Science.gov

Sample records for hard x-ray spectrometer

  1. Time-Resolved Hard X-Ray Spectrometer

    SciTech Connect

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-03-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  2. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  3. Evidence for beamed electrons in a limb X-ray flare observed by Hard X-Ray Imaging Spectrometer (HXIS)

    NASA Technical Reports Server (NTRS)

    Haug, Eberhard; Elwert, Gerhard

    1986-01-01

    The limb flare of November 18, 1980, 14:51 UT, was investigated on the basis of X-ray images taken by the Hard X-ray Imaging Spectrometer (HXIS) and of X-ray spectra from the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM). The impulsive burst was also recorded at microwave frequencies between 2 and 20 GHz whereas no optical flare and no radio event at frequencies below 1 GHz were reported. The flare occurred directly at the SW limb of the solar disk. Taking advantage of the spatial resolution of HXIS images, the time evolution of the X-radiation originating from relatively small source regions can be studied. Using Monte Carlo computations of the energy distribution of energetic electrons traversing the solar plasma, the bremsstrahlung spectra produced by the electrons were derived.

  4. The hard X-ray burst spectrometer event listing, 1980 - 1985

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kiplinger, A. L.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.

    1985-01-01

    This event listing is a comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on February 14, 1980 to September 1985. Over 8000 X-ray events were detected in the energy range from 30 to approx. 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  5. The hard X-ray burst spectrometer event listing 1980, 1981 and 1982

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Kiplinger, A.; Dennis, H. E.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.

    1983-01-01

    A comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission for the time of launch on February 14, 1980 to March 1983 is provided. Over 6300 X-ray events were detected in the energy range from 30 to approx 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  6. The hard X-ray burst spectrometer event listing 1980-1987

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kiplinger, A. L.; Schwartz, R. A.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.; Biesecker, D. A.; Labow, G. J.; Shaver, A.

    1988-01-01

    This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  7. The complete Hard X Ray Burst Spectrometer event list, 1980-1989

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kennard, G. S.; Labow, G. J.; Schwartz, R. A.; Shaver, A. R.; Tolbert, A. K.

    1991-01-01

    This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event.

  8. New position-sensitive hard X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.

    1980-01-01

    The design and features of a new prototype Lixiscope (Low intensity X-ray imaging scope) is described. It is shown that in addition to good spatial and temporal resolution in the 20 keV to 200 keV region, it is capable of single-photon counting, imaging as well as good energy resolution. It is concluded that the device is well suited for future low-flux applications in astronomy, medicine, and industry.

  9. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    SciTech Connect

    Kojima, Sadaoki E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  10. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    PubMed

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  11. Intercalibration of the hard X-ray spectrometers on the PVO and ICE (ISEE-3) spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Klebesadel, R. W.; Fenimore, E. E.; Laros, J. G.

    1988-01-01

    The energetic photon spectrometers aboard the ICE and PVO (Pioneer Venus Orbiter) are described briefly, and the procedure for their in-flight calibrations is discussed. Successful intercalibration of these two instruments led to stereoscopic observations of 100 keV-2 MeV photon sources in solar flares and the study of the directivity and height structure of these sources. The impulsive hard X-ray source is found to extend from the chromosphere to the corona, the brightness of the source decreasing rapidly with increase in height above the chromosphere. The analysis so far indicates no systematic directivity for the hard X-ray source. The observations are consistent with energetic electrons accelerated in the corona propagating downward toward the chromosphere. However, when avaraged over the duration of an impulsive hard X-ray flare, the 'beaming' of electrons is found to be small in most flares.

  12. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  13. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  14. A single-shot transmissive spectrometer for hard x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Zhu, Diling; Cammarata, Marco; Feldkamp, Jan M.; Fritz, David M.; Hastings, Jerome B.; Lee, Sooheyong; Lemke, Henrik T.; Robert, Aymeric; Turner, James L.; Feng, Yiping

    2012-07-01

    We report hard x-ray single-shot spectral measurements of the Linac Coherent Light Source. The spectrometer is based on a 10 μm thick cylindrically bent Si single crystal operating in the symmetric Bragg geometry to provide dispersion and high transmission simultaneously. It covers a spectral range >1% using the Si(111) reflection. Using the Si(333) reflection, it reaches a resolving power of better than 42 000 and transmits >83% of the incident flux at 8.3 keV. The high resolution enabled the observation of individual spectral spikes characteristic of a self-amplified spontaneous emission x-ray free electron laser source. Potential applications of the device are discussed.

  15. Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal

    SciTech Connect

    Seely, John F. Feldman, Uri; Henins, Albert

    2016-05-15

    A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating to selected angles, the spectrometer can operate with high resolution up to 50 keV.

  16. Comparison of hard X-ray spectra obtained by spectrometers on Hinotori and SMM and detection of 'superhot' component

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki

    1988-01-01

    Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.

  17. Design and performance of the solar maximum mission Hard X-ray Burst Spectrometer

    NASA Astrophysics Data System (ADS)

    Workman, L. G.; Wolfgang, J. L., Jr.

    1981-01-01

    The Hard X-ray Burst Spectrometer acquires data on the temporal and energy distribution of solar X-rays in the energy region from 25 to 385 keV. The detector system is a CsI(Na) central detector, and an anti-coincidence shield with photomultiplier tubes optically coupled to the central and shield crystals. Additional detectors are included for calibration and South Atlantic Anomaly monitoring. A 15 channel pulse height analysis is performed over the energy range every 128 milliseconds. This instrument is capable of handling event rates up to 500 kHz and provides high rate data up to 100 kHz with low spectral distortion. Nine accumulated rates are telemetered every 8.192 seconds. A unique feature of the instrument is the ability to sample rates from the central detector or shield with a one millisecond minimum time resolution. Such samples are stored in a 32768 sample memory with a 40 percent pretrigger event history and a 60 percent posttrigger history.

  18. The LCLS variable-energy hard X-ray single-shot spectrometer.

    PubMed

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  19. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  20. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  1. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.

  2. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    NASA Astrophysics Data System (ADS)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Alonso-Mori, R.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Bergmann, U.

    2013-05-01

    We present a multicrystal Johann-type hard x-ray spectrometer (˜5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°-74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of E/Δ E ˜ 10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  3. The hard X-ray burst spectrometer on the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Orwig, L. E.; Frost, K. J.; Dennis, B. R.

    1979-01-01

    The primary scientific objective of the spectrometer is to provide a greater understanding of the role of energetic electrons in solar flares. This will be achieved by observations of high energy X-rays in the energy range from 20 to 200 keV with time resolution of 0.128s on a continuous basis and as short as 1 ms for limited intervals. The X-ray detector is an actively shielded CsI(Na) crystal with a thickness of 0.635 cm and a sensitive area of 71 sq cm. In the first year after launch, it is expected that approximately 1000 flares above the sensitivity threshold of 0.2 photons/(sq cm s) lasting for one second, will be detected.

  4. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  5. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  6. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Gevin, O.; Blondel, C.; Martignac, J.; Vassal, M.-C.; Soufflet, F.; Fiant, N.; Bednarzik, M.; Stutz, S.; Grimm, O.; Commichau, V.

    2015-07-01

    Caliste-SO is a CdTe hybrid detector designed to be used as a spectrometer for a hard X-ray Fourier telescope. The imaging technique was implemented in the Yohkoh satellite in 1991 and the RHESSI satellite in 2002 to achieve arc-second angular resolution images of solar flares with spectroscopic capabilities. The next generation of such instruments will be the Spectrometer Telescope Imaging X-rays (STIX) on-board the Solar Orbiter mission adopted by the European Space Agency in 2011 for launch in 2017. The design and performance of Caliste-SO allows both high spectral resolution and high count rate measurements from 4 to 150 keV with limited demands on spacecraft resources such as mass, power and volume (critical for interplanetary missions). The paper reports on the flight production of the Caliste-SO devices for STIX, describing the test facilities built-up in Switzerland and France. It illustrates some results obtained with the first production samples that will be mounted in the STIX engineering model.

  7. Hard x ray highlights of AR 5395

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Dennis, Brian R.

    1989-01-01

    Active Region 5395 produced an exceptional series of hard x ray bursts notable for their frequency, intensity, and impulsivity. Over the two weeks from March 6 to 19, 447 hard x ray flares were observed by the Hard X Ray Burst Spectrometer on Solar Maximum Mission (HXRBS/SMM), a rate of approx. 35 per day which exceeded the previous high by more than 50 percent. During one 5 day stretch, more than 250 flares were detected, also a new high. The three largest GOES X-flares were observed by HXRBS and had hard x ray rates over 100,000 s(exp -1) compared with only ten flares above 100,000(exp -1) during the previous nine years of the mission. An ongoing effort for the HXRBS group has been the correlated analysis of hard x ray data with flare data at other wavelengths with the most recent emphasis on those measurements with spatial information. During a series of bursts from AR 5395 at 1644 to 1648 UT on 12 March 1989, simultaneous observations were made by HXRBS and UVSP (Ultra Violet Spectrometer Polarimeter) on SMM, the two-element Owens Valley Radio Observatory (OVRO) interferometric array, and R. Canfield's H-alpha Echelle spectrograph at the National Solar Observatory at Sacramento Peak. The data show strong correlations in the hard x ray, microwave, and UV lightcurves. This event will be the subject of a combined analysis.

  8. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  9. Solar hard X-ray bursts

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.

    1985-10-01

    The major results from the Solar Maximum Mission (SMM) are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152-158 day periodicity in various aspects of solar activity, including the rate of occurence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented, including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used, and characteristics of the different types (types A, B, and C) are noted. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.

  10. Development of hard X-ray spectrometer with high time resolution on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Ma, T. K.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Yan, W.; Wang, S. Y.; Dai, A. J.; Wang, X. L.

    2017-06-01

    A hard X-ray (HXR) spectrometer has been developed to study the runaway electrons during the sawtooth activities and during the runaway current plateau phase on the J-TEXT tokamak. The spectrometer system contains four NaI scintillator detectors and a multi-channel analyzer (MCA) with 0.5 ms time resolution. The dedicated peak detection circuit embedded in the MCA provides a pulse height analysis at count rate up to 1.2 million counts per second (Mcps), which is the key to reach the high time resolution. The accuracy and reliability of the system have been verified by comparing with the hardware integrator of HXR flux. The temporal evolution of HXR flux in different energy ranges can be obtained with high time resolution by this dedicated HXR spectrometer. The response of runaway electron transport with different energy during the sawtooth activities can be studied. The energy evolution of runaway electrons during the plateau phase of runaway current can be obtained.

  11. The hard X-ray Photon Single-Shot Spectrometer of SwissFEL—initial characterization

    NASA Astrophysics Data System (ADS)

    Rehanek, J.; Makita, M.; Wiegand, P.; Heimgartner, P.; Pradervand, C.; Seniutinas, G.; Flechsig, U.; Thominet, V.; Schneider, C. W.; Rodriguez Fernandez, A.; David, C.; Patthey, L.; Juranić, P.

    2017-05-01

    SwissFEL requires the monitoring of the photon spectral distribution at a repetition rate of 100 Hz for machine optimization and experiment online diagnostics. The Photon Single Shot Spectrometer has been designed for the photon energy range of 4 keV to 12 keV provided by the Aramis beamline. It is capable of measuring the spectrum in a non-destructive manner, with an energy resolution of Δ E/E = (2-5) × 10-5 over a bandwidth of 0.5% on a shot-to-shot basis. This article gives a detailed description about the technical challenges, structures, and considerations when building such a device, and to further enhance the performance of the spectrometer.

  12. EXACT - The Solar X-Ray Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Knuth, Trevor; Glesener, Lindsay; Gebre-Egziabher, Demoz; Vogt, Ryan; Denis, Charles; Weiher, Hannah; Runnels, Joel; Vievering, Juliana

    2016-05-01

    The Experiment for X-ray Characterization and Timing (EXACT) mission will be a CubeSat based hard X-ray spectrometer used for viewing solar flares with high time precision. Solar flares and the related coronal mass ejections affect space weather and the near-Earth environment. EXACT can study the hard X-rays generated by the Sun in the declining phase of Solar Cycle 24 in order to probe electron acceleration in solar eruptive events while also serving as a precursor to future hard X-ray spectrometers that could monitor the Sun continuously.

  13. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  14. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  15. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  16. Flight production of Caliste-SO: the hard x-ray spectrometers for solar orbiter/STIX instrument

    NASA Astrophysics Data System (ADS)

    Limousin, Olivier; Meuris, Aline; Gevin, Olivier; Blondel, Claire; Donati, Modeste; Dumaye, Luc; Le Mer, Isabelle; Martignac, Jérôme; Tourrette, Thierry; Vassal, Marie-Cécile; Blain, Dominique; Boussadia, Mohamed; Fiant, Nicolas; Soufflet, Fabrice; Bednarzik, Martin; Birrer, Guy; Stutz, Stefan; Wild, Christopher; Billot, Marc; Fratter, Isabelle; Grimm, Oliver; Krucker, Säm.

    2016-07-01

    Caliste-SO are CdTe hybrid detectors that will be used as spectrometer units in the Spectrometer Telescope for Imaging X-rays (STIX) on-board the Solar Orbiter space mission. Each unit is placed below one collimator of this Fourier telescope to measure one visibility of the image in the 4-150 keV energy range, with a spectral resolution of 1 keV FWHM at 6 keV. The paper presents the scientific requirements, the design, the fabrication and the tests of the Caliste- SO devices before mounting them onto printed circuits boards. Spectral response was characterized on the 98 spacegrade units for various operating parameters. The devices will equip the different instrument validation models, including 32 units for the final instrument flight model to be launched in 2018.

  17. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  18. Subgroup report on hard x-ray microprobes

    SciTech Connect

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-09-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.

  19. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  20. Dual-array valence emission spectrometer (DAVES): A new approach for hard x-ray photon-in photon-out spectroscopies

    SciTech Connect

    Finkelstein, K. D. Lyndaker, A.; Krawcyk, T.; Conrad, J.; Pollock, C. J.

    2016-07-27

    CHESS has developed and successfully deployed a novel Dual Array Valence Emission Spectrometer (DAVES) for high energy resolution, hard x-ray spectroscopy. DAVES employs the simplest method for scanning multiple spherical crystals along a Rowland Circle. The new design achieves unique 2-color collection capability and is built to take special advantage of pixel array detectors. Our initial results show why these detectors greatly improve data quality. The presentation emphasizes flexibility of experimental design offered by DAVES. Prospects and benefits of 2-color spectroscopy are illustrated and discussed.

  1. Streaked, x-ray-transmission-grating spectrometer

    SciTech Connect

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/..delta..lambda of 4 to 50, limited primarily by source size and collimation effects.

  2. Hard X ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Lubin, P.

    1990-03-01

    This final report covers the work carried out under the LLNL Contract Number B063682, Subcontractor Regents University of California at Santa Barbara. The research carried out under this contract involves the construction of a telemetry, target acquisition and guidance system, and of a light-weight gondola to house an x ray spectrometer. This work is part of the design and construction of the balloon experiment, GRATIS, which will perform the first arcminute imaging of cosmic sources in the 30 to 200 keV energy band. Observations conducted with GRATIS are expected to provide data relevant to several key problems in high energy astrophysics including the physical processes responsible for the high energy tail observed in the soft gamma-ray spectra of clusters of galaxies and the origin of both the diffuse and point source components of the gamma-ray emission from the Galactic Center. This report discusses the scientific motivations for this experiment, presents several aspects of the design and construction of the hardware components, gives an overview of the stabilized platform, and demonstrates the expected performance and sensitivity.

  3. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  4. Hard X-ray delays

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard A.

    1986-01-01

    High time resolution hard X-ray rates with good counting statistics over 5 energy intervals were obtained using a large area balloon-borne scintillation detector during the 27 June 1980 solar flare. The impulsive phase of the flare was comprised of a series of major bursts of several to several tens of seconds long. Superimposed on these longer bursts are numerous smaller approximately 0.5 to 1.0 second spikes. The time profiles for different energies were cross-correlated for the major bursts. The rapid burst decay rates and the simultaneous peaks below 120 keV both indicate a rapid electron energy loss process. Thus, the flux profiles reflect the electron acceleration/injection process. The fast rate data was obtained by a burst memory in 8 and 32 msec resolution over the entire main impulsive phase. These rates will be cross-correlated to look for short time delays and to find rapid fluctuations. However, a cursory examination shows that almost all fluctuations, down to the 5% level, were resolved with 256 msec bins.

  5. Development status of a CZT spectrometer prototype with 3D spatial resolution for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Auricchio, N.; Caroli, E.; Basili, A.; Benassi, G.; Budtz Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Kuvvetli, I.; Milano, L.; Moscatelli, F.; Stephen, J. B.; Zanichelli, M.; Zappettini, A.

    2012-07-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabilities. We describe a three dimensional (3D) position sensitive detector prototype suitable as the basic module for a high efficiency Laue lens focal plane detector. This detector configuration is currently under study for use in a balloon payload dedicated to performing a high significance measurement of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction. The anode is segmented into 8 detection cells, each comprising one collecting strip and 8 surrounding drift strips. The drift strips are biased by a voltage divider. The cathode is divided into 4 horizontal strips for the reconstruction of the Z interaction position. The detector readout electronics is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT prototype and shows the results of the electronics tests.

  6. A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.

    1988-01-01

    A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.

  7. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  8. Hard X-Ray, Soft X-Ray, and EUV Studies of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Wagner, William (Technical Monitor)

    2003-01-01

    Document study the hard X-ray (HXR), soft X-ray (SXR) ,EUV, and magnetic nature of solar eruptions, with the objective of elucidating the physics of the eruption process. In particular, it was examine the viability of two specific eruption mechanisms, detailed in our proposal. These mechanisms are the "breakout model", and the "tether cutting model". During the second year, it was a significant progress in the goals to Data Sets Utilized. In the publications during this second year of the grant period, the data was used from the E W Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) instruments on SOHO, and from the Soft X-ray Telescope (SXT), Hard X-ray Telescope (HXT), and the Bragg Crystal Spectrometer (BCS) on Yooh.

  9. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  10. A statistical analysis of hard X-Ray solar flares

    NASA Technical Reports Server (NTRS)

    Pearce, G.; Rowe, A. K.; Yeung, J.

    1993-01-01

    In this study we perform a statistical study on, 8319 X-Ray solar flares observed with the Hard X-Ray Spectrometer (HXRBS) on the Solar Maximum Mission satellite (SMM). The events are examined in terms of the durations, maximum intensities, and intensity profiles. It is concluded that there is no evidence for a correlation between flare intensity, flare duration, and flare asymmetry. However, we do find evidence for a rapid fall-of in the number of short-duration events.

  11. Large Solid Angle Spectrometer for Inelastic X-ray Scattering

    SciTech Connect

    Gelebart, F.; Morand, M.; Dermigny, Q.; Giura, P.; Shukla, A.; Rueff, J.-P.

    2007-01-19

    We have designed a large solid angle spectrometer mostly devoted to inelastic x-ray scattering (IXS) studies of materials under extreme conditions (high pressure / temperature) in the hard x-ray range. The new IXS spectrometer is designed to optimize the photon throughput while preserving an excellent resolving power of {approx}10000 in the considered energy range. The spectrometer consists of an array of up to 4 spherically bent 0.5 m radius analyzer crystals and a solid-state detector positioned on the Rowland circle. The four analyzers can cover a solid angle more than one order of magnitude larger than conventional spectrometers. The spectrometer is to be installed on the GALAXIES beamline at SOLEIL in the near future.

  12. Uncooled spectrometer for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Sieger, Ladislav

    2017-05-01

    In the field of X-ray detection for Astrophysics there are mainly two objectives; first is to create 2D images as a result of sensing radiation by detectors consisting of a pixels matrix and the second is a spectral analysis of the incident radiation. For spectral analysis, the basis is usually the principle of diffraction. This paper describes the new design of X-ray spectrometer based on Timepix detector with optics positioned in front of it. The advantage of this setup is the ability to get the image and spectrum from the same devices. With other modifications is possible to shift detection threshold into areas of soft X-ray radiation.

  13. A multi-crystal wavelength dispersive x-ray spectrometer

    PubMed Central

    Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis; Tran, Rosalie; Montanez, Paul; Delor, James; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage. PMID:22852678

  14. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Astrophysics Data System (ADS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; McBride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-10-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  15. Hard X-ray Laue monochromator

    NASA Astrophysics Data System (ADS)

    Kocharyan, V. R.; Gogolev, A. S.; Kiziridi, A. A.; Batranin, A. V.; Muradyan, T. R.

    2016-06-01

    Experimental studies of X-ray diffraction from reflecting atomic planes (10¯11) of X-cut quartz single crystal in Laue geometry influenced by the temperature gradient were carried out. It is shown that by using the temperature gradient it is possible to reflect a hard X- ray beam with photon energy near the 100 keV with high efficiency. It has been experimentally proved that the intensity of the reflected beam can be increased by more than order depending on the value of the temperature gradient.

  16. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  17. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-08-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results. We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  18. Hard X-Ray Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, Francesca; Bassani, L.; Venturi, T.; Molina, M.; Dallacasa, D.; Ubertini, P.; Bazzano, A.; Malizia, A.; La Franca, F.; Landi, R.

    2016-10-01

    In order to investigate the role of absorption in AGN with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/IBIS and Swift/BAT AGN catalogues. They represent 7-10% of the total AGN population and are characterized by high 20-100 keV luminosities and high Eddington ratios. The radio morphology is typical of FRII galaxies and all of them have an optical classification and a measure of the column density. The observed fraction of absorbed AGN is around 40% among the total sample, and 75% among type 2 AGN. The observed fraction of Compton thick AGN is 2-3%. In this talk we will discuss the obscuration characteristics of radio galaxies compared to non-radio galaxies selected at hard X-rays.

  19. Spatial resolution of a hard x-ray CCD detector

    SciTech Connect

    Seely, John F.; Pereira, Nino R.; Weber, Bruce V.; Schumer, Joseph W.; Apruzese, John P.; Hudson, Lawrence T.; Szabo, Csilla I.; Boyer, Craig N.; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20{mu}m pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95{mu}m (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  20. Hard X-ray mirrors for Nuclear Security

    SciTech Connect

    Descalle, M. A.; Brejnholt, N.; Hill, R.; Decker, T.; Alameda, J.; Soufli, R.; Pivovaroff, M.; Pardini, T.

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  1. Hard X Rays from Supernova 1993J

    DTIC Science & Technology

    1994-01-01

    extensively observed at many wavelengths and has yielded a wealth of new information about core - collapse supernovae (Wheeler & Filipenko 1994, and references...modelled as the result of a core collapse and subsequent explosion in a red supergiant that had lost almost all of its hydrogen-rich envelope (Nomoto...HARD X RAYS FROM SUPERNOVA 1993J M.D. Leising1, J.D. Kurfess2, D.D. Clayton1, D.A. Grabelsky3, J.E. Grove2, W.N. Johnson2, G.V. Jung4, R.L. Kinzer2

  2. The Hard X-Ray Telescope Mission

    NASA Astrophysics Data System (ADS)

    Gorenstein, P.; Joensen, K.; Romaine, S.; Worrall, D.; Cameron, R.; Weisskopf, M.; Ramsey, B.; Bilbro, J.; Kroeger, R.; Gehrels, N.; Parsons, A.; Smither, R.; Christensen, F.; Citterio, O.; von Ballmoos, P.

    1995-12-01

    The Hard X-Ray Telescope (HXT) mission concept contains focusing telescopes that collectively, observe simultaneously from the ultraviolet to 100 keV and in several narrow bands extending to 1 MeV. In pointed observations HXT is expected to have an order of magnitude more sensitivity and much finer angular resolution in the 10 to 100 keV band than all current and currently planned future missions, and considerably more sensitivity for detecting narrow lines in the 100 keV to 1 MeV regime. The detectors are small, cooled arrays of relatively low mass with very good energy resolution and some polarization sensitivity. HXT contains two types of hard X-ray telescopes. One type, called the modular modular telescope (MMT) utilizes a novel type of multilayer coating and small graze angles to extend the regime of focusing to 100keV. There is a two stage imaging detector at each focus, a CCD for X-rays < 10 keV followed down stream by either a germanium strip array or cadmium zinc telluride array for 10-100 keV X-rays. The other type of telescope, called the Laue Crystal Telescope (LCT) is a single adjustable array of several hundred Ge crystals that focus by Laue scattering. Individual picomotors adjust the angle of each crystal to diffract photons of a fixed energy to the same point along the optic axis where they converge upon a movable array of cooled germanium detectors. The LCT will have high sensitivity for detecting narrow X-ray lines of known energy such as those expected from Type 1 supernova. The UV monitor is a three telescope system that provides coverage in the ultraviolet band for study of time correlated changes across the broad electromagnetic spectrum of an AGN such as are expected in ``reverberation'' models. A WWW page will be created as a public bulletin board. This work is supported by NASA grant NAG8-1194

  3. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  4. Observing Solar Hard X-rays from Heliospheric Orbits

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Benz, A.; Dennis, B.; Krucker, S.; Limousin, O.; Lin, R.; Vilmer, N.

    2010-05-01

    The coming decade provides two opportunities to acquire a different observational perspective on solar hard x-ray emission. Both ESA's Solar Orbiter and NASA's Solar Probe Plus missions will be in heliocentric orbits with perihelia of 0.28 au and 0.05 au respectively. This poster indicates the unique scientific advantages of hard x-ray imaging/spectroscopy observations from such platforms. These advantages stem from three factors: First, in combination with other payload elements, the hard x-rays provide the ability to observationally link accelerated electrons at the Sun to radio observations of the propagating electrons and to direct observations of in situ electrons. Second, the substantial gain in sensitivity afforded by close-in vantage points enables exploration of the origin of non-flare associated SEP events to be studied and the character of quiescent active-region heating and electron acceleration to be evaluated. Third, the different observational perspectives provided by the heliocentric orbits compared to low-Earth orbits enable improved separation of coronal and footpoint sources as well as measurements of the isotropy of the x-ray emission. Despite the limited payload resources (mass, power, telemetry) afforded by such missions, scientifically effective hard x-ray imaging spectroscopy from 5 keV to 150 keV is still feasible. The Spectrometer/Telescope for Imaging X-rays (STIX), accepted as part of the Solar Orbiter payload, combines high spectral resolution ( 1 keV FWHM at 10 keV) with spatial resolution as good as 1500 km, and can efficiently encode the data for several hundred optimized images per hour within a modest telemetry allocation and 4 kg / 4 watt budget. The X-ray Imaging Spectrometer (XIS) proposed for Solar Probe Plus, views the Sun through its thermal shield. It also features high spectral resolution from 6 to 150 keV and spatial resolution of 1500 km at perihelion. The poster describes the imaging principles and current configurations

  5. Computer-controlled Cauchois-type x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    André, J. M.; Kefi, M.; Avila, A.; Couillaux, P.; Bonnelle, C.

    1987-03-01

    A laboratory x-ray spectrometer designed for routine analysis in the 15-60-keV spectral range is described. It consists of a 40-cm bent-crystal transmission spectrometer in the Cauchois geometry, controlled by a microcomputer. The choice of the crystal analyzer and of the detection system is discussed. The instrument is well suited for large spectral range x-ray absorption and emission spectroscopy (XAS, XES) and x-ray source diagnostics.

  6. Pump–probe spectrometer for measuring x-ray induced strain

    DOE PAGES

    Loether, A.; Adams, B. W.; DiCharia, A.; ...

