Science.gov

Sample records for hardening cement-based systems

  1. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  2. Practical aspects of systems hardening

    SciTech Connect

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system.

  3. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  4. Radiation-hardened microwave system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.

    1990-01-01

    In order to develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe RF multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced MSTS configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high band-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures. 3 refs., 4 figs.

  5. Intelligent systems for induction hardening processes

    SciTech Connect

    Kelley, J.B.; Adkins, D.R.; Robino, C.V.

    1994-12-31

    Induction hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. Current limitations of the process include the lack of closed-loop process control, previously unidentified process and material variations which cause continual adjustment of the process parameters, coil and process development by trial and error, and an instability to monitor coil condition. Improvement of the induction hardening process is limited by an inadequate understanding of process fundamentals and material/process interactions. A multidisciplinary team from Sandia National Laboratories and Delphi Saginaw Steering Systems is investigating the induction hardening process under a Cooperative Research and Development Agreement (CRADA). The application of intelligent control algorithms has led to the development of a closed-loop process controller for the combination of one material, one geometry, single frequency, single shot, process that controls to {plus_minus} 0.1mm. This controller will be demonstrated on the production floor this year. Our approach and the opportunities for expanding the usefulness of this technology will be described.

  6. Influence of slip system hardening assumptions on modeling stress dependence of work hardening

    NASA Astrophysics Data System (ADS)

    Miller, Matthew; Dawson, Paul

    1997-11-01

    Due to the discrete directional nature of processes such as crystallographic slip, the orientation of slip planes relative to a fixed set of loading axes has a direct effect on the magnitude of the external load necessary to induce dislocation motion (yielding). The effect such geometric or textural hardening has on the macroscopic flow stress can be quantified in a polycrystal by the average Taylor factor M¯. Sources of resistance to dislocation motion such as interaction with dislocation structures, precipitates, and grain boundaries, contribute to the elevation of the critically resolved shear strength τcrss. In continuum slip polycrystal formulations, material hardening phenomena are reflected in the slip system hardness equations. Depending on the model, the hardening equations and the mean field assumption can both affect geometric hardening through texture evolution. In this paper, we examine continuum slip models and focus on how the slip system hardening model and the mean field assumption affect the stress-strain response. Texture results are also presented within the context of how the texture affects geometric hardening. We explore the effect of employing slip system hardnesses averaged over different size scales. We first compare a polycrystal simulation employing a single hardness per crystal to one using a latent hardening formulation producing distinct slip system hardnesses. We find little difference between the amplitude of the single hardness and a crystal-average of the latent hardening values. The geometric hardening is different due to the differences in the textures predicted by each model. We also find that due to the high degree of symmetry in an fcc crystal, macroscopic stress-strain predictions using simulations employing crystal- and aggregateaveraged hardnesses are nearly identical. We find this to be true for several different mean field assumptions. An aggregate-averaged hardness may be preferred in light of the difficulty

  7. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  8. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I. )

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities.

  9. Chemical activation in view of MSWI bottom ash recycling in cement-based systems.

    PubMed

    Polettini, A; Pomi, R; Fortuna, E

    2009-03-15

    In the present study, the feasibility of recycling incinerator bottom ash in cementitious systems by means of chemical activation was investigated. Different Na-, K- and Ca-based hydroxides and salts were selected for the experiments on the basis of their recognized effects on activation of typical pozzolanic materials. The evolution of mechanical properties of bottom ash/Portland cement mixtures and the leaching of trace metals from the materials were a matter of major concern. The experiments were arranged according to a full factorial design, which also allowed to derive a predictive model for unconfined compressive strength as affected by bottom ash content as well as activator type and dosage. Among the activators tested, calcium chloride was found to affect mechanical strength far more positively than the other species used, at the same time ensuring low metal release from the material. On the other hand, the use of potassium sulfate was observed to cause a significant increase in metal leaching at pH<12, which was probably associated to the release of contaminants initially immobilized within the structure of ettringite as soon as it converted into monosulfate over time. PMID:18632208

  10. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  11. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures.

  12. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I. ); Chagnot, D.; LeRoy, A. )

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10[sup 7] rads and at elevated ambient temperatures.

  13. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  14. idRHa+ProMod - Rail Hardening Control System

    NASA Astrophysics Data System (ADS)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  15. A study of surfactant interaction in cement-based systems and the role of the surfactant in frost protection

    NASA Astrophysics Data System (ADS)

    Tunstall, Lori Elizabeth

    Air voids are deliberately introduced into concrete to provide resistance against frost damage. However, our ability to control air distribution in both traditional and nontraditional concrete is hindered