclude that a great deal of informative microstructure and ultrastructure remains preserved in this fossil material. We also hypothesize that the high mineral content of the tissues may 'protect' parts of the organic matrix from degradation, since our findings indicate that some organic matrix may still be present.

  2. Clinical management of a fused upper premolar with supernumerary tooth: a case report

    PubMed Central

    2014-01-01

    In dentistry, the term 'fusion' is used to describe a developmental disorder of dental hard tissues. In the permanent dentition, fusion of a normal tooth and a supernumerary tooth usually involves the incisors or canines. However, a few cases of fusion involving premolars have also been reported to date. We present a rare case in which fusion of the maxillary left second premolar and a supernumerary tooth in a 13-year-old girl was diagnosed using cone beam computed tomography (CBCT, Alphard-3030, Asahi Roentgen Ind. Co., Ltd.). The tooth was bicuspidized after routine nonsurgical root canal treatment, and the separated teeth underwent appropriate restoration procedures. The second premolar and supernumerary tooth remained asymptomatic without any signs of inflammation after a follow-up period of 9 years. Identification of anatomical anomalies is important for treatment in cases involving fusion with supernumerary tooth, and therefore the microscopic examinations and CBCT are essential for the diagnosis. Fused teeth can be effectively managed by the comprehensive treatment which includes both endodontic and periodontal procedures. PMID:25383352

  3. Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering.

    PubMed

    Yu, Hye-Sun; Lee, Eun-Jung; Seo, Seog-Jin; Knowles, Jonathan C; Kim, Hae-Won

    2015-09-01

    Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues.

  4. Comparison of CT-Number and Gray Scale Value of Different Dental Materials and Hard Tissues in CT and CBCT

    PubMed Central

    Emadi, Naghmeh; Safi, Yaser; Akbarzadeh Bagheban, Alireza; Asgary, Saeed

    2014-01-01

    Introduction: Computed tomography (CT) and cone-beam CT (CBCT) are valuable diagnostic aids for many clinical applications. This study was designed to compare the gray scale value (GSV) and Hounsfield unit (HU) of selected dental materials and various hard tissues using CT or CBCT. Methods and Materials: Three samples of all test materials including amalgam (AM), composite resin (CR), glass ionomer (GI), zinc-oxide eugenol (ZOE), calcium-enriched mixture (CEM) cement, AH-26 root canal sealer (AH-26), gutta-percha (GP), Coltosol (Col), Dycal (DL), mineral trioxide aggregate (MTA), zinc phosphate (ZP), and polycarbonate cement (PC) were prepared and scanned together with samples of bone, dentin and enamel using two CBCT devices, Scanora 3D (S3D) and NewTom VGi (NTV) and a spiral CT (SCT) scanner (Somatom Emotion 16 multislice spiral CT);. Subsequently, the HU and GSV values were determined and evaluated. The data were analyzed by the Kruskal-Wallis and Mann-Whitney U tests. The level of significance was determined at 0.05. Results: There were significant differences among the three different scanners (P<0.05). The differences between HU/GSV values of 12 selected dental materials using NTV was significant (P<0.05) and for S3D and SCT was insignificant (P>0.05). All tested materials showed maximum values in S3D and SCT (3094 and 3071, respectively); however, bone and dentin showed low/medium values (P<0.05). In contrast, the tested materials and tissues showed a range of values in NTV (366 to15383; P<0.05). Conclusion: Scanner system can influence the obtained HU/GSV of dental materials. NTV can discriminate various dental materials, in contrast to S3D/SCT scanners. NTV may be a more useful diagnostic aid for clinical practice. PMID:25386210

  5. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  6. Hard-tissue drilling by short-pulse CO2 laser with controllable pulse-tail energy

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Sasaki, Tatsufumi; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with the almost same spike-pulse energy of about 0.8 mJ and the controllable pulse-tail energy of 0-21.26 mJ. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance and a spark-gap switch. In single-shot irradiation using these laser pulses, the dependence of the drilling depth of dry ivory samples on the fluence was investigated. The drilling depth increased with the fluence in the same laser pulse waveform. In this work, the effective short laser pulse for the hard tissue drilling was the laser pulse with the spike pulse energy of 0.87 mJ and the pulse tail energy of 6.33 mJ that produced the drilling depth of 28.1 μm at the fluence of 3.48 J/cm2 and the drilling depth per the fluence of 7.27 μm/J/cm2.

  7. Identification of benign and malignant endometrial cancer with transvaginal ultrasonography combined with elastography and tissue hardness analysis.

    PubMed

    Zhang, Y; Luo, L; Luo, Q

    2015-01-01

    This study was designed to explore tissue hardness and distinguish benign and malignant endometrial cancer with the use of transvaginal ultrasonography combined with elastography. Color Doppler ultrasonic diasonograph was used to carry out transvaginal ultrasonography and elastography. Once the nidus was observed, features of the 2D image were analyzed. Then features of elasticity of the uterine cavity in different states were analyzed by elastography, and strain rate ratio was measured. Finally, elasticity scoring (0~5 points) was made. Receiver operating characteristic (ROC) curve was drawn based on elasticity score and strain rate ratio. The area under the elasticity score curve and strain rate ratio curve was 0.761 and 0.852, respectively, and there was no statistically significant difference between them (c2= 4.663, P>0.05). Then 2.98 was confirmed as the diagnostic cut-off value of benign and malignant lesions, based on strain rate ratio. Ultrasonic elastography as an effective assistance for transvaginal ultrasonography provides more valuable information for confirmation of lesions and offers more accurate evidence for diagnosis of disease in the uterine cavity.

  8. Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants.

    PubMed

    Lee, Hae-Hyoung; Sang Shin, Ueon; Lee, Jae-Ho; Kim, Hae-Won

    2011-08-01

    Degradable polymer-based materials are attractive in orthopedics and dentistry as an alternative to metallic implants for use as bone fixatives. Herein, a degradable polymer poly(lactic acid) (PLA) was combined with novel hybrid nanopowder of carbon nanotubes (CNTs)-calcium phosphate (CP) for this application. In particular, CNTs-CP hybrid nanopowders (0.1 and 0.25% CNTs) were prepared from the solution of ionically modified CNTs (mCNTs), which was specifically synthesized to be well-dispersed and thus to effectively adsorb onto the CP nanoparticles. The mCNTs-CP hybrid nanopowders were then mixed with PLA (up to 50%) to produce mCNTs-CP-PLA nanocomposites. The mechanical tensile strength of the nanocomposites was significantly improved by the addition of mCNTs-CP hybrid nanopowders. Moreover, nanocomposites containing low concentration of mCNTs (0.1%) showed significantly stimulated biological responses including cell proliferation and osteoblastic differentiation in terms of gene and protein expressions. Based on this study, the addition of novel mCNT-CP hybrid nanopowders to PLA biopolymer may be considered a new material choice for developing hard tissue implants.

  9. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements.

    PubMed

    Zhan, Yongzhong; Li, Chunliu; Jiang, Wenping

    2012-08-01

    In order to develop new β-type Ti-based biochemical materials, a series of Ti-10Mo-1.25Si-xZr (x=4-13) alloys were designed and prepared using vacuum arc melting method. Phase analysis and microstructural observation showed that all the as cast samples consisted of equiaxed β-Ti phase. With the increase of Zr content, the structure of grain boundary changed from semi-continuous network to denser granular, and the microstructure was refined. The solid solution effect of the β-phase stabilization elements (i.e. Mo, Zr and Si) predominantly determined the mechanical properties. These β-type Ti-10Mo-1.25Si-xZr biomaterials exhibited a good combination of high compressive strength, high yield stress, good plasticity, as well as rather low Young's modulus (in the range of 23.086 GPa-32.623 GPa), which may offer potential advantages in the applications in hard tissue replacements (HTRs).

  10. Continued root formation after replantation and root canal treatment in an avulsed immature permanent tooth: a case report.

    PubMed

    Wang, Su-Hsin; Chung, Ming-Pang; Su, Wen-Song; Cheng, Jen-Chan; Shieh, Yi-Shing

    2010-04-01

    This case report describes the continued root formation following replantation and conventional root canal therapy of a traumatically avulsed open-apex tooth with suppurative apical periodontitis. A 7-year-old male patient had an avulsed upper left central incisor (tooth 21) replanted approximately 50 min after traumatic avulsion. A root canal procedure was initiated due to pulp necrosis and periapical abscess detected in the follow-up period. After endodontic treatment with calcium hydroxide (Ca(OH)(2)) dressing, a normal root length developed including an apical segment beyond the hard tissue barrier. Regeneration of the root occurred without pathology or ankylosis at 1-year of follow up.

  11. Can tert-butylhydroquinone improve the healing of extracted tooth socket in rats?

    PubMed Central

    Tusi, Somayeh Khoramian; Manesh, Tahereh Eslam; Fathollahi, Mahmood Sheikh; Bagherian, Ali

    2017-01-01

    Background: Tooth extraction causes an open wound in the soft and hard tissues. During the inflammatory phase of the healing process, a large amount of free radicals are produced and cause oxidative stress, which leads to tissue damage and delayed wound healing. Thus, in this study, we evaluated the effect of tert-butylhydroquinone (TBHQ), as an antioxidant, on the healing process of tooth sockets in rats. Materials and Methods: To conduct this experimental study, male Wistar rats (n = 42) were divided into two groups. In each case, one upper second molar was extracted under general anesthesia. After the extraction, the tooth sockets of the experimental group were treated with a 0.02% TBHQ solution (0.1 ml) while the same volume of distilled water placed in the sockets of the control group. On days 3, 7, and 21 postoperatively, 7 rats from each group were euthanized, and histological slides were prepared from their tooth sockets. The prepared slides were examined histopathologically using a light microscope and compared using an independent two-sample t-test. The significance level was set at 0.05. Results: In the experimental group, a statistically significant (P = 0.003) increase in granulation tissue was observed on day 3, in comparison to the control group. The extent of bony trabeculation was also significantly higher in the TBHQ-treated group than in the control group on day 21 (P < 0.001). Conclusion: Considering the limitations of an experimental study, it can be concluded that TBHQ may enhance the healing of the hard tissue in the tooth sockets. PMID:28348611

  12. Evaluation of soft and hard tissue changes after bimaxillary surgery in class III orthognathic surgery and aesthetic consideration.