    2016-04-20

    A hard x-ray pump–probe spectrometer using a multi-crystal Bragg reflector is demonstrated at a third generation synchrotron source. This device derives both broadband pump and monochromatic probe pulses directly from a single intense, broadband x-ray pulse centered at 8.767 keV. In conclusion, we present a proof-of-concept experiment which directly measures x-ray induced crystalline lattice strain.

  7. Hard x ray/microwave spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.

    1992-01-01

    The joint study of hard x ray and microwave observations of solar flares is extremely important because the two complementary ways of viewing the accelerated electrons yield information that cannot be obtained using hard x rays or microwaves alone. The microwaves can provide spatial information lacking in the hard x rays, and the x ray data can give information on the energy distribution of electrons that remove ambiguities in the radio data. A prerequisite for combining the two data-sets, however, is to first understand which range of microwave frequencies correlate best with the hard x rays. This SMM Guest Investigator grant enabled us to combine multi-frequency OVRO data with calibrated hard x ray data to shed light on the relationship between the two emissions. In particular, the questions of which microwave frequencies correspond to which hard x ray energies, and what is the corresponding energy of the electrons that produce both types of emission are investigated.

  8. [The X-Ray Fluorescence Spectrometer Based on Pyroelectric Effect].

    PubMed

    Dong, Yi-fan; Fan, Rui-rui; Guo, Dong-ya; Zhang, Chun-lei; Gao, Min; Wang, Jin-zhou; Liu, Ya-qing; Zhou, Da-wei; Wang, Huan-yu

    2016-02-01

    Pyroelectric X-ray generator is implemented, and an X-ray fluorescence spectrometer is accomplished by combining the pyroelectric X-ray generator with a high energy resolution silicon drift detector. Firstly, the parameters of the X-ray generator are decided by analyzing and calculating the influence of the thickness of the pyroelectriccrystal and the thickness of the target on emitted X-ray. Secondly, the emitted X-ray is measured. The energy of emitted X-ray is from 1 to 27 keV, containing the characteristic X-ray of Cu and Ta, and the max counting rate is more than 3 000 per second. The measurement also proves that the detector of the spectrometer has a high energy resolution which the FWMH is 210 eV at 8. 05 keV. Lastly, samples of Fe, Ti, Cr and high-Ti basalt are analyzed using the spectrometer, and the results are agreed with the elements of the samples. It shows that the spectrometer consisting of a pyroelectric X-ray generator and a silicon drift detector is effective for element analysis. Additionally, because each part of the spectrometer has a small volume, it can be easily modified to a portable one which is suitable for non-destructive, on-site and quick element analysis.

  9. Correlative Analysis of hard and Soft X-rays in Solar Flares using CGRO/BATSE and YOHKOH

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1996-01-01

    The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  10. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  11. Hard X-Ray Footprint Source Sized

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Kontar, E. P.

    2010-01-01

    RHESSI has detected compact hard (25 - 100 keV) X-ray sources that are <4 arcseconds (FWHM) in extent for certain flares (Dennis and Pernak (2009). These sources are believed to be at magnetic loop footpoints that are known from observations at other wavelengths to be very small. Flare ribbons seen in the W with TRACE, for example, are approx. 1 arcsecond in width, and white light flares show structure at the approx. 1 arcsecond level. However, Kontar and Jeffrey (2010) have shown that the measured extent should be >6 arcseconds, even if the X-ray emitting thick-target source is point-like. This is because of the strong albedo contribution in the measured energy range for a source located at the expected altitude of 1 Mm near the top of the chromosphere. This discrepancy between observations and model predictions may indicate that the source altitude is significantly lower than assumed or that the RHESSI image reconstruction procedures are not sensitive to the more diffuse albedo patch in the presence of a strong compact source. Results will be presented exploring the latter possibility using the Pixon image reconstruction procedure and other methods based on visibilities.

  12. Blazars in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele

    2009-05-01

    Although blazars are thought to emit most of their luminosity in the γ-ray band, there are subclasses of them very prominent in hard X-rays. These are the best candidates to be studied by Simbol-X. They are at the extremes of the blazar sequence, having very small or very high jet powers. The former are the class of TeV emitting BL Lacs, whose synchrotron emission often peaks at tens of keV or more. The latter are the blazars with the most powerful jets, have high black hole masses accreting at high (i.e. close to Eddington) rates. These sources are predicted to have their high energy peak even below the MeV band, and therefore are very promising candidates to be studied with Simbol-X.

  13. The hard x-ray imager onboard IXO

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  14. Correlative Analysis of Hard and Soft X-ray Emissions in Solar Flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1997-01-01

    This report describes research performed under the Phase 3 Compton Gamma-Ray Observatory (CGRO) Guest Investigator Program. The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the CGRO Burst and Transient Source Experiment (BATSE) and soft X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  15. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    SciTech Connect

    van den Berg, M.; Chow, D.; Loshak, A.; Cunningham, M.F.; Barbee, T.W.; Matthias, F.; Labov, S.E.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.

  16. Shielding a streak camera from hard x rays

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; Sorce, C.; Loughman, K.; Emig, J.; Bruns, C.; Back, C.; Bell, P. M.; Compton, S.; Hargrove, D.; Holder, J. P.; Landen, O. L.; Perry, T. S.; Shepherd, R.; Young, B. K.

    2004-10-01

    The targets used in the hot halfraum campaign at OMEGA create many hot electrons, which result in a large flux of hard x rays. The hard x rays produce a high background in the streak camera. The background was significantly reduced by wrapping the streak camera with a high-Z material; in this case, 1/8 in. of Pb. The large hard x-ray flux also adds noise to images from framing cameras which use charge-coupled devices.

  17. Shielding a Streak Camera from Hard X-rays

    SciTech Connect

    Schneider, M; Sorce, C; Loughman, K; Emig, J; Bruns, H; Back, C; Bell, P; Compton, S; Hargrove, D; Holder, J; Landen, O; Perry, T; Shepherd, R; Young, B

    2004-04-14

    The targets used in the Hot Halfraum Campaign at OMEGA create many hot electrons, which result in a large flux of hard x-rays. The hard x-rays produce a high background in the streak camera. The background was significantly reduced by wrapping the streak camera with a high-Z material; in this case, 1/8' of Pb. The large hard x-ray flux also adds noise to images from framing cameras which use CCDs.

  18. X-ray photoelectron spectroscopy in the hard x-ray regime

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    2006-03-01

    Photoelectron spectroscopy is by now a very widely used tool for the study of atoms, molecules, solids, surfaces, and nanoscale structures. Until very recently, the exciting radiation has been limited to the energy range below about 2 keV. However, within the past few years, a few experimental projects have been initiated in which photon energies in the 5-15 keV range are employed. By matching the characteristics of undulator beamlines at third-generation synchrotron radiation sources to the optical properties of the electron spectrometer, it has proven possible to overcome the reduced photoelectric cross sections at such high energies and to study both core and valence electronic levels with resolutions down to ca. 50 meV [1]. Such hard x-ray photoelectron spectroscopy (HXPS or HAXPES) has the advantage of being more bulk sensitive, with electron inelastic attenuation lengths in the 50-150 Angstrom range. In this talk, I will discuss the advantages and disadvantages of this new direction, including highlights from recent work, as well as suggested future avenues for HXPS studies. [1] Nuclear Instruments and Methods A 547, 24 (2005), special issue dedicated to hard x-ray photoelectron spectroscopy, edited by J. Zegenhagen and C. Kunz.

  19. Hard X-ray Nano Patterning using a Sectioned Multilayer

    SciTech Connect

    S Lee; I Cho; J Kim; H Yan; R Conley; C Liu; A Macrander; J Maser; G Stephenson; et al.

    2011-12-31

    We report a hard x-ray patterning capable of drawing lines with a width below 100 nm using x-rays at 0.165 nm. A specially prepared mask based on multilayer growth technology was used as an x-ray mask effectively. The x-ray Talbot effect in near field was investigated and utilized in the patterning. Since multilayers with a few nanometer layer spacing are readily available, the proposed hard x-ray nano patterning, free of the limit imposed by the Rayleigh criterion in optical range, can potentially be an ultimate optical lithography technique.

  20. Atmospheric electron-induced x-ray spectrometer development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy

    2005-01-01

    This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.

  1. Method of fabricating an imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E. (Inventor); Burgess, A. S. (Inventor)

    1986-01-01

    A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.

  2. Thermal detectors as X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Mather, J. C.; Mccammon, D.

    1984-01-01

    Sensitive thermal detectors should be useful for measuring very small energy pulses, such as those produced by the absorption of X-ray photons. The measurement uncertainty can be very small, making the technique promising for high resolution nondispersive X-ray spectroscopy. The limits to the energy resolution of such thermal detectors are derived and used to find the resolution to be expected for a detector suitable for X-ray spectroscopy in the 100 eV to 10,000 eV range. If there is no noise in the thermalization of the X-ray, resolution better than 1 eV full width at half maximum is possible for detectors operating at 0.1 K. Energy loss in the conversion of the photon energy to heat is a potential problem. The loss mechanisms may include emission of photons or electrons, or the trapping of energy in long lived metastable states. Fluctuations in the phonon spectrum could also limit the resolution if phonon relaxation times are very long. Conceptual solutions are given for each of these possible problems.

  3. Hard X-ray Emission from White Dwarfs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Gruendl, Robert

    2004-01-01

    Hot white dwarfs may exhibit photospheric emission at X-ray wavelengths, but their X- ray emission should be soft, mutch less than 0.5 keV. Hard X-ray emission, at approx. 1 keV, is not expected from white dwarfs, unless they are in binary systems and the hard X-ray emission is produced by a late-type companion's coronal activity or by accretion of a companion's material onto the surface of the white dwarf. We proposed to use the ROSAT archive to search for hard X-ray emission from white dwarfs in order to determine whether hard X-ray emission may provide a sensitive diagnostic for the existence of a binary companion.

  4. The Hard X ray Telescope Mission

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1997-01-01

    The Hard X Ray Telescope (HXT) was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity and much better angular resolution in the 10100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. The institutions collaborating in the study are: Smithsonian Astrophysical Observatory, Marshall Space Flight Center, Naval Research Laboratory, Goddard Space Flight Center, Argonne National Laboratory, Danish Space Research Institute, Osservatorio Astronomica di Brera (Merate), and Centre d'Etudes Spatiale des Rayonnements (Toulouse). The instrumentation includes several grazing incidence double conical telescopes with multilayer coatings that focus up to 100 keV and a single Laue crystal telescope that functions to 1 MeV. The detectors are CCDs, and germanium, and/or CdZnTe position sensitive arrays.

  5. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Guedel, Manuel

    1992-01-01

    Results are presented of an analysis of a comprehensive data set of 27 solar flares with decimetric millisecond spikes between 1980 and 1989, simultaneously observed with the Zuerich radio spectrometers and the Hard X-ray Burst Spectrometer on the SMM spacecraft. Two contradictory relationships of the coevolution of hard X-ray and spiky radio emissions during flares are found: the temporal evolution of both emissions reveals a close functional dependence, but there is a substantial time delay between the two emissions. Five possible scenarios for the hard-X-ray-associated radio spike emission which may account for both their detailed coevolution and their substantial intervening time delay are discussed. All five scenarios are able to explain both the close coevolution of hard X-ray and radio emission as well as their mutual delay to some degree, but none of them can explain all observational aspects in a simple way.

  6. Possible evidence for beaming in flares from microwave and hard X-ray imaging and spectra

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1986-01-01

    The magnetic field strength and number of burst-producing energetic electrons are presently deduced for the impulsive phase of a solar flare at microwave wavelengths, with the VLA, and hard X-rays, with the SMM Hard X-ray Burst Spectrometer. The combined data indicate that the number of microwave-emitting electrons is at least three orders of magnitude smaller than the number of thick target electrons producing the hard X-rays; this is suggested to be due to the high beaming and inefficient radiation of gyrosynchrotron emission by comparison with isotropically distributed electrons.

  7. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  8. Hard x-ray nanoprobe based on refractive x-ray lenses

    SciTech Connect

    Schroer, C.G.; Kurapova, O.; Patommel, J.; Boye, P.; Feldkamp, J.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2005-09-19

    Based on nanofocusing refractive x-ray lenses a hard x-ray scanning microscope is currently being developed and is being implemented at beamline ID13 of the European Synchrotron Radiation Facility (Grenoble, France). It can be operated in transmission, fluorescence, and diffraction mode. Tomographic scanning allows one to determine the inner structure of a specimen. In this device, a monochromatic (E=21 keV) hard x-ray nanobeam with a lateral extension of 47x55 nm{sup 2} was generated. Further reduction of the beam size to below 20 nm is targeted.

  9. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  10. Theory and optical design of x-ray echo spectrometers

    DOE PAGES

    Shvyd'ko, Yuri

    2017-08-02

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  11. Theory and optical design of x-ray echo spectrometers

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2017-08-01

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016), 10.1103/PhysRevLett.116.080801] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. Examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.

  12. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  13. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  14. Statistical Study of Hard X-ray Footpoint Region

    NASA Astrophysics Data System (ADS)

    Sato, J.

    2003-12-01

    We show statistical characteristics of hard X-ray footpoint sources derived from THE YOHKOH FLARE IMAGE CATALOGUE. We use many hard X-ray images over the whole YOHKOH mission period (1991/08 - 2001/12) and the study is concentrated on following two points. 1) Average height of hard X-ray footpoint sources in the four HXT(Hard X-ray Telescope) energy bands (14-23, 23-33, 33-53, 53-93 keV). 2) Spectral characteristics of hard X-ray footpoint sources. We mainly revealed that A) the hard X-ray emission comes from just above the Hα emitting region and the accelerated electrons loose their energy within 1000 km length leading to the high density around footpoints, and that B) Many hard X-ray footpoint sources show a broken power-law spectrum with very hard spectrum in the low energy range (20-30 keV), suggesting a cut off energy of accelerated electrons is around 20 keV - 30 keV at least.

  15. Crystal spectrometer for measurements of pionic X-rays

    NASA Astrophysics Data System (ADS)

    Beer, W.; Bos, K.; De Chambrier, G.; Giovanetti, K. L.; Goudsmit, P. F. A.; Grigoryev, B. V.; Jeckelmann, B.; Knecht, L.; Kondurova, L. N.; Langhans, J.; Leisi, H. J.; Levchenko, P. M.; Marushenko, V. I.; Mezentsev, A. F.; Obermeier, H.; Petrunin, A. A.; Rohrer, U.; Sergeev, A. G.; Skornjakov, S. G.; Smirnov, A. I.; Steiner, E.; Strassner, G.; Suvorov, V. M.; Vacchi, A.

    1985-08-01

    A description is given of a bent-crystal spectrometer for pionic X-rays. The instrument is of the modified DuMond type and makes use of a combined π-production-X-ray target. It is situated in a 20 μA, 590 MeV proton beam at SIN. Combination of high mechanical precision and a laser interferometer system makes it possible to measure wavelength ratios with a precision of 1-2 parts per million.

  16. Hard X-rays from SN 1993J

    NASA Technical Reports Server (NTRS)

    Leising, M. D.; Kurfess, J. D.; Clayton, D. D.; Grabelsky, D. A.; Grove, J. E.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kroeger, R. A.; Purcell, W. R.

    1994-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Observatory observed SN 1993J during three intervals centered approximately 12, 30, and 108 days after its outburst. Hard X-ray emission was detected in the first two of these intervals. No emission was seen in the third observation or in two earlier observations in 1991 and 1992. The coincidence of the observed excess with the outburst of SN 1993J and the consistency of the spectra and time evolution with those seen at lower energies by ROSAT and ASCA (Astro-D) argue that the observed emission is indeed from SN 1993J. It is probably due to the interaction of the fast supernova ejecta with circumstellar material. The luminosity, 5 x 10(exp 40) ergs/sec (50-150 keV) in the first interval, is significantly larger than predicted. Extrapolating the spectrum to a few keV accounts for most or all of the observed emission at low energy. The observed high temperature, 10(exp 9) K, is easily obtained in the shocked circumstellar matter, but a surprisingly high density is required there to give the observed luminosity, and little or no additional X-ray emission from denser shocked supernova ejecta is allowed. The hard emission might also be explained in terms of the shocked supernova ejecta itself with unexpectedly high temperature.

  17. A short working distance multiple crystal x-ray spectrometer

    USGS Publications Warehouse

    Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming

    2008-01-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.

  18. A short working distance multiple crystal x-ray spectrometer.

    SciTech Connect

    Dickinson, B.; Seidler, G. T.; Webb, Z. W.; Bradley, J. A.; Nagle, K. P.; Heald, S. M.; Gordon, R. A.; Chou, I. M.; Univ. of Washington; Simon Fraser Univ.; U. S. Geological Survey

    2008-12-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed {approx}1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K{beta} x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L{sub {alpha}{sub 2}} partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary.

  19. Recent applications of hard x-ray photoelectron spectroscopy

    SciTech Connect

    Weiland, Conan; Woicik, Joseph C.; Rumaiz, Abdul K.; Pianetta, Piero

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  20. Recent applications of hard x-ray photoelectron spectroscopy

    DOE PAGES

    Weiland, Conan; Rumaiz, Abdul K.; Pianetta, Piero; ...

    2016-05-05

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in-situ or in-operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. We also present physical considerations that differentiate HAXPES from photoemission measurements utilizing soft and ultraviolet x rays.

  1. Hard X-ray Spectroscopic, Microwave and H-alpha Linear Polarization Studies with Hard X-Ray Observations from HESSI

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.

    2005-01-01

    The Principal Investigator (P.I.) has been pursuing a three year grant under NASA's Sun-Earth Connection Guest Investigator Program in support of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). An objective of these efforts is to combine X-ray and other data on solar flares, coronal mass ejections and interplanetary particle events in order to obtain a more comprehensive recognition of signatures, and understanding of interplanetary proton events. Thus, part of these efforts are to investigate if signatures seen in hard X-rays and microwaves can lead to better predictions of interplanetary proton events that can be dangerous to astronauts and spacecraft. The original proposal was written in May, 2000 and it discusses a three-pronged approach for data comparisons with three new types of instrumentation observing at X-ray, microwave and optical wavelengths. The major impetus behind this work and the proposal is that the P.I. discovered a strong correlation between a particular type of hard X-ray signature seen in spectral evolutions and interplanetary proton events (Kiplinger, 1995). The basic signature is that hard X-ray flux peaks either exhibit spectra that soften on their decays (Le. show fewer and fewer high energy X-rays with time) or they harden during decays (i.e. high energy X-rays decay significantly slower that lower energy X-rays). This signature is called progressive hardening. Studies were conducted over an eight-year period of data from the Hard X-Ray Burst Spectrometer (HXRBS) of the Solar maximum mission. Out of the 750 well observed flares studied, 41 flares had major associated proton events. Of these, 29 events were predicted on the basis of progressive hardening for a hit rate of 71%. The 152 largest flares had a hit rate of 82%.

  2. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  3. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  4. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  5. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  6. The NIF x-ray spectrometer calibration campaign at Omega.

    PubMed

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  7. Direct-write X-ray lithography using a hard X-ray Fresnel zone plate.

    PubMed

    Lee, Su Yong; Noh, Do Young; Lee, Hae Cheol; Yu, Chung-Jong; Hwu, Yeukuang; Kang, Hyon Chol

    2015-05-01

    Results are reported of direct-write X-ray lithography using a hard X-ray beam focused by a Fresnel zone plate with an outermost zone width of 40 nm. An X-ray beam at 7.5 keV focused to a nano-spot was employed to write arbitrary patterns on a photoresist thin film with a resolution better than 25 nm. The resulting pattern dimension depended significantly on the kind of underlying substrate, which was attributed to the lateral spread of electrons generated during X-ray irradiation. The proximity effect originated from the diffuse scattering near the focus and electron blur was also observed, which led to an increase in pattern dimension. Since focusing hard X-rays to below a 10 nm spot is currently available, the direct-write hard X-ray lithography developed in this work has the potential to be a promising future lithographic method.

  8. Optimization of the X-ray incidence angle in photoelectron spectrometers.

    PubMed

    Strocov, Vladimir N

    2013-07-01

    The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy range show that the optimal angle becomes more grazing with increasing energy, from a few tens of degrees at 50 eV to about one degree at 3.5 keV. This is accompanied by an intensity gain of a few tens of times, as long as the X-ray footprint on the sample stays within the analyzer field of view. This trend is fairly material-independent. The obtained results bear immediate implications for the design of (synchrotron-based) photoelectron spectrometers.

  9. Optimization of the X-ray incidence angle in photoelectron spectrometers

    PubMed Central

    Strocov, Vladimir N.

    2013-01-01

    The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy range show that the optimal angle becomes more grazing with increasing energy, from a few tens of degrees at 50 eV to about one degree at 3.5 keV. This is accompanied by an intensity gain of a few tens of times, as long as the X-ray footprint on the sample stays within the analyzer field of view. This trend is fairly material-independent. The obtained results bear immediate implications for the design of (synchrotron-based) photoelectron spectrometers. PMID:23765292

  10. Two crystal x-ray spectrometers for OMEGA experiments

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Casner, A.; Girard, F.; Lecherbourg, L.; Loupias, B.; Tassin, V.; Philippe, F.

    2016-11-01

    Two x-ray spectrometers have been built for x-ray spectroscopy of laser-produced plasmas on OMEGA at the Laboratory for Laser Energetics (LLE) by Commissariat a ̀ l'Energie Atomique et aux énergies alternatives (CEA). The accessible photon energy range is from 1.5 to 20 keV. The first spectrometer, called X-ray CEA Crystal Spectrometer with a Charge-Injection Device (XCCS-CID), records three spectra with three crystals coupled to a time integrated CID camera. The second one, called X-ray CEA Crystal Spectrometer (XCCS) with a framing camera, is time resolved and records four spectra with two crystals on the four frames of a framing camera. Cylindrical crystals are used in Johan geometry. Each spectrometer is positioned with a ten-inch manipulator inside the OMEGA target chamber. In each experiment, after choosing a spectral window, a specific configuration is designed and concave crystals are precisely positioned on a board with angled wedges and spacers. Slits on snouts enable 1D spatial resolution to distinguish spectra emitted from different parts of the target.

  11. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  12. The Bragg solar x-ray spectrometer SolpeX

    NASA Astrophysics Data System (ADS)

    Ścisłowski, D.; Sylwester, J.; Steślicki, M.; Płocieniak, S.; Bąkała, J.; Szaforz, Ż.; Kowaliński, M.; Podgórski, P.; Trzebiński, W.; Hernandez, J.; Barylak, J.; Barylak, A.; Kuzin, Sergey

    2015-09-01

    Detection of polarization and spectra measurement of X-ray solar flare emission are indispensable in improving our understanding of the processes releasing energy of these most energetic phenomena in the solar system. We shall present some details of the construction of SolpeX - an innovative Bragg soft X-ray flare polarimeter and spectrometer. The instrument is a part of KORTES - Russian instrument complex to be mounted aboard the science module to be attached to the International Space Station (2017/2018). The SolpeX will be composed of three individual measuring units: the soft X-ray polarimeter with 1-2% linear polarization detection threshold, a fast-rotating flat crystal X-ray spectrometer with a very high time resolution (0.1 s) and a simple pinhole soft X-ray imager-spectrometer with a moderate spatial (~20 arcsec), spectral (0.5 keV) and high time resolution (0.1 s). Having a fast rotating unit to be served with power, telemetry and "intelligence" poses a challenge for the designer. Some of the solutions to this will be provided and described.

  13. Prepulse dependence in hard x-ray generation from microdroplets

    SciTech Connect

    Anand, M.; Kahaly, S.; Kumar, G. Ravindra; Sandhu, A. S.; Gibbon, P.; Krishnamurthy, M.

    2006-04-07

    We report on experiments which show that liquid microdroplets are very efficient in hard x-ray generation. We make a comparative study of hard x-ray emission from 15 {mu}m methanol microdroplets and a plain slab target of similar atomic composition at similar laser intensities. The hard X-ray yield from droplet plasmas is about 35 times more than that obtained from solid plasmas. A prepulse that is about 10ns and at least 2% in intensity of the main pulse is essential for hard x-ray generation from the droplets at about 1015 W cm-2. A hot electron temperature of 36 keV is measured from the droplets at 8 x 1014 W cm-2; three times higher intensity is needed to obtain similar hot electron temperature from solid plasmas that have similar atomic composition. We use 1D-PIC simulation to obtain qualitative correlation to the experimental observations.

  14. Hard X-ray observations of ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.

    1988-01-01

    X-ray flux upper limits of 2-10 keV for ultraluminous infrared galaxies were drawn from the HEAO A-1 data base. The hard X-ray luminosities of these sources are much weaker relative to their total luminosities than would be expected for Seyfert 1 galaxies or quasi-stellar objects. Because of the low level of interstellar extinction for hard X-rays, this result suggests that the ultraluminous galaxies are not powered by embedded QSOs that are otherwise similar to other QSOs. Three other possibilities are: (1) the infrared galaxies may contain a form of X-ray-quiet active nucleus; (2) the X-ray sources in active nuclei may not turn on until after the circumnuclear gas has cleared; or (3) the bulk of the infrared luminosity in these galaxies may be generated by intense circumnuclear star formation.

  15. Hard X-ray observations of ultraluminous infrared galaxies

    SciTech Connect

    Rieke, G.H.

    1988-08-01

    X-ray flux upper limits of 2-10 keV for ultraluminous infrared galaxies were drawn from the HEAO A-1 data base. The hard X-ray luminosities of these sources are much weaker relative to their total luminosities than would be expected for Seyfert 1 galaxies or quasi-stellar objects. Because of the low level of interstellar extinction for hard X-rays, this result suggests that the ultraluminous galaxies are not powered by embedded QSOs that are otherwise similar to other QSOs. Three other possibilities are: (1) the infrared galaxies may contain a form of X-ray-quiet active nucleus; (2) the X-ray sources in active nuclei may not turn on until after the circumnuclear gas has cleared; or (3) the bulk of the infrared luminosity in these galaxies may be generated by intense circumnuclear star formation. 27 references.

  16. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  17. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hurford, G.; Hudson, H.; White, S.; Mewaldt, R.; Grefenstette, B.; Harrison, F.; NuSTAR Science Team

    2011-09-01

    High-sensitivity imaging of solar hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer will be capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new solar observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field.

  18. The Hard X-Ray Sky: Recent Observational Progress

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  19. The Hard X-ray Sky: Recent Observational Progress

    SciTech Connect

    Gehrels, Neil

    2009-05-11

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  20. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  1. The Astro-E High Resolution X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Audley, Michael D.; Boyce, Kevin R.; Breon, Susan R.; Fujimoto, Ryuichi; Gendreau, Keith C.; Holt, Stephen S.; Ishisaki, Yoshitaka; McCammon, Dan; Mihara, Tatehiro

    1999-01-01

    The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronautical Science in Japan. The instrument is based on a new approach to spectroscopy, the X-ray microcalorimeter. This device senses the energies of individual X-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV (the Fe-K region). This will provide spectral resolving power 10 times higher than any other non-dispersive X-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the X-ray mirror system combine to give high throughput over the 0.3-12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.

  2. Atomic tungsten for ultrafast hard X-ray generation.

    PubMed

    Shan, Fang; Couch, Vernon A; Guo, Ting

    2005-05-19

    High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.

  3. Imaging x-ray crystal spectrometers for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bitter, M.; Moon, M. K.; Nam, U. W.; Jin, K. C.; Kong, K. N.; Seon, K. I.

    2003-03-01

    Two x-ray imaging crystal spectrometers are presently designed for the KSTAR tokamak. The instruments will provide temporally and spatially resolved spectra of heliumlike argon (or krypton) from a large cross section of the plasma. The spectral data will be used for profile measurements—both within and perpendicular to the horizontal midplane of KSTAR—of the ion and electron temperatures, the rotation velocity, and the ionization equilibrium. Each spectrometer will consist of a spherically bent quartz crystal and large area two-dimensional position-sensitive multiwire proportional counter. The article presents the design for the KSTAR x-ray imaging crystal spectrometers, and the fabrication and initial test results from the large area two-dimensional multiwire proportional counter.

  4. Development of X-ray Imaging Crystal Spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bitter, M.; Hill, K.; Nam, U. W.; Kim, Y. J.; Moon, M. K.

    2003-10-01

    The engineering design for two high-resolution X-ray imaging crystal spectrometers, which will be part of the basic diagnostics for the KSTAR tokamak, has been finalized. Each of the spectrometers will consists of a spherically bent crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. The instruments will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. A 2D detector with delay-line readout and supporting electronics has been fabricated and calibrated with an X-ray source. The engineering design of the spectrometers and the calibration results of the 2D detector will be presented.

  5. Instrumentation and data analysis for hard X ray astronomy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang Nan

    The current status of hard x ray astronomy is reviewed. The applicability of various hard x ray detectors in such new telescopes are discussed and the current status of hard x ray telescope design is reviewed. Background production mechanisms in hard x ray telescopes are discussed and some techniques for background reduction are also discussed. A simple method for estimating the optimum detector thickness is presented and the use of some detector materials which should minimize the neutron background is proposed. Three imaging techniques are briefly described. A simple discussion about their relative merits has suggested that the rotating modulation collimator (RMC) technique based on an improved detector technique provides the best imaging system. The pulse shape discrimination (PSD) technique is essential for the realization of such new detectors. The basic principles of various PSD methods are made for hard x ray phoswich detector applications. A new fast-veto technique is proposed and may be used in a quadruple phoswich detector system to provide good energy resolution and efficient background rejection. A proposed satellite-borne hard x ray telescope (CHIXSAT), which would use such detectors as its main detection elements, is described. A range of statistical data analysis methods for hard x ray and gamma ray astronomy are studied. Fisher's fact test is found to give the most reliable significance test. Methods for parameter estimation, including upper limit calculations, are described. The sensitivity of a telescope is defined with clear statistical meaning and a method for estimating the sensitivity is derived. A new method, called the chi3-test is proposed to be unbiased and have a very high power for multiple on-off observations, especially in searching for transient sources.

  6. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  7. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  8. A position sensitive phoswich hard X-ray detector system

    NASA Technical Reports Server (NTRS)

    Dean, A. J.; Hanson, C. G.; Hopkins, C. J.; Lewis, R. A.; Fraser-Mitchell, J.

    1985-01-01

    A prototype position sensitive phoswich hard X-ray detector, designed for eventual astronomical usage, was tested in the laboratory. The scintillation crystal geometry was designed on the basis of a Monte Carlo simulation of the internal optics and includes a 3mm thick NaI(T1) primary X-ray detector which is actively shielded by a 20 mm thick CsI(T1) scintillation crystal. This phoswich arrangement is viewed by a number two inch photomultipliers. Measured values of the positional and spectral resolution of incident X-ray photons are compared with calculation.

  9. The over-the-limb hard X-ray events

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    Over-the-limb hard X-ray events offer a uniquely direct view of the hard X-ray emission from the solar corona during a major flare. Limb occultation at angles greater than about 10 deg (an arbitrary definition of this class of events) excludes any confusion with brighter chromospheric sources. Published observations of seven over-the-limb events, beginning with the prototype flare of March 30, 1969, are reviewed. The hard X-ray spectra appear to fall into two classes: hard events, with power-law index of about 2.0; and soft events, with power-law index about 5.4. This tendency towards bimodality is only significant at the 90-percent confidence level due to the smallness of the number of events observed to date. If borne out by future data, the bimodality would suggest the existence of two different acceleration mechanisms.

  10. Hard x-ray Zernike microscopy reaches 30 nm resolution.

    SciTech Connect

    Chen, Y.; Chen, T.; Yi, J.; Chu, Y.; Lee, W.-K.; Wang, C.; Kempson, I.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30?nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  11. Hard x-ray Zernike Microscopy Reaches 30 nm Resolution

    SciTech Connect

    Chen, Y.T.; Chu, Y.; Chen, T-Y.; Yi, J.; Lee, W-K.; Wang, C-L.; Kempson, I. M.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30 nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  12. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  13. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  14. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  15. X-ray evaluation of crystals for stellar spectrometers

    NASA Technical Reports Server (NTRS)

    Alexandropolos, N. G. (Editor)

    1974-01-01

    The report consists of three parts. The first part is an analysis of the principles involved in X-ray crystal evaluation and how they are applied to a number of crystals. The principles of crystal evaluation analysis as they apply to the special problems of X-ray astronomy are presented. A number of crystals were evaluated, and the energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (001) KAP, and (001) RAP are reported. The second part is a compilation of the diffraction properties of a number of crystals as reported by other authors. In the third part some technical details of a triple crystal spectrometer built by the author at Polytechnic Institute of Brooklyn are given. This spectrometer seems to be a most appropriate instrument for evaluation of crystal properties. (Modified author abstract)

  16. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    USGS Publications Warehouse

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  17. Progress in reflection grating spectrometers for X-ray astrophysics

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall L.

    2017-08-01

    Soft X-ray spectroscopy can address future science goals pertaining to understanding the cycle of hot baryons in the universe. Detailing feedback processes in galaxies, mapping the distribution of baryons in the circum- and intergalactic medium, and unraveling unknowns in stellar life cycles places demanding requirements upon spectrometers. Here, we detail advancements in reflection grating technologies that can be used to help provide answers to these important questions. We also discuss possible applications including a configuration for the Lynx concept strategic mission.

  18. Enhanced hard x-ray emission from microdroplet preplasma

    SciTech Connect

    Anand, M.; Kahaly, S.; Ravindra Kumar, G.; Krishnamurthy, M.; Sandhu, A.S.; Gibbon, P.

    2006-05-01

    We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 {mu}m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is {approx_equal}68 times more than that obtained from solid plasmas at 2x10{sup 15} W cm{sup -2}. A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10{sup 14} W cm{sup -2}, whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations.

  19. Obscuration properties of hard X-ray selected AGN

    NASA Astrophysics Data System (ADS)

    Ricci, C.

    2015-09-01

    X-ray spectroscopy is a great tool to infer the characteristics of the circumnuclear material in AGN, which can be achieved by studying both absorbed and reprocessed X-ray radiation. Because of the limited effect of absorption, hard X-ray (>10 keV) selected samples of AGN are extremely well suited to study the char- acteristics and the evolution of the torus. In my talk I will report on the results obtained by studying the broad-band X-ray emission (0.3--150 keV) of the 830 AGN reported in the Swift/BAT 70 months catalog. Our work is to date the largest study of broad-band X-ray observations of AGN ever performed, and combines observations carried out by the major X-ray facilities of the past decade, for a total of more than 1,500 X-ray spectra. Our catalog is complemented by multi-wavelength data, spanning from radio to gamma-rays. In my presentation will focus on the evolution of the spectral and absorption properties of AGN, and discuss about the link between obscuration and the physical characteristics of the SMBH, such as Eddington ratio, luminosity and black hole mass.

  20. Hard X-Ray Nanoprobe based on Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C. G.; Patommel, J.; Boye, P.; Feldkamp, J.; Kurapova, O.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2007-01-19

    At synchrotron radiation sources, parabolic refractive x-ray lenses allow one to built both full field and scanning microscopes in the hard x-ray range. The latter microscope can be operated in transmission, fluorescence, and diffraction mode, giving chemical, elemental, and structural contrast. For scanning microscopy, a small and intensive microbeam is required. Parabolic refractive x-ray lenses with a focal distance in the centimeter range, so-called nanofocusing lenses (NFLs), can generate hard x-ray nanobeams in the range of 100 nm and below, even at short distances, i. e., 40 to 70 m from the source. Recently, a 47 x 55 nm2 beam with 1.7 {center_dot} 108 ph/s at 21 keV (monochromatic, Si 111) was generated using silicon NFLs in crossed geometry at a distance of 47m from the undulator source at beamline ID13 of ESRF. This beam is not diffraction limited, and smaller beams may become available in the future. Lenses made of more transparent materials, such as boron or diamond, could yield an increase in flux of one order of magnitude and have a larger numerical aperture. For these NFLs, diffraction limits below 20 nm are conceivable. Using adiabatically focusing lenses, the diffraction limit can in principle be pushed below 5 nm.

  1. Hard x-ray photoelectron spectroscopy and x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Lin

    2006-03-01

    Using the brilliant undulator radiation available from the third generation synchrotron sources, hard x-ray photoelectron spectroscopy (HAXPES) has become an emerging field in the recent years. With the excitation energy used in HAXPES one can benefits from the large mean free path of fast electrons (˜ 5 nm for electrons of 6 keV kinetic energy) in probing the bulk electronic properties of materials. For high-resolution studies, photon energy bandwidth narrower than 100 meV is also readily achievable in the hard x-ray range with crystal monochromators. In addition, working with hard x-ray offers the possibility for combining photoelectron spectroscopy with x-ray standing wave (XSW) method. With the high spatial resolution from XSWs, this unique combination can provide site-specific, chemical and electronic information for studying surfaces, buried interfaces, thin films and bulk crystals. In this talk, I will briefly mention some HAXPES experiments detecting electrons up to 14.5 keV [1,2]. I will then sketch the principle of combining XSWs with HAXPES and present results from some recent applications using this combination: (1) chemical state-specific surface structure determination with core-level photoemission, (2) site-specific valence x-ray photoelectron spectroscopy and (3) XSW imaging with core-level photoemission. [1] S. Thiess, C. Kunz, B.C.C. Cowie, T.-L. Lee, M. Renier, and J. Zegenhagen. Solid State Communications 132, 589 (2004) [2] C. Kunz, S. Thiess, B.C.C. Cowie, T.-L. Lee, and J. Zegenhagen, Nuclear Instruments and Methods A 547, 73 (2005).

  2. Periodicities of hard x-ray burst during the last solar cycle

    NASA Technical Reports Server (NTRS)

    Hady, Ahmed A.

    1995-01-01

    By using power spectrum and standard FFT time series analysis, the Hard X-ray burst during solar cycle -22 were studied. This data of Hard X-ray burst spectrometer (HXRBS) on the solar maximum mission from Launch and February 14, 1980, through re-entry on December 2, 1989, by NASA artificial satellite. The results indicate that there are short and intermediate solar periodicities. Also it is found that there is a relation between the short periodicities (few minutes) with similar periodicities in solar radio emissions and in good agreement with the theoretical mode of solar oscillations.

  3. Towards hard X-ray imaging at GHz frame rate

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Luo, Shengnian; Kwiatkowski, Kris K.; Kapustinsky, Jon S.

    2012-05-02

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  4. Towards hard x-ray imaging at GHz frame rate

    SciTech Connect

    Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N.

    2012-10-15

    Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  5. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  6. OV and hard X-rays, observations and model calculations

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Mariska, J. T.

    1986-01-01

    An amalgamation of two published works that discuss the observation and theoretical calculations of OV (T approx. 250,000K) and Hard X-rays (30 to 100keV) emitted during flares are presented. The papers are by Poland et al (1984) and Mariska and Poland (1985). The observations of Hard X-rays and OV show that the excitation processes for each type of emission are closely coupled. Except for small differences the two types of emission rise and fall together during a flare. Model calculations are able to reproduce this behavior to a large extent, only when conductive processes do not dominate the energy transport processes.

  7. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    Sensitive polarization measurements in X-ray may address a wealth of astrophysical phenomena, which so far remain beyond our understanding through available X-ray spectroscopic, imaging, and timing studies. Though scientific potential of X-ray polarimetry was realized long ago, there has not been any significant advancement in this field for the last four decades since the birth of X-ray astronomy. The only successful polarization measurement in X-rays dates back to 1976, when a Bragg polarimeter onboard OSO-8 measured polarization of Crab nebula. Primary reason behind the lack in progress is its extreme photon hungry nature, which results in poor sensitivity of the polarimeters. Recently, in the last decade or so, with the advancement in detection technology, X-ray polarimetry may see a significant progress in near future, especially in soft X-rays with the invention of photoelectron tracking polarimeters. Though photoelectric polarimeters are expected to provide sensitive polarization measurements of celestial X-ray sources, they are sensitive only in soft X-rays, where the radiation from the sources is dominated by thermal radiation and therefore expected to be less polarized. On the other hand, in hard X-rays, sources are ex-pected to be highly polarized due to the dominance of nonthermal emission over its thermal counterpart. Moreover, polarization measurements in hard X-rays promises to address few interesting scientific issues regarding geometry of corona for black hole sources, emission mechanism responsible for the higher energy peak in the blazars, accretion geometry close to the magnetic poles in accreting neutron star systems and acceleration mechanism in solar flares. Compton polarimeters provide better sensitivity than photoelectric polarimeters in hard X-rays with a broad energy band of operation. Recently, with the development of hard X-ray focusing optics e.g. NuSTAR, Astro-H, it is now possible to conceive Compton polarimeters at the focal plane

  8. A hybrid X-ray imaging spectrometer for NeXT and the next generation X-ray satellite

    NASA Astrophysics Data System (ADS)

    Tsuru, T. G.; Tanimori, T.; Bamba, A.; Imanishi, K.; Koyama, K.; Kubo, H.; Matsumoto, H.; Miuchi, K.; Nagayoshi, M.; Orito, R.; Takada, A.; Takagi, S.; Tsujimoto, M.; Ueno, M.; Tsunemi, H.; Hayashida, K.; Miyata, E.

    2004-01-01

    We propose a new type of wide band X-ray imaging spectrometer as a focal plane detector of the super mirror onboard on future X-ray missions including post Astro-E2. This camera is realized by the hybrid of back illumination CCDs and a back supportless CCD for 0.05-10 keV band, and a Micro Pixel Gas Chamber detecting X-rays at 10-80 keV.

  9. Calibration of a High Resolution Soft X-ray Spectrometer

    SciTech Connect

    Dunn, J; Beiersdorfer, P; Brown, G V; Magee, E W

    2010-01-26

    A high resolution grating spectrometer (HRGS) with 2400 line/mm variable line spacing grating for the 10-50 {angstrom} wavelength range has been designed for laser-produced plasma experiments at the Lawrence Livermore National Laboratory (LLNL). The spectrometer has a large radius of curvature, R=44.3 m, is operated at a 2{sup o} grazing angle and can record high signal-to-noise spectra when used with a low-noise, cooled, charge-coupled device detector. The instrument can be operated with a 10-25 {micro}m wide slit to achieve the best spectral resolving power on laser plasma sources, approaching 2000, or in slitless mode with a small symmetrical emission source. Results will be presented for the spectral response of the spectrometer cross-calibrated at the LLNL Electron Beam Ion Trap facility using the broadband x-ray energy EBIT Calorimeter Spectrometer (ECS).

  10. Calibration of a High Resolution Soft X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Dunn, J.; Beiersdorfer, P.; Brown, G. V.; Magee, E. W.

    A high resolution grating spectrometer (HRGS) with 2400 line/mm variable line spacing grating for the 10 - 50 Å wavelength range has been designed for laser—produced plasma experiments at the Lawrence Livermore National Laboratory (LLNL). The spectrometer has a large radius of curvature, R=44.3 m, is operated at a 2° grazing angle and can record high signal-to-noise spectra when used with a low-noise, cooled, charge-coupled device detector. The instrument can be operated with a 10 - 25 μm wide slit to achieve the best spectral resolving power on laser plasma sources, approaching 2000, or in slitless mode with a small symmetrical emission source. Results will be presented for the spectral response of the spectrometer cross-calibrated at the LLNL Electron Beam Ion Trap facility using the broadband x-ray energy EBIT Calorimeter Spectrometer (ECS).

  11. Hard x-ray imaging polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi; Kim, Juyong; Sadamoto, Masaaki; Yoshinaga, Keigo; Gunji, Shuichi; Mihara, Tatehiro; Kishimoto, Yuji; Kubo, Hidetoshi; Mizuno, Tsunefumi; Takahashi, Hiromitsu; Dotani, Tadayasu; Yonetoku, Daisuke; Nakamori, Takeshi; Yoneyama, Tomokage; Ikeyama, Yuki; Kamitsukasa, Fumiyoshi

    2016-07-01

    Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.

  12. Hard X-ray Microscopy with Multilayer Laue Lenses

    NASA Astrophysics Data System (ADS)

    Kang, Hyon Chol

    2011-03-01

    The possibility of imaging at near-atomic resolution using x-rays has been a dream ever since the short-wavelength nature of x-rays was demonstrated by von Laue and coworkers nearly a century ago. Even today the scientific impact of atomic-scale focusing of electromagnetic radiation would be deep and broad, because x-ray microscopy provides capabilities (ability to penetrate, sensitive and accurate elemental and structural information) that are complementary to other high-resolution microscopies. Although hard x-rays can in principle be focused to spot sizes on the order of their wavelength (0.1 nm), this limit has never been approached because of the difficulty in fabricating the optics. Multilayer Laue lens(MLL) is a novel diffractive optic for hard x-ray nano-focusing, which can be fabricated by sputter deposition of zone plate structure on flat substrate. According to the theoretical results, MLL is capable of focusing x-rays to well below 1 nm. We have demonstrated 2-dimensional focusing of hard x-rays with MLLs to a spot size of 25 nm x 27 nm with an efficiency of 2% at a photon energy of 12 keV, while 1-dimensional focus of 16 nm has been achieved. In this talk, we will present an overview of MLL microscopy and recent accomplishments for the determination of chemical composition in nanoscale systems. Lastly, we will give the capabilities of MLL microscopy that have the potential to significantly advance materials science, nanoscience, bio-medical science and environmental science.

  13. The X-Ray Microcalorimeter Spectrometer for the International X-Ray Observatory

    SciTech Connect

    Kelley, R. L.; Bandler, S. R.; Kilbourne, C. A.; Porter, F. S.; Shirron, P.; Smith, S. J.; Whitehouse, P.; Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Fujimoto, R.; Sato, K.; Gottardi, L.; Hartog, R. den; Herder, J.-W. den; Hoevers, H.; Korte, P. de; Kuur, J. van der

    2009-12-16

    The International X-Ray Observatory (IXO) is under formulation by NASA, ESA and JAXA for deployment in 2022. IXO emerged over the last 18 months as the NASA Constellation-X and ESA/JAXA X-Ray Evolving Universe Spectrometer (XEUS) missions were combined. The driving performance requirements for the X-Ray Microcalorimeter Spectrometer (XMS) are a spectral resolution of 2.5 eV over the central 2'x2' in the 0.3-7.0 keV band, and 10 eV to the edge of the 5'x5' field of view (FOV). The XMS is now based on a microcalorimeter array of Transition-Edge Sensor (TES) thermometers with Au/Bi absorbers and a SQUID MUX readout. One of the concepts studied as part of the mission formulation has a core 40x40 array corresponding to a 2'x2' FOV with 3'' pixels surrounded by an outer, annular 52x52 array of 6'' pixels that extends the field of view to 5.4'x5.4' with better than 10 eV resolution. There are several options for implementing the readout and cooling system of the XMS under study in the US, Europe and Japan. The ADR system will have from two to five stages depending on the performance of the cryocooler. Mechanical coolers with sufficient cooling power at 4K are available now, and {approx}2K coolers are under development. In this paper we give an overview of the XMS instrument, and some of the tradeoffs to be addressed for this observatory instrument.

  14. A Hard X-Ray Telescope Science Enhancement Package for the Constellation X-Ray Mission

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Gorenstein, Paul

    2007-01-01

    Details of a hard-x-ray science enhancement package for the Constellation-X mission are presented. A scientific case is made for the inclusion of such an instrument on the planned mission and a detailed design is presented that will satisfy science requirements yet fall within the ground rules for enhancement packages: a cost of less than $100M and a mass of no more than 100 kg.

  15. Bonded multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.; Advanced Photonics Research Institute; Gwangju Institute of Science and Technology

    2007-11-11

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi{sub 2} and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 C. A bonded MLL was polished to a 5-25 {micro}m wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays.

  16. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro; Hanzel, Kelly; Brown, Adam; Frano, Alex; Qiao, Ruimin; Smith, Brian; Domning, Edward; Huang, Shih-Wen; Wray, L. Andrew; Lee, Wei-Sheng; Shen, Zhi-Xun; Devereaux, Thomas P.; Chiou, Jaw-Wern; Pong, Way-Faung; Yashchuk, Valeriy V.; Gullikson, Eric; Reininger, Ruben; Yang, Wanli; Guo, Jinghua; Duarte, Robert; Hussain, Zahid

    2017-01-01

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (˜1 μ m) and detector pixels (˜5 μ m) with high line density gratings (˜3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

  17. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials.

    PubMed

    Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro; Hanzel, Kelly; Brown, Adam; Frano, Alex; Qiao, Ruimin; Smith, Brian; Domning, Edward; Huang, Shih-Wen; Wray, L Andrew; Lee, Wei-Sheng; Shen, Zhi-Xun; Devereaux, Thomas P; Chiou, Jaw-Wern; Pong, Way-Faung; Yashchuk, Valeriy V; Gullikson, Eric; Reininger, Ruben; Yang, Wanli; Guo, Jinghua; Duarte, Robert; Hussain, Zahid

    2017-01-01

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (∼1μm) and detector pixels (∼5μm) with high line density gratings (∼3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

  18. Temporal Gain Correction for X-Ray Calorimeter Spectrometers

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  19. Temporal Gain Correction for X-ray Calorimeter Spectrometers

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.; Sawada, M.; Szymkowiak, A. E.; Takei, Y.; Tashiro, M.; Tsujimoto, M.; Watanabe, T.; Yamada, S.

    2016-07-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-H/SXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  20. The Astro-H Soft X-ray Spectrometer (SXS)

    SciTech Connect

    Porter, F. Scott; Kelley, Richard L.; Kilbourne, Caroline A.; Fujimoto, Ryuichi; Mitsuda, Kazuhiasa; Ohashi, Takaya

    2009-12-16

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81x0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.0.

  1. Fourier-Transform Ghost Imaging with Hard X Rays

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  2. Fourier-Transform Ghost Imaging with Hard X Rays.

    PubMed

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-09

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  3. Hard X-ray emission of Sco X-1

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail G.; Tsygankov, Sergey S.; Churazov, Eugene M.; Krivonos, Roman A.

    2014-12-01

    We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ˜4 Ms of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power-law shape without cutoff up to energies ˜200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than 10 with the faintest tail at the top of the so-called flaring branch of its colour-colour diagram. We show that the minimal amplitude of the power-law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disc, disappears from the emission spectrum. Therefore, we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optically thick disc. We estimate cooling time for these energetic electrons and show that they cannot be thermal. We propose that the hard X-ray tail emission originates as a Compton upscattering of soft seed photons on electrons, which might have initial non-thermal distribution.

  4. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  5. Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  6. Micro-X X-ray Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Goldfinger, David

    2014-06-01

    Micro-X is a NASA funded, rocket borne X-ray imaging spectrometer utilizing Transition Edge Sensors (TESs) to perform high resolution microcalorimetry in the soft X-ray band on astronomical sources. The TESs utilize the 50 mK stage of an Adiabatic Demagnetization Refrigerator (ADR) as a heat sink - one of the biggest challenges in payload design and calibration is to maintain the temperature of the detectors. To achieve the best thermal environment and therefore the best possible resolution of the detectors, we combine software modeling of heat flow within the instrument with data from laboratory tests of thermal connections between the Front End Assembly and ADR. We present a brief overview of the instrument design, recent lab results and modeling, and an update of ongoing progress with the preparations for launch.

  7. Studies in useful hard x-ray induced chemistry

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  8. HXMT satellite for space hard X-ray observation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ren, D.; You, Z.

    Space hard X-ray in the energy band from 10Kev to 250KeV is very important to the research of high energy astrophysical processes, especially some of the fundamental problems in astrophysics. Due to imaging difficulty in the hard X-ray band, Observations made over this band is comparatively less than other bands such as soft X-ray and gamma -ray. Up to now, there has been no hard X ray all sky- survey of high sensitivity. Based on the Direct Demodulation imaging method recently developed, the Hard X- ray Modulation Telescope(HXMT) mission is proposed under the Major State Basic Research Development Program of China. The scientific objective of HXMT mission is to realize the first hard X-ray all sky survey of high sensitivy and angular resolution in the world, and to present the first detailed sky map of hard X r a y - distribution. In this article, the physical basis, the imaging principle and the basic structure of HXMT are briefly introduced. The expected angular resolution of observation and position accuracy of radiant source are 2' and 0.2' respectively. Based on the analysis of the mission requirement of HXMT, the mission design of HXMT satellite is presented in which the concept of integrative design approach is presented and implemented. The design of spacecraft subsystems such as strcuture,C&DH and energy are also introduced. To meet the high precision demand of the attitude determination of HXMT, a new Attitude Determination &Control Subsystem(ADCS) scheme is presented in which the Microminiature Inertial Measurement Unit(MIMU) is employed as one of the key attitude sensors. Combined with star tracker, the expected attitude measurement accuracy is 0.01° in the normal mission mode. Based on all these thoughts, the ADCS is analyzed and its general design is presented in the paper. As the first chinese space hard X-ray observatory, the design approach of HXMT satellite is also helpful for other space exploration missions such as solar activity inspection

  9. Characterization of New Hard X-ray Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.-M.; Masetti, N.; Mouchet, M.

    2012-01-01

    Aims. We aim at characterizing a sample of nine new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGRJ08390-4833, IGRJ18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 poses a soft X-ray optically thick component at kT approx. 80 eV. An intense K (sub alpha) Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of

  10. Hard X-ray Characteristics of Anomalous X-ray Pulsars: Results from RXTE and INTEGRAL

    NASA Astrophysics Data System (ADS)

    den Hartog, Peter R.

    Until recently anomalous X-ray pulsars (AXPs) were known as soft X-ray emitters. This has changed drastically since the discovery of hard X-ray emission (>10 keV) from several AXPs by INTEGRAL (Molkov et al. 2004, Revnivtsev et al. 2004 and den Hartog et al. 2004). Kuiper et al. (2004) discovered pulsed emission in the same energy range using RXTE (PCA and HEXTE) data. Currently four AXPs (1RXS J170849.0-400910, 1E 1841-045, 4U 0142+614 and 1E 2259+586) have been detected, some of them showing emission up to 200 keV. The spectra exhibit extremely hard power laws with photon indices < 1.0 and with apparent luminosities 2-3 orders of magnitude above the rotational energy loss. The origin of this behaviour is not yet understood. An overview containing the current observational status in the temporal and the spectral domains as well as future prospects of AXPs at high energies is presented.

  11. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  12. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  13. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  14. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    SciTech Connect

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-09-09

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  15. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  16. Hard X-Ray Fourier Transform Holography with Zone Plates

    SciTech Connect

    Watanabe, Norio; Yokosuka, Hiroki; Ohigashi, Takuji; Aoki, Sadao; Takano, Hidekazu; Takeuchi, Akihisa; Suzuki, Yoshio

    2004-05-12

    Using two zone plates, a hard x-ray lens-less Fourier transform holographic microscope with cone-beam illumination was investigated at SPring-8 BL20XU. One zone plate was placed on the optical axis, and another zone plate was placed 16 mm downstream and 9 {mu}m off the optical axis. The diverging x-rays from the focus of the upstream zone plate illuminated a specimen where the focus of the downstream zone plate was placed. A hologram of a copper mesh of 12.7 {mu}m pitch could be obtained. The intensity and the phase could be successfully reconstructed with sub-micron resolution.