    PubMed

    Ghassemi, Mehrangiz; Ghassemi, Alireza; Showkatbakhsh, Rahman; Ahmad, Syed Sayeed; Shadab, Mohammad; Modabber, Ali; Jamilian, Abdolreza

    2014-01-01

    The aim of this study was to evaluate hard and soft tissue change after bimaxillary surgery in class III patients by focusing on sella, nasion, A point (SNA) and sella, nasion, B point (SNB) angle and aesthetic outcome. The sample consisted of 96 skeletal Class III patients (42 women, 54 men) with a mean age of 25 years with standard deviation (SD) of 8.4. The youngest patient was 16-years-old and the oldest 51-years-old at the time of surgery. In total, seven skeletal parameters, eight soft tissue parameters, and two dental parameters were evaluated on the cephalograms. At the beginning of the treatment 49 Patients had SNA between 80° and 84°, 34 had SNA of less than 80° and 13 had SNA of more than 84°. Post surgically, 25 patients had SNA of 78°-84°, 19 had SNA less than 78° and 52 patients had SNA of more than 84°. Out of 96 patients 22 had SNB of 78°-82° before surgery, 16 had less than 78° and 58 had SNA of more than 84°. Postoperatively, we measured SNB of 78°-80° in 42, less than 78° in 18 and of more than 82° in 36 patients. The inclination of the maxilla relative to the cranial base changed from 7.2° (SD = 4)-8° (SD = 5.1) and the mandible changed from 35.7° (SD = 6.6) to 36° (SD = 6.3) postoperatively which was not significant. The distance from upper lip to E-line increased by 2.6 mm (SD = 3.9) after surgery (P < 0.001), while, the lower lip distance to E-line decreased slightly by 0.9 mm (SD = 3.2) (P < 0.01). Nasolabial angle was decreased by 9.5° (SD = 9.4) after surgery (P < 0.001). The nose prominence also decreased from 18.2 mm (SD = 3.5) -16.5 mm (SD = 3.3). Although in many cases we did not have a SNA angle or SNB angle in normal range but a good aesthetic outcome have been observed. Consequently our study showed that soft tissue change and aesthetic aspects should be considered in surgical planning and achieving SNA angle or SNB angle of norm range should not be the only goal. As we could show the advancement of maxilla will

  13. Equine Odontoclastic Tooth Resorption and Hypercementosis: Histopathologic Features.

    PubMed

    Smedley, R C; Earley, E T; Galloway, S S; Baratt, R M; Rawlinson, J E

    2015-09-01

    Equine odontoclastic tooth resorption and hypercementosis (EOTRH) is a painful progressive condition of older horses that involves multiple teeth, including canines and incisors. EOTRH is uncommonly recognized by veterinary pathologists and in some cases may be misdiagnosed as cementoblastoma. The cause is unknown. The goals of this study were to describe the histopathologic features of EOTRH in 17 affected horses from the United States and to increase awareness of this condition. Samples ranged from affected tooth to the entire rostral mandible and maxilla. Affected teeth exhibited cemental hyperplasia and lysis. The marked proliferation of cementum in severe cases caused bulbous enlargement of the intra-alveolar portions of affected teeth. Several teeth contained necrotic debris, bacteria, and plant material in the regions of cemental lysis. All horses exhibited dentinal lysis in at least affected tooth, and several contained necrotic debris in these regions. Endodontic disease was often present with inflammation, lysis, necrotic debris, fibrosis, and/or a thin rim of atubular mineralized tissue in the pulp cavity. Periodontal disease was a common feature that was primarily characterized by moderate lymphoplasmacytic inflammation. Resorption with secondary hypercementosis appears to begin on the external surface of the teeth rather than within the pulp cavity. Distinguishing EOTRH from other diseases requires a complete history that includes the number and location of affected teeth, a gross description of regional hard/soft tissue health, and radiographic findings.

  14. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.

    PubMed

    Kim, Hae-Won; Knowles, Jonathan C; Kim, Hyoun-Ee

    2005-02-01

    Hydroxyapatite (HA) and gelatin composites were fabricated in a foam type via a novel freeze-drying and crosslinking technique. The morphological and mechanical properties of and in vitro cellular responses to the foams were investigated. The HA powder was added at up to 30 wt % into the gelatin solution, and the mixtures were freeze-dried and further crosslinked. The pure gelatin foam had a well-developed pore configuration with porosity and pore size of approximately 90% and 400-500 microm, respectively. With HA addition, the porosity decreased and pore shape became more irregular. The HA particulates, in sizes of about 2-5 microm, were distributed within the gelatin network homogeneously and made the framework surface rougher. All the foams had high water absorption capacities, showing typical hydrogel characteristics, even though the HA addition decreased the degree of water absorption. The HA addition made the foam much stronger and stiffer (i.e., with increasing HA amount the foams sustained higher compressive stress and had higher elastic modulus in both dry and wet states). The osteoblast-like human osteosarcoma cells spread and grew actively on all the foams. The cell proliferation rate, quantified indirectly on the cells cultured on Ti discs coated with gelatin and gelatin-HA composites using MTT assay, exhibited an up-regulation with gelatin coating compared with bare Ti substrate, but a slight decrease on the composite coatings. However, the alkaline phosphatase activities expressed by the cells cultured on composites foams as well as their coatings on Ti discs were significantly enhanced compared with those on pure gelatin foam and coating. These findings suggest that the gelatin-HA composite foams have great potential for use as hard tissue regeneration scaffolds. Copyright 2004 Wiley Periodicals, Inc.

  15. Ablation of dental hard tissues with a microsecond pulsed carbon dioxide laser operating at 9.3-μm with an integrated scanner

    NASA Astrophysics Data System (ADS)

    Assa, Shlomo; Meyer, Steve; Fried, Daniel

    2008-02-01

    Pulsed carbon dioxide lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with pulse durations in the microsecond range are ideally suited for dental hard tissue modification and removal. The purpose of these studies was to demonstrate that a low cost 9.3-μm CO II laser system utilizing low-energy laser pulses (1-5 mJ /pulse) delivered at a high repetition rate (400-Hz) is feasible for removing dental hard tissues. The laser beam was focused to a small spot size to achieve ablative fluence and an integrated/programmable optical scanner was used to scan the laser beam over the desired area for tissue removal. Pulse durations of 35, 60 and 75-μs were employed and the enamel and dentin ablation rate and ablation efficiency was measured. Laser irradiated human and bovine samples were assessed for peripheral thermal and mechanical damage using polarized light microscopy. The heat accumulation during rapid scanning ablation with water-cooling at 400-Hz was monitored using micro-thermocouples. The laser was able to ablate both enamel and dentin without excessive peripheral thermal damage or heat accumulation. These preliminary studies suggest that a low-cost RF excited CO II laser used in conjunction with an integrated scanner has considerable potential for application to dental hard tissues.

  16. Evaluation of peri-implant soft tissue and bone levels around early loaded implant in restoring single missing tooth: A clinico-radiographic study

    PubMed Central

    Bhardwaj, Isha; Bhushan, Anoop; Baiju, Chandrababu Sudha; Bali, Shweta; Joshi, Vaibhav

    2016-01-01

    Background: One-stage nonsubmerged protocol which can achieve success rates comparable to implants placed in a two-staged submerged procedure also the preconditions for periimplant bone regeneration has lead to more refined concepts of implant loading. Materials and Methods: Twenty sites with single missing tooth were included in this study. Clinical parameters included sulcus bleeding index (sBI), probing pocket depth (PD), and papilla index (PI) and radiographic parameters included crestal bone level were assessed for a period of 9 months. Results: The crestal bone loss showed mean value ranging from baseline 0.25 ± 0.11 to 0.31 ± 0.08 at 3 weeks, to 0.67 ± 0.13 at 3 months, to 0.85 ± 0.09 at 6 months, and to 0.88 ± 0.12 at 9 months. Probing PD, the mean value for probing PD at 3 weeks 1.20 ± 0.83, 3 months 1.60 ± 1.1, at 6 months 1.40 ± 1.14, and at 9 months 1.20 ± 1.0. sBI, mean value for sBI at 3 weeks 0.00 ± 0.00, 3 months 0.3 ± 0.11, at 6 months 0.09 ± 0.25, and at 9 months 0.08 ± 0.24. PI, showed a significant difference among at different points of time with P = 0.000. Conclusion: The dental implants showed <1 mm of crestal bone loss at 9 months follow-up, clinically significant marginal bone loss occurred between the time of implant placement and 3 months. Subsequent to that, bone loss observed around the implant up to 9 months was minimal. The periimplant soft tissue maturity was maintained throughout the study. PMID:27041836

  17. Chick tooth induction revisited.

    PubMed

    Cai, Jinglei; Cho, Sung-Won; Ishiyama, Mikio; Mikami, Masato; Hosoya, Akihiro; Kozawa, Yukishige; Ohshima, Hayato; Jung, Han-Sung

    2009-07-15

    Teeth have been missing from Aves for almost 100 million years. However, it is believed that the avian oral epithelium retains the molecular signaling required to induce odontogenesis, and this has been widely examined using heterospecific recombinations with mouse dental mesenchyme. It has also been argued that teeth can form from the avian oral epithelium owing to contamination of the mouse mesenchyme with mouse dental epithelial cells. To investigate the possibility of tooth formation from chick oral epithelium and the characteristics of possible chick enamel, we applied LacZ transgenic mice during heterospecific recombination and examined the further tooth formation. Transmission electron microscopy was used to identify the two tissues during development after heterospecific recombination. No mixing was detected between chick oral epithelium and mouse dental mesenchyme after 2 days, and secretory ameloblasts with Tomes' processes were observed after 1 week. Teeth were formed after 3 weeks with a single cusp pattern, possibly determined by epithelial factors, which is similar to that of the avian tooth in the late Jurassic period. These recombinant teeth were smaller than mouse molars, whereas perfect structures of both ameloblasts and enamel showed histological characteristics similar to those of mice. Together these observations consistent with previous report that odontogenesis is initially directed by species-specific mesenchymal signals interplaying with common epithelial signals.

  18. Whole Tooth Regeneration as a Future Dental Treatment.

    PubMed

    Oshima, Masamitsu; Tsuji, Takashi

    2015-01-01

    Dental problems caused by dental caries, periodontal disease and tooth injury compromise the oral and general health issues. Current advances for the development of regenerative therapy have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. Tooth regenerative therapy for tooth tissue repair and whole tooth replacement is currently expected a novel therapeutic concept with the full recovery of tooth physiological functions. Dental stem cells and cell-activating cytokines are thought to be candidate approach for tooth tissue regeneration because they have the potential to differentiate into tooth tissues in vitro and in vivo. Whole tooth replacement therapy is considered to be an attractive concept for next generation regenerative therapy as a form of bioengineered organ replacement. For realization of whole tooth regeneration, we have developed a novel three-dimensional cell manipulation method designated the "organ germ method". This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions in organogenesis. The bioengineered tooth germ generates a structurally correct tooth in vitro, and erupted successfully with correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was engrafted into an adult jawbone through bone integration. Bioengineered teeth were also able to perform physiological tooth functions such as mastication, periodontal ligament function and response to noxious stimuli. In this review, we describe recent findings and technologies underpinning whole tooth regenerative therapy.

  19. Evaluation of soft and hard tissue changes after bimaxillary surgery in class III orthognathic surgery and aesthetic consideration

    PubMed Central

    Ghassemi, Mehrangiz; Ghassemi, Alireza; Showkatbakhsh, Rahman; Ahmad, Syed Sayeed; Shadab, Mohammad; Modabber, Ali; Jamilian, Abdolreza

    2014-01-01

    Aims: The aim of this study was to evaluate hard and soft tissue change after bimaxillary surgery in class III patients by focusing on sella, nasion, A point (SNA) and sella, nasion, B point (SNB) angle and aesthetic outcome. Materials and Methods: The sample consisted of 96 skeletal Class III patients (42 women, 54 men) with a mean age of 25 years with standard deviation (SD) of 8.4. The youngest patient was 16-years-old and the oldest 51-years-old at the time of surgery. In total, seven skeletal parameters, eight soft tissue parameters, and two dental parameters were evaluated on the cephalograms. Result: At the beginning of the treatment 49 Patients had SNA between 80° and 84°, 34 had SNA of less than 80° and 13 had SNA of more than 84°. Post surgically, 25 patients had SNA of 78°–84°, 19 had SNA less than 78° and 52 patients had SNA of more than 84°. Out of 96 patients 22 had SNB of 78°–82° before surgery, 16 had less than 78° and 58 had SNA of more than 84°. Postoperatively, we measured SNB of 78°–80° in 42, less than 78° in 18 and of more than 82° in 36 patients. The inclination of the maxilla relative to the cranial base changed from 7.2° (SD = 4)–8° (SD = 5.1) and the mandible changed from 35.7° (SD = 6.6) to 36° (SD = 6.3) postoperatively which was not significant. The distance from upper lip to E-line increased by 2.6 mm (SD = 3.9) after surgery (P < 0.001), while, the lower lip distance to E-line decreased slightly by 0.9 mm (SD = 3.2) (P < 0.01). Nasolabial angle was decreased by 9.5° (SD = 9.4) after surgery (P < 0.001). The nose prominence also decreased from 18.2 mm (SD = 3.5) –16.5 mm (SD = 3.3). Conclusion: Although in many cases we did not have a SNA angle or SNB angle in normal range but a good aesthetic outcome have been observed. Consequently our study showed that soft tissue change and aesthetic aspects should be considered in surgical planning and achieving SNA angle or SNB angle of norm range should not be the

  20. Micro-Computed Tomographic Evaluation of Hard Tissue Debris Removal after Different Irrigation Methods and Its Influence on the Filling of Curved Canals.