  17. Replicated Nickel Optics for the Hard-X-Ray Region

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2005-01-01

    Replicated nickel optics has been used extensively in x-ray astronomy, most notable for the XMM/Newton mission. Thc combination of relative ease of fabrication and the inherent stability of full shell optics, make them FIJI attractive approach for medium-resolution, high-throughput applications. MSFC has been developing these optics for use in the hard-x-ray region. Efforts at improving the resolution of these, particularly the very-thin shells required to meet thc weight budget of future missions, will be described together with the prospects for significant improvements down to the 5-arcsec level.

  18. A hard X-ray polarimeter utilizing Compton scattering

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Noma, M.; Niizeki, H.

    1991-01-01

    The paper describes a 50-cm-diam prototype of a novel Compton-scattering-type polarimeter for hard X-rays in the energy range 30-100 keV. The characteristics of the prototype polarimeter were investigated for various conditions. It was found that, with polarized X-rays from a simple polarizer, the detection efficiency and the modulation factor of the polarimeter with a 40-mm thick scatterer were 3.2 percent and 0.57 percent, respectively, at about 60 keV.

  19. Phase contrast hard x-ray microscopy with submicron resolution

    SciTech Connect

    Lagomarsino, S.; Cedola, A.; Cloetens, P.; Di Fonzo, S.; Jark, W.; Soullie, G.; Riekel, C.

    1997-11-01

    In this letter we present a hard x-ray phase contrast microscope based on the divergent and coherent beam exiting an x-ray waveguide. It uses lensless geometrical projection to magnify spatial variations in optical path length more than 700 times. Images of a nylon fiber and a gold test pattern were obtained with a resolution of 0.14 {mu}m in one direction. Exposure times as short as 0.1 s gave already visible contrast, opening the way to high resolution, real time studies. {copyright} {ital 1997 American Institute of Physics.}

  20. Great microwave bursts and hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Wiehl, H. J.; Batchelor, D. A.; Crannell, C. J.; Dennis, B. R.; Price, P. N.

    1983-01-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained.

  1. An investigation of small goes flares with intense hard x-ray bursts

    NASA Astrophysics Data System (ADS)

    McDonald, L.; Harra-Murnion, L. K.; Culhane, J. L.; Schwartz, A.

    1997-01-01

    Most solar flare observations show that intense hard X-ray bursts come from large flares that have a large GOES classification (large peak 1 - 8 A˚ flux). This correlation, known as the ``Big Flare Syndrome'', suggests that more intense flares tend to have harder spectra. We have observed 7 flares that are exceptions to this. These flares have small GOES classifications ranging from B1.4 to C5.5 and peak hard X-ray count rates similar to those often observed from M class flares. This paper examines the cause of this anomoly using the Yohkoh Soft X-Ray Telescope, Hard X-Ray Telescope, and Bragg Crystal Spectrometer. Two hypotheses are proposed for the exceptions: (1) flares with multiple magnetic loops and common footpoints, producing multiple hard X-ray emission regions and low density thermal plasma distributed over a large volume, and (2) high densities in the magnetic loops restricting the propagation of the non-thermal electrons in the loop after magnetic reconnection has occurred and suppressing chromospheric evaporation. Two of the flares support the first hypothesis. The other flares either have data missing or are too small to be properly analysed by the Yohkoh instruments.

  2. Detecting X-ray Emission from Cometary Atmospheres Using the Suzaku X-ray Imaging Spectrometer

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Bodewits, D; Porter, F S; Ezoe, Y; Hamaguchi, K; Hanya, M; Itoh, M; Kilbourne, C A; Kohmura, T; Maeda, Y; Negoro, H; Tsuboi, Y; Tsunemi, H; Urata, Y

    2009-11-16

    The Suzaku X-ray imaging spectrometer has been used to observe the X-ray emission from comets 73P/Schwassmann-Wachmann 3C and 8P/Tuttle. Comet 73P/Schwassmann-Wachmann 3C was observed during May and June of 2006, while it was near perihelion and passed within 0.1 AU of the Earth. Comet 8P/Tuttle was observed during January of 2008 when it was at its closest approach to the Earth at 0.25 AU, and again near perihelion at a distance of 0.5 Au from Earth. In the case of comet 73P/Schwassmann Wachmann 3C, the XIS spectra show line emission from highly charged oxygen and carbon ions as well as emission from what is most likely L-shell transitions from Mg, Si, and S ions. This line emission is caused by charge exchange recombination between solar wind ions and cometary neutrals, and can be used as a diagnostic of the solar wind. Here we present some of the results of the observation of the comet 73P/Schwassmann-Wachmann 3C.

  3. The evolution of the spatial structure of thick-target hard X-ray emission in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Fennelly, J. A.; Machado, M. E.

    1986-01-01

    The spatial distribution of hard X-ray bremsstrahlung emission from an electron-heated target is examined, using a self-consistent calculation of the hydrodynamic response of the atmosphere to heating by the electrons to compute the density-height structure of the target atmosphere at various times. In this way the temporal evolution of the hard X-ray spatial structure at various photon energies is predicted. These results are compared with existing observations from the SMM Hard X-Ray Imaging Spectrometer to give a prognosis for the type of structure to be expected at the subarcsec resolution planned for future instrumentation.

  4. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  5. Hard X-ray Imaging Polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  6. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  7. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  8. A study of starting time in great hard X-ray flares

    NASA Technical Reports Server (NTRS)

    Klein, K. L.; Pick, M.; Magun, A.

    1986-01-01

    An analysis of the starting time in ten great hard X-ray bursts observed with the X-Ray Burst Spectrometer (HXRBS) is presented. It is shown that the impulsive phase of nine of them is composed of a preflash phase, during which the burst is observed up to an energy limit ranging from some tens of keV to 200 keV, followed ten to some tens of seconds afterwards by a flash phase, where the count rate rises simultaneously in all detector channels. For two events strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.

  9. X-ray silicon detectors for measuring hard x-ray radiation damage effects

    NASA Astrophysics Data System (ADS)

    Wagner, Delia; Halmagean, Eugenia T.; Loukas, Dido Y.; Misiakos, K.; Tsoi, Elisabeth; Veron, A.; Ohanisian, M.

    1997-07-01

    For high sensitivity hard x-ray detector applications there is a solid-state alternative using high purity silicon as starting material. The paper presents some original results concerning a radiation hardened technology to be used for obtaining x-ray silicon detectors and the behavior of the special designed devices in a specific radiation environment. Original processing sequences were experimentally tested and results concerning the most performant technology suited for this specific application are presented. Specially designed gettering steps were applied by backside ion implantation and annealing for enhancing the minority carriers lifetime in the substrate material and for reducing leakage currents at orders less than 10 nA. After a complete presentation of the specific characteristics of the as obtained detectors, they were exposed and completely characterized in x-ray ambient up to dose levels of 10(superscript 8) rad (E greater than 50 keV). Solutions for increasing the detector sensitivity and stability in radiation environments are proposed.

  10. Theory of Angular Dispersive Imaging Hard X-ray Spectrographs

    SciTech Connect

    Shvyd'ko, Yury

    2015-05-13

    A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations and that images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry can be used as the dispersing elements in the hard-x-ray regime. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard-x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS.

  11. Stellar contributions to the hard X-ray galactic ridge

    NASA Technical Reports Server (NTRS)

    Worrall, S. M.; Marshall, F. E.

    1982-01-01

    The number density of serendipitous sources in galactic plane Einstein Observatory IPC fields are compared with predictions based on the intensity of the HEAO-1 A2 unresolved hrd X-ray galactic ridge emission. It is concluded that theoretically predicted X-ray source populations of luminosity 8 x 10 to the 32nd power to 3 x 10 to the 34th power ergs s have 2 KeV to 10 KeV local surface densities of less than approximately .0008 L(32) pc/2 and are unlikely to be the dominant contributors to the hard X-ray ridge. An estimate for Be/neutron star binary systems, such as X Persei, gives a 2 keV to 10 keV local surface density of approximately 26 x 10 to the -5 power L(32) pc/2. Stellar systems of low luminosity, are more likely contributors. Both RS CVn and cataclysmic variable systems contribute 43% + or - 18% of the ridge. A more sensitive measurement of the ridge's hard X-ray spectrum should reveal Fe-line emission. We speculate that dM stars are further major contributors.

  12. Low intensity X-ray and gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1982-01-01

    A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.

  13. Spatial and temporal evolution of soft and hard X-ray emission in a solar flare

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Duijveman, A.; Dennis, B. R.

    1982-01-01

    Hard X-ray burst spectrometer and imaging spectrometer data are used to study the spatial and temporal characteristics of the 3.5-30.0 keV emission in an Apr. 10, 1980 solar flare. It is found that: (1) continuous energy release is needed to sustain the increase of the emission through the flare's rising phase, before and after the impulsive phase in hard X-rays, and the release is characterized by the production of 50 million-150 million K thermal regions within the flare loop structures; (2) the observational parameters which characterize the impulsive burst indicate that it is probably associated with nonthermal processes, such as particle acceleration; and (3) the continuous energy release is associated with strong chromospheric evaporation, in view of spectral line behavior. Both particle acceleration and chromospheric evaporation stop just before flare maximum, and the subsequent evolution is probably governed by the radiative cooling of the flare plasma.

  14. Hard x ray imaging graphics development and literature search

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1991-01-01

    This report presents work performed between June 1990 and June 1991 and has the following objectives: (1) a comprehensive literature search of imaging technology and coded aperture imaging as well as relevant topics relating to solar flares; (2) an analysis of random number generators; and (3) programming simulation models of hard x ray telescopes. All programs are compatible with NASA/MSFC Space Science LAboratory VAX Cluster and are written in VAX FORTRAN and VAX IDL (Interactive Data Language).

  15. Bulk sensitive hard x-ray photoemission electron microscopy

    SciTech Connect

    Patt, M. Wiemann, C.; Weber, N.; Escher, M.; Merkel, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  16. The Development of Hard-X-Ray Optics at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Elsner, R. F.; Engelhaupt, D. E.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.; Six, Frank (Technical Monitor)

    2002-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently table and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g / cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO (high energy replicated optics) balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  17. The Development of Hard-X-Ray Optics at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Elsner, R. F.; Engelhaupt, D. E.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.; Six, Frank (Technical Monitor)

    2002-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently table and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g / cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO (high energy replicated optics) balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  18. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  19. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  20. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  1. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  2. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    SciTech Connect

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  3. Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic x-ray scattering

    SciTech Connect

    Fister, T. T.; Seidler, G. T.; Wharton, L.; Battle, A. R.; Ellis, T. B.; Cross, J. O.; Macrander, A. T.; Elam, W. T.; Tyson, T. A.; Qian, Q.

    2006-06-15

    Nonresonant x-ray Raman scattering (XRS) is the inelastic scattering of hard x rays from the K shell of low-Z elements or the less tightly bound shells of heavier elements. In the limit of low momentum transfer q, XRS is determined by the same transition matrix element as is measured by x-ray absorption spectroscopies. However, XRS at higher q can often access higher order multipole transitions which help separate the symmetry of various contributions to the local density of states. The main drawback of XRS is its low cross section--a problem that is compounded for a q-dependent study. To address this issue, we have constructed a multielement spectrometer to simultaneously measure XRS at ten different values of q. By means of example, we report new measurements of the XRS from the L- and K-edges of Mg. This instrument is now available to general users at the Advanced Photon Source as the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer.

  4. X-ray microscopy of soft and hard human tissues

    SciTech Connect

    Müller, Bert Schulz, Georg Deyhle, Hans Stalder, Anja K. Ilgenstein, Bernd Holme, Margaret N. Hieber, Simone E.; Beckmann, Felix

    2016-01-28

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  5. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  6. The X-Ray Spectrometer for Mercury MESSENGER

    NASA Technical Reports Server (NTRS)

    Starr, R. D.; Ho, G. C.; Schlemm, C.; Gold, R. E.; Goldsten, J. O.; Boynton, W. V.; Trombka, J. I.

    2001-01-01

    Mercury is the closest planet to the Sun and because it is so close, it is difficult to study from Earth-based observatories. Its proximity to the Sun has also limited the number of spacecraft to visit this tiny planet to just one, Mariner 10, which flew by Mercury twice in 1974 and once in 1975. Mariner 10 provided a wealth of new information about Mercury, yet much still remains unknown about Mercury's geologic history and the processes that led to its formation. The origin of Mercury's metal-rich composition is just one area of investigation awaiting more and improved data to sort between competing hypotheses. Mercury plays an important role in comparative planetology, and many of the processes that were important during its formation are relevant to the Earth's early history. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) is a Discovery mission that has been designed to fly by and orbit Mercury. It will launch in March 2004, flyby Mercury in 2007 and 2008 and enter an elliptical orbit in April 2009. During the one-year orbital phase, a suite of instruments on board the MESSENGER spacecraft will study the exosphere, magnetosphere, surface, and interior of Mercury. One of these instruments will be an X-Ray Spectrometer (XRS) that will measure surface elemental abundances. Remote X-ray spectroscopy has been accomplished before on the Apollo 15 and 16 missions, and more recently on NEAR Shoemaker. The MESSENGER XRS will measure characteristic X-ray emissions induced in the surface of Mercury by the incident solar flux. The Ka lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected with spatial resolution on the order of 40 km when counting statistics are not a limiting factor. These measurements can be used to obtain quantitative information on elemental composition.

  7. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  8. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  9. The x-ray microcalorimeter spectrometer onboard Athena

    NASA Astrophysics Data System (ADS)

    den Herder, J. W.; Bagnali, D.; Bandler, S.; Barbera, M.; Barcons, X.; Barret, D.; Bastia, P.; Bisotti, M.; Boyce, K.; Cara, C.; Ceballos, M.; Corcione, L.; Cobo, B.; Colasanti, L.; de Plaa, J.; DiPirro, M.; Doriese, W. B.; Ezoe, Y.; Fujimoto, R.; Gatti, F.; Gottardi, L.; Guttridge, P.; den Hartog, R.; Hepburn, I.; Kelley, R.; Irwin, K.; Ishisaki, Y.; Kilbourne, C.; de Korte, P. A. J.; van der Kuur, J.; Lotti, S.; Macculi, C.; Mitsuda, K.; Mineo, T.; Natalucci, L.; Ohashi, T.; Page, M.; Paltani, S.; Perinati, E.; Piro, L.; Pigot, C.; Porter, F. S.; Rauw, G.; Ravera, L.; Renotte, E.; Sauvageot, J.-L.; Schmid, C.; Sciortino, S.; Shirron, P.; Takei, Y.; Torrioli, G.; Tsujimoto, M.; Valenziano, L.; Willingale, D.; de Vries, C.; van Weers, H.; Wilms, J.; Yamasaki, N. Y.

    2012-09-01

    One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given.

  10. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  11. Cumulative luminosity distributions of supergiant fast X-ray transients in hard X-rays

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Sidoli, L.

    2014-04-01

    We have analysed in a systematic way about nine years of INTEGRAL data (17-100 keV) focusing on supergiant fast X-ray transients (SFXTs) and three classical high-mass X-ray binaries (HMXBs). Our approach has been twofold: image-based analysis, sampled over a ˜ks time frame to investigate the long-term properties of the sources and light-curve-based analysis, sampled over a 100 s time frame to seize the fast variability of each source during its ˜ ks activity. We find that while the prototypical SFXTs (IGR J17544-2619, XTE J1739-302 and SAX J1818.6-1703) are among the sources with the lowest ˜ ks-based duty cycle (<1 per cent activity over nine years of data), when studied at the 100 s level, they are the ones with the highest detection percentage, meaning that, when active, they tend to have many bright short-term flares with respect to the other SFXTs. To investigate in a coherent and self-consistent way all the available results within a physical scenario, we have extracted cumulative luminosity distributions for all the sources of the sample. The characterization of such distributions in hard X-rays, presented for the first time in this work for the SFXTs, shows that a power-law model is a plausible representation for SFXTs, while it can only reproduce the very high luminosity tail of the classical HMXBs, and even then, with a significantly steeper power-law slope with respect to SFXTs. The physical implications of these results within the frame of accretion in wind-fed systems are discussed.

  12. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  13. Hard X-ray imaging spectroscopy of FOXSI microflares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, Sam; Christe, Steven; Camilo Buitrago-Casas, Juan; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The ability to investigate particle acceleration and hot thermal plasma in solar flares relies on hard X-ray imaging spectroscopy using bremsstrahlung emission from high-energy electrons. Direct focusing of hard X-rays (HXRs) offers the ability to perform cleaner imaging spectroscopy of this emission than has previously been possible. Using direct focusing, spectra for different sources within the same field of view can be obtained easily since each detector segment (pixel or strip) measures the energy of each photon interacting within that segment. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has successfully completed two flights, observing microflares each time. Flare images demonstrate an instrument imaging dynamic range far superior to the indirect methods of previous instruments like the RHESSI spacecraft.In this work, we present imaging spectroscopy of microflares observed by FOXSI in its two flights. Imaging spectroscopy performed on raw FOXSI images reveals the temperature structure of flaring loops, while more advanced techniques such as deconvolution of the point spread function produce even more detailed images.

  14. The Swift/BAT Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  15. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  16. The Swift/BAT Hard X-ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  17. Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer.

    PubMed

    Ghomeishi, Mostafa; Karami, Mohammad; Adikan, Faisal Rafiq Mahamd

    2012-10-01

    A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kβ lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

  18. Johann Spectrometer for High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  19. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.

    2016-12-01

    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  20. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  1. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  2. Fabrication of X-ray Mirror for Hard X-ray Diffraction Limited Nanofocusing

    SciTech Connect

    Yumoto, Hirokatsu; Mimura, Hidekazu; Matsuyama, Satoshi; Handa, Soichiro; Shibatani, Akihiko; Katagishi, Keiko; Yamamura, Kazuya; Sano, Yasuhisa; Endo, Katsuyoshi; Mori, Yuzo; Yamauchi, Kazuto; Yabashi, Makina

    2007-01-19

    We designed, fabricated and evaluated a total-reflection mirror having a designed focal size of 28 nm at 15keV. Line-focus tests on the fabricated mirror were carried out at the 1-km-long beamline (BL29XUL) of SPring-8. Nearly diffraction-limited performance with a full width at half maximum spot size of 30 nm was realized at 15 keV. We are planning to fabricate multilayer-coated mirror for realizing sub-10-nm focusing in hard x-ray region. We suggest a novel method of at-wavelength metrology. Wave-front error on the mirror surface can be estimated by a phase retrieval method using the intensity profile around the focal point. By correcting the estimated wave-front errors, sub-10-nm focusing is potentially feasible.

  3. Full Multilayer Laue Lens for Focusing Hard X-rays

    SciTech Connect

    Liu Chian; Shi, B.; Qian, J.; Conley, R.; Yan, H.; Wieczorek, M.; Macrander, A. T.; Maser, J.; Stephenson, G. B.

    2010-06-23

    Multilayer Laue Lenses (MLLs) were developed by us using dynamic diffraction effects to efficiently focus hard x-rays to very small spots. Using a partial MLL we were able to focus 19.5-keV hard x-rays to a line focus of 16 nm with an efficiency of 31%. A full MLL is a complete linear MLL structure. It can be fabricated by bonding two partial MLL wafers, or by growing the full structure using magnetron sputtering without bonding. A 40-{mu}m full MLL, with a total of 5166 layers of WSi{sub 2} and Si, has been successfully grown by sputter deposition. The layer thicknesses gradually vary from 4 nm to {approx}400 nm and then back to 4 nm. Two coating runs were used to grow the full structure, one for each half. It took over 56 h for each run. A 100-{mu}m nearly-full MLL was constructed by bonding. Each 50-{mu}m half-structure has 1788 WSi{sub 2} and Si layers with 12-nm to {approx}32-nm thicknesses and {approx}32-{mu}m total thickness, followed by a thick WSi{sub 2} layer of {approx}17 {mu}m, and an AuSn layer of {approx}1 {mu}m. Both full MLL structures survived dicing and polishing. The primary results demonstrate the feasibility and potential of a full MLL with a doubled numerical aperture and large beam acceptance for hard x-rays.

  4. Full Multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Shi, B.; Qian, J.; Conley, R.; Yan, H.; Wieczorek, M.; Macrander, A. T.; Maser, J.; Stephenson, G. B.

    2010-06-01

    Multilayer Laue Lenses (MLLs) were developed by us using dynamic diffraction effects to efficiently focus hard x-rays to very small spots. Using a partial MLL we were able to focus 19.5-keV hard x-rays to a line focus of 16 nm with an efficiency of 31%. A full MLL is a complete linear MLL structure. It can be fabricated by bonding two partial MLL wafers, or by growing the full structure using magnetron sputtering without bonding. A 40-{micro}m full MLL, with a total of 5166 layers of WSi{sub 2} and Si, has been successfully grown by sputter deposition. The layer thicknesses gradually vary from 4 nm to {approx}400 nm and then back to 4 nm. Two coating runs were used to grow the full structure, one for each half. It took over 56 h for each run. A 100-{micro}m nearly-full MLL was constructed by bonding. Each 50-{micro}m half-structure has 1788 WSi{sub 2} and Si layers with 12-nm to {approx}32-nm thicknesses and {approx}32-{micro}m total thickness, followed by a thick WSi{sub 2} layer of {approx}17 {micro}m, and an AuSn layer of {approx}1 {micro}m. Both full MLL structures survived dicing and polishing. The primary results demonstrate the feasibility and potential of a full MLL with a doubled numerical aperture and large beam acceptance for hard x-rays.

  5. High resolution, high rate X-ray spectrometer

    DOEpatents

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  6. Conical focusing crystal spectrometers for cosmic x-ray astronomy.

    PubMed

    Woodgate, B E; Lowinger, T; Schneider, M

    1973-11-01

    A crystal spectrometer for rocket and satellite experiments is described. Parallel x rays from a stellar object are reflected at constant angle by Bragg crystals arranged around the sector of a cone so that a single wavelength is brought to a focus onto the axis of the cone. The aberrations produced when this array is tilted to change the wavelength are considered. It is shown that these are minimized by moving cone and detector in a nearly theta-2theta motion and by using a small-angle sector. In a specific design for a satellite instrument using LiF crystal to observe a spectral region including the iron lines at 1.9 A a spectral resolution of 3 mA over a spectral range of 1.6-2.1 A can be obtained, with the cosmic-ray background rate, and hence the time to detect a weak line decreased by a factor 80 compared to a flat crystal spectrometer. Examples of performance for a low energy rocket experiment are also given.

  7. Improvement of X-ray Imaging Crystal Spectrometers for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Sang Gon; Bitter, M.; Nam, U. W.; Moon, M. K.

    2005-10-01

    The X-ray imaging crystal spectrometers for the KSTAR tokamak will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. The spectrometers are consisted of a spherically bent quartz crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. A 2D detector with delay-line readout and supporting electronics has been fabricated and tested on the NSTX tokamak at PPPL. Position resolution and count rate capability of the 2D detector are still need to be improved to meet the requirements. Hence, a segmented version of the 2D detector is under development to satisfy the requirements. The experimental results from the improved 2D detector will be presented.

  8. Measurements of Electron Diffusion via Hard X-ray Detection

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; O'Connell, R.; Burke, D. R.; Chapman, B. E.; Goetz, J. A.; Kaufman, M. C.; Gobbin, M.; Marrelli, L.; Martin, P.; Piovesan, P.; Harvey, R. W.

    2006-10-01

    An upgraded array of hard x-ray (HXR) detectors has been implemented on MST to measure electron particle diffusion in globally improved confinement pulsed parallel current drive (PPCD) plasmas and locally improved confinement quasi-single- helicity (QSH) plasmas. Each of these plasmas confines runaway electrons that emit HXRs. The diagnostic is a multichord array of CdZnTe detectors sensitive to 10-300 keV x-rays. Recently added lead shielding blocks x-rays from outside collimated lines of sight. The Fokker-Planck code CQL3D, now with HXR flux from the entire array as a constraint, is used to compute the diffusion coefficient as a function of radius during PPCD. In QSH plasmas, where one mode dominates the core tearing mode spectrum, HXRs are observed when a dominant island emerges, and the HXR flux oscillates in phase with the rotation of this island. Modeling with the ORBIT code shows that runaway electrons are better confined inside the island than in the exterior stochastic region.

  9. The impulsive hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.

    1984-01-01

    A technique for determining the physical arrangement of a solar flare during the impulsive phase was developed based upon a nonthermal model interpretation of the emitted hard X-rays. Accurate values are obtained for the flare parameters, including those which describe the magnetic field structure and the beaming of the energetic electrons, parameters which have hitherto been mostly inaccessible. The X-ray intensity height structure can be described readily with a single expression based upon a semi-empirical fit to the results from many models. Results show that the degree of linear polarization of the X-rays from a flaring loop does not exceed 25 percent and can easily and naturally be as low as the polarization expected from a thermal model. This is a highly significant result in that it supersedes those based upon less thorough calculations of the electron beam dynamics and requires that a reevaluation of hopes of using polarization measurements to discriminate between categories of flare models.

  10. Current status of X-ray spectrometer development in SELENE project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Okada, T.; Shiraishi, H.; Shirai, K.; Arai, T.; Ogawa, K.; Hosono, K.; Arakawa, M.; Kato, M.

    X-ray spectroscopy for lunar surface will be performed in SELENE project The main architecture of the X-ray spectrometer onboard SELENE spacecraft SELENE XRS is based on HAYABUSA X-ray spectrometer that used X-ray CCDs as X-ray detector and observed X-rays from both an asteroid and the standard sample on HAYABUSA for comparative analysis SELENE XRS is composed of three sensors XRF-A SOL-B and SOL-C XRF-A is main sensor with 16 X-ray CCDs to the X-ray detection from the lunar surface The total detection area of XRF-A is about 100 cm 2 and field of view is 12 degree Be foil of 5 mu m in thickness is attached to avoid from visible light detection SOL-B is solar X-ray monitor and the sensor is not X-ray CCD but PIN photo-diode SOL-B observes X-rays from the Sun directory and does not require the wide effective area as X-ray CCD SOL-C observes X-rays from the standard sample on SELENE The elemental composition of the standard sample is determined to perform comparative X-ray fluorescence analysis SELENE XRS has been developed and examined for several years and the development is in final stage ready for the launch on 2007 We will report the current status of each component of SELENE XRS

  11. SIGHT - A balloon borne hard X-ray telescope

    NASA Technical Reports Server (NTRS)

    Wilkerson, J.; Edberg, T. K.; Hurley, K.; Lin, R. P.; Parsons, A.

    1991-01-01

    The authors report on progress toward developing a large-area, high-pressure xenon gas scintillator for use in hard X-ray astrophysics. Proof test results for a low-mass pressure vessel are presented. The design of a high-voltage multiplier board operating inside the scintillation chamber is discussed. The development of tetrakis-dimethylamine-thylene (TMAE)-based proportional tubes for detecting primary scintillation in the xenon is described. Finally, Monte Carlo tests of a scheme to use conventional photomultiplier tubes are discussed.

  12. Balloon program for hard-X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Frontera, F.; dal Fiume, D.; Morelli, E.; Spada, G.

    1984-12-01

    The aims and progress of the program of balloon-borne NaI(Tl)-scintillator-array hard-X-ray (20-200-keV) astronomical observations using the payload described by Frontera et al. (1982) are surveyed, and some sample results from the three flights undertaken since 1980 are presented. The observations of the Crab pulsar in October 1980 are characterized in detail, and a power-law spectrum K(E/100) to the -alpha photons/sq cm s keV is derived, with K = 0.000637 + or - 0.000031 and alpha = 2.27 + or - 0.14.

  13. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  14. Young Stellar Objects from Soft to Hard X-rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  15. Suzaku observations of the hard X-ray spectrum of Vela Jr. (SNR RX J0852.0-4622)

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Bamba, Aya; Terada, Yukikatsu; Tashiro, Makoto S.; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru

    2016-06-01

    We report the results of Suzaku observations of the young supernova remnant, Vela Jr. (RX J0852.0-4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the northwest TeV-emitting region. The X-ray spectrum is reproduced well by a single power-law model with a photon index of 3.15^{+1.18}_{-1.14} in the 12-22 keV band. Compiling this hard X-ray spectrum with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2-22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever of the two models, single or broken power-law, is appropriate, clearly the spectrum has no roll-off structure. Applying this result to the method introduced in Yamazaki et al. (2014, Res. Astron. Astrophys., 14, 165), we find that a one-zone synchrotron model with electron spectrum having a power-law plus exponential cut-off may not be applicable to Vela Jr.

  16. Powerful jets from black hole X-ray binaries in low/hard X-ray states

    NASA Astrophysics Data System (ADS)

    Fender, R. P.

    2001-03-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the low/hard X-ray state, which is characterized in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that α>~0, where Sν~να) radio spectrum in this state, markedly different from the optically thin radio spectra exhibited by most X-ray transients within days of outburst. Furthermore, in none of the systems is a high-frequency cut-off to this spectral component detected, and there is evidence that it extends to near-infrared or optical regimes. Luminous persistent hard X-ray states in the black hole system GRS 1915+105 produce a comparable spectrum. This spectral component is considered to arise in synchrotron emission from a conical, partially self-absorbed jet, of the same genre as those originally considered for active galactic nuclei. Whatever the physical origin of the low/hard X-ray states, these self-similar outflows are an ever-present feature. The power in the jet component is likely to be a significant (>=5per cent) and approximately fixed fraction of the total accretion luminosity. The correlation between hard X-ray and synchrotron emission in all the sources implies that the jets are intimately related to the Comptonization process, and do not have very large bulk Lorentz factors, unless the hard X-ray emission is also beamed by the same factor.

  17. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  18. Hard X-Ray Telescope (HXT) with Simultaneous Multiwavelength Observing from UV to 1 MeV

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1998-01-01

    The Hard X-Ray Telescope Mission Concept Study no longer exists as a possible independent mission. The grazing incidence multilayer telescopes, its major component, are now firmly attached to the Constellation X-Ray Mission. It was determined that the most efficient deployment of a hard X-ray (10 to 100 keV) focussing telescope system is observing simultaneously with a high throughput lower energy spectrometer, providing the rationale for merging with Constellation X. This configuration permits four nearly four decades in energy (.2 to 100 keV) of an object's emission spectrum to be studied simultaneously with good energy resolution. Furthermore, the probability of attaining an independent mission for a hard X-ray telescope system is extremely low.

  19. Quantitative analysis of hard X-ray 'footpoint' flares observed by the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Mackinnon, A. L.; Brown, J. C.; Hayward, J.

    1985-01-01

    Amplifier gain and collimator hole size variations across the field of view, amplifier/filter efficiency, variations in effective collimator hole size and angular response with photon energy, dead-time, and hard X-ray plate transmission, are among the factors for which instrumental corrections have to be incorporated to effect reliable correction and deconvolution of images from the SMM satellite's Hard X-ray Imaging Spectrometer (HXIS). Attention is given to the substantial Poisson noise in these energy bands. The maximum entropy deconvolution/correction routine developed for establishing the spatial structure reliably inferrable from HXIS data is presented, together with the results of the application of this routine to the three impulsive flares reported by Duijemian et al. (1982) from April 10, May 21, and November 5, 1980.

  20. Hard X-ray Emission from the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Henriksen, Mark J.

    2011-01-01

    Observations made with the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter spectrum with a 0.5-15 keV energy range shows excess hard emission above 4 keV. Addition of a power-law component with a spectral index of 2.6-2.8 and a luminosity of 2.6 × 1042 erg s-1 within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point-source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point-source-subtracted, non-thermal component is (2.2-3.0) × 1042 erg s-1. The cosmic-ray electron energy density is 3.6 × 10-12 erg cm-3 and the average magnetic field is 0.034 μG in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5 × 104, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the group's small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely related to the active galaxy and is most likely a relic of the merger. The energy in cosmic rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.

  1. Microwave and hard X-ray imaging of a solar flare on 1980 November 5

    NASA Technical Reports Server (NTRS)

    Hoyng, P.; Marsh, K. A.; Zirin, H.; Dennis, B. R.

    1983-01-01

    VLA and SMM hard X ray data on the solar flares of November 5, 1980 are analyzed and compared with data from other sources. The VLA provided measurements at 15 GHz at 10 sec intervals, using left and right circular polarizations with a 0.6 arcsec resolution. The hard X ray imaging spectrometer on the SMM obtained data in six bands from 3.5-30 keV, with 8 x 8 arcsec resolution and 1.5 sec separation. The data were examined for a possible nonthermal source for the microwave component of the emissions detected, the origin of 16-30 keV excess fluxes, the relation between the X ray and microwave sources, the magnetic connection between observed loops, and the physical characteristics of the radiating loop. The data were consistent with a model that assumes fast electrons are accelerated to a single power-law energy distribution and freely stream along the magnetic field. The data also agreed with a thick-target model for solar flare X ray emission.

  2. Aperiodic Mo/Si multilayers for hard x-rays

    DOE PAGES

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; ...

    2016-08-04

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thicknessmore » of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.« less

  3. Aperiodic Mo/Si multilayers for hard x-rays

    SciTech Connect

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; Robinson, Jeff; Soufli, Regina; Spiller, Eberhard; Walton, Chris; Hau-Riege, Stefan P.

    2016-08-04

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thickness of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.

  4. Scientific Applications of a Hard-X-Ray FEL

    NASA Astrophysics Data System (ADS)

    Arthur, John

    1998-04-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1 angstrom. Due to the physics of the high-gain, single pass FEL process that these sources will exploit, the radiation produced will have unique properties. In particular: -- The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. -- The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. -- The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 10^9 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. X-ray crystallography could be used to determine the structures of very-short-lived states of photosynthetic reaction centers. X-ray photon correlation spectroscopy could be used to study fluctuations in materials such as gels and glass-forming liquids, on a time scale complementary to that probed by neutron spin echo and dynamic light scattering techniques, but with better spatial resolution. Snap-shot x-ray scattering experiments could be performed on samples in extreme conditions such as ultra-high pulsed magnetic fields. Furthermore, the high peak power of the FEL radiation could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. For example, the study of nonlinear photon interactions with core atomic electrons would test and

  5. Nonthermal hard X-ray emission from the Galactic Ridge

    NASA Astrophysics Data System (ADS)

    Dogiel, V. A.; Schönfelder, V.; Strong, A. W.

    2002-02-01

    We investigate the origin of the nonthermal X-ray emission from the Galactic ridge in the range 10-200 keV. We consider bremsstrahlung of subrelativistic cosmic ray protons and electrons as production processes. From the solution of the kinetic equations describing the processes of particle in situ acceleration and spatial propagation we derive parameters of the spectra for protons and electrons. It is shown that the spectra must be very hard and have a cut-off at an energy ~ 150-500 MeV for protons or <= 300 keV for electrons. For in situ acceleration the flux of accelerated particles consists mainly of protons since the ratio of the accelerated protons to electrons is large and the flux of nuclei with charges Z>1 is strongly suppressed. We show that the gamma-ray line flux generated by protons does not exceed the upper limit derived from observations if we assume that the X-ray ridge emission is due to proton bremsstrahlung. However, the flux of pi o photons produced by the accelerated protons is higher than the observed flux from the Galactic ridge if the cut-off is exponential for >= 150 MeV. If the cut-off in the spectrum is extremely steep its value can be as large as 400 MeV, just near the threshold energy for pi o photon production. In this case the flux of gamma-rays is negligible but these protons still produce X-rays up to 200 keV. If a significant part of the hard X-ray emission at energies ~ 100 keV is emitted by unresolved sources, then the energy of X-rays produced by the protons does not have to exceed several tens keV. Therefore, the cut-off energy can be as small as 30-50 MeV and in this case the flux of pi o photons is negligible too. But for small cutoff energies the flux of nuclear gamma-ray lines exceeds significantly the upper limit derived from the COMPTEL and OSSE data. Hence the cut-off of the proton spectrum has to be somewhere in between 50-150 MeV in order not to exceed both pi o and gamma-ray line fluxes. However the energy density of

  6. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  7. Discovery in Cygnus X-3 of correlated behavior between the hard X-ray and radio

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Harmon, B. A.; Robinson, C. R.; Zhang, S. N.; Hjellming, R. M.; Waltman, E. B.; Ghigo, F. D.; Foster, R. S.; Johnston, K. J.

    1997-01-01

    Using the Compton Gamma Ray Observatory (CGRO)/burst and transient search experiment (BATSE) hard X-ray data together with GHz radio monitoring data, a long term study was performed on the unusual X-ray binary Cyg X-3. This study resulted in the discovery of a relationship between the two wavebands. The combined data show that the radio emission is linked to the hard X-ray production. Radio flares, preflare low radio states and quiescence radio emission can be associated with changes in the hard X-ray intensity. Jet production is directly related to changes in the hard X-ray emission.

  8. The Rosetta Alpha Particle X-Ray Spectrometer (APXS)

    NASA Astrophysics Data System (ADS)

    Klingelhöfer, G.; Brückner, J.; D'Uston, C.; Gellert, R.; Rieder, R.

    2007-02-01

    The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.

  9. ASIC for SDD-Based X-Ray Spectrometers

    SciTech Connect

    G De Geronimo; P Rehak; K Ackley; G Carini; W Chen; J Fried; J Keister; S Li; Z Li; et al.

    2011-12-31

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.

  10. ASIC for SDD-Based X-ray Spectrometers

    SciTech Connect

    De Geronimo, G.; Fried, J.; Rehak, P.; Ackley, K.; Carini, G.; Chen, W.; Keister, J.; Li, S.; Li, Z.; Pinelli, D.A.; Siddons, D.P.; Vernon, E.; Gaskin, J.A.; Ramsey, B.D.; Tyson, T.A.

    2010-06-16

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.

  11. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses

    SciTech Connect

    Pavlov, Konstantin M.; Paganin, David M.; Vine, David J.; Schmalz, Jelena A.; Suzuki, Yoshio; Uesugi, Kentaro; Takeuchi, Akihisa; Yagi, Naoto; Jakubek, Jan; Altissimo, Matteo; Clark, Jesse N.

    2011-01-15

    Quantized x-ray phase vortices, namely, screw-type topological defects in the wave fronts of a coherent monochromatic scalar x-ray wave field, may be spontaneously nucleated by x-ray lenses. Phase retrieval is used to reconstruct the phase and amplitude of the complex disturbance created by aberrated gold nanolenses illuminated with hard x rays. A nanoscale quantized x-ray vortex-antivortex dipole is observed, manifest both as a pair of opposite-helicity branch points in the Riemann sheets of the multivalued x-ray phase map of the complex x-ray field and in the vorticity of the associated Poynting vector field.

  12. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    PubMed

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  13. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  14. Spectral evolution of microwaves and hard X-rays in the 1989 March 18 flare and its interpretation

    NASA Technical Reports Server (NTRS)

    Lee, Jeongwoo W.; Gary, Dale E.

    1994-01-01

    We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50 - 200 keV on-and-after the maximum phase while the microwaves at 1 - 15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a sronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase

  15. Spectral evolution of microwaves and hard X-rays in the 1989 March 18 flare and its interpretation

    NASA Technical Reports Server (NTRS)

    Lee, Jeongwoo W.; Gary, Dale E.

    1994-01-01

    We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50 - 200 keV on-and-after the maximum phase while the microwaves at 1 - 15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a sronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase

  16. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible

  17. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  18. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  19. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  20. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, Alfred, III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-05-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  1. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, A. B., III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-04-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  2. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  3. Hard X-Ray and Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1998-01-01

    Studies are being carried out to compare the performance of several different separation materials used in the replication process. This report presents the results obtained during the second year of a program which consists of replicating smooth, thin substrates, depositing multilayer coatings upon them, and evaluating their performance. Replication and multilayer coatings are both critically important to the development of focussing hard X-ray telescopes that function up to 100 keV. The activities of the current year include extending the comparison between sputtered amorphous carbon and evaporated gold to include sputtered as well as evaporated gold. The figure of merit being the smoothness of the replica which has a direct effect on the specular reflectivity. These results were obtained with epoxy replication, but they should be applicable to electroformed nickel, the process we expect to use for the ultimate replicated optics.

  4. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo; Yon, Hwa Shik

    2007-01-19

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  5. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  6. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera

    SciTech Connect

    Adams, Bernhard W.; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-06-24

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance.

  7. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector

    SciTech Connect

    Kleymenov, Evgeny; Bokhoven, Jeroen A. van; David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten; Glatzel, Pieter; Alonso-Mori, Roberto

    2011-06-15

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  8. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector.

    PubMed

    Kleymenov, Evgeny; van Bokhoven, Jeroen A; David, Christian; Glatzel, Pieter; Janousch, Markus; Alonso-Mori, Roberto; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten

    2011-06-01

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60°-88°. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu Kα(1) line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  9. Expectation maximization for hard X-ray count modulation profiles

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.

    2013-07-01

    Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.

  10. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  11. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  12. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    PubMed Central

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics. PMID:23837131

  13. The Deep Look at the Hard X-Ray Sky: The Swift-INTEGRAL X-Ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco; Greiner, Jochen

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only ~1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg2 that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V max method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  14. THE DEEP LOOK AT THE HARD X-RAY SKY: THE SWIFT-INTEGRAL X-RAY (SIX) SURVEY

    SciTech Connect

    Bottacini, Eugenio; Ajello, Marco

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only {approx}1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg{sup 2} that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V{sub max} method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  15. Development of high throughput X-ray telescopes for X-ray imaging and dispersive spectrometers

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1986-01-01

    During the past year the technical approach to the realization of a high throughput Kirkpatrick-Baez X-ray mirror became better defined in terms of construction methodology and factors which affect maximum size. More progress was made than anticipated in the area of automatic figure formation. However, effort to improve the resolution of float glass by simple techniques were not successful. Mirror development, spectroscopy, all sky telescope, and explorer concept studies are discussed.

  16. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  17. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  18. Exotic X-ray back-diffraction: a path toward a soft inelastic X-ray scattering spectrometer

    SciTech Connect

    Honnicke, Marcelo Goncalves; Conley, Raymond; Cusatis, Cesar; Kakuno, Edson Massayuki; Zhou, Juan; Bouet, Nathalie; Marques, Joao Basso; Vicentin, Flavio Cesar

    2014-10-01

    In this work, soft X-ray back-diffraction (XBD; X-ray diffraction at angles near and exactly equal to 90 degrees) is explored. The experiment was conducted at the SXS beamline at Laboratorio Nacional de Luz Sincrotron, Brazil, at similar to 3.2 keV. A high-resolution Si(220) multi-bounce back-diffraction monochromator was designed and constructed for this experiment. An ultra-thin Si(220) crystal (5 mu m thick) was used as the sample. This ultra-thin crystal was characterized by profilometry, rocking-curve measurements and X-ray topography prior to the XBD measurements. It is shown that the measured forward-diffracted beam (o-beam) profiles, taken at different temperatures, are in close agreement with profiles predicted by the extended dynamical theory of X-ray diffraction, with the absence of multiple-beam diffraction (MBD). This is an important result for future studies on the basic properties of back-diffracted X-ray beams at energies slightly above the exact XBD condition (extreme condition where XBD is almost extinguished). Also, the results presented here indicate that stressed crystals behave like ideal strain-free crystals when used for low-energy XBD. This is mainly due to the large widths of XBD profiles, which lead to a low strain sensitivity in the detection of defects. This result opens up new possibilities for mounting spherical analyzers without degrading the energy resolution, at least for low energies. This is a path that may be used to construct a soft inelastic X-ray scattering spectrometer where different applications such as element-specific magnetic imaging tools could be explored. (C) 2014 International Union of Crystallography

  19. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  20. The origin of the hard X-ray tail in neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  1. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  2. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  3. Modelling a C-type flare observed in microwaves and hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, Brian R.

    1988-01-01

    Using the very large array (VLA) at 6 and 20 cm wavelength and the hard X-ray burst spectrometer on the Solar Maximum Mission, a two-ribbon flare was observed from the onset phase through the maximum and decline on November 14, 1981. Because of the extensive size of the microwave source and the gradual variations in hard X-rays whose spectrum becomes progressively flatter with time, the flare is classified as a C-type flare. Considering the hardening of the X-ray spectrum and its non-impulsive nature, a coronal trap model was invoked for the energetic electrons. The microwave emission is easily accounted for by gyrosynchronous radiation from mildly relativistic electrons. It was found that the source must be optically thick at 20 cm during the maximum phase, but as the source evolved toward an optically thin regime, the intensity decreased while the degree of circular polarization increased. In an initial homogeneous model, we found that the computed microwave spectrum was too narrow to match the patrol spectrum from 606 to 15400 MHz. In the model, the magnetic field consists of a dipolar arcade bridging the H alpha ribbons, and extending to heights of order 40,000 to 50,000 km. The variation of the magnetic field strength from footpoints to apex causes the gyrosynchrotron spectrum to be broader. Preliminary conclusions regarding the electron distributions producing the hard X-rays and the microwaves, and the suitability of this model for C-type flares is presented.

  4. Turning the Tide: Origin of the Hard X-rays from γ Cassiopeae

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; de Oliveira, R. L.; Motch, C.

    2016-11-01

    The origin of the anomalous, hard X-rays from γ Cas is reviewed from data obtained from several X-ray, UV, and optical campaigns. We discuss correlations between X-ray and optical or UV fluxes ranging from rapid undulations to long-term periods and optical Be outbursts. All the evidence points to the X-rays originating from volumes close to where the UV diagnostics are formed, the Be star, and not for example from a binary companion.

  5. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; Walter, Philippe; Wilson, Michael; Yen, Albert; Webb, Samuel

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  6. Current status of X-ray spectrometer development in the SELENE project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Okada, T.; Shiraishi, H.; Shirai, K.; Arai, T.; Ogawa, K.; Hosono, K.; Arakawa, M.; Kato, M.

    2008-07-01

    The X-ray spectrometer (XRS) on the SELENE (SELenological and ENgineering Explorer) spacecraft, XRS, will observe fluorescent X-rays from the lunar surface. The energy of the fluorescent X-ray depends on the elements of which the lunar soil consists, therefore we can determine elemental composition of the upper most lunar surface. The XRS consists of three components: XRF-A, SOL-B, and SOL-C. XRF-A is the main sensor to observe X-rays from the lunar surface. SOL-B is direct monitor of Solar X-ray using Si-PIN photodiode. SOL-C is another Solar X-ray monitor but observes the X-rays from the standard sample attached on the base plate. This enables us to analyze by a comparative method similar to typical laboratory XRF methods. XRF-A and SOL-C adopt charge coupled device as an X-ray detector which depletion layer is deep enough to detect X-rays. The X-ray spectra were obtained by the flight model of XRS components, and all components has been worked well to analyze fluorescent X-rays. Currently, development of the hardware and software of the XRS has been finished and we are preparing for system integration test for the launch.

  7. Curved focusing crystals for hard X-ray astronomy

    SciTech Connect

    Ferrari, C. Buffagni, E.; Bonnini, E.; Korytar, D.

    2013-12-15

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  8. Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept

    NASA Astrophysics Data System (ADS)

    Bandler, Simon R.; Adams, Joseph S.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Betancourt-Martinez, Gabriele; Miniussi, Antoine R.; Porter, Frederick S.; Sadleir, John E.; Sakai, Kazuhiro; Smith, Stephen J.; Stevenson, Thomas R.; Wakeham, Nicholas A.; Wassell, Edward J.; Yoon, Wonsik; Becker, Dan; Bennett, Douglas; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathan D.; Hilton, Gene C.; Mates, Benjamin; Morgan, Kelsey M.; Reintsema, Carl D.; Swetz, Daniel; Ullom, Joel N.; Chaudhuri, Saptarshi; Irwin, Kent D.; Lee, Sang-Jun; Vikhlinin, Alexey

    2016-07-01

    Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen in the 2020 astrophysics decadal survey.1 One of these missions is the "X-Ray Surveyor" (XRS), and possible configurations of this mission are currently under study by a science and technology definition team (STDT). One of the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument are currently under discussion. In this paper we review some different detector options that exist for this instrument, and discuss what array formats might be possible. We have developed one design option that utilizes either transition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100 kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometries in which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1" pixels. In this paper we describe the development status of these detectors, and also discuss the different options that exist for reading out the very large number of pixels.

  9. Development of X-Ray Microcalorimeter Imaging Spectrometers for the X-Ray Surveyor Mission Concept

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Adams, Joseph S.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Betncourt-Martinez, Gabriele; Miniussi, Antoine R.; hide

    2016-01-01

    Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen inthe 2020 astrophysics decadal survey.1 One of these missions is the X-Ray Surveyor (XRS), and possibleconfigurations of this mission are currently under study by a science and technology definition team (STDT). Oneof the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument arecurrently under discussion. In this paper we review some different detector options that exist for this instrument,and discuss what array formats might be possible. We have developed one design option that utilizes eithertransition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometriesin which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1 pixels. In thispaper we describe the development status of these detectors, and also discuss the different options that exist forreading out the very large number of pixels.

  10. X-ray luminescence based spectrometer for investigation of scintillation properties

    SciTech Connect

    Varney, C. R.; Khamehchi, M. A.; Ji, Jianfeng; Selim, F. A.

    2012-10-15

    A new x-ray luminescence based spectrometer was developed and installed to examine the scintillation properties of materials while revealing the origins of luminescence and investigating trapping defects. Measurements were performed on a number of undoped and Ce doped yttrium aluminum garnet crystals and various luminescence centers were characterized. The measured x-ray luminescence spectra provide information about the spectral range and the scintillation efficiency and linearity. The efficiency of charge-carriers production due to x ray, their energy transfer to the luminescence centers, and the efficiency of luminescence are all reflected in the efficiency of x-ray luminescence.

  11. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  12. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  13. First Images from HERO: A Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; hide

    2001-01-01

    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.

  14. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    SciTech Connect

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  15. The MIRAX Hard X-ray Transient Mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Grindlay, Josh; Rothschild, Rick; Wilms, Joern; Remillard, Ron

    2012-09-01

    The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power (~1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO. The pointing directions will maximize the coverage of the Central Galactic Plane. The detectors are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 square cm effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA, including INPE(Brazil), UCSD, MIT, GSFC, Caltech and the Univ. of Erlangen-Nuremberg in Germany.

  16. Magnified hard x-ray image in one dimension

    SciTech Connect

    Britten, James; Feng Zhechuan; Xu Gu

    2010-06-28

    The possibility of magnified x-ray imaging is explored, by the near-field attenuation of a sample intercepting a spherical wave-front, plus the beam profile modulation by Borrmann pyramid based on dynamic x-ray scattering. It is verified by experiments in one dimension as well as numerical simulation.

  17. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  18. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  19. Imaging the sun in hard x rays using Fourier telescopes

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1993-01-01

    For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these

  20. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  1. Calibration of a high resolution grating soft x-ray spectrometer

    SciTech Connect

    Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.; Beiersdorfer, P.

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10–50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  2. An Infrared Search for Binary Companions to White Dwarfs with Hard X-Ray Emission

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Ian J.; Gruendl, Robert; Chu, You-Hua; Guerrero, Martin A.

    2002-08-01

    A white dwarf (WD) can emit soft (≪ 0.4 keV) X-rays, if it is hot enough, i.e., T_eff > 30,000 K for a pure hydrogen atmosphere or T_eff > 100,000 K for a hydrogen and helium atmosphere. A WD can also emit harder (> 0.5 keV) X-rays, if it has a close binary companion and mass transfer takes place, e.g., dwarf novae, polars, and cataclysmic variables. We found a large number of hard X-ray emitting WDs by cross-correlating the McCook & Sion (1999) catalog of WDs with the ROSAT point source database. We have verified the position of the WD, analysed the ROSAT data and extracted X-ray spectra to confirm the hard X-ray component. Since the only current explanation for hard X-ray emission from a WD involves a stellar companion and only five of the ~40 WDs that exhibit hard X-ray emission are known binary systems, we wish to investigate whether hard X-ray emssion is a useful diagnostic for the presence of companions to WDs. We request KPNO 2.1m SQIID near infrared photometric observations of a sample of 34 WDs, 23 of which exhibit hard X-ray emission, to look for an infrared excess consistent with the presence of a stellar companion.

  3. Quantifying the Sensitivity of Superconducting High-Resolution X-Ray Spectrometers

    SciTech Connect

    Drury, O; Friedrich, S

    2004-10-04

    Superconducting tunnel junction (STJ) X-ray spectrometers have been developed for synchrotron-based high-resolution soft X-ray spectroscopy. We are quantifying the improvements in sensitivity that STJ spectrometers can offer for the analysis of dilute specimens over conventional semiconductor and grating spectrometers. We present analytical equations to quantify the improvements in terms of spectrometer resolution, detection efficiency and count rate capabilities as a function of line separation and spectral background. We discuss the implications of this analysis for L-edge spectroscopy of first-row transition metals.

  4. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  5. Fabrication of 200 nm Period Hard X-ray Phase Gratings

    PubMed Central

    2015-01-01

    Far field X-ray grating interferometry achieves extraordinary phase sensitivity in imaging weakly absorbing samples, provided that the grating period is within the transverse coherence length of the X-ray source. Here we describe a cost-efficient process to fabricate large area, 100 nm half-pitch hard X-ray phase gratings with an aspect ratio of 32. The nanometric gratings are suitable for ordinary compact X-ray sources having low spatial coherence, as demonstrated by X-ray diffraction experiments. PMID:24845537

  6. Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets.

    PubMed

    Shimura, Takayoshi; Morimoto, Naoki; Fujino, Sho; Nagatomi, Takaharu; Oshima, Keni-chi; Harada, Jimpei; Omote, Kazuhiko; Osaka, Naohisa; Hosoi, Takuji; Watanabe, Heiji

    2013-01-15

    We demonstrate hard x-ray phase contrast imaging (XPCI) using a tabletop Talbot-Lau interferometer in which the x-ray source and source grating are replaced with an x-ray source with multiline metal targets embedded in a diamond substrate. This source realizes an array of linear x-ray sources of a few micrometers width without fabrication difficulty because of the shallow penetration depth of electrons irradiated to the metal targets. This enhances the coherence of x rays from each linear source and allows XPCI within 45 cm source-detector distance under 1.2 W input power for 8 keV x rays.