    PubMed

    Freire, Laila Gonzales; Iglecias, Elaine Faga; Cunha, Rodrigo Sanches; Dos Santos, Marcelo; Gavini, Giulio

    2015-10-01

    The aim of this study was to compare the efficacy of passive ultrasonic irrigation (PUI) and the EndoVac (EV) System (Discus Dental, Culver City, CA) in hard tissue debris removal and its influence on the quality of the root canal filling with the aid of micro-computed tomographic scanner. Twenty-four mandibular molars were subjected to 4 microtomographic scannings (ie, before and after instrumentation, after final irrigation, and after obturation) using the SkyScan 1176 X-ray microtomograph (Bruker microCT, Kontich, Belgium) at a resolution of 17.42 μm. Mesial canals were prepared using R25 Reciproc instruments (VDW GmbH, Munich, Germany) and divided into 2 groups according to the final irrigation method: the PUI group (n = 12) and the EV group (n = 12). All specimens were filled with the continuous wave of condensation technique. CTAn and CTvol software (Bruker microCT) were used for volumetric analysis and 3-dimensional model reconstruction of the root canals, hard tissue debris, and the filling material. Data were statistically analyzed using the Student t test. Analysis of the micro-computed tomographic scans revealed debris accumulated inside the root canals, occupying an average of 3.4% of the canal's volume. Irrigation with PUI and the EV system reduced the volume of hard tissue debris in 55.55% and 53.65%, respectively, with no statistical difference between them (P > .05). Also, there was no difference among the groups with regard to the volume of filling material and voids (P > .05). PUI and the EV system were equally efficient in the removal of hard tissue debris and the quality of root canal filling was similar in both groups, with no influence from the irrigation method. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Molecular Genetics of Supernumerary Tooth Formation

    PubMed Central

    Wang, Xiu-Ping; Fan, Jiabing

    2011-01-01

    Summary Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering. PMID:21309064

  2. Multiphoton microscopy imaging of developing tooth germs.

    PubMed

    Pan, Pei-Yu; Chen, Rung-Shu; Ting, Chih-Liang; Chen, Wei-Liang; Dong, Chen-Yuan; Chen, Min-Huey

    2014-01-01

    Traditionally, tooth germ is observed by histological investigation with hematoxylin and eosin stain and information may loss during the process. The purpose of this study is to use multiphoton laser fluorescence microscopy to observe the developing tooth germs of mice for building up the database of the images of tooth germs and compare with those from conventional histological analysis. Tooth germs were isolated from embryonic and newborn mice with age of Embryonic Day 14.5 and Postnatal Days 1, 3, 5, and 7. Comparison of the images of tooth germ sections in multiphoton microscopy with the images of histology was performed for investigating the molar tooth germs. It was found that various signals arose from different structures of tooth germs. Pre-dentin and dentin have strong second-harmonic generation signals, while ameloblasts and enamel tissues were shown with strong autofluorescence signals. In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration. Copyright © 2012. Published by Elsevier B.V.

  3. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints.

    PubMed

    Jang, Andrew T; Merkle, Arno P; Fahey, Kevin P; Gansky, Stuart A; Ho, Sunita P

    2015-12-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats (N=60) given powder food for 6 months over 8,12,16,20, and 24 weeks. Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8 weeks change in functional space was -33 μm, at 12 weeks change in functional space was -30 μm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24 weeks: Δ-0.06) and bone hardness (8 weeks: Δ-0.04 GPa, 16 weeks: Δ-0.07 GPa, 24 weeks: Δ-0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional

  4. Hard and Soft Tissue Changes Following Maxillary Distraction Osteogenesis and Mandibular Setback with Bilateral Sagittal Split Osteotomy.

    PubMed

    Bawane, Shilpa S; Andrade, Neelam N

    2016-12-01

    (1) To highlight the role of intraoral submerged device in distraction osteogenesis (DO) of patients requiring two jaw surgeries for the correction of severe developmental maxillary hypoplasia (MH) and mandibular prognathism (MP) (2) To analyse the hard and soft tissue changes following maxillary DO and mandibular setback with bilateral sagittal split osteotomy (BSSO) in patients with severe MH and MP requiring two jaw surgeries. During the period Jan 2004 to Dec 2006, five patients with severe developmental MH along with MP were treated. In 1st stage maxillary distraction was done. Distraction started on 6th postoperative day, 1 mm distraction was carried out for 10-15 days on either side. Serial radiographs were taken immediate postoperative period for baseline comparison, post-distraction and at the end of distraction. After a period of 3-4 months of distraction 2nd stage was done. In 2nd stage, mandibular setback was done with BSSO and distractors were removed under general anesthesia. Radiographs were taken immediately and at 4 months post-operatively. Cephalometric tracings were carried out preoperatively, post DO and finally after mandibular setback with BSSO. The mean horizontal movement of maxilla was 11.4 mm at ANS and 9.6 mm at A point. Upper incisor edge was advanced by 8.8 mms. SNA increased by 8.4° and SNB decreased by 4.6°. Nasal projection advanced by 4°. Nasolabial angle normalized in all patients, mean change achieved was 10.8°. Upper lip moved forward by 5.4 mm. Lower lip moved backward by 5.4 mm. Mandible positioned backward by 4 mm at B point. No vertical change occurred in the position of A, ANS and upper incisor edges. Mean increase in skeletal angle of convexity was 26.4°. Concave profile was significantly changed to convex in all patients. Maxillary DO and mandibular setback with BSSO was associated with improved facial balance and esthetics.

  5. Eating with a saw for a jaw: functional morphology of the jaws and tooth-whorl in Helicoprion davisii.

    PubMed

    Ramsay, Jason B; Wilga, Cheryl D; Tapanila, Leif; Pruitt, Jesse; Pradel, Alan; Schlader, Robert; Didier, Dominique A

    2015-01-01

    The recent reexamination of a tooth-whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth-whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth-whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite-forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft-bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth-whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft-bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth-whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft-bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior-posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth-whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion.

  6. Abiotic tooth enamel

    NASA Astrophysics Data System (ADS)

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  7. Investigation of EPR signals on tooth enamel

    NASA Astrophysics Data System (ADS)

    Pavlenko, A.; Mironova-Ulmane, N.; Polakov, M.; Riekstina, D.

    2007-12-01

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  8. [Destructive and protective factors in the development of tooth-wear].

    PubMed

    Máté, Jász; Gábor, Varga; Zsuzsanna, Tóth

    2006-12-01

    The experience of the past decade proves that tooth wear occurs in an increasing number of cases in general dental practice. Tooth wear may have physical (abrasion and attrition) and/or chemical (erosion) origin. The primary physical causes are inadequate dental hygienic activities, bad oral habits or occupational harm. As for dental erosion, it is accelerated by the highly erosive foods and drinks produced and sold in the past decades, and the number of cases is also boosted by the fact that bulimia, anorexia nervosa and gastro-oesophageal reflux disease prevalence have become more common. The most important defensive factor against tooth wear is saliva, which protects teeth from the effect of acids. Tertiary dentin formation plays an important role in the protection of the pulp. Ideally, destructive and protective factors are in balance. Both an increase in the destructive forces, and the insufficiency of defense factors result in the disturbance of the equilibrium. This results in tooth-wear, which means an irreversible loss of dental hard tissue. The rehabilitation of the lost tooth material is often very difficult, irrespectively of whether it is needed because of functional or esthetic causes. For that reason, the dentist should carry out primary and secondary dental care and prevention more often, i.e. dental recall is indispensable every 4-6 months.

  9. Comparative tooth whitening and extrinsic tooth stain removal efficacy of two tooth whitening dentifrices: six-week clinical trial.

    PubMed

    Soparkar, Pramod; Rustogi, Kedar; Zhang, Yun Po; Petrone, Margaret E; DeVizio, William; Proskin, Howard M

    2004-01-01

    The objective of this six-week, examiner-blind clinical study was to assess the tooth whitening and extrinsic tooth stain removal efficacy of a new dentifrice delivering 1.0% hydrogen peroxide, 0.243% sodium fluoride, and sodium tripolyphosphate in a high-cleaning silica base (Test Dentifrice), relative to that of commercially available hexametaphosphate-containing whitening dentifrice (Positive Control Dentifrice). Following a baseline oral soft tissue examination and scoring of extrinsic tooth stain and tooth shade, qualifying adult male and female subjects from the Harrisburg, Pennsylvania area were randomized into either the Test or Positive Control Dentifrice group. The two groups were balanced for gender, extrinsic tooth stain, and tooth shade scores. All subjects were provided their assigned dentifrice and a soft-bristled adult toothbrush for home use. Subjects were instructed to brush their teeth for two minutes twice daily (morning and evening) using only the dentifrice provided, and to refrain from using any other oral hygiene products for the entire six weeks of the study. There were no restrictions regarding diet or smoking habits during the course of the study. Oral soft tissue, extrinsic tooth stain, and tooth shade assessments for each subject were repeated after two and six weeks of product use. All statistical tests were two sided and employed a level of significance of alpha = 0.05. Fifty-six (56) subjects complied with the protocol and completed the entire study. Compared to baseline at both the two- and six-week examinations, the Test Dentifrice group had statistically significant reductions in extrinsic tooth stain area and intensity, and statistically significant mean shade rank reductions, with a six-week reduction of 4.81. In contrast, at six weeks, the Positive Control dentifrice had a statistically significant increase in tooth stain area, a non-significant increase in tooth stain intensity, and a statistically significant mean 1.40 shade

  10. Tooth regeneration: challenges and opportunities for biomedical material research.

    PubMed

    Du, Chang; Moradian-Oldak, Janet

    2006-03-01

    Tooth regeneration presents many challenges to researchers in the fields of biology, medicine and material science. This review considers the opportunities for biomedical material research to contribute to this multidisciplinary endeavor. We present short summaries and an overview on the collective knowledge of tooth developmental biology, advances in stem-cell research, and progress in the understanding of the tooth biomineralization principles as they provide the foundation for developing strategies for reparative and regenerative medicine. We emphasize that various biomaterials developed via biomimetic strategies have great potential for tooth tissue engineering and regeneration applications. The current practices in tooth tissue engineering approaches and applications of biomimetic carriers or scaffolds are also discussed.