  7. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  8. A novel X-ray spectrometer for plasma hot spot diagnosis

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Guo, Yongchao; Xiao, Shali; Yang, Zuhua; Qian, Feng; Cao, LeiFeng; Gu, Yuqiu

    2017-09-01

    A novel X-ray spectrometer is designed to diagnose the different conditions in plasmas. It can provide both X-ray spectroscopy and plasma image information simultaneously. Two pairs of elliptical crystal analyzers are used to measure the X-ray spectroscopy in the range of 2-20 keV. The pinhole imaging system coupled with gated micro-channel plate(MCP) detectors are developed, which allows 20 images to be collected in a single individual experiment. The experiments of measuring spectra were conducted at ;Shenguang-II upgraded laser; in China Academy of Engineering Physics to demonstrate the utility of the spectrometer. The X-ray spectroscopy information was obtained by the image plate(IP). The hot spot imaging experiments were carried out at ;Shenguang-III prototype facility;. We have obtained the hot sport images with the spectrometer, and the signal to noise ratio of 30 ∼ 40 is observed.

  9. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited)

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Stillman, C. R.; Ivancic, S. T.; Boni, R.; Hassett, J.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.; Hill, K. W.; Gao, L.; Bitter, M.; Efthimion, P.; Meyerhofer, D. D.

    2016-11-01

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 1018 W/cm2. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  10. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited).

    PubMed

    Nilson, P M; Ehrne, F; Mileham, C; Mastrosimone, D; Jungquist, R K; Taylor, C; Stillman, C R; Ivancic, S T; Boni, R; Hassett, J; Lonobile, D J; Kidder, R W; Shoup, M J; Solodov, A A; Stoeckl, C; Theobald, W; Froula, D H; Hill, K W; Gao, L; Bitter, M; Efthimion, P; Meyerhofer, D D

    2016-11-01

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 10(18) W/cm(2). The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  11. New parallel beam wavelength dispersive X-ray emission spectrometer at Ljubljana microprobe

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Gasser, Franz; Rupnik, Zdravko; Jenčič, Boštjan; Kelemen, Mitja; Pelicon, Primož; Vavpetič, Primož

    2017-08-01

    A new parallel beam wavelength dispersive X-ray emission spectrometer for high energy resolution PIXE analysis using focused proton microbeam has been constructed and installed at the microprobe of the J. Stefan Institute. Polycapillary X-ray optics is used to enhance the solid angle of X-ray collection and to transform collected proton-induced X-rays into quasi parallel beam which is analyzed using diffraction on a flat crystal. The spectrometer is installed in a vacuum chamber and operates in the 2-10 keV energy range. The main characteristics and operational properties are presented together with the results of first characterization measurements. Finally, two selected experimental examples are given illustrating the capabilities of the spectrometer in PIXE analysis and fundamental research in atomic physics.

  12. High-energy x-ray imaging spectrometer (HEXIS)

    NASA Astrophysics Data System (ADS)

    Matteson, James L.; Gruber, Duane E.; Heindl, William A.; Pelling, Michael R.; Peterson, Laurence E.; Rothschild, Richard E.; Skelton, Robert E.; Hink, Paul L.; Slavis, Kimberly R.; Binns, W. Robert

    1998-11-01

    HEXIS is a MIDEX-class mission concept for x-ray astronomy. Its objectives are to improve our knowledge of the high energy x-ray sky by increasing the number of sources above 20 keV to > 2,000, discovering transient sources such as x-ray novae and gamma-ray bursts, and making spectral and temporal studies of the sources. With mission life > 3 years, a 1-year all-sky survey sensitivity of approximately 0.3 mCrab, and continuous monitoring of the entire visible sky, HEXIS will provide unprecedented capabilities. Source positions will be determined to accuracies of a few arcmin or better. Spectra will be determined with an energy resolution of a few keV and source variability will be studied on time scales from < 1 sec to years. In addition, 10 times more sensitive studies of limited fields will be performed at the same time. Gamma-ray bursts will be detected about 4 times/week at about the same sensitivity as BATSE and the sensitivity to nova-like x-ray transients will be approximately 6 mCrab in one day. HEXIS contains a set of coded mask imagers that use position-sensitive CZT detectors operating from approximately 5 keV to 200 keV. Detector planes are built with 41 cm(superscript 2) CZT detector modules which employ crossed-strip readout to obtain a pixel size of 0.5 mm. Nine modules are grouped in a 369 cm(superscript 2) array for each imager. In the past 2 years significant progress has been made on techniques requires for HEXIS: position-sensitive CZT detectors and ASIC readout, coded mask imaging, and background properties at balloon altitudes. Scientific and technical details of HEXIS are presented together with result form tests of detectors and a coded mask imager.

  13. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  14. First flight of SMASH, the SwRI Miniature Assembly for Solar Hard X-rays

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Laurent, Glenn Thomas; Shoffner, Michael; Higuera Caubilla, David; Meurisse, Jeremie; Smith, Kelly; Shih, Albert Y.; Saint-Hilaire, Pascal; DeForest, Craig; Mansour, Nagi N.; Hathaway, David H.

    2016-05-01

    The SwRI Miniature Assembly for Solar Hard X-rays (SMASH) was successfully flown from Antarctica in January (19-30) 2016, as a piggy-back instrument on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload. SMASH is a technological demonstration of a new miniaturized hard X-ray (HXR) detector for use on CubeSats and other small spacecraft, including the proposed CubeSat Imaging X-ray Solar Spectrometer (CubIXSS).HXRs are the observational signatures of energetic processes on the Sun, including plasma heating and particle acceleration. One of the goals of CubIXSS will be to address the question of how plasma is heated during solar flares, including the relationship between thermal plasma and non-thermal particles. SMASH demonstrated the space-borne application of the commercial off-the-shelf Amptek X123-CdTe, a miniature cadmium telluride photon-counting HXR spectrometer. The CdTe detector has a physical area of 25 mm^2 and 1 mm fully-depleted thickness, with a ~100 micron Be window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar photons from ~5 to ~100 keV with ~0.5-1.0 keV FWHM resolution. Photons are accumulated into histogram spectra with customizable energy binning and integration time. With modest resource requirements (~1/8 U, ~200 g, ~2.5 W) and low cost (~$10K), the X123-CdTe is an attractive solution for HXR measurements from budget- and resource-limited platforms such as CubeSats. SMASH flew two identical X123-CdTe detectors for redundancy and increased collecting area; the supporting electronics (power, CPU) were largely build-to-print using the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat design.We review the SMASH mission, design, and detector performance during the 12-day Antarctic flight. We present current progress on our data analysis of observed solar flares, and discuss future applications of the space-qualified X123-CdTe detector, including the CubIXSS mission

  15. Pinhole interferometry with coherent hard X-rays.

    PubMed

    Leitenberger, Wolfram; Wendrock, Horst; Bischoff, Lothar; Weitkamp, Timm

    2004-03-01

    This paper discusses the experimental realisation of two types of X-ray interferometer based on pinhole diffraction. In both interferometers the beam splitter was a thin metal foil containing micrometer pinholes to divide the incident X-ray wave into two coherent waves. The interference pattern was studied using an energy-dispersive detector to simultaneously investigate in a large spectral range the diffraction properties of the white synchrotron radiation. For a highly absorbing pinhole mask the interference fringes from the classical Young's double-pinhole experiment were recorded and the degree of coherence of X-rays could be determined. In the case of low absorption of the metal foil at higher X-ray energies (>15 keV) the interference pattern of a point diffraction interferometer was observed using the same set-up. The spectral refraction index of the metal foil was determined.

  16. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube.

    PubMed

    Kayser, Y; Błachucki, W; Dousse, J-Cl; Hoszowska, J; Neff, M; Romano, V

    2014-04-01

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers.

  17. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    SciTech Connect

    Kayser, Y.; Błachucki, W.; Dousse, J.-Cl.; Hoszowska, J.; Neff, M.; Romano, V.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.

  18. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  19. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  20. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeVa)

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Arikawa, Y.; Kojima, S.; Ikenouchi, T.; Nagai, T.; Abe, Y.; Inoue, H.; Morace, A.; Utsugi, M.; Kato, R.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.

    2014-11-01

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (Ne = 1.0 × 10-6 C, Ee = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%-70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10-7, 10-4, 10-5, respectively, for 2-10, 11-15, and 15-25 MeV of photon energy ranges.

  1. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  2. An X-ray Raman spectrometer for EXAFS studies on minerals: bent Laue spectrometer with 20 keV X-rays.

    PubMed

    Hiraoka, N; Fukui, H; Tanida, H; Toyokawa, H; Cai, Y Q; Tsuei, K D

    2013-03-01

    An X-ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back-scattering spectrometers using ≤10 keV X-rays, a spectrometer utilizing ~20 keV X-rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band-pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K-edge in SiO(2) glass and crystal (α-quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre-edge curve based on a theoretical Compton profile and a Monte Carlo multiple-scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high-pressure studies.

  3. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    NASA Astrophysics Data System (ADS)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  4. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  5. Coherent diffraction imaging using focused hard X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Sunam; Kim, Sangsoo; Lee, Su Yong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Marathe, Shashidhara; Song, Changyong; Gallagher-Jones, Marcus; Kang, Hyon Chol

    2016-05-01

    A quantitative height profile image of a silicon nano-trench structure was obtained via coherent diffraction imaging (CDI) utilizing focused X-rays at a photon energy of 5.5 keV. The ability to optimize the spatial coherence and the photon flux density of a focused X-ray beam was the key technique for achieving such technical progress at a given X-ray photon flux. This was achieved by investigating the tunability of the focused beam's optical properties and performing a CDI experiment with the focused X-rays. The relationship between the focused X-rays' optical properties ( e.g., photon flux density and spatial coherence length) and the incident beam's size, which can be tuned by adjusting the slits in front of the Fresnel zone plate (FZP) was elucidated. We also obtained a quantitative image of a nano-trench sample produced via the reconstruction process of CDI, which utilizes carefully tuned, focused X-rays.

  6. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  7. Variation of Hard X-Ray Flare Characteristics Observed by ISEE-3/ICE during Solar Cycle 21

    NASA Astrophysics Data System (ADS)

    Bromund, K. R.; McTiernan, J. M.; Kane, S. R.; Loran, J. M.; Asztalos, B. B.

    1992-05-01

    The hard X-ray spectrometer on the International Cometary Explorer (ICE -- formerly known as ISEE-3) spacecraft consisted of a NaI (Tl) scintillator, 22 cm(2) in area and surrounded by a plastic anticoincidence shield. The instrument measured photon spectra in 12 channels with a nominal energy range of 26 keV to 3.2 MeV. The exact X-ray energy range could be varied by command. Typically, the time resolution was 0.5 -- 4.0 seconds depending on the energy channel, with a complete spectrum being read out every 4 seconds. Of the solar flares observed by the hard X-ray spectrometer during the period August 1978 -- December 1986, we found approximately 7000 solar flares for which power law photon spectra covering at least two energy channels could be fit to both the observed peak counting rates and the total photon counts. The effective sensitivity of this data base is approximately 1.6 photons/cm(2) sec for photons with energy >30 keV. This data base was used to determine the number of hard X-ray flares observed per day above various thresholds of photon energy. The observed occurrence frequencies were corrected for data gaps and binned by month. In addition to the occurrence frequency of hard X-ray flares, variation of average spectral parameters during the solar cycle was also examined. The slope of the size distribution of hard X-ray flares is found to vary substantially during the solar cycle with pronounced changes especially during the 155-day recurrence periods. The size distribution tends to be significantly flatter in the maximum phase of the 155-day periods than in the minimum phase. This is consistent with results found in a study of SMM-HXRBS results by Bai (1992). A comparison of the long term variations of the hard X-ray flares with other related solar activity parameters, such as Hα flares and soft X-ray flares, will be presented. Implications of these results with regard to the mechanisms of the solar cycle variation will be discussed.

  8. Arcus: The X-Ray Grating Spectrometer Explorer

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Abraham, M. H.; Allured, R.; Bautz, M.; Bookbinder, J.; Bregman, J. N.; Brenneman, L.; Brickhouse, N. S.; Burrows, D. N.; Burwitz, V.; hide

    2016-01-01

    Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50 Angstroms) with unprecedented sensitivity-effective areas of greater than 500 sq cm and spectral resolution greater than 2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocked flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

  9. Arcus: the x-ray grating spectrometer explorer

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Abraham, M. H.; Allured, R.; Bautz, M.; Bookbinder, J.; Bregman, J. N.; Brenneman, L.; Brickhouse, N. S.; Burrows, D. N.; Burwitz, V.; Carvalho, R.; Cheimets, P. N.; Costantini, E.; Dawson, S.; DeRoo, C.; Falcone, A.; Foster, A. R.; Grant, C. E.; Heilmann, R. K.; Hertz, E.; Hine, B.; Huenemoerder, D.; Kaastra, J. S.; Madsen, K. K.; McEntaffer, R. L.; Miller, E. D.; Miller, J.; Morse, E.; Mushotzky, R.; Nandra, K.; Nowak, M.; Paerels, F.; Petre, R.; Plice, L.; Poppenhaeger, K.; Ptak, A.; Reid, P.; Sanders, J.; Schattenburg, M. L.; Schulz, N.; Smale, A.; Temi, P.; Valencic, L.; Walker, S.; Willingale, R.; Wilms, J.; Wolk, S. J.

    2016-07-01

    Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity - effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long ( 100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

  10. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  11. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  12. Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.

    PubMed

    Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R

    2017-07-01

    To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.

  13. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  14. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  15. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  16. THE HARD X-RAY BEHAVIOR OF AQL X-1 DURING TYPE-I BURSTS

    SciTech Connect

    Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Li, Jian; Wang, Jian-Min; Torres, Diego F.; Kretschmar, Peter E-mail: szhang@ihep.ac.cn

    2013-11-01

    We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up in the hard X-ray light curve.

  17. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch.

    PubMed

    Kojima, Sadaoki; Arikawa, Yasunobu; Nishimura, Yasuhiko; Togawa, Hiromi; Zhang, Zhe; Ikenouchi, Takahito; Ozaki, Tetsuo; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kato, Ryukou; Fujioka, Shinsuke; Azechi, Hiroshi

    2014-11-01

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons' energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  18. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect

    Kojima, Sadaoki Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Nishimura, Yasuhiko; Togawa, Hiromi; Ozaki, Tetsuo; Kato, Ryukou

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  19. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  20. Low-energy shelf response in thin energy-dispersive X-ray detectors from Compton scattering of hard X-rays

    NASA Astrophysics Data System (ADS)

    Michel-Hart, N.; Elam, W. T.

    2017-08-01

    Silicon drift detectors have been successfully employed in both soft and hard X-ray spectroscopy. The response function to incident radiation at soft X-ray levels has been well studied and modeled, but less research has been published on response functions for these detectors to hard X-ray input spectra above 20 keV. When used with hard X-ray sources a significant low energy, non-peak response exists which can adversely affect detection limits for lighter elements in, for example, X-ray fluorescence spectroscopy. We present a numerical model that explains the non-peak response function of silicon drift detectors to hard X-rays based on incoherent Compton scattering within the detector volume. Experimental results are presented and numerically compared to model results.

  1. Optical holography in the hard X-ray domain

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Yokosuka, H.; Ohigashi, T.; Takano, H.; Takeuchi, A.; Suzuki, Y.; Aoki, S.

    2003-03-01

    Present status of our developments of x-ray holographie microscopes at SPring-8 BL20XU is described. A combination of the x-ray undulator and a zone plate enabled us to make a coherent x-ray source of around 0.1 μm size. Using this secondary source, two types of x-ray holographie microscopes were investigated. First, a Gabor microscope in point-projection geometry was tested. A tantalum 0. 2 llm line-and-space pattern could be resolved. Second, using a zone plate as a beam splitter, a Fourier transform holographie microscope was tested. A tantalum 0.2 μm line-and-space pattern could be observed. Polystyrene beads of 2.8 μm and 0.8 μm in diameter could be observed. In Fourier transform holography, a reconstructed image of a specimen that is located out of the plane of the reference source is blurred. Numerical focusing of such an x-ray hologram could be successfully demonstrated.

  2. Fluence thresholds for grazing incidence hard x-ray mirrors

    SciTech Connect

    Aquila, A.; Ozkan, C.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J.; Sobierajski, R.; Klepka, M. T.; Dłużewski, P.; Morawiec, K.; Störmer, M.; Bajt, S.; Ohashi, H.; Koyama, T.; Tono, K.; Inubushi, Y. [RIKEN and others

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  3. Crystal cavity resonance for hard x rays: A diffraction experiment

    SciTech Connect

    Chang, S.-L.; Stetsko, Yu. P.; Tang, M.-T.; Shew, B.-Y.; Lee, Y.-R.; Sun, W.-H.; Wu, H.-H.; Kuo, T.-T.; Chen, S.-Y.; Chang, Y.-Y.; Shy, J.-T.; Yabashi, M.; Tamasaku, K.; Miwa, D.

    2006-10-01

    We report the details of the recent x-ray back diffraction experiments, in which interference fringes due to x-ray cavity resonance are unambiguously observed. The Fabry-Perot type cavities, the tested crystal devices of reflectivity R{approx_equal}0.5 and finesse F{approx_equal}2.3, consist of monolithic two-plate and eight-plate silicon crystals. They were prepared by using x-ray lithographic techniques. The thicknesses of the crystal plates and the gaps between the two adjacent plates are a few tens to hundreds {mu}m. The (12 4 0) back reflection and synchrotron x-radiation of energy resolution {delta}E=0.36 meV at 14.4388 keV are employed. Interference fringes in angle- and photon-energy scans for two-plate and eight-plate cavities are shown. Considerations on the temporal and spatial coherence for observable resonance interference fringes using synchrotron x-rays are presented. The details about the accompanied simultaneous 24-beam diffraction in relation to x-ray photon energy are also described.

  4. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    SciTech Connect

    Kane, S.R.; Mctiernan, J.; Loran, J.; Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G. Los Alamos National Laboratory, NM )

    1992-05-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere. 47 refs.

  5. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  6. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2009-05-11

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  7. Performance of hard X-ray zone plates at the Advanced Photon Source

    SciTech Connect

    Maser, J.; Lai, B.; Cai, Z.; Rodrigues, W.; Legnini, D.; Ilinski, P.; Yun, W.; Chen, Z.; Krasnoperova, A.A.; Vladimirsky, Y.; Cerrina, F.; Di, E.; Fabrizio, E.; Gentili, M.

    1999-12-20

    Fresnel zone plates have been highly successful as focusing and imaging optics for soft x-ray microscopes and microprobe. More recently, with the advent of third-generation high-energy storage rings, zone plates for the hard x-ray regime have been put to use as well. The performance of zone plates manufactured using a combination of electron-beam lithography and x-ray lithography is described.

  8. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    SciTech Connect

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M.; Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W.; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Christensen, Finn E.; Forster, Karl; Giommi, Paolo; and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  9. Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover

    NASA Astrophysics Data System (ADS)

    Shanmugam, M.; Murty, S. V. S.; Acharya, Y. B.; Goyal, S. K.; Patel, Arpit R.; Shah, Bhumi; Hait, A. K.; Patinge, Aditya; Subrahmanyam, D.

    2014-11-01

    Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ∼150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations.

  10. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas

    SciTech Connect

    Park, J.; Cone, K. V.; Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Magee, E. W.; May, M. J.; Baldis, H. A.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2010-10-15

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of {approx}6-60 A. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

  11. Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

    SciTech Connect

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E; May, M J; Porter, F S

    2010-05-12

    We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.

  12. Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments

    SciTech Connect

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-05-12

    A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

  13. Development of a time-resolved soft x-ray spectrometer for laser produced plasma experiments.

    PubMed

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-10-01

    A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 Å) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 10(15) W/cm(2). The instrument demonstrated a resolving power of ∼120 at 19 Å with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas.

  14. Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmasa)

    NASA Astrophysics Data System (ADS)

    Park, J.; Brown, G. V.; Schneider, M. B.; Baldis, H. A.; Beiersdorfer, P.; Cone, K. V.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; May, M. J.; Porter, F. S.

    2010-10-01

    We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ˜6-60 Å. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

  15. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  16. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE PAGES

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  17. Correlated hard x ray and UV variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Nandra, K.; Makino, F.; Pounds, K. A.; Reichert, G. A.; Urry, C. M.; Wamsteker, W.; Peracaula-Bosch, M.; Stewart, G. C.

    1992-01-01

    Observations of the nucleus of NGC5548 made at 11 different epochs during May - July 1990, in low resolution mode (1000 km/s) and through large apertures (10 by 20 inches) of the International Ultraviolet Explorer (IUE) spectrographs, are discussed. The patterns of variability are considered. Figures showing the following are given: light curves of the continuum in the X-ray and UV bands, together with the light curves of the strongest emission lines; the 2 to 10 KeV X-ray flux as a function of the 1350 A continuum for the 11 epochs of simultaneous X-ray and UV observations; the cross correlation and discrete correlation of F (sub 2 to 10) with F(sub 1350). Implications of the findings are discussed.

  18. Correlated hard x ray and UV variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Nandra, K.; Makino, F.; Pounds, K. A.; Reichert, G. A.; Urry, C. M.; Wamsteker, W.; Peracaula-Bosch, M.; Stewart, G. C.

    1992-01-01

    Observations of the nucleus of NGC5548 made at 11 different epochs during May - July 1990, in low resolution mode (1000 km/s) and through large apertures (10 by 20 inches) of the International Ultraviolet Explorer (IUE) spectrographs, are discussed. The patterns of variability are considered. Figures showing the following are given: light curves of the continuum in the X-ray and UV bands, together with the light curves of the strongest emission lines; the 2 to 10 KeV X-ray flux as a function of the 1350 A continuum for the 11 epochs of simultaneous X-ray and UV observations; the cross correlation and discrete correlation of F (sub 2 to 10) with F(sub 1350). Implications of the findings are discussed.

  19. Infrared identification of hard X-ray sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Pineau, F.-X.; Carrera, F. J.; Pakull, M. W.; Riddick, F.

    2015-09-01

    The nature of the low- to intermediate-luminosity (LX ˜ 1032-34 erg s-1) source population revealed in hard band (2-10 keV) X-ray surveys of the Galactic plane is poorly understood. To overcome such problem, we cross-correlated the XMM-Newton 3XMM-DR4 survey with the infrared Two Micron All Sky Survey and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire catalogues. We identified reliable X-ray-infrared associations for 690 sources. We selected 173 sources having hard X-ray spectra, typical of hard X-ray high-mass stars (kT > 5 keV), and 517 sources having soft X-ray spectra, typical of active coronae. About 18 per cent of the soft sources are classified in the literature: ˜91 per cent as stars, with a minor fraction of Wolf-Rayet (WR) stars. Roughly 15 per cent of the hard sources are classified in the literature: ˜68 per cent as high-mass X-ray stars single or in binary systems (WR, Be and high-mass X-ray binaries - HMXBs), with a small fraction of G and B stars. We carried out infrared spectroscopic pilot observations at the William Herschel Telescope for five hard X-ray sources. Three of them are high-mass stars with spectral types WN7-8h, Ofpe/WN9 and Be, and LX ˜ 1032-1033erg s-1. One source is a colliding-wind binary, while another source is a colliding-wind binary or a supergiant fast X-ray transient in quiescence. The Be star is a likely γ-Cas system. The nature of the other two X-ray sources is uncertain. The distribution of hard X-ray sources in the parameter space made of X-ray hardness ratio, infrared colours and X-ray-to-infrared flux ratio suggests that many of the unidentified sources are new γ-Cas analogues, WRs and low LX HMXBs. However, the nature of the X-ray population with Ks ≥ 11 and average X-ray-to-infrared flux ratio remains unconstrained.

  20. The MIRAX Hard X-Ray Transient Mission

    NASA Astrophysics Data System (ADS)

    Rodrigues, Barbara; Braga, J.; Grindlay, J. E.; Allen, B.; Hong, J.; Barthelmy, S. D.; Rothschild, R. E.; Wilms, J.

    2013-01-01

    The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power 1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO with a lifetime of 4+ years. The pointing directions will maximize the coverage of the Central Galactic Plane. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The high cadence of the MIRAX detections will be well suited for simultaneous and follow-up observations in other wavelengths. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA and including INPE (Brazil), UCSD, MIT, NASA's GSFC, Caltech and the University of Erlangen-Nuremberg in Germany. The MIRAX detectors, developed at CfA, are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 cm2 effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. For exposures near the center of the field of view the sensitivity of MIRAX will approach that of Swift/BAT in the 15-150 keV range, whereas the low threshold will enable ~70 mCrab sensitivity on time scales of 100s at energies inaccessible to Swift/BAT and INTEGRAL. The first unit of one MIRAX telescope has been developed and flown in the protoEXIST-2 (P2) balloon experiment in Fort Sumner, NM, in early October 2012. In this work we describe the MIRAX instruments and discuss results of detector calibration and preliminary results of the P2 balloon flight.

  1. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    SciTech Connect

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs.

  2. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    David OHara; Dr. Eric Lochmer

    2003-09-12

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  3. Simultaneous soft and hard X-ray spectroscopy of AM Herculis with EXOSAT: Discovery of photospheric absorption features

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Heise, John; Teeseling, Andre Van

    1994-01-01

    We present 0.1-10 keV spectroscopic observations of AM Herculis obtained with the Transmission Grating Spectrometers and Medium Energy experiments on EXOSAT, taken when the object was in its 'reversed X-ray mode.' The observation covers over six binary orbits without interruption, enabling us to analyze the phase and intensity dependence of both the hard and the soft spectrum simultaneously. We resolve the optically thick soft X-ray spectrum, and find definite evidence for time- and phase-dependent photospheric absorption structure arising in the white dwarf atmosphere. We present a simple empirical analysis of the combined soft and hard X-ray spectra, to examine whether the effect of a better determination of the column density of neutral absorbing material, afforded by our data, would solve the problem of the large relative soft X-ray overluminosity previously observed in AM Her. We find that a single absorbing column fits the entire spectrum, and that the column densities implied are indeed substantially lower than previously estimated. However, during half the binary orbit we still determine a strong lower limit to the soft-to-hard luminosity ratio of L(sub soft)/L(sub hard) is greater than or approximately equal to 10, in conflict with the simple radiative shock models for the accretion region. We argue that this indicates the need to reexamine the luminosity problem using explicit models for the emission spectrum based on a full solution of the atmospheric radiative transfer problem.

  4. Long-term variability in bright hard X-ray sources: 5+ years of BATSE data

    NASA Technical Reports Server (NTRS)

    Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.

    1997-01-01

    The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.

  5. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  6. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  7. The hard X-ray shortages prompted by the clock bursts in GS 1826-238

    SciTech Connect

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian; Torres, Diego F.; Kretschmar, Peter

    2014-02-10

    We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of the type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.

  8. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at X-ray free-electron laser sources.

    PubMed

    Roseker, Wojciech; Franz, Hermann; Schulte-Schrepping, Horst; Ehnes, Anita; Leupold, Olaf; Zontone, Federico; Lee, Sooheyong; Robert, Aymeric; Grübel, Gerhard

    2011-05-01

    A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pump-probe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39 keV synchrotron radiation. Time delays up to 2.95 ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line.

  9. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    SciTech Connect

    Stoeckl, C. Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-15

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  10. Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF

    SciTech Connect

    McDonald, J W; . Suter, L J; Landen, O L; Foster, J M; Celeste, J R; Holder, J P; Dewald, E L; Schneider, M B; Hinkel, D E; Kauffman, R L; Atherton, L J; Bonanno, R E; Dixit, S N; Eder, D C; Haynam, C A; Kalantar, D H; Koniges, A E; Lee, F D; MacGowan, B J; Manes, K R; Munro, D H; Murray, J R; Shaw, M J; Stevenson, R M; Parham, T G; Van Wonterghem, B M; Wallace, R J; Wegner, P J; Whitman, P K; Young, B K; Hammel, B A; Moses, E I

    2005-09-22

    Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f{sub hot}) and a comparison to a filling model are presented.