  11. Prospective evaluation of immediate and delayed provisional single tooth restorations.

    PubMed

    Block, Michael S; Mercante, Donald E; Lirette, Denise; Mohamed, Waheed; Ryser, Mark; Castellon, Paulino

    2009-11-01

    The purpose of this study was 2-fold: to determine whether there is a significant difference in the hard and soft tissue response comparing immediate with delayed implant placement after tooth removal, with immediate provisionalization, in maxillary anterior sites; and to determine and compare the crestal bone levels as the primary endpoint variable for implants placed and immediately temporized in extraction sites, to implants placed into extraction sites after the extraction site has been grafted and healed for 4 months, all immediately restored with an anatomic provisional restoration. This aim was to be evaluated by measuring crestal bone levels on standardized digital radiographs of the implants, using implant threads as a monitor of magnification and a pre-extraction reference. Secondary endpoint variables include soft tissue measures compared with method. A total of 76 patients were recruited and randomized into treatment groups. Group 1 had a maxillary tooth (premolar, canine, lateral or central incisor) removed, with immediate socket grafting, followed by implant placement and provisionalization 4 months later with a single tooth. Group 2 had immediate implant placement and provisionalization. Standardized radiograph holders were used to expose digital radiographs every 6 months from baseline to up to 2 years restored. Soft tissue measures were made from standardized reference points. Data collected were analyzed by a statistician to test the hypotheses. A total of 55 patients completed their follow-up. Twenty-one patients were lost to follow-up because of implant loss (n = 5), 1 treated out of protocol because of labial bone loss found at the time of tooth removal (n = 1), geographic relocation (n = 11), dropped for noncompliance (n = 3), or medical problems (n = 1). The analyses showed no significant differences between groups in implant integration or crestal interdental bone movement on either the implant or the adjacent tooth. The bone level on the

  12. Tooth Wear Prevalence and Sample Size Determination : A Pilot Study

    PubMed Central

    Abd. Karim, Nama Bibi Saerah; Ismail, Noorliza Mastura; Naing, Lin; Ismail, Abdul Rashid

    2008-01-01

    Tooth wear is the non-carious loss of tooth tissue, which results from three processes namely attrition, erosion and abrasion. These can occur in isolation or simultaneously. Very mild tooth wear is a physiological effect of aging. This study aims to estimate the prevalence of tooth wear among 16-year old Malay school children and determine a feasible sample size for further study. Fifty-five subjects were examined clinically, followed by the completion of self-administered questionnaires. Questionnaires consisted of socio-demographic and associated variables for tooth wear obtained from the literature. The Smith and Knight tooth wear index was used to chart tooth wear. Other oral findings were recorded using the WHO criteria. A software programme was used to determine pathological tooth wear. About equal ratio of male to female were involved. It was found that 18.2% of subjects have no tooth wear, 63.6% had very mild tooth wear, 10.9% mild tooth wear, 5.5% moderate tooth wear and 1.8 % severe tooth wear. In conclusion 18.2% of subjects were deemed to have pathological tooth wear (mild, moderate & severe). Exploration with all associated variables gave a sample size ranging from 560 – 1715. The final sample size for further study greatly depends on available time and resources. PMID:22589636

  13. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process?

    PubMed

    Ricucci, Domenico; Loghin, Simona; Lin, Louis M; Spångberg, Larz S W; Tay, Franklin R

    2014-09-01

    Conceptually, two types of tertiary dentine may be produced in response to caries and environmental irritations: "reactionary dentine" that is secreted by existing primary odontoblasts and "reparative dentine", formed after the death of the odontoblasts by proliferation and differentiation of progenitor cells into odontoblast-like cells. Because histologic evidence for tubular dentine generated by newly differentiated odontoblast-like cells is lacking in human teeth, the present study examined pulpal cellular changes associated with caries/restorations, in the presence or absence of pulpal exposures. Ninety-six extracted human teeth were histologically processed and serial sectioned for light microscopy: 65 contained untreated enamel/dentine caries; 20 were heavily restored and 11 had carious exposures managed by direct pulp-capping. Sparsely distributed, irregularly arranged dentinal tubules were identified from the tertiary dentine formed in teeth with unexposed medium/deep caries and in restored teeth; those tubules were continuous with the tubules of secondary dentine; in some cases, tubules were absent. The palisade odontoblast layer was reduced to a single layer of flattened cells. In direct pulp-capping of pulp exposures, the defects were repaired by the deposition of an amorphous dystrophic calcified tissue that resembled pulp stones more than dentine, sometimes entrapping pulpal remnants. This atubular hard tissue was lined by fibroblasts and collagen fibrils. Histological evidence from the present study indicates that reparative dentinogenesis cannot be considered as a regenerative process since the so-formed hard tissue lacks tubular features characteristic of genuine dentine. Rather, this process represents a repair response that produces calcified scar tissues by pulpal fibroblasts. Formation of hard tissue in the dental pulp after the death of the primary odontoblasts has often been regarded by clinicians as regeneration of dentine. If the objective

  14. Autotransplantation donor tooth site harvesting using piezosurgery.

    PubMed

    Ylikontiola, Leena P; Sándor, George K

    2016-01-01

    The harvesting of a tooth as a candidate for tooth autotransplantation requires that the delicate dental tissues around the tooth be minimally traumatized. This is especially so for the periradicular tissues of the tooth root and the follicular tissues surrounding the crown. The aim of this report is to describe the use of piezosurgery as an attempt at morbidity reduction in the harvesting of teeth for autotransplantation. A piezosurgical handpiece and its selection of tips were easily adapted to allow the harvesting and delivery of teeth for autotransplantation purposes. Twenty premolar teeth were harvested using a piezosurgical device. The harvested teeth were subsequently successfully autotransplanted. All twenty teeth healed in a satisfactory manner without excessive mobility or ankyloses. Piezosurgery avoids some of the traumatic aspects of harvesting teeth and removing bone which are associated with thermal damage from the use of conventional rotary instruments or saws. Piezosurgery can be adapted to facilitate the predictable harvesting of teeth for autotransplantation purposes.

  15. Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: in situ synthesis and electrospinning.

    PubMed

    Chae, Taesik; Yang, Heejae; Ko, Frank; Troczynski, Tom

    2014-02-01

    The fundamental building blocks of hierarchically structured bone tissue are mineralized collagen fibrils with calcium phosphate nanocrystals that are biologically "engineered" through biomineralization. In this study, we demonstrate an original invention of dicalcium phosphate anhydrate (DCPA)/poly(lactic acid) (PLA) composite nanofibers, which mimics the mineralized collagen fibrils via biomimetic in situ synthesis and electrospinning for hard tissue regenerative medicines. The interaction of the Ca(2+) ions and the carbonyl groups in the PLA provides nucleation sites for DCPA during the in situ synthesis process. This resulted in the improved dispersion of DCPA nanocrystallites in the intrananoporous PLA nanofibers through electrospinning, compared to the severely agglomerated clusters of DCPA nanoparticles fabricated by conventional mechanical blending/electrospinning methods. The addition of poly(ethylene glycol), as a copolymer source, generated more stable and efficient electrospun jets and aided in the electrospinability of the PLA nanofibers incorporating the nanocrystallites. It is expected that the uniformly distributed DCPA nanocrystallites and its unique nanocomposite fibrous topography will enhance the biological performance and the structural stability of the scaffolds used for hard tissue reconstruction and regeneration.

  16. Single-Tooth Implant Restorations in Fresh Extraction Sockets of the Maxillary Esthetic Zone: Two-Year Results of a Prospective Cohort Study.

    PubMed

    Ganeles, Jeffrey; Norkin, Frederic J; Zfaz, Samuel

    In this prospective study, 15 patients received 15 variable-thread tapered implants placed in fresh extraction sites in the maxillary esthetic zone and immediately were provisionalized out of occlusion. Of the 15 patients, 11 completed their 2-year follow-up. At 2 years, the success and cumulative survival rates were both 100%, and the mean bone level gain was 0.83 mm. Soft tissue assessment showed no zero esthetic scores, improved papilla indices, and low bleeding on probing and plaque accumulation. Overall, the study implants showed excellent hard tissue, soft tissue, and esthetic outcomes, indicating a healthy tissue response in single-tooth extraction sites in the maxillary esthetic zone.

  17. Mössbauer Studies of Stannous Fluoride Reactivity with Synthetic Tooth Enamel - A Model for the Tooth Cavity Protection Actions of Novel Dentifrices

    NASA Astrophysics Data System (ADS)

    Dénès, Georges; Muntasar, Abdualhafeed; Kozak, Kathy M.; Baig, Arif A.; White, Donald J.

    2002-06-01

    SnF2 is an important toothpaste ingredient, added for the provision of clinical efficacy for hard and soft tissue diseases and in breath protection. Synthetic calcium hydroxyapatite powders were exposed to liquid supernates (25 w/w% toothpaste water slurries, centrifuged) of Crest Gum Care® (SnF2) dentifrice. One-minute treatments were followed by 3x water washing, centrifugation and lyophilization. Post treatment, powders were analyzed by Mössbauer spectroscopy with 0.5-1 gram of treated apatite powder. Results show that tooth mineral stannous fluoride interactions include: (1) formation of surface reaction products with both Sn(II) and Sn(IV) oxidation states; (2) Sn-F binding on mineral surfaces with no evidence of SnO. The surface binding is, however, not pure Sn-F but contains contributions of other ligands, probably oxygens from surface phosphates or hydroxyl groups. Results also suggest that surface reacted stannous tin is oxidized with time, even when bound as a layer on the tooth surface. This study demonstrates for the first time the presence of Sn-F on tooth enamel post treatment and the contribution of passivation to long term stannous chemistry on tooth surfaces. The study also illustrates the practical applications of the Mössbauer technique.

  18. Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements

    NASA Astrophysics Data System (ADS)

    Singh, Ramandeep; Pal Singh, Bhupinder; Gupta, Anjali; Prakash, Chander

    2017-08-01

    In the present research work, a β-type Ti-35Nb-10HA alloy was successfully fabricated by mechanical alloying of titanium (Ti), niobium (Nb), and hydroxyaptite (HA) powders followed by consolidation using Spark Plasma Sintering technique. The effect of HA on the microstructure and mechanical properties were studied. The microstructure, surface topography, and element composition of the Ti-Nb-HA alloy was investigated using optical microscope, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The micro-hardness of the specimens was measured on a Vickers hardness tester. The microstructure examination of the compact revealed that the alloy distinctly shows the primary grain boundaries along with secondary grain boundary. It was observed that complex reactions between HA and alloy elements occurred during the sintering process of Ti-35Nb-10HA alloy and biocompatible phases [Ca3(PO4)2, CaTiO3, Nb8P5, CaO, TiP, Nb4O5, and TiO2] were generated in the compact, which is beneficial to form apatite and improved the bioactivity of the alloy for osseiointegartion. The fabricated Ti-35Nb-15HA alloy exhibits maximum micro-hardness (∼786 HV), which is very high value as compared to the alloys reported in literature. Based on these above observations, it is expected that the as-fabricated Ti-35Nb-10HA alloy is suggested for dental and orthopaedic applications.

  19. There is no difference with regard to hard and/or soft tissue safety between oscillating-rotating powered brushes and manual toothbrushes.

    PubMed

    Farsi, Nada J; Nicolau, Belinda

    2011-12-01

    Safety of oscillating-rotating powered brushes compared to manual toothbrushes: a systematic review. Van der Weijden FA, Campbell SL, Dörfer CE, González-Cabezas C, Slot DE. J Periodontol 2011;82(1):5-24. Nada J. Farsi, BDS, MSc, Belinda Nicolau, DDS, PhD. To compare the soft and/or hard tissue safety between manual and oscillating-rotating brushes through a systematic review of the pertinent literature. Industry (Procter & Gamble). Systematic review Level 1: Good-quality, patient-oriented evidence. Grade A: Consistent, good-quality patient-oriented evidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Basic study on vibrations during tooth preparations caused by high-speed drilling and Er:YAG laser irradiation.

    PubMed

    Takamori, Kazunori; Furukawa, Hirohiko; Morikawa, Yoshikatsu; Katayama, Tadashi; Watanabe, Shigeru

    2003-01-01

    An Er:YAG laser effectively removes dental hard substance, and causes less pain during tooth preparations than high-speed drilling. This laser was introduced to eliminate the noise, vibration, pressure, and heat associated with the high-speed drilling. However, the difference in tooth vibration caused by the Er:YAG laser and the high-speed drill is unclear. Therefore, the aim of this study was to evaluate tooth vibration obtained with the Er:YAG laser and high-speed drill. Each of the five extracted permanent upper first premolars were built up in a plaster box. In this study, a silicone impression material was selected to simulate periodontal tissue. The vibration speed was measured by using a laser Doppler vibrometer. The Er:YAG laser irradiation energy was 50, 100, 145, 199, 300, and 350 mJ. As irradiation energy increased, vibration of the tooth also rose; a high-correlation coefficient was observed between them. We found that only a small amount of the tooth vibration occurred with the Er:YAG laser preparations. The mean vibration speed and standard deviation with the laser were 166 +/- 28 microm/second when the output energy was 145 mJ, whereas those with the high-speed drill were 65 +/- 48 mm/second. The frequency characteristic approached 230 Hz and 5 kHz, respectively. These results show that the high-speed drilling causes greater tooth vibration and has a frequency spectrum near the high sensitivity of hearing compared to the Er:YAG laser. This suggests a potential factor in provoking pain and displeasure during tooth preparation. Future study to examine the relationship of pain and amount of tooth vibration will be planned. Copyright 2003 Wiley-Liss, Inc.

  1. Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return.

    PubMed

    Zelik, Karl E; Kuo, Arthur D

    2010-12-15

    The muscles and tendons of the lower extremity are generally considered the dominant producers of positive and negative work during gait. However, soft-tissue deformations not captured by joint rotations might also dissipate, store and even return substantial energy to the body. A key locomotion event is the collision of the leg with the ground, which deforms soft tissues appreciably in running. Significant deformation might also result from the impulsive ground collision in walking. In a study of normal human walking (N=10; 0.7-2.0 m s(-1) speeds), we show indirect evidence for both negative and positive work performed by soft tissue, consistent with a damped elastic collision and rebound. We used the difference between measured joint work and another quantity - the work performed on the body center of mass - to indicate possible work performed by soft tissue. At 1.25 m s(-1), we estimated that soft tissue performs approximately 7.5 J of negative work per collision. This constitutes approximately 60% of the total negative collision work and 31% of the total negative work per stride. The amount of soft tissue work during collision increases sharply with speed. Each collision is followed by 4 J of soft tissue rebound that is also not captured by joint work measures. Soft tissue deformation may save muscles the effort of actively dissipating energy, and soft tissue elastic rebound could save up to 14% of the total positive work per stride. Soft tissues not only cushion impacts but also appear to perform substantial work.

  2. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    NASA Astrophysics Data System (ADS)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  3. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  4. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    PubMed Central

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-01-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels. PMID:28195172

  5. Single implant tooth replacement.

    PubMed

    Briley, T F

    1998-01-01

    It has been shown that direct bone anchorage of dental implants will provide long-term predictability for single tooth implants and multi-unit implants. The function of implant-supported restoration is now routinely achieved. The real challenge facing the restorative dentist and laboratory technician is to achieve optimal aesthetics. The learning objective of this article is to review the prosthodontic procedures essential to maximizing natural aesthetics in implant supported restorations. It will provide a review of master impression techniques, prepable titanium abutments and designing the cement on restoration. Particular emphasis is directed to the soft tissue model from which a series of sequenced techniques can be followed to achieve optimal aesthetics. Analysis of the implant alignment with regard to the neighboring teeth will result in having to make a choice of which prepable abutment will maximize the aesthetic result. The following case outlines how to replace a single missing tooth using an externally hexed implant system and a prefabricated titanium abutment on a 26-year-old male patient.

  6. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    PubMed

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  7. Digital dissection – using contrast-enhanced computed tomography scanning to elucidate hard-and soft-tissue anatomy in the Common Buzzard Buteo buteo

    PubMed Central

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-01-01

    Gross dissection has a long history as a tool for the study of human or animal soft-and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. PMID:24350638

  8. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints

    PubMed Central

    Jang, Andrew T.; Merkle, Arno; Fahey, Kevin; Gansky, Stuart A.; Ho, Sunita P.

    2015-01-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats given powder food for 6 months (N = 60 over 8,12,16,20, and 24 weeks). Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8wks change in functional space was −33 µm, at 12wks change in functional space was −30 µm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24wks: Δ-0.06) and bone hardness (8wks: Δ−0.04 GPa, 16 wks: Δ−0.07 GPa, 24wks: Δ−0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional space in

  9. Industrial Noise and Tooth Wear - Experimental Study

    PubMed Central

    Cavacas, Maria Alzira; Tavares, Vitor; Borrecho, Gonçalo; Oliveira, Maria João; Oliveira, Pedro; Brito, José; Águas, Artur; dos Santos, José Martins

    2015-01-01

    Tooth wear is a complex multifactorial process that involves the loss of hard dental tissue. Parafunctional habits have been mentioned as a self-destructive process caused by stress, which results in hyperactivity of masticatory muscles. Stress manifests itself through teeth grinding, leading to progressive teeth wear. The effects of continuous exposure to industrial noise, a “stressor” agent, cannot be ignored and its effects on the teeth must be evaluated. Aims: The aim of this study was to ascertain the effects of industrial noise on dental wear over time, by identifying and quantifying crown area loss. Material and Methods: 39 Wistar rats were used. Thirty rats were divided in 3 experimental groups of 10 animals each. Animals were exposed to industrial noise, rich in LFN components, for 1, 4 and 7 months, with an average weekly exposure of 40 hours (8h/day, 5 days/week with the weekends in silence). The remaining 9 animals were kept in silence. The areas of the three main cusps of the molars were measured under light microscopy. Statistical analysis used: A two-way ANOVA model was applied at significance level of 5%. Results: The average area of the molar cusps was significantly different between exposed and non-exposed animals. The most remarkable differences occurred between month 1 and 4. The total crown loss from month 1 to month 7 was 17.3% in the control group, and 46.5% in the exposed group, and the differences between these variations were significant (p<0.001). Conclusions: Our data suggest that industrial noise is an important factor in the pathogenesis of tooth wear. PMID:25798052

  10. Proteoglycans and orthodontic tooth movement.

    PubMed

    Waddington, R J; Embery, G

    2001-12-01

    Proteoglycans represent an important and diverse family of extracellular matrix components within the connective tissues of the periodontium. This review focuses on the function and metabolism of the various proteoglycans in periodontal tissues, such as alveolar bone and periodontal ligament, and considers their potential fate in response to an orthodontic force. Such considerations provide an important background in evaluating the potential for proteoglycan metabolites, alongside other connective tissue metabolites, as biomarkers for assessing the deep-seated metabolic changes and as a diagnostic tool in monitoring orthodontic tooth movement.

  11. Morphological changes in hard dental tissues prepared by Er:YAG laser (LiteTouch, Syneron), Carisolv and rotary instruments. A scanning electron microscopy evaluation.

    PubMed

    Tsanova, Snejana Ts; Tomov, Georgi T

    2010-01-01

    This in vitro investigation aimed to study by means of scanning electron microscope the morphological changes in hard dental tissues after using several different methods for caries removal and cavity preparation. Twenty freshly extracted human teeth with carious lesions were used in the study. They were assigned to four groups depending on the method used for preparation: Group 1--Cavity preparation using Er: YAG laser (LiteTouch, Syneron, Israel). Group 2--Chemomechanical preparation using colourless Carisolv gel (MediTeam AB, Savedalen, Sweden). Group 3--Mechanical rotary preparation using diamond burs and air turbine. Group 4--Mechanical rotary preparation using by steel burs and micromotor. The preparations were performed strictly according to the manufacturer's instructions for proper use of instruments. The teeth samples were prepared for histological study and investigated by a scanning electron microscope at different magnification; the morphological changes in the tissues were registered and compared. There were considerable differences in the surface characteristics of the dental tissues when we analysed the photomicrographs of the specimens obtained using scanning electron microscopy (SEM). The surface after laser treatment remained highly retentive with no residual smear layer; the second best results in this respect were registered when teeth were chemomechanically excavated with Carisolv gel. The mechanical methods of cavity preparation resulted in surfaces with a smear layer of dentin without any microretentions. The scanning electron microscopy of hard dental tissues prepared using steel and diamond burs showed surfaces covered with a thick smear layer that may be relevant to the subsequent bonding of adhesive restorative materials to the prepared cavity. In preparing the surface using a turbine with diamond burs the smear layer was thinner and part of the dentinal tubules orifices were open in the area of water turbulence. SEM analysis of hard

  12. Changing the facial features of patients with Treacher Collins syndrome: protocol for 3-stage treatment of hard and soft tissue hypoplasia in the upper half of the face.

    PubMed

    Mitsukawa, Nobuyuki; Saiga, Atsuomi; Satoh, Kaneshige

    2014-07-01

    Treacher Collins syndrome is a disorder characterized by various congenital soft tissue anomalies involving hypoplasia of the zygoma, maxilla, and mandible. A variety of treatments have been reported to date. These treatments can be classified into 2 major types. The first type involves osteotomy for hard tissue such as the zygoma and mandible. The second type involves plastic surgery using bone grafting in the malar region and soft tissue repair of eyelid deformities. We devised a new treatment to comprehensively correct hard and soft tissue deformities in the upper half of the face of Treacher Collins patients. The aim was to "change facial features and make it difficult to tell that the patients have this disorder." This innovative treatment strategy consists of 3 stages: (1) placement of dermal fat graft from the lower eyelid to the malar subcutaneous area, (2) custom-made synthetic zygomatic bone grafting, and (3) Z-plasty flap transposition from the upper to the lower eyelid and superior repositioning and fixation of the lateral canthal tendon using a Mitek anchor system. This method was used on 4 patients with Treacher Collins syndrome who had moderate to severe hypoplasia of the zygomas and the lower eyelids. Facial features of these patients were markedly improved and very good results were obtained. There were no major complications intraoperatively or postoperatively in any of the patients during the series of treatments. In synthetic bone grafting in the second stage, the implant in some patients was in the way of the infraorbital nerve. Thus, the nerve was detached and then sutured under the microscope. Postoperatively, patients had almost full restoration of sensory nerve torpor within 5 to 6 months. We devised a 3-stage treatment to "change facial features" of patients with hypoplasia of the upper half of the face due to Treacher Collins syndrome. The treatment protocol provided a very effective way to treat deformities of the upper half of the face

  13. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs.

    PubMed

    Schwarz, Frank; Ferrari, Daniel; Herten, Monika; Mihatovic, Ilja; Wieland, Marco; Sager, Martin; Becker, Jürgen

    2007-11-01

    The aim of the present study was to investigate the effects of surface hydrophilicity and microtopography on soft and hard tissue integration at non-submerged titanium implants. Implantation of conventional sand-blasted large grit and acid-etched (SLA) and chemically modified SLA (modSLA) titanium implants with differently structured transmucosal surfaces (SLA implants: machined [M-SLA] or SLA [SLA-SLA]; modSLA implants: mod acid-etched [modA] [modA-modSLA] or modSLA [modSLA-modSLA]) was performed bilaterally in the upper and lower jaws of 15 beagle dogs. The animals were sacrificed after 1, 4, 7, 14, or 28 days. Tissue reactions were assessed histomorphometrically and immunohistochemically using monoclonal antibodies to transglutaminase II (angiogenesis) and osteocalcin. Although the junctional epithelium commonly was separated from M-SLA and SLA-SLA implants by a gap, the epithelial cells appeared to be in close contact with modA-modSLA surfaces after 14 days of healing. Moreover, modA-modSLA and modSLA-modSLA groups showed a well-vascularized subepithelial connective tissue exhibiting collagen fibers that started to extend and attach partially perpendicular to the implant surface. The highest and statistically significant mean bone-to-implant contact areas were observed in the modA-modSLA and modSLA-modSLA groups at days 7, 14, and 28. Within the limits of this study, it may be concluded that soft and hard tissue integration was influenced mainly by surface hydrophilicity rather than by microtopography.

  14. Replacing a Missing Tooth

    MedlinePlus

    ... vessels in the tooth pulps are rather large. Drilling down these teeth for crowns may expose the ... porcelain replacement tooth is held in place by metal extensions cemented to the backs of the adjacent ...

  15. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  16. [Optimization of treatment of wedge-shaped tooth defects with hyperesthesia].

    PubMed

    Bulgakova, A I; Islamova, D M; Valeev, I V; Davydova, S V

    2013-01-01

    Development of tooth wedge-shaped defect leads to a gradual loss of hard tissue and is characterized by pain. Most often patients complain of pain and aesthetic defect that adversely affects the emotional status and quality of life. Search for adequate means and methods of treatment providing increased resistance of dental hard tissues and reducing hyperesthesia is challenging for dentists. Wedge-shaped defect and hyperesthesia as concomitant symptom was found in the city of Ufa in the 5.65 and 63.0% of dental patients, respectively. Analysis of the questionnaires revealed a relationship between the sociological parameters (gender, age, profession) and the patient's quality of life. Improvement of all clinical manifestations was observed in the result of complex treatment.