  11. Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes

    SciTech Connect

    Bagchi, Suman; Kiran, P. Prem; Yang, K.; Rao, A. M.; Bhuyan, M. K.; Krishnamurthy, M.; Kumar, G. Ravindra

    2011-01-15

    We demonstrate that carbon nanotube coated surfaces produce two orders of magnitude brighter hard x-ray emission, in laser produced plasmas, than planar surfaces. It is accompanied by three orders of magnitude reduction in ion debris which is also low Z and nontoxic. The increased emission is a direct consequence of the enhancement in local fields and is via the simple and well known 'lightning rod' effect. We propose that this carbon nanotube hard x-ray source is a simple, inexpensive, and high repetition rate hard x-ray point source for a variety of applications in imaging, lithography, microscopy, and material processing.

  12. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  13. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-01

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  14. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  15. Volume 1. Preliminary design study: AXAF x ray calibration spectrometers. Volume 2. Revised preliminary design study: AXAF x ray calibration spectrometers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this work was to provide a preliminary design concept for a Flux Monitor Spectrometer (FMS) for use at the X Ray Astrophysics Facility (XRAF) during High Resolution Mirror Assembly (HRMA) testing that met the requirements of SAO-AXAF-88-025 dated July 31, 1991. The calibration test team determined that the spectral resolution of the FMS had to be greater than or equal to twice that of all the AXAF spectrometers throughout the 0.1 to 10 KeV range of x-ray energies. Since this effectively doubled the resolution required by SAO-AXAF-88-025, a change order was approved by the Marshall Space Flight Center and given to Radiation Sciences to revise their study.

  16. Development of a critical-angle transmission grating spectrometer for the International X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Ahn, Minseung; Bautz, Marshall W.; Foster, Richard; Huenemoerder, David P.; Marshall, Herman L.; Mukherjee, Pran; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Matthew

    2009-08-01

    We present a high-resolution soft x-ray grating spectrometer concept for the International X-Ray Observatory (IXO) that meets or exceeds the minimum requirements for effective area (> 1, 000 cm2 for E < 1 keV) and spectral resolution (E/▵E > 3, 000). At the heart of the spectrometer is an array of recently developed highefficiency blazed transmission gratings, the so-called critical-angle transmission (CAT) gratings. They combine the advantages of traditional transmission gratings (very low mass, extremely relaxed alignment and flatness tolerances) with those of x-ray reflection gratings (high efficiency due to blazing in the direction of grazing-incidence reflection). In addition, a CAT grating spectrometer is well-suited for co-existence with energy-dispersive highenergy focal plane detectors, since most high-energy x rays are neither absorbed, nor diffracted, and contribute to the effective area at the telescope focus. Since our initial successful x-ray demonstrations of the CAT grating concept with large-period and lower aspect-ratio prototypes, we have now microfabricated 200 nm-period silicon CAT gratings comprised of grating bars with the required dimensions (6 micron tall, 40 nm wide, aspect ratio 150), optimized for the 0.3 to 1.0 keV energy band. Preliminary analysis of recent x-ray tests show blazing behavior up to 1.28 keV in accordance with predictions.

  17. Hard X-ray Spectroscopy of Obscured AGN with NuSTAR

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR Extragalactic Surveys Team

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the hard X-ray band, up to 79 keV, with unprecedented spatial resolution and sensitivity. As a part of its extragalactic program, NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT), selecting even the most obscured local AGN. I will highlight some of the results based on broadband X-ray spectroscopy of individual targets and present my work on the large representative sample of more than a hundred nearby obscured AGN, which constitutes the largest available atlas of hard X-ray spectra of obscured AGN to date. The high quality of the data allows us to probe the details of AGN structures such as the X-ray-emitting corona and the toroidal obscurer in the under-explored spectral window above 10 keV. I will present both phenomenological results important for synthesis models of the cosmic X-ray background, and a novel approach for constraining the geometry of the gas surrounding the supermassive black hole (including the accretion disk, the broad-line region, and the torus) from the hard X-ray band. Finally, I will discuss how what we learned from this survey of local AGN relates to deeper high-redshift X-ray surveys and AGN structure probes at other wavelengths.

  18. Hard X-Ray and IR Observations of Cygnus X-3

    DTIC Science & Technology

    1996-03-15

    1978), or an accretion disk corona (White & Holt 1982). See Bonnet- Bidaud & Chardin (1988) for a valuable review of many of the Cyg X{3 observations...over a longer period, co- inciding with hard X-ray, soft X-ray, and radio measure- ments. References Bonnet-Bidaud, J. M., & Chardin , G. 1988, Phys

  19. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    OHara, David

    2009-05-08

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  20. Deterministic retrieval of complex Green's functions using hard X rays.

    PubMed

    Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E

    2009-01-30

    A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.

  1. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  2. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer.

    PubMed

    Grossmann, P; Rajkovic, I; Moré, R; Norpoth, J; Techert, S; Jooss, C; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr(0.7)Ca(0.3)MnO(3), investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  3. EUV and hard x-ray instruments on board the Spanish Minisat 01 mission

    NASA Astrophysics Data System (ADS)

    Gimenez, Alvaro

    1998-11-01

    Minisat 01 is the first of a series of small satellites developed by INTA in Spain. In this case, it as a multi- purpose scientific mission. It was successfully launched on April 21 of last year using a Pegasus rocket. Minisat 01 caries on-board a payload with two astronomical instruments: EURD and LEGRI. EURD is a high sensitivity double spectrometer for the measurement of diffuse cosmic radiation in the extreme UV range, from 350 to 1100 angstrom. LEGRI is a hard x-ray imaging telescope with a coded mask and an array of HgI(subscript 2) and CdZnTe detectors. News about the performance of Minisat 01 in orbit and its scientific results are presented together with a brief description of the instrumental and their main objectives. The continuation of the program is ensured by several future Minisat missions, now under development or study.

  4. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Astrophysics Data System (ADS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Atteia, J.-L.; Boer, M.; Hurley, K.; Neil, M.; Vedrenne, G.; Kuznetsov, A. V.; Sunyaev, R. A.; Terekhov, O. V.

    1987-11-01

    A new type of gamma-ray source has been recently discovered. Six bursts from this source were recorded with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission during a highly active phase in 1983. High time resolution measurements of one burst show rise and decay times of less than 5 ms, the fastest yet observed from this source. Time profiles of these events are simple, but indicate low-level emission before and after the main peaks. Two transients in the series show no spectral evolution over their durations of fractions of a second. Bursts from soft gamma-ray repeaters (SGRs) appear to form a separate class of events. The characteristic properites of the three known SGRs are briefly reviewed.

  5. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  6. Grating-based at-wavelength metrology of hard x-ray reflective optics.

    PubMed

    Berujon, Sebastien; Ziegler, Eric

    2012-11-01

    A mean of characterizing the tangential shape of a hard x-ray mirror is presented. Derived from a group of methods operating under visible light, its application in the x-ray domain using an x-ray absorption grating allows recovery of the mirror shape with nanometer accuracy and submillimeter spatial resolution. The method works with incoherent light, does not require any a priori information about the mirror characteristics and allows shape reconstruction of x-ray reflective optics under thermal and mechanical working conditions.

  7. Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses

    SciTech Connect

    Hou Bixue; Mordovanakis, Aghapi; Easter, James; Krushelnick, Karl; Nees, John A.

    2008-11-17

    Directional properties of ultrafast laser-based hard x-ray sources are experimentally studied using tightly focused approximately millijoule laser pulses incident on a bulk Mo target. Energy distributions of K{alpha} and total x rays, as well as source-size distributions are directionally resolved in vacuum and in flowing helium, respectively. Directional distributions of x-ray emission is more isotropic for p-polarized pump than for s-polarized. Based on source-size measurements, a simple two-location model, with expanded plasma and bulk material, is employed to represent the x-ray source profile.

  8. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    NASA Astrophysics Data System (ADS)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  9. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  10. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. The X-ray Microcalorimeter Spectrometer (XMS): A Reference Cryogenic Instrument Design for Constellation-X

    NASA Technical Reports Server (NTRS)

    Whitehouse, Paul L.

    2003-01-01

    Constellation-X, a mission now belonging to the Beyond Einstein initiative, is being planned to inherit the x-ray sky from Chandra, XMM-Newton and Astro-E. The first two of four observatories in the constellation will be launched together in 2013 and followed a year later by the launch of the remaining two. The four will independently orbit the Sun-Earth Lagrange point L2. An instrument compliment resides in the Focal Plane Module (FPM) of each observatory 10 m from the Optics Module and consists of three Hard X-ray Telescope (HXT) detectors, a Reflection Grating Spectrometer (RGS) focal plane CCD camera and an X-ray Microcalorimeter Spectrometer (XMS). Instrument awards are scheduled for early 2006. The reference detector for XMS is a 32 x 32 array of microcalorimetric superconducting Transition Edge Sensors (TES). Each pixel casts a variable resistance in a SQUID based multiplexed readout circuit which is coupled to series SQUID arrays for amplification and finally read out by external electronics. A multi-stage continuous ADR will provide the stable 50 mK desired for the TES array and a stable 1 K for the series SQUID arrays while also lifting thermal parasitic and inefficiency loads to a 6 K cryocooler interface. The 6 K cryocooler is expected to emerge from the joint-project Advanced Cryocooler Technology Development Program (ACTDP) in which Constellation-X is an active participant. Project Pre-Formulation activities are marked by extensive technology development necessitating early, but realistic, thermal and cooling load requirements for ADR and ACTDP-cryocooler design points. Such requirements are driven by the encompassing XMS cryostat and ultimately by the thermal environment imposed by the FPM. It is further desired that the XMS instrument be able to operate on its side in the laboratory, with a warm vacuum shell, during an extensive calibration regime. It is that reference system design of the XMS instrument (microcalorimeter, ADR, cryocooler and

  12. The X-ray Microcalorimeter Spectrometer (XMS): A Reference Cryogenic Instrument Design for Constellation-X

    NASA Technical Reports Server (NTRS)

    Whitehouse, Paul L.

    2003-01-01

    Constellation-X, a mission now belonging to the Beyond Einstein initiative, is being planned to inherit the x-ray sky from Chandra, XMM-Newton and Astro-E. The first two of four observatories in the constellation will be launched together in 2013 and followed a year later by the launch of the remaining two. The four will independently orbit the Sun-Earth Lagrange point L2. An instrument compliment resides in the Focal Plane Module (FPM) of each observatory 10 m from the Optics Module and consists of three Hard X-ray Telescope (HXT) detectors, a Reflection Grating Spectrometer (RGS) focal plane CCD camera and an X-ray Microcalorimeter Spectrometer (XMS). Instrument awards are scheduled for early 2006. The reference detector for XMS is a 32 x 32 array of microcalorimetric superconducting Transition Edge Sensors (TES). Each pixel casts a variable resistance in a SQUID based multiplexed readout circuit which is coupled to series SQUID arrays for amplification and finally read out by external electronics. A multi-stage continuous ADR will provide the stable 50 mK desired for the TES array and a stable 1 K for the series SQUID arrays while also lifting thermal parasitic and inefficiency loads to a 6 K cryocooler interface. The 6 K cryocooler is expected to emerge from the joint-project Advanced Cryocooler Technology Development Program (ACTDP) in which Constellation-X is an active participant. Project Pre-Formulation activities are marked by extensive technology development necessitating early, but realistic, thermal and cooling load requirements for ADR and ACTDP-cryocooler design points. Such requirements are driven by the encompassing XMS cryostat and ultimately by the thermal environment imposed by the FPM. It is further desired that the XMS instrument be able to operate on its side in the laboratory, with a warm vacuum shell, during an extensive calibration regime. It is that reference system design of the XMS instrument (microcalorimeter, ADR, cryocooler and

  13. Portable x-ray fluorescence spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    This report describes the application of portable X-ray fluorescence (XRF) spectrometry to characterize materials related to deactivation and decommissioning (D and D) of contaminated facilities. Two portable XRF instruments manufactured by TN Spectrace were used in a technology evaluation as part of the Large-Scale Demonstration Project (LSDP) held at the Chicago Pile-5 Research Reactor (CP-5) located at Argonne National Laboratory (ANL). The LSDP is sponsored by the US Department of Energy (DOE), Office of Science and Technology, Deactivation and Decommissioning Focus Are (DDFA). The objective of the LSDP is to demonstrate innovative technologies or technology applications potentially beneficial to the D and D of contaminated facilities. The portable XRF technology offers several potential benefits for rapid characterization of facility components and contaminants, including significant cost reduction, fast turnaround time,a nd virtually no secondary waste. Field work for the demonstration of the portable XRF technology was performed from August 28--September 3, 1996 and October 30--December 13, 1996.

  14. A preliminary design study for a cosmic X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.

  15. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  16. H-alpha and hard X-ray development in two-ribbon flares

    NASA Technical Reports Server (NTRS)

    Dwivedi, B. N.; Hudson, H. S.; Kane, S. R.; Svestka, Z.

    1984-01-01

    Morphological features of two-ribbon flares have been studied, using simultaneous ISEE-3 hard X-ray records and high-resolution Big Bear H-alpha movies for more than 20 events. Long-lasting and complex hard X-ray bursts are almost invariably found associated with flares of the two-ribbon type. At least three events are found, namely March 31, 1979, April 10, 1980, and July 1, 1980, where the occurrence of individual spikes in hard X-ray radiation coincides with suddenly enhanced H-alpha emission covering the sunspot penumbra. There definitely exist important (greater than or equal to 1 B) two-ribbon flares without significant hard X-ray emission.

  17. Puzzling Hard X-ray Emission from Hot Single White Dwarfs

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2012-10-01

    The hot white dwarf WD2226-210 is the central star of the Helix Nebula. It shows soft X-ray photospheric emission and a hard component peaking near 1 keV, which is puzzling as WD2226-210 has neither a binary companion nor a fast wind. Such hard X-rays are rare among single WDs but more common among central stars of PNe. We request 300 ks XMM-Newton observations of WD2226-210, using RGS spectra to determine plasma temperatures, abundances, and ionization equilibrium, and using EPIC data to study temporal variations of the 1 keV emission. We also request short observations of three other WDs with hard X-ray emission. The results will allow us to critically address different emission mechanisms for hard X-rays and their implications on stellar evolution and binary mergers.

  18. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  19. The Fabrication of Replicated Optics for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, C. O.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    We describe the fabrication process for producing shallow-graze-angle mirrors for hard x-ray astronomy. This presentation includes the generation of the necessary super-polished mandrels, their metrology, and the subsequent mirror shell electroforming and testing.

  20. The interpretation of hard X-ray polarization measurements in solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.; Emslie, A. G.; Petrosian, V.

    1983-01-01

    Observations of polarization of moderately hard X-rays in solar flares are reviewed and compared with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. The recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, new polarization observations with current generation instruments are proposed which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.

  1. Hard X-ray Phase-Contrast Tomographic Nanoimaging

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Vila-Comamala, J.; Gorelick, S.; David, C.; Trtik, P.; Jefimovs, K.; Mokso, R.

    2011-09-01

    Synchrotron-based full-field tomographic microscopy established itself as a tool for noninvasive investigations. Many beamlines worldwide routinely achieve micrometer spatial resolution while the isotropic 100-nm barrier is reached and trespassed only by few instruments, mainly in the soft x-ray regime. We present an x-ray, full-field microscope with tomographic capabilities operating at 10 keV and with a 3D isotropic resolution of 144 nm recently installed at the TOMCAT beamline of the Swiss Light Source. Custom optical components, including a beam-shaping condenser and phase-shifting dot arrays, were used to obtain an ideal, aperture-matched sample illumination and very sensitive phase-contrast imaging. The instrument has been successfully used for the nondestructive, volumetric investigation of single, unstained cells.

  2. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  3. Preliminary Design Development of ITER X-ray Survey Spectrometer

    NASA Astrophysics Data System (ADS)

    Varshney, Sanjeev; Kumar, Siddharth; Mishra, Sapna; Yadav, Namita; Subhush, P. V.; Chaitanya, T. S.; Jha, Shivakant; Kumar, Vinay; Barnsley, Robin; Bernascolle, Philippe; Casal, Natalia; Bertschinger, Gunter; Simrock, Stefan; Drevon, Jean-Marc; Walsh, Michael

    2017-04-01

    The preliminary design of XRCS Survey spectrometer for ITER has been developed addressing many challenges snch as designing a ∼ 8.0 m long, vacuum extending sight-tube that interfaces crystal spectrometer, placed in the port-cell, with equatorial port-plug (EPP-11) while allowing ∼ 50 mm machine movements, and optimizing neutron shield design so that systems can fit into the available space and still the shutdown dose rates (SDDR) remains within the safe limits. The design detailing has been done for the sight-tube and its components addressing the ITER specific requirements. Engineering and neutronic analysis are performed tor estimating the thermal displacement, stresses in the front-end components, neutron flux on the sight-tube components, SDDRs in the interspace region etc.

  4. TFTR horizontal high-resolution Bragg x-ray spectrometer

    SciTech Connect

    Hill, K.W.; Bitter, M.; Tavernier, M.; Diesso, M.; von Goeler, S.; Johnson, G.; Johnson, L.C.; Sauthoff, N.R.; Schechtman, N.; Sesnic, S.; Tenney, F.; Young, K.M.

    1984-11-01

    A bent quartz crystal spectrometer of the Johann type with a spectral resolution of lambda/..delta..lambda = 10,000 to 25,000 is used on TFTR to determine central plasma parameters from the spectra of heliumlike and lithiumlike metal impurity ions (Ti, Cr, Fe, and Ni). The spectra are observed along a central radial chord and are recorded by a position sensitive multiwire proportional counter with a spatial resolution of 250. Standard delay-line time-difference readout is employed. The data are histogrammed and stored in 64k of memory providing 128 time groups of 512-channel spectra. The central ion temperature and the toroidal plasma rotation are inferred from the Doppler broadening and Doppler shift of the K lines. The central electron temperature, the distribution of ionization states, and dielectronic recombination rates are obtained from satellite-to-resonance line ratios. The performance of the spectrometer is demonstrated by measurements of the Ti XXI K radiation.

  5. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  6. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography.

  7. Efficient focusing of hard x rays to 25 nm by a total reflection mirror

    SciTech Connect

    Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Sano, Yasuhisa; Yamamura, Kazuya; Mori, Yuzo; Yabashi, Makina; Nishino, Yoshinori; Tamasaku, Kenji; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2007-01-29

    Nanofocused x rays are indispensable because they can provide high spatial resolution and high sensitivity for x-ray nanoscopy/spectroscopy. A focusing system using total reflection mirrors is one of the most promising methods for producing nanofocused x rays due to its high efficiency and energy-tunable focusing. The authors have developed a fabrication system for hard x-ray mirrors by developing elastic emission machining, microstitching interferometry, and relative angle determinable stitching interferometry. By using an ultraprecisely figured mirror, they realized hard x-ray line focusing with a beam width of 25 nm at 15 keV. The focusing test was performed at the 1-km-long beamline of SPring-8.

  8. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  9. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  10. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  11. A tabletop femtosecond time-resolved soft x-ray transient absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-07-01

    A laser-based, tabletop instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a homebuilt soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray charge coupled device camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterizations of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  12. A tabletop femtosecond time-resolved soft x-ray transient absorption spectrometer.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Leone, Stephen R

    2008-07-01

    A laser-based, tabletop instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a homebuilt soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray charge coupled device camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterizations of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  13. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  14. Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, M. P.; Fujimoto, R.; Haas, D.; den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.; Porter, F. S.; Sato, K.; Sawada, M.; Seta, H.; Sneiderman, G. A.; Szymkowiak, A. E.; Takei, Y.; Tashiro, M.; Tsujimoto, M.; de Vries, C. P.; Watanabe, T.; Yamada, S.; Yamasaki, N. Y.

    2016-07-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0:3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  15. Relevance of the observation of UHE gammas to hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rana, N. C.; Wolfendale, A. W.; Sadzinska, M.; Wdowczyk, J.

    1985-01-01

    A number of consequences of the presence of sources of ultra high energy (UHE) gamma rays, exemplified by Cygnus X-3, are examined. It is shown that there should be a flux of hard X-rays at all Galactic latitudes; a significant flux of extragalactic hard X-rays may also result. Relevance to theories of cosmic ray particle origin and propagation is discussed.

  16. Grazing Incidence Nickel Replicated Optics for Hard X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Peturzzo, J. J., III; Elsner, R. F.; Joy, M. K.; ODell, S. L.; Weisskopf, M. C.

    1997-01-01

    The requirements for future hard x-ray (up to 50 keV) telescopes are lightweight, high angular resolution optics with large collecting areas. Grazing incidence replicated optics are an excellent candidate for this, type of mission, providing better angular resolution, comparable area/unit mass, and simpler fabrication than multilayer-coated foils. Most importantly, the technology to fabricate the required optics currently exists. A comparison of several hard x-ray telescope designs will be presented.

  17. A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements.

    PubMed

    Leitenberger, Wolfram; Pietsch, Ullrich

    2007-03-01

    Experiments using a simple X-ray interferometer to measure the degree of spatial coherence of hard X-rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5-50 keV with monochromatic and white beam. The experimental set-up was equivalent to a Young's double-slit experiment for hard X-rays with slit dimensions in the micrometre range. From the high-contrast interference pattern the degree of coherence was determined.

  18. Mitigation of hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R.; Keiter, P. A.; Holloway, J. P.; Klein, S. R.; Davis, J. S.; Drake, R. P.

    2016-09-16

    Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold. Here, a potential design using V scaffold offers a signal-to-background ratio of 6:1, a factor of 2 greater than using the bare plastic scaffold.

  19. Mitigation of hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R.; Keiter, P. A.; Holloway, J. P.; Klein, S. R.; Davis, J. S.; Drake, R. P.

    2016-09-16

    Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold. Here, a potential design using V scaffold offers a signal-to-background ratio of 6:1, a factor of 2 greater than using the bare plastic scaffold.

  20. Modulation of hard x-ray beam profiles by Borrmann pyramid

    SciTech Connect

    Xu, G.; Britten, J.

    2008-01-15

    Spatial modulation of hard x-ray beam profiles is reported, using the 'Borrmann pyramid' formed in dual Bragg diffraction of a single crystal, where a small angular change of the incident beam is magnified to span the entire pyramid base. As an attempt, it is demonstrated using hard x rays by (1) the linear shift of a micrometer sized mask; (2) the partial blockade of a two micron beam; and (3) the millimeter shadow of a nanoscale gold strip, which shows the potential application of Borrmann pyramids in the form of an enlarged x-ray image.

  1. Hard X-Ray PHA System on the HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Lin, Shiyao; Shi, Yuejiang; Wan, Baonian; Chen, Zhongyong; Hu, Liqun

    2006-05-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes.

  2. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  3. Evaluation of a virtual phase charged-coupled device as an imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Liewer, K.; Janesick, J. R.

    1983-01-01

    The X-ray response of an 800 x 800 Texas Instruments virtual phase charge-coupled device (CCD) has been measured in the range 1-8 keV. In the single-photon counting mode, excellent energy resolution (approximately 250 eV FWHM is found for single-pixel Fe-55 X-ray events at a spatial resolution of 15 microns. The detector quantum efficiency for all events is 65% at 2.3 keV (S K line) and approximately 34% at 5.9 keV (Mn K line from Fe-55). The CCD response is linear in energy to a few percent over the 1-8 keV energy range. These results demonstrate that virtual phase CCDs are superior imaging X-ray spectrometers with applications for X-ray astronomy and laboratory plasma research.

  4. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  5. A portable semi-micro-X-ray fluorescence spectrometer for archaeometrical studies

    NASA Astrophysics Data System (ADS)

    Zarkadas, Ch.; Karydas, A. G.

    2004-10-01

    A portable semi-micro-X-ray fluorescence (μ-XRF) spectrometer was developed in the Laboratory for Material Analysis of the N.C.S.R "Demokritos". It utilizes a novel end-window, battery-operated, low-power X-ray tube (40 kV, 40 μA) with Au as anode material, a peltier cooled Si-PIN X-ray detector and associated electronics. The unique design of the probe-like X-ray tube anode allows very close coupling of any optical component to the tube anode, as well as to the sample position. A 240 μm pin-hole collimator was used to form the semi-microbeam. Monte Carlo calculations, as well as several sets of measurements, were performed, in order to determine the optimum geometrical and operational parameters. Preliminary results about the performance of our spectrometer are presented and compared to those reported in the literature for other micro-XRF instruments utilizing various optical elements (pin-holes, poly-capillary lenses) for focusing X-rays. The potential of this semi-micro-XRF spectrometer in the archaeometrical research is also discussed.

  6. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  7. Rest-wavelength Fiducials for the ITER Core Imaging X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Graf, A. T.; Bitter, M.; Hill, K. W.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.

    2012-01-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W64+, which has become the line of choice for the ITER (Latin the way) core imaging x-ray spectrometer. Close-by standards are the Hf L3 line and the Ir L2 line, which bracket the W64+ line by 30 eV; other standards are given by the Ir L1 and L2 lines and the Hf L1 and L2 lines, which bracket the W64+ line by 40 and 160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W64+ line obtained both with an x-ray microcalorimeter and a crystal spectrometer

  8. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  9. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  10. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  11. Hard X-ray bursts from flare behind the solar limb

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10-100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated H alpha flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30-44 keV range, but only one had flux at the 3 sigma level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.

  12. Quantitative measurement of hard x-ray spectra for high intensity laser produced plasma

    SciTech Connect

    Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Hosoda, H.; Azechi, H.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K.; Okano, Y.; Ohshima, S.

    2012-05-15

    X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. Either a visible CCD detector coupled with a CsI phosphor screen or an imaging plate can be chosen, depending on the signal intensities and exposure times. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for specific x-ray line emissions, is derived as a consequence of this work.

  13. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  14. Cooling system for the soft x-ray spectrometer (SXS) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ryuichi; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Tsujimoto, Masahiro; Sugita, Hiroyuki; Sato, Yoichi; Shinozaki, Keisuke; Okamoto, Atsushi; Ohashi, Takaya; Ishisaki, Yoshitaka; Ezoe, Yuichiro; Ishikawa, Kumi; Murakami, Masahide; Kitamoto, Shunji; Murakami, Hiroshi; Tamagawa, Toru; Kawaharada, Madoka; Yamaguchi, Hiroya; Sato, Kosuke; Hoshino, Akio; Kanao, Kenichi; Yoshida, Seiji; Miyaoka, Mikio; Dipirro, Michael; Shirron, Peter; Sneiderman, Gary; Kelley, Richard L.; Porter, F. Scott; Kilbourne, Caroline A.; Crow, John; Mattern, Andrea; Kashani, Ali; McCammon, Dan

    2010-07-01

    The Soft X-ray Spectrometer (SXS) is a cryogenic high resolution X-ray spectrometer onboard the X-ray astronomy satellite ASTRO-H. The detector array is cooled down to 50 mK using a 3-stage adiabatic demagnetization refrigerator (ADR). The cooling chain from room temperature to the ADR heat-sink is composed of superfluid liquid He, a 4He Joule-Thomson cryocooler, and 2-stage Stirling cryocoolers. It is designed to keep 30 L of liquid He for more than 3 years in the nominal case. It is also designed with redundant subsystems throughout from room temperature to the ADR heat-sink, to alleviate failure of a single cryocooler or loss of liquid He.

  15. Pre-pulses: Signature of a trigger process in short (less than 60 secs) solar hard x ray flares

    NASA Technical Reports Server (NTRS)

    Deasi, U.; Orwig, Larry E.