  17. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2012-12-01

    Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.

  18. Tooth sensitivity and whitening.

    PubMed

    Swift, Edward J

    2005-09-01

    This article presents a review of the basic concepts of tooth sensitivity and how those concepts apply to cervical dentin hypersensitivity and the sensitivity frequently associated with tooth whitening. The etiology and treatment of cervical dentin hypersensitivity are described. The clinical presentation, incidence, and predisposing factors for sensitivity associated with tooth whitening also are discussed.

  19. bmp2b and bmp4 are dispensable for zebrafish tooth development.

    PubMed

    Wise, Sarah B; Stock, David W

    2010-10-01

    Bone morphogenetic protein (Bmp) signaling has been shown to play important roles in tooth development at virtually all stages from initiation to hard tissue formation. The specific ligands involved in these processes have not been directly tested by loss-of-function experiments, however. We used morpholino antisense oligonucleotides and mutant analysis in the zebrafish to reduce or eliminate the function of bmp2b and bmp4, two ligands known to be expressed in zebrafish teeth and whose mammalian orthologs are thought to play important roles in tooth development. Surprisingly, we found that elimination of function of these two genes singly and in combination did not prevent the formation of mature, attached teeth. The mostly likely explanation for this result is functional redundancy with other Bmp ligands, which may differ between the zebrafish and the mouse.

  20. Does Laser Surgery Interfere with Optical Nerve Identification in Maxillofacial Hard and Soft Tissue?--An Experimental Ex Vivo Study.

    PubMed

    Bergauer, Bastian; Knipfer, Christian; Amann, Andreas; Rohde, Maximilian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Nkenke, Emeka; Stelzle, Florian

    2015-10-01

    The protection of sensitive structures (e.g., nerves) from iatrogenic damage is of major importance when performing laser surgical procedures. Especially in the head and neck area both function and esthetics can be affected to a great extent. Despite its many benefits, the surgical utilization of a laser is therefore still limited to superficial tissue ablation. A remote feedback system which guides the laser in a tissue-specific way would provide a remedy. In this context, it has been shown that nerval structures can be specifically recognized by their optical diffuse reflectance spectra both before and after laser ablation. However, for a translation of these findings to the actual laser ablation process, a nerve protection within the laser pulse is of utmost significance. Thus, it was the aim of the study to evaluate, if the process of Er:YAG laser surgery--which comes with spray water cooling, angulation of the probe (60°) and optical process emissions--interferes with optical tissue differentiation. For the first time, no stable conditions but the ongoing process of laser tissue ablation was examined. Therefore, six different tissue types (nerve, skin, muscle, fat, cortical and cancellous bone) were acquired from 15 pig heads. Measurements were performed during Er:YAG laser ablation. Diffuse reflectance spectra (4500, wavelength range: 350-650 nm) where acquired. Principal component analysis (PCA) and quadratic discriminant analysis (QDA) were calculated for classification purposes. The clinical highly relevant differentiation between nerve and bone was performed correctly with an AUC of 95.3% (cortial bone) respectively 92.4% (cancellous bone). The identification of nerve tissue against the biological very similar fat tissue yielded good results with an AUC value of 83.4% (sensitivity: 72.3%, specificity: of 82.3%). This clearly demonstrates that nerve identification by diffuse reflectance spectroscopy works reliably in the ongoing process of laser ablation

  1. Preliminary study on a miniature laser manipulation robotic device for tooth crown preparation.

    PubMed

    Wang, Dangxiao; Wang, Lei; Zhang, Yuru; Lv, Peijun; Sun, Yuchun; Xiao, Jing

    2014-12-01

    The existing methods in dental clinical operations for hard tissue removal have several drawbacks which affect the long-term success of the dental treatment. In this paper, we introduce a miniature robotic device called LaserBot, which can manipulate a femtosecond laser beam to drill/burr a decayed tooth to realize clinical tooth crown preparation. In order to control the 3D motion of the laser focal point on the surface of a tooth, three miniature voice-coil motors with optical grating rulers are utilized to drive the 2D pitch/yaw rotation of a vibration mirror and 1D translation of a protruding optical lens. This method can provide high-resolution control of the laser beam. In order to maintain the small size of the robot, a parallel five linkage mechanism combined with a slider-rocker mechanism is developed to realize 2D pitch/yaw rotation of the vibration mirror. Experiment results show that the movement range and resolution of the laser beam point can meet the requirement of typical dental operations. The size of the working end of the device that enters the mouth is 25 × 22 × 57 mm (height × width × length), which is small enough to be mounted on any tooth. The average repeatability error of the laser focal point is about 40 µm. Ablation experiments on wax-resin material and on tooth validate that a femtosecond laser can be used for tooth ablation. The developed robotic device achieved precise 3D motion control of a laser focal point and is small enough to be used in the narrow workspace of the oral cavity. Limitations of the prototype have been identified, and quantified specifications are identified for designing the next generation prototype. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Hardness testing

    SciTech Connect

    Not Available

    1987-01-01

    This technical manual is a handbook dealing with all aspects of hardness testing. Every hardness testing method is fully covered, from Rockwell to ultrasonic hardness testing. Specific hardness testing problems are also discussed, and methods are offered for many applications. One chapter examines how to select the correct hardness testing method. A directory of manufacturers, distributors and suppliers of hardness testing equipment and supplies in the United States and Canada is also included. The book consist of eight chapters and an appendix. It discusses common concepts of hardness, and the theories and methods of hardness testing. Coverage includes specific hardness testing methods - Brinell, Rockwell, Vickers, and microhardness testing; and other hardness testing methods, such as scleroscope, ultrasonic, scratch and file testing, and hardness evaluation by eddy current testing.

  3. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas.

  4. Neanderthal and Denisova tooth protein variants in present-day humans

    PubMed Central

    Zanolli, Clément; Hourset, Mathilde; Esclassan, Rémi

    2017-01-01

    Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein). Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes) and one is the derived enamelin major variant, T648I (rs7671281), associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or disease

  5. Neanderthal and Denisova tooth protein variants in present-day humans.

    PubMed

    Zanolli, Clément; Hourset, Mathilde; Esclassan, Rémi; Mollereau, Catherine

    2017-01-01

    Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein). Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes) and one is the derived enamelin major variant, T648I (rs7671281), associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or disease

  6. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs

  7. Comparative evaluation of tooth substance loss and its correlation with the abrasivity and chemical composition of different dentifrices.

    PubMed

    Singh, Ram Prakash; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem; Singh, Surendra

    2016-01-01

    In India, teeth cleaning with tooth powder is common in rural and semi-urban areas. These dentifrices may contain low-quality abrasives, which may have a deleterious effect on dental hard tissues. This study aims to evaluate the tooth substance loss caused by different dentifrices and to correlate it with chemical composition, size, and shape of abrasives used. An indigenously made automated machine was used for brushing the specimens. Sixty-four freshly extracted premolars were allocated to eight groups (n = 8). Colgate toothpaste was used as the control group. Each specimen was brushed in a vertical motion for 2½ h at 200 strokes/min with a constant applied load of 200 g corresponding to 6-month brushing. The difference in weight (pre- and post-brushing) was determined by an analytical weighing machine. Chemical analysis was done to determine the presence of iron oxide by Inductively Coupled Plasma Mass Spectrometry method. Shape and size of the abrasive particles was evaluated under scanning electron microscopy (SEM). One-way analysis of variance and Paired t-test were used to analyze the data. Tooth substance loss was maximum in the group brushed with red tooth powder, which was shown to contain the highest amount of iron oxide and also exhibited large, irregularly shaped abrasive particles under SEM. Tooth substance loss was documented to be correlated with chemical composition (iron oxide) and the size and shape of abrasive particles used in dentifrices.

  8. Real-time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging.

    PubMed

    Leung, Ben Y C; Webster, Paul J L; Fraser, James M; Yang, Victor X D

    2012-03-01

    During tissue ablation, laser light can be delivered with high precision in the transverse dimensions but final incision depth can be difficult to control. We monitor incision depth as it progresses, providing feedback to ensure that material removal occurs within a localized target volume, reducing the possibility of undesirable damage to tissues below the incision. Ex vivo cortical and cancellous bone was ablated using pulsed lasers with center wavelengths of 1,064 and 1,070 nm, while being imaged in real-time using inline coherent imaging (ICI) at rates of up to 300 kHz and axial resolution of ∼6 µm. With real-time feedback, laser exposure was terminated before perforating into natural inclusions of the cancellous bone and verified by brightfield microscopy of the crater cross-sections accessed via side-polishing. ICI provides direct information about incision penetration even in the presence of intense backscatter from the pulsed laser and plasma emissions. In this study, ICI is able to anticipate structures 176 ± 8 µm below the ablation front with signal intensity 9 ± 2 dB above the noise floor. As a result, the operator is able to terminate exposure of the laser sparing a 50 µm thick layer of bone between the bottom of the incision to a natural inclusion in the cancellous bone. Versatility of the ICI system was demonstrated over a wide range of light-tissue interactions from thermal regime to direct solid-plasma transition. ICI can be used as non-contact real-time feedback to monitor the depth of an incision created by laser ablation, especially in heterogeneous tissue where ablation rate is less predictable. Furthermore, ICI can image below the ablation front making it possible to stop laser exposure to limit unintentional damage to subsurface structures such as blood vessels or nervous tissue. Copyright © 2012 Wiley Periodicals, Inc.

  9. Probable biofilm formation in the cheek as a complication of soft tissue filler resulting from improper endodontic treatment of tooth 16

    PubMed Central

    Marusza, Wojciech; Mlynarczyk, Grazyna; Olszanski, Romuald; Netsvyetayeva, Irina; Obrowski, Michael; Iannitti, Tommaso; Palmieri, Beniamino

    2012-01-01

    Injectable filling agents offer the promise of a better appearance without surgery and, among them, hyaluronic acid is the most commonly used. Although complications are rare, it is necessary to know the possible side effects and complications in order to be prepared for their management. That is why many researchers have been focusing on the interactions between hyaluronic acid and pathogens, inflammatory mediators, the immune system, and markers of oxidative stress to achieve efficient drug delivery, given that hyaluronic acid has widening applications in the field of nanomedicine. Here we report the case of a 37-year-old female patient who returned to our clinic with an abscess in her left cheek 3 months after a deep injection of 1 mL of stabilized hyaluronic acid in both cheeks. Steroid and antibiotic therapy was initiated without success, and abscess drainage was performed. Extraction of tooth 16 was performed 11 days after insertion of drains into the abscess. Laboratory blood tests showed acute inflammation of presumed bacterial etiology. Microbiological examination of pus was negative. Bacterial cultures were found in the extracted tooth. After antibiotic therapy, a complete reversal of the pathological process was observed. The present report highlights the need to assess periodontal problems prior to any aesthetic facial treatment. Analyses of further case reports and clinical studies are necessary to understand the potential role of hyaluronic acid in the formation of biofilm, and how to avoid this complication, thereby increasing the safety of hyaluronic acid-based procedures. PMID:22619504

  10. Probable biofilm formation in the cheek as a complication of soft tissue filler resulting from improper endodontic treatment of tooth 16.

    PubMed

    Marusza, Wojciech; Mlynarczyk, Grazyna; Olszanski, Romuald; Netsvyetayeva, Irina; Obrowski, Michael; Iannitti, Tommaso; Palmieri, Beniamino

    2012-01-01

    Injectable filling agents offer the promise of a better appearance without surgery and, among them, hyaluronic acid is the most commonly used. Although complications are rare, it is necessary to know the possible side effects and complications in order to be prepared for their management. That is why many researchers have been focusing on the interactions between hyaluronic acid and pathogens, inflammatory mediators, the immune system, and markers of oxidative stress to achieve efficient drug delivery, given that hyaluronic acid has widening applications in the field of nanomedicine. Here we report the case of a 37-year-old female patient who returned to our clinic with an abscess in her left cheek 3 months after a deep injection of 1 mL of stabilized hyaluronic acid in both cheeks. Steroid and antibiotic therapy was initiated without success, and abscess drainage was performed. Extraction of tooth 16 was performed 11 days after insertion of drains into the abscess. Laboratory blood tests showed acute inflammation of presumed bacterial etiology. Microbiological examination of pus was negative. Bacterial cultures were found in the extracted tooth. After antibiotic therapy, a complete reversal of the pathological process was observed. The present report highlights the need to assess periodontal problems prior to any aesthetic facial treatment. Analyses of further case reports and clinical studies are necessary to understand the potential role of hyaluronic acid in the formation of biofilm, and how to avoid this complication, thereby increasing the safety of hyaluronic acid-based procedures.

  11. Hard and soft tissue changes around implants installed in regular-sized and reduced alveolar bony ridges. An experimental study in dogs.

    PubMed

    Baffone, Gabriele; Lang, Niklaus P; Pantani, Fabio; Favero, Giovanni; Ferri, Mauro; Botticelli, Daniele

    2015-01-01

    To study bony and soft tissue changes at implants installed in alveolar bony ridges of different widths. In 6 Labrador dogs, the mandibular premolars and first molars were extracted, and a buccal defect was created in the left side at the third and fourth premolars by removing the buccal bone and the inter-radicular and interdental septa. Three months after tooth extraction, full-thickness mucoperiosteal flaps were elevated, and implants were installed, two at the reduced (test) and two at the regular-sized ridges (control). Narrow or wide abutments were affixed to the implants. After 3 months, biopsies were harvested, and ground sections prepared for histological evaluation. A higher vertical buccal bony crest resorption was found at the test (1.5 ± 0.7 mm and 1.0 ± 0.7 mm) compared to the control implants (1.0 ± 0.5 mm and 0.7 ± 0.4 mm), for both wide and narrow abutment sites. A higher horizontal alveolar resorption was identified at the control compared to the test implants. The difference was significant for narrow abutment sites. The peri-implant mucosa was more coronally positioned at the narrow abutment, in the test sites, while for the control sites, the mucosal adaptation was more coronal at the wide abutment sites. These differences, however, did not reach statistical significance. Implants installed in regular-sized alveolar ridges had a higher horizontal, but a lower vertical buccal bony crest resorption compared to implants installed in reduced alveolar ridges. Narrow abutments in reduced ridges as well as wide abutments in regular-sized ridges yielded less soft tissue recession compared to their counterparts. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  13. Improving oral rehabilitation through the preservation of the tissues through alveolar preservation

    PubMed Central

    Kurtzman, Gregori Michael; Mahesh, Lanka

    2012-01-01

    When performing a tooth extraction, imminent collapse of the tissue by resorption and remodeling of the socket is a natural occurrence. The procedure for the preservation of the alveolar ridge has been widely described in the dental literatures and aims to maintain hard and soft tissues in the extraction site for optimal rehabilitation either with conventional fixed or removable prosthetics or implant-supported prosthesis. PMID:22977727

  14. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  15. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  16. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.

    PubMed

    Vetter, A; Liu, Y; Witt, F; Manjubala, I; Sander, O; Epari, D R; Fratzl, P; Duda, G N; Weinkamer, R

    2011-02-03

    During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. [Tooth-pick? Picking the Right Tooth].

    PubMed

    Apicella, Lysann; Cassis, Paola Rodoni; Balestra, Brenno

    2016-01-20

    We report about an 80-year-old patient, who underwent the extraction of an upper molar tooth because of facial pain. In the course of time the patient developed a maxillary sinusitis in presence of an ectopic tooth. Given that the patient got fever, neck pain and -stiffness, a purulent meningitis was first suspected. The liquor analysis was normal and the CT-scan showed a calcification around the dens axis. We finally diagnosed a “Crowned Dens”-syndrome.

  18. Morphological examinations of hard tissues of periodontium and evaluation of selected processes of lipid peroxidation in blood serum of rats in the course of experimental periodontitis.

    PubMed

    Sobaniec, H; Sobaniec-Lotowska, M E

    2000-01-01

    The problem of teeth loss as a result of periodontitis is growing continuously. In the study we aimed to show the correlation between the disease and lipid metabolism disorders. We performed morphological examinations of hard tissues of rats' periodontium in the course of experimental ligature-induced periodontitis and we demonstrated the destruction of alveolodental ligament. The following changes were observed: degenerative changes including necrosis within periodontium, progressive destruction of bone mass of alveolar process of the mandible in the region of inflammatory infiltration. Simultaneously, biochemical examinations of blood serum were performed revealing decrease of basic antioxidant enzymes activities: SOD, GSH-Px, GSH-R with simultaneous increase of MDA--the final product of lipid peroxidation.

  19. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    PubMed

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  20. In vitro and in vivo evaluation of a new zirconia/niobium biocermet for hard tissue replacement.

    PubMed

    Bartolomé, J F; Moya, J S; Couceiro, R; Gutiérrez-González, C F; Guitián, F; Martinez-Insua, A

    2016-01-01

    Metals and ceramics are commonly used in orthopaedics, dentistry and other load bearing applications. However, the use of ceramic matrix composites reinforced with biocompatible metals for heavy load-bearing hard tissue replacement applications has not previously been reported. In order to improve the reliability and the mechanical properties of biomedical implants, new zirconia-Nb composites have been recently developed. The aim of this study was to investigate the biological tolerance of these new zirconia/Nb biocermets implants with both in vitro and in vivo approaches. At first, human bone marrow derived mesenchymal stem cells were cultured on sintered biocermet discs with polished surfaces and were compared with responses to niobium metal. In vitro, the biocermets showed no deleterious effect on cell proliferation, extra-cellular matrix production or on cell morphology. Furthermore, the biocermet showed a higher percentage of cell proliferation than Nb metal. On the other hand, the bone response to these new zirconia/Nb biocermets was studied. Cylinders of biocermets, as well as commercially Nb rod were implanted in the tibiae of New Zealand white rabbits. All the animals were euthanatized after 6 months. The specimens were processed to obtain thin ground sections. The slides were observed in normal transmitted light microscope. A newly formed bone was observed in close contact with material surfaces. No inflamed or multinucleated cells were present. This study concluded that zirconia/Nb composites are biocompatible and osteoconductive. The ceramic-metal composite has even better osteointegration ability than pure Nb. In conclusion, zirconia-Nb biocermet is suitable for heavy load-bearing hard tissue replacement from the point of view of both mechanical properties and biocompatibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characterization of a posed smile and evaluation of facial attractiveness by panel perception and its correlation with hard and soft tissue.

    PubMed

    Malhotra, Smriti; Sidhu, Maninder Singh; Prabhakar, Mona; Kochhar, Anuraj Singh

    2012-01-01

    To examine whether specific hard and soft tissue had any effect on smile characteristics and to ascertain the opinions of laypersons and clinicians in evaluating facial attractiveness among different occlusions. Photographs of posed smiles, along with profiles and full faces, of 76 patients with different occlusions were captured, and a lateral cephalogram of each subject was traced. These photographs were judged by a panel of 10 clinicians and 10 laypersons on a 5-point visual analog scale. Quantitative measurements were carried out on the smile images for 14 smile characteristics. The effect of hard and soft tissue on these characteristics was also examined. The upper vermilion lip thickness was affected by Pt.A-UI and E-line to upper lip, while the lower vermilion lip thickness was affected by lower anterior facial height. FMA had a significant positive effect on gingival display (P ≤ .05). This meant that an increase in FMA also caused the gingival display to increase. The nasolabial angle showed a significant positive effect on incisal display, while FMA showed a negative effect on intercanine width. Lower facial height and FMA had a significant negative effect on the smile index. A correlation was found between the judgments of clinicians and laypersons. Both judged Class I relationships to be the most attractive. FMA was found to have a positive effect on the amount of gingival display. It was also observed that patients with Class II Division 1 relationships had the thickest lips compared with patients having other types of occlusions. Class III patients exhibited no gingival display on smile. Patients with Class I showed the maximum smile width, while patients with Class III showed the least amount of buccal corridor.

  2. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation.

    PubMed

    Laurance-Young, P; Bozec, L; Gracia, L; Rees, G; Lippert, F; Lynch, R J M; Knowles, J C

    2011-04-01

    This review sets out to examine the suitability of bovine hard dental material in lieu of human material when investigating dental erosion, to review the evidence for the major factors popularly attributed to dental erosion: pH, pKa, acid type, erosion duration, temperature and stirring rate as well as examine the case for the use of fluoride in an anti-erosion capacity. Published works were selected using online search software ICI Web of Knowledge and Pubmed, with key terms such as "enamel", "erosion" and "bovine AND human" and cross referenced with relevant papers cited in the indices. The growing trend of dental erosion, coupled to legislative changes has precipitated a recent shortage of human enamel and dentine for experimental work. This in turn has resulted in the increasing use of cheap and readily available alternate supplies being sourced. This alternate supply principally originates from beef cattle under 20 months of age, under the assumption that bovine enamel and dentine will behave in a manner similar to human material. Recent experiments attempting to compare the physicochemical properties of these two species have shown that erosion is not simply a matter of bulk tissue loss resulting from acid exposure, but a multi-factorial event encompassing ever increasing and varied complexity of the inter-relationship between solvent and substrate. Accurate data from the published literature regarding the comparative properties of human and bovine hard dental tissue remains scarce but consensus appears to accept the continuing use of bovine enamel as a substitute for human enamel. This lack of comparative data is further hampered by the lack of an established, standardised protocol with which to evaluate the two species. In addition, much debate remains regarding the significant principal factors responsible for dental erosion and ways to minimise the pathological manifestation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Biological basis of orthodontic tooth movement].

    PubMed

    Maltha, J C; van Leeuwen, E J

    2000-04-01

    The effect of orthodontic therapy is dependent of the biological possibilities and limitations of the dento-alveolar complex. Biomechanical effects determine the first phase of tooth movement. In the second phase hyalinisation occurs in almost all cases. Elimination of the hyalinised tissue is associated with undermining bone resorption. Next, 'real' tooth movement starts. At the pressure side the normal structure of the periodontal ligament is destroyed and so is the tooth attachment. At the tension side deposition of trabecular bone is found and the tooth attachment remains. The regulation of these processes is still not completely understood, but cytokines and growth factors play an important role. The biological system does not react according to a simple dose-response relation and large individual differences in susceptibility of the system exist.

  4. In vitro effects of dental cements on hard and soft tissues associated with dental implants.

    PubMed

    Rodriguez, Lucas C; Saba, Juliana N; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C

    2017-07-01

    Dental cements for cement-retained restorations are often chosen based on clinician preference for the product's material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri-implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1-way ANOVA test with multiple comparisons was used (α=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2-way ANOVA test with multiple comparisons was used (α=.05). The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Within the limitation of this in vitro cellular study, the

  5. Human tooth and root canal morphology reconstruction using magnetic resonance imaging.

    PubMed

    Drăgan, Oana Carmen; Fărcăşanu, Alexandru Ştefan; Câmpian, Radu Septimiu; Turcu, Romulus Valeriu Flaviu

    2016-01-01

    Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Magnetic resonance imaging offers 3D image datasets with more information than the

  6. Human tooth and root canal morphology reconstruction using magnetic resonance imaging

    PubMed Central

    DRĂGAN, OANA CARMEN; FĂRCĂŞANU, ALEXANDRU ŞTEFAN; CÂMPIAN, RADU SEPTIMIU; TURCU, ROMULUS VALERIU FLAVIU

    2016-01-01

    Background and aims Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. Methods The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. Results The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Conclusions Magnetic resonance imaging offers 3

  7. Tooth sensitivity: mechanisms and management.

    PubMed

    Markowitz, K

    1993-08-01

    Tooth sensitivity is a common complaint encountered in clinical practice. Exposed superficial dentin is free of nerve endings, yet sensitive. Experimental evidence indicates that stimuli, such as probing the dentin surface and air blasts, induce fluid movements in the dentinal tubules and these fluid movements, in turn, activate the intradental nerves. The condition of the dentin surface is critically important in allowing this process. In addition, the internal environment of the pulp may influence nerve excitability. Therapies for tooth sensitivity include both agents that obstruct the dentinal tubules and agents that can decrease the excitability of the intradental nerves. The exact treatment used depends on the etiology of the individual's problem and the extent of dentinal tissue damage.

  8. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    PubMed

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds.

  9. Characterization of Natural, Decellularized and Reseeded Porcine Tooth Bud Matrices

    PubMed Central

    Traphagen, Samantha B.; Fourligas, Nikos; Xylas, Joanna; Sengupta, Sejuti; Kaplan, David; Georgakoudi, Irene; Yelick, Pamela C.

    2012-01-01

    Dental tissue engineering efforts have yet to identify scaffolds that instruct the formation of bioengineered teeth of predetermined size and shape. Here we investigated whether extracellular matrix (ECM) molecules present in natural tooth scaffolds can provide insight on how to achieve this goal. We describe methods to effectively decellularize and demineralize porcine molar tooth buds, while preserving natural ECM protein gradients. Natural tooth ECM composition was assessed using histological and immunohistochemical (IHC) analyses of fibrillar and basement membrane proteins. Our results showed that Collagen I, Fibronectin, Collagen IV, and Laminin gradients were detected in natural tooth tissues, and retained in decellularized samples. Second harmonic generation (SHG) image analysis and 3D reconstructions were used to show that natural tooth tissue exhibited higher collagen fiber density, and less oriented and less organized collagen fibers, as compared to decellularized tooth tissue. We also found that reseeded decellularized tooth scaffolds exhibited distinctive collagen content and organization as compared to decelluarized scaffolds. Our results show that SHG allows for quantitative assessment of ECM features that are not easily characterized using traditional histological analyses. In summary, our results demonstrate the potential for natural decellularized molar tooth ECM to instruct dental cell matrix synthesis, and lay the foundation for future use of biomimetic scaffolds for dental tissue engineering applications. PMID:22551485

  10. A Critical Role of TRPM7 As an Ion Channel Protein in Mediating the Mineralization of the Craniofacial Hard Tissues

    PubMed Central

    Nakano, Yukiko; Le, Michael H.; Abduweli, Dawud; Ho, Sunita P.; Ryazanova, Lillia V.; Hu, Zhixian; Ryazanov, Alexey G.; Den Besten, Pamela K.; Zhang, Yan

    2016-01-01

    Magnesium ion (Mg2+) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg2+ homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg2+ homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7Δkinase∕+ mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7Δkinase∕+ mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7Δkinase∕+ mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7Δkinase∕+ mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7Δkinase∕+ mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg2+ for the ALPL

  11. Preparation of a partially calcified gelatin membrane as a model for a soft-to-hard tissue interface.

    PubMed

    Aviv-Gavriel, Meital; Garti, Nissim; Füredi-Milhofer, Helga

    2013-01-15

    Cartilage and/or bone tissue engineering is a very challenging area in modern medicine. Since cartilage is an avascular tissue with limited capacity for self-repair, using scaffolds provides a promising option for the repair of severe cartilage damage caused by trauma, age-related degeneration, and/or diseases. Our aim in this study was to design a model for a functional biomedical membrane to form the interface between a cartilage-forming scaffold and bone. To realize such a membrane gelatin gels containing calcium or phosphate ions were exposed from one side to a solution of the other constituent ion (i.e., a sodium phosphate solution was allowed to diffuse into a calcium-containing gel and vice versa). The partially calcified gels were analyzed by XRD, ATR-FTIR spectra, E-SEM, and EDX. Thus, we confirmed the existence of a gradient of crystals, with a dense top layer, extending several micrometers into the gel. XRD spectra and Ca/P atomic ratios confirmed the existence of calcium deficient apatites. The effect of different experimental parameters on the calcification process within the gelatin membranes has been elucidated. It was shown that increasing the gelatin concentration from 5 wt % to 10 wt % retards calcification. A similar effect was observed when glycerol, which is frequently used as plasticizer, was added to the system. With increasing calcium concentration within the organic matrix, the quantity and density of calcium phosphate crystals over/within the gel increased. The possible explanations for the above phenomena are discussed.

  12. Laser-induced photothermal technique used for detection of caries in human tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2008-02-01

    Thermal monitoring during laser-irradiated hard tissues is fundamental to enable real time feedback control and automated adjustment of laser power to maintain a constant, predetermined tissue temperature. We present an experimental technique to produce thermal wave generated in human tooth by irradiation of a high power Q-switched Nd:YAG laser operating at 1064 nm, with variable pulse energy in the range of 50-250 mJ/pulse providing laser fluences of 0.4-2 J/cm2 for the laser beam with diameter of less than 1 mm, and short pulse duration down to 100 μsec (or 0.1 ms) at FWHM. A comparison of the measured time-dependent thermal wave for normal and carious human tooth using infrared thermal detector is investigated, simultaneously we have measure the photoacoustic response of the sample using piezoelectric transducer. Calculations of the results demonstrate that the faster temperature decay is for caries one with higher thermal conductivity and thermal diffusivity than the normal one. So the normal tooth has the largest absorption coefficient causing a purely surface heating effect, but for the carious one, the heat source resulting from the relatively low absorption coefficient does not resemble surface heating, but describes a heating effect extending some distance into the irradiated material. These results are in good agreement with the simultaneous measured photoacoustic response, so we can differentiate between the normal and carious ones.

  13. Bioengineered post-natal recombinant tooth bud models.

    PubMed

    Zhang, W; Vázquez, B; Yelick, P C

    2017-03-01

    The long-term goal of this study is to devise reliable methods to regenerate full-sized and fully functional biological teeth in humans. In this study, three-dimensional (3D) tissue engineering methods were used to characterize intact postnatal dental tissue recombinant constructs, and dental cell suspension recombinant constructs, as models for bioengineered tooth development. In contrast to studies using mouse embryonic dental tissues and cells, here the odontogenic potential of intact dental tissues and dental cell suspensions harvested from post natal porcine teeth and human third molar wisdom tooth dental pulp were examined. The recombinant 3D tooth constructs were cultured in osteogenic media in vitro for 1 week before subcutaneous transplantation in athymic nude rat hosts for 1 month or 3 months. Subsequent analyses using X-ray, histological and immunohistochemical methods showed that the majority of the recombinant tooth structures formed calcified tissues, including osteodentin, dentin cementum, enamel and morphologically typical tooth crowns composed of dentin and enamel. The demonstrated formation of mineralized dental tissues and tooth crown structures from easily obtained post-natal dental tissues is an important step toward reaching the long-term goal of establishing robust and reliable models for human tooth regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Treatment imprudence leading to missed tooth fragment

    PubMed Central

    Barua, Pranamee; Chaudhary, Seema; Kaur, Harsimran; Mallikarjuna, Rachappa

    2013-01-01

    Traumatic dental injuries (TDI) represent one of the most common oral health problems in children and adolescents. Dental trauma requires a special consideration when it accompanies soft tissue lacerations. Tooth fragments occasionally penetrate into soft tissues and may cause severe complications. This article describes the case of a 12-year-old girl with a fractured tooth fragment embedded in the lower lip for 4 months, which went unnoticed at her primary health centre. This report highlights the importance of proper radiographic diagnosis along with clinical examination after trauma in order to prevent any future complications. PMID:23606390

  15. The influence of surface roughness on the bond strength of composite to dental hard tissues after Er:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Gardner, Andrew K.; Staninec, Michal; Fried, Daniel

    2005-03-01

    The uniformity of laser treated hard tissue surfaces depends on the laser beam quality and the degree of spatial overlap between adjacent laser pulses. Since the surface roughness or surface topography is expected to influence adhesion, our aim in this study was to assess the influence of the surface topography on the adhesion of composite to both enamel and dentin treated at the optimal conditions for the efficient ablation of those tissues with the Er:YAG laser. Human dentin and bovine enamel samples were uniformly irradiated by an Er:YAG laser operating with a pulse duration of 20-30-μs. The laser pulses were 300-μm in diameter with the laser operating in a single TEM00 transverse mode, and the distance between laser spots was varied from 50-200-μm. A motion control system and a pressurized spray system incorporating a microprocessor controlled pulsed nozzle for water delivery, were used to ensure uniform treatment of the entire surface. Shear bond testing was used to evaluate the adhesive strength in order to assess the suitability of laser treated surfaces for bonding. The effect of the degree of overlap of adjacent laser pulses on the surface roughness and the shear bond strength of composite to enamel and dentin is reported.

  16. Histological and ultrastructural effect of an Nd:YAG pulsed laser beam on dental hard tissue and pulp

    NASA Astrophysics Data System (ADS)

    Vignato, Costantino; Vignato, Giuseppe; Nardelli, Antonella; Baldan, Arianna; Mason, Pier N.

    1994-09-01

    The purpose of this study was to determine histological and ultrastructural modifications produced by an Nd:YAG pulsed laser beam after an in vivo exposure of human molars. Using a Nd:YAG pulsed laser beam delivered by a 600 micrometers optical fiber and concurrent air and water cooling spray, 14 human third molars with artificial first class cavities were exposed at different power levels (6, 7, and 8 W). All the teeth were extracted at different time periods between 10 and 25 days and prepared for histological examination. The results of the histological examination showed no evidence of degeneration or necrosis of the pulpar tissue. Analysis of the dentinal surfaces after exposure demonstrated that the dentinal tubules are completely closed due to the melted dentin. In conclusion a Nd:YAG pulsed laser beam with an air and water cooling spray is safe for treatments of class I decay and no necrosis or degeneration of the pulp was found for laser powers of 6, 7, and 8 W.

  17. Influence of the spatial beam profile on hard tissue ablation. Part I: Multimode emitting Er:YAG lasers.

    PubMed

    Meister, J; Apel, C; Franzen, R; Gutknecht, N

    2003-01-01

    Uniform dosimetry is a prerequisite for reproducible laser applications in research and practice. The light-tissue interaction is dependent on the absorbed energy (J) per unit of time (tau) in the case of pulsed lasers, and on the absorbed power (W) per unit of volume (e.g. mm3) in the case of continuous-wave (cw) lasers, and thus directly dependent on the energy distribution within the laser beam. Consequently, precise knowledge of the spatial beam profile, and of the pulse duration and treatment time, is indispensable. The objective of this paper was a theoretical study of the impact of different mode profiles on energy distribution in the beam. Also examined was the question of the influence of changes in the laser parameters on the mode structure. Three erbium:YAG lasers (lambda=2.94 microm) were used for this purpose. The transversal mode structure of the lasers was observed by irradiating thermal paper and verified by means of calculations. The effect induced in the mode profile by changing the pulse energy and pulse repetition rate was investigated. The results of the tests show that changes in the laser parameters result in jumps in the transversal modes and associated energy distributions in the beam. The experiments confirm that simply changing the transversal modes has a substantial effect on the threshold energy required for the ablation of dental enamel (50 mJ with TEM00, 22.6 mJ with TEM31). In practice, inhomogeneity makes it impossible to determine the irradiated area in order to calculate the energy or power density. In addition, the energy distribution in the beam changes as a result of variation of the laser output energy and the pulse repetition rate. Consequently, simply measuring the beam diameter yields a totally incorrect result for the applied flux density when using a beam profile with a relatively high mode.

  18. Regulation of proliferation in developing human tooth germs by MSX muscle segment homeodomain proteins and cyclin-dependent kinase inhibitor p19(INK4d).

    PubMed

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Brakus, Snjezana Mardesic; Saraga-Babic, Mirna

    2017-09-21

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19(INK4d). p19(INK4d) induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19(INK4d) by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patte