    1989-01-01

    The continuing study of short hard x ray events (less than 60 sec duration) from the Solar Maximum Mission (SMM) Hard X ray Burst Spectrometer (HXRBS) instrument has revealed a unique feature. A well-separated distinctly identifiable, narrow (2 to 6 sec wide) pulse occurs prior to the start of the longer-flare lasting emission activity. Light curves are presented for eight events showing this feature. The pre-pulses show symmetrical rise and fall times. Spectral evolution of the pre-pulses are presented and their evolution compared to that of the main event spectra. It is argued that this feature be the elementary flare burst (de Jager, 1978). These pre-pulses could be a signature of the magnetic reconnection phenomenon discussed by Sturrock et al., (1984).

  16. Studies of hard X-ray source variability using BATSE

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Harmon, B. A.; Pendleton, G. N.; Finger, M. H.; Fishman, G. J.; Meegan, C. A.; Rubin, B. C.; Wilson, R. B.

    1993-01-01

    The BATSE large-area detectors on the Compton Observatory can be used to monitor the variability of X-ray and gamma-ray sources on timescales longer than a few hours using the earth occultation technique. Spectral information is collected in 16 channels covering the energy range from about 25 to 2000 keV. Approximately 20 of the strongest sources are currently being monitored on a daily basis as part of standard BATSE operations. We discuss observations of the Crab Nebula, Cen A, and the Galactic center as examples of the current BATSE capabilities.

  17. Hard x-ray transient emitters as possible counterparts of unidentified mev sources

    NASA Astrophysics Data System (ADS)

    Sguera, Vito; Bird, Antony; Dean, Antony; Ubertini, Pietro; Bazzano, Angela; Bassani, Loredana

    We present preliminary IBIS results on two hard X-ray transient emitters, AX J1841.0-0535 and IGR J20188+3647, which are possible counterparts of two unidentified transient MeV sources. Specifically, IGR J20188+3647 is a fast hard X-ray transient likely associated with a strongly variable unidentified gamma-ray source detected by AGILE (E˜100 MeV) in the Cygnus region. AX J1841.0-0535 is instead a HMXB, with supergiant companion, characterized by fast hard X-ray transient activity and located in the error box of the complex and extended unidentified TeV source HESS J1841-055; we also discuss its likely association with the unidentified variable EGRET source 3EG J1837-0423. If these associations are confirmed, these X-ray transient emitters could be the prototype of a new class of variable galactic MeV sources.

  18. Lapex: A Phoswich balloon experiment for hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Frontera, F.; Basin, A.; Dalfiume, D.; Franceschini, T.; Landini, G.; Morelli, E.; Poulsen, J. M.; Rubini, A.; Silvestri, S.; Costa, E.

    1985-01-01

    Satellite and balloon observations have shown that several classes of celestial objects are hard ( 15 keV) energy band with a sensitivity of approx 10 mCrab has been performed with the UCSD/MIT instrument (A4) on board the HEAO 1 satellite. About 70 X-ray sources were detected, including galactic and extragalactic objects. Hard X-ray emission has been detected in the Galaxy from X-ray pulsars. Extragalactic sources of hard X-ray emission include clusters of galaxies, QSOs, BL Lac objects, Seyfert galaxies. The essential characteristics of the Large Area Phoswich Experiment (LAPEX) for crowded sky field observations are described. It has: (1) a broad energy band of operation (20-300 keV); (2) a 3 sigma sensitivity of about 1 mCrab in 10,000 s of live observing time; and (3) imaging capabilities with an angular resolution of about 20'.

  19. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    SciTech Connect

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-31

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10{sup 5} resolving power.

  20. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    SciTech Connect

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-06-23

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10{sup 5} resolving power.

  1. Preliminary testing of a prototype portable X-ray fluorescence spectrometer

    NASA Technical Reports Server (NTRS)

    Patten, L. L.; Anderson, N. B.; Stevenson, J. J.

    1982-01-01

    A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.

  2. Reionization by Hard Photons. I. X-Rays from the First Star Clusters

    NASA Astrophysics Data System (ADS)

    Oh, S. Peng

    2001-06-01

    Observations of the Lyα forest at z~3 reveal an average metallicity Z~10-2 Zsolar. The high-redshift supernovae that polluted the intergalactic medium also accelerated relativistic electrons. Since the energy density of the cosmic microwave background is proportional to (1+z)4, at high redshift these electrons cool via inverse Compton scattering. Thus, the first star clusters emit X-rays. Unlike stellar UV ionizing photons, these X-rays can escape easily from their host galaxies. This has a number of important physical consequences:1. Owing to their large mean free path, these X-rays can quickly establish a universal ionizing background and partially reionize the universe in a gradual, homogeneous fashion. If X-rays formed the dominant ionizing background, the universe would have more closely resembled a single-phase medium rather than a two-phase medium.2. X-rays can reheat the universe to higher temperatures than possible with UV radiation.3. X-rays counter the tendency of UV radiation to photodissociate H2, an important coolant in the early universe, by promoting gas-phase H2 formation.The X-ray production efficiency is calibrated to local observations of starburst galaxies, which imply that ~10% of the supernova energy is converted to X-rays. While direct detection of sources in X-ray emission is difficult, the presence of relativistic electrons at high redshift and thus a minimal level of X-ray emission may be inferred by synchrotron emission observations with the Square Kilometer Array. These sources may constitute a significant fraction of the unresolved hard X-ray background and can account for both the shape and amplitude of the gamma-ray background. This paper discusses the existence and observability of high-redshift X-ray sources, while a companion paper models the detailed reionization physics and chemistry.

  3. Temporal and spectral characteristics of solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.

    1985-01-01

    Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.

  4. Apollo lunar orbital sciences program alpha and X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of the alpha and X-ray spectrometers which were used on the Apollo 15 and 16 flights is discussed. Specific subjects presented are: (1) lunar program management, (2) scientific and technical approach, (3) major test programs, (4) reliability, quality assurance, and safety, and (5) subcontract management.

  5. A spaceworthy ADR - Recent developments. [Adiabatic Demagnetization Refrigerator for X ray spectrometer

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Aristides T.; Warner, Brent A.; Sansebastian, Marcelino; Kunes, Evan

    1990-01-01

    Recent developments concerning the performance and reliability of a spaceworthy adiabatic demagnetization refrigerator (ADR) for the AXAF X-ray spectrometer are considered. They include a procedure for growing the salt pill around a harness made up of 6080 gold-plated copper wires, a totally modular gas gap heat switch, and a suspension system utilizing Kevlar fibers.

  6. A spaceworthy ADR - Recent developments. [Adiabatic Demagnetization Refrigerator for X ray spectrometer

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Aristides T.; Warner, Brent A.; Sansebastian, Marcelino; Kunes, Evan

    1990-01-01

    Recent developments concerning the performance and reliability of a spaceworthy adiabatic demagnetization refrigerator (ADR) for the AXAF X-ray spectrometer are considered. They include a procedure for growing the salt pill around a harness made up of 6080 gold-plated copper wires, a totally modular gas gap heat switch, and a suspension system utilizing Kevlar fibers.

  7. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  8. Atomic data for the ITER Core Imaging X-ray Spectrometer

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Biedermann, C; Bitter, M; Delgado-Aparicio, L F; Graf, A; Gu, M F; Hill, K W; Barnsley, R

    2012-06-15

    The parameters of the ITER core plasmas will be measured using the Core Imaging X-ray Spectrometer (CIXS), a high-resolution crystal spectrometer focusing on the L-shell spectra of highly ionized tungsten atoms. In order to correctly infer the plasma properties accurate atomic data are required. Here, some aspects of the underlying physics are discussed using experimental data and theoretical predictions from modeling.

  9. Triple-path collector optics for grazing incident x-ray emission spectrometer.

    PubMed

    Tokushima, T; Horikawa, Y; Shin, S

    2011-07-01

    A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra.

  10. Zone Plates for Hard X-Ray FEL Radiation

    SciTech Connect

    Nilsson, D.; Holmberg, A.; Vogt, U.; Sinn, H.

    2011-09-09

    We investigated theoretically the use of zone plates for the focusing of the European X-ray Free Electron Laser (XFEL). In a finite-element simulation the heat load on zone plates placed in the high intensity x-ray beam was simulated for four different zone plate materials: gold, iridium, tungsten, and CVD diamond. The main result of the calculations is that all zone plates remain below the melting temperature throughout a full XFEL pulse train of 3000 pulses. However, if the zone plate is placed in the direct beam it will experience large and rapid temperature fluctuations on the order of 300 K. The situation is relaxed if the optic is placed behind a monochromator and the fluctuations are reduced to around 20 K. Besides heat load, the maximization of the total efficiency of the complete optical system is an important issue. We calculated the efficiency of different zone plates and monochromator systems and found that the final beam size of the XFEL in combination with its monochromaticity will be important parameters.

  11. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Woods, Thomas N.; Caspi, Amir; Mason, James P.

    2016-07-01

    The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft X-ray emission on Earth's ionosphere. This paper focuses on the X-ray spectrometer instrument characterization techniques involving radioactive X-ray sources and the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Spectrometer spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.

  12. INTEGRAL/IBIS observations of a hard X-ray outburst in high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2010-09-01

    Aims: 4U 2206+54 is a wind-fed high-mass X-ray binary with a main-sequence donor star. The nature of its compact object has been recently identified as a slow-pulsation magnetized neutron star. Methods: INTEGRAL/IBIS observations have a long-term hard X-ray monitoring of 4U 2206+54 and detected a hard X-ray outburst around 15 December 2005 combined with the RXTE/ASM data. Results: The hard X-ray outburst had a double-flare feature with a duration of ~2 days. The first flare showed a fast rise and long-term decaying light curve about 15 h with a peak luminosity of ~4 × 1036 erg s-1 from 1.5-12 keV and a hard spectrum (only significantly seen above 5 keV). The second one had the mean hard X-ray luminosity of 1.3 × 1036 erg s-1 from 20-150 keV with a modulation period at ~5550 s which is the pulse period of the neutron star in 4U 2206+54. Its hard X-ray spectrum from 20-300 keV can be fitted by a broken power-law model with the photon indexes Γ1 ~ 2.3, and Γ2 ~ 3.3, and the break energy is Eb ~ 31 keV or by a bremsstrahlung model of kT ~ 23 keV. Conclusions: We suggest that the hard X-ray flare could be induced by suddenly enhanced accreting dense materials from stellar winds hitting the polar cap region of the neutron star. This hard X-ray outburst may be a link to supergiant fast X-ray transients though 4U 2206+54 has a different type of companion.

  13. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    SciTech Connect

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-19

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  14. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-01

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  15. [The Development of Luminescent Nano-probes on Hard X-ray Irradiation].

    PubMed

    Osakada, Yasuko

    2016-01-01

      X-rays are widely used in imaging applications such as diffraction imaging of crystals and medical imaging. In particular, X-ray computed tomography (CT) is a critical tool for clinical and disease diagnostics. The principle of conventional CT is based on X-ray attenuation caused by photoelectric absorption and scattering. In addition to conventional CT, a number of novel methodologies are presently under development, including state-of-the-art instrument technologies and chemical probes to fulfill diagnosis criteria. Among these novel methodologies, we have utilized hard X-ray-excited optical luminescence (hXEOL) as a new methodology to enhance the contrast of the image. Herein, we explored the possibility of hXEOL via iridium-doped polymer nanoparticles and biomolecule-directed metal clusters and propose it as a potential platform for new X-ray imaging.

  16. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  17. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  18. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Thornton, Michael G. (Inventor); Clark, III, Benton C. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  19. Cruise Science with the Compact X-ray Spectrometer (D-CIXS) of SMART-1

    NASA Astrophysics Data System (ADS)

    Vilhu, O.; Muhli, P.; Huovelin, J.; Hakala, P.; Hannikainen, D. C.; Grande, M.; Kellett, B.

    2000-10-01

    The primary objective of the SMART-1 (ESA) mission is to test solar electric propulsion and to orbit the Moon for a nominal period of six months. The science payload includes e.g. the Demonstration of a Compact Imaging X-ray Spectrometer D-CIXS (pronounced Dee-Kicks!). Its main goal is to observe fluorescence X-rays with high spectral and spatial resolution from the Moon's surface. During the escape phase leaving Earth (15 - 17 months), D-CIXS can observe X-ray sources. Solar flares will also be monitored with the X-ray Solar Monitor (XSM). We present a potential cruise science program for selected X-ray binaries and microquasars. The long journey to the Moon provides us with an unique opportunity to study long-term variability of XRBs on a regular basis using X-ray spectroscopy. The accumulated data can be used to probe the geometry and physical properties of accretion disks of about a dozen persistently bright XRBs, and, in particular, to search for and verify the presence and stability of superorbital periods (tilted and warped disks). Further, we present simulations with D-CIXS on the long time scale behaviour of the disk-corona structure in a selected microquasar. This work is supported by the Finnish Technology Development Agency TEKES, Academy of Finland and PPARC of UK.

  20. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  1. Current status of ASTRO-H Hard X-ray Telescopes (HXTs)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Furuzawa, Akihiro; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Itoh, Masayuki; Kosaka, Tatsuro; Maeda, Yoshitomo; Matsumoto, Hironori; Miyazawa, Takuya; Mori, Hideyuki; Nagano, Hosei; Namba, Yoshiharu; Ogasaka, Yasushi; Ogi, Keiji; Okajima, Takashi; Sugita, Satoshi; Suzuki, Yoshio; Tamura, Keisuke; Tawara, Yuzuru; Uesugi, Kentaro; Yamashita, Koujun; Yamauchi, Shigeo

    2012-09-01

    ASTRO-H is an international X-ray mission of ISAS/JAXA, which will be launched in 2014. One of the main characteristics of ASTRO-H is imaging spectroscopy in the hard X-ray band above 10 keV. ASTRO-H will carry two identical Hard X-ray telescopes (HXTs), whose mirror surfaces are coated with Pt/C depth-graded multilayers to enhance hard X-ray effective area up to 80 keV. HXT was designed based on the telescope on board the SUMIT balloon borne experiment. After feasibility study of the HXT design, the FM design has been deteremined. Mass production of the mirror shells at Nagoya University has been going on since August 2010, and production of mirror shells for HXT-1 was completed in March 2012. After the integation of X-ray mirrors for HXT-1, we measured hard X-ray performance of selected mirror shells for HXT-1 at a synchrotron radiation facility, SPring-8 beamline BL20B2. We will perform environment tests and ground calibarations at SPring-8 for HXT-1. In HXT-2, foil production is going on.

  2. The hard X-ray spectrum of X Persei

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Knight, F. K.; Nolan, P. L.; Rothschild, R. E.; Levine, A. M.; Primini, F. A.; Lewin, W. H. G.

    1981-01-01

    Results of observations of 3U 0352 + 30, the source associated with the X Persei system, in the energy range 12-180 keV are reported. The measurements were made on 1978 August 22 with the UCSD/MIT High-Energy X-ray and Low-Energy Gamma-ray Experiment on HEAO 1. Data taken simultaneously in the energy range 2-50 keV indicate that, in addition to a 7 keV thermal bremsstrahlung component, there is a second component of higher energy. It is found that this higher energy component fits a power law of photon index 1.3 (+0.4, -0.5) and is pulsed at the 13.95 minute period of the lower energy component.

  3. Coherent Diffraction Imaging with Hard X-Ray Waveguides

    NASA Astrophysics Data System (ADS)

    Caro, Liberato De; Giannini, Cinzia; Pelliccia, Daniele; Cedola, Alessia; Lagomarsino, Stefano

    2013-01-01

    Coherent X-ray diffraction imaging (CXDI) has been widely applied in the nanoscopic world, offering nanometric-scale imaging of noncrystallographic samples, and permitting the next-generation structural studies on living cells, single virus particles and biomolecules. The use of curved wavefronts in CXDI has caused a tidal wave in the already promising application of this emergent technique. The non-planarity of the wavefront allows to accelerate any iterative phase-retrieval process and to guarantee a reliable and unique solution. Nowadays, successful experiments have been performed with Fresnel zone plates and planar waveguides as optical elements. Here we describe the use of a single planar waveguide as well as two crossed waveguides in the experiments which first showed this optical element a promising tool for producing a line- or point-like coherent source, respectively.

  4. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    SciTech Connect

    Szlachetko, J.; Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A.; Bokhoven, J. A. van; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Jagodzinski, P.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  5. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies.

    PubMed

    Szlachetko, J; Nachtegaal, M; de Boni, E; Willimann, M; Safonova, O; Sa, J; Smolentsev, G; Szlachetko, M; van Bokhoven, J A; Dousse, J-Cl; Hoszowska, J; Kayser, Y; Jagodzinski, P; Bergamaschi, A; Schmitt, B; David, C; Lücke, A

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  6. A Cadmium telluride micro-Spectometers Hard X ray Polarimeter for a balloon borne payload

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Hernanz, Margarita; Ferrando, Philippe; Del Sordo, Stefano; Stephen, John; Laurent, Philippe; Alvarez, Jose M.; Auricchio, Natalia; Budtz-Jorgensen, Carl; Curado da Silva4, Rui M.; Limousin, Olivier; Galvez, Jose L.; Gloster, Paul Colin; Isern, Jordi; Maia, Jorge M.

    2012-07-01

    In the next generation of space instrumentation for hard X-ray astrophysics, the measurement of the polarization status of cosmic sources will be a key observational parameter in order to help understand the various production mechanisms and the source geometry. As polarisation observations are very difficult to perform, new telescopes operating in this energy range should be optimized for this type of measurement. In this perspective, we present the concept of a small high-performance spectrometer designed to operate as a scattering polarimeter between 100 and 500 keV and suitable for a stratospheric balloon-borne payload: CμSP (Cadmium telluride μ-Spectrometers Polarimeter). This instrument will be dedicated to perform an accurate and reliable measurement of the polarization status of the Crab pulsar, i.e. the polarization level and direction. The detector with 3D spatial resolution is made of CZT spectrometers in a highly segmented configuration in order to enhance as much as possible the sensitivity to the linear polarisation of detected photons. We discuss different configurations based on recent development results as well as possible improvements under study. Furthermore we describe a possible baseline design of the payload, which can also be seen as a pathfinder for a high performance detector for the next generation of hard X and soft gamma ray telescopes based on high energy focussing optics (e.g. Laue lenses) and/or advanced Compton instruments. Finally, we present Monte Carlo evaluations of the achievable sensitivity to polarisation as a function of different detector characteristics.

  7. Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II

    NASA Astrophysics Data System (ADS)

    Erko, A.; Zizak, I.

    2009-09-01

    The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10 - 6 mm 3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.

  8. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  9. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  10. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    SciTech Connect

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H. -S.; Thomas, C. A.; Huntington, C.

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  11. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; hide

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  12. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  13. A hard x-ray nanoprobe for scanning and projection nanotomography

    SciTech Connect

    Bleuet, Pierre; Cloetens, Peter; Tucoulou, Remi; Susini, Jean; Gergaud, Patrice; Mariolle, Denis; Chevalier, Nicolas; Chabli, Amal

    2009-05-15

    To fabricate and qualify nanodevices, characterization tools must be developed to provide a large panel of information over spatial scales spanning from the millimeter down to the nanometer. Synchrotron x-ray-based tomography techniques are getting increasing interest since they can provide fully three-dimensional (3D) images of morphology, elemental distribution, and crystallinity of a sample. Here we show that by combining suitable scanning schemes together with high brilliance x-ray nanobeams, such multispectral 3D volumes can be obtained during a single analysis in a very efficient and nondestructive way. We also show that, unlike other techniques, hard x-ray nanotomography allows reconstructing the elemental distribution over a wide range of atomic number and offers truly depth resolution capabilities. The sensitivity, 3D resolution, and complementarity of our approach make hard x-ray nanotomography an essential characterization tool for a large panel of scientific domains.

  14. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.; Israel, M. H.; Kunieda, H.; Lee, K.; Matsumoto, H.; Miyazawa, T.; Okajima, T.; Schnittman, J.; Tamura, K.; Tueller, J.; Krawczynski, H.

    2012-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  15. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Huntington, C. M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H.-S.; Thomas, C. A.

    2016-06-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (>= 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  16. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  17. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  18. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGES

    Doppner, T.; Bachmann, B.; Albert, F.; ...

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  19. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    SciTech Connect

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H. -S.; Thomas, C. A.; Huntington, C.

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  20. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  1. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    SciTech Connect

    Fritz, David

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  2. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited)

    SciTech Connect

    Nilson, P. M. Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Stillman, C. R.; Ivancic, S. T.; Boni, R.; Hassett, J.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.; Hill, K. W.; Gao, L.; Bitter, M.; and others

    2016-11-15

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu K{sub α1} line. To demonstrate the performance of the spectrometer under high-power conditions, K{sub α1,2} emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 10{sup 18} W/cm{sup 2}. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

  3. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    SciTech Connect

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-08-08

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design.

  4. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak.

    PubMed

    Yan, W; Chen, Z Y; Jin, W; Huang, D W; Ding, Y H; Li, J C; Zhang, X Q; Lee, S G; Shi, Y J; Zhuang, G

    2014-11-01

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  5. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    SciTech Connect

    Yan, W.; Chen, Z. Y. Jin, W.; Huang, D. W.; Ding, Y. H.; Li, J. C.; Zhang, X. Q.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-11-15

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  6. Study of high resolution x-ray spectrometer concepts for NIF experiments

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.

    2015-11-01

    Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  7. Measuring Curved Crystal Performance for a High Resolution, Imaging X-ray Spectrometer

    SciTech Connect

    Michael Haugh and Richard Stewart

    2010-06-07

    This paper describes the design, crystal selection, and crystal testing for a vertical Johann spectrometer operating in the 13 keV range to measure ion Doppler broadening in inertial confinement plasmas. The spectrometer is designed to use thin, curved, mica crystals to achieve a resolving power of E/ΔE>2000. A number of natural mica crystals were screened for flatness and X-ray diffraction width to find samples of sufficient perfection for use in the instrument. Procedures to select and mount high quality mica samples are discussed. A diode-type X-ray source coupled to a dual goniometer arrangement was used to measure the crystal reflectivity curve. A procedure was developed for evaluating the goniometer performance using a set of diffraction grade Si crystals. This goniometer system was invaluable for identifying the best original crystals for further use and developing the techniques to select satisfactory curved crystals for the spectrometer.

  8. Low energy soft x-ray emission spectrometer at BL-09A in NewSUBARU

    SciTech Connect

    Niibe, Masahito; Tokushima, Takashi

    2016-07-27

    A compact soft X-ray emission spectrometer for the energy region of 50-600 eV has been designed and constructed for the long undulator beamline BL-09A in the NewSUBARU synchrotron radiation (SR) facility. The optical design of the spectrometer is based on a grazing incidence flat-field spectrometer using a valid line-spacing grating. The average groove density of the grating is 2000 L/mm, and the angle of incidence to the grating is 86.5 deg. The distances from the slit to the grating and from the grating to the CCD are 355 mm and 650 mm, respectively. The energy resolution, E/ΔE, was estimated to be greater than 1000 in the energy range of 50-600 eV. Spectra of K-emission X-rays of several light elements, such as B, C, N, and O, from various samples were successfully obtained.

  9. Current research activities and installation status of the X-ray imaging crystal spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.; Bitter, M.; Hill, K.

    2008-11-01

    An X-ray imaging crystal spectrometer (XICS) for KSTAR utilizing a four-segmented position-sensitive two dimensional (2D) multi-wire proportional counter and time-to-digital converter (TDC) based delay-line readout data acquisition system has been fabricated. The XICS provides spatially and temporally resolved measurements of the ion and electron temperatures, toroidal rotation velocity, impurity charge-state distributions, and ionization equilibrium. The four-segmented 2D detector with supporting electronics successfully demonstrated to improve the photon count-rate capability of the XICS system and a position resolution of the detector showed about 0.35 mm. A spectral resolution of the fabricated spectrometer has been measured using an X-ray tube before installation in the KSTAR tokamak. The current research activities and installation status of the spectrometer will be presented.

  10. The nature of fifty Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-07-01

    We present the nature of 50 unidentified hard X-ray emitting objects detected with Swift-BAT and listed as of unidentified nature in the 54-month Palermo BAT catalogue. We found 45 extragalactic sources: 26 type 1 AGN, 15 type 2 AGN, one type 1 QSO, one starburst galaxy, one X-ray bright optically normal galaxy, and one LINER. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary, and one is an active star.

  11. Upper limits from hard X-ray observations of five BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Bezler, M.; Gruber, D. E.; Rothschild, R. E.

    1988-01-01

    Results are presented from hard X-ray observations of the five brightest X-ray BL Lacertae objects: PKS 0548-322, Mrk 421 (=1101+384), 2A 1219+305, Mrk 501 (=1652+398), and PKS 2155-304. The observations covered the energy range 15-165 keV from August 1977 to December 1978. The results are compared with previous studies.

  12. The development of focusing optics for the hard-X-ray region

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian D.

    2006-01-01

    Grazing-incidence optics has revolutionized soft-X-ray astronomy yet the scientifically important hard-X-ray region has gone relatively unexplored at high sensitivity and fine angular scales. This situation is now changing with several flight-ready balloon-borne focusing telescopes and planned satellite-borne observatories. This review discusses some of the developments in mirror and focal plane technologies that are making these payloads possible.

  13. Upper limits from hard X-ray observations of five BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Bezler, M.; Gruber, D. E.; Rothschild, R. E.

    1988-01-01

    Results are presented from hard X-ray observations of the five brightest X-ray BL Lacertae objects: PKS 0548-322, Mrk 421 (=1101+384), 2A 1219+305, Mrk 501 (=1652+398), and PKS 2155-304. The observations covered the energy range 15-165 keV from August 1977 to December 1978. The results are compared with previous studies.

  14. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

    SciTech Connect

    Daurer, Benedikt, J.

    2016-12-09

    Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, we explore experimental strategies for this idea based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.

  15. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    NASA Astrophysics Data System (ADS)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  16. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.

    PubMed

    Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  17. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  18. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.

    PubMed

    Rasouli, C; Iraji, D; Farahbod, A H; Akhtari, K; Rasouli, H; Modarresi, H; Lamehi, M

    2009-01-01

    Set of experiments has been developed to study existing runaway electrons in "Damavand" tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  19. Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak

    SciTech Connect

    Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M.; Iraji, D.; Akhtari, K.; Modarresi, H.

    2009-01-15

    Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  20. Optimization of phase contrast imaging using hard x rays

    SciTech Connect

    Zabler, S.; Cloetens, P.; Guigay, J.-P.; Baruchel, J.; Schlenker, M.

    2005-07-15

    X ray radiography and tomography are important tools in medicine as well as in life science and materials science. Not long ago an approach called in-line holography based on simple propagation became possible using partially coherent synchrotron beams like the ones available at the European Synchrotron Radiation Facility (ESRF). Theoretical and experimental work by Cloetens et al. [Appl. Phys. Lett 75, 2912 (1999)] have shown that quantitative retrieval of the optical phase, from a set of radiographs taken at different sample-to-detector distances, is feasible. Mathematically speaking we are dealing with a direct method based on linearization in order to solve an inverse nonlinear problem. The phase retrieval can be combined with classical tomography in order to obtain a three-dimensional representation of the object's electron density (holotomography). In order to optimize the image contrast for the numerical phase retrieval process, we have carried out calculations resulting in an optimized choice of value and number of the sample-to-detector distances as well as of the photon energy. These results were then confirmed by experiments on the ESRF long beamline ID19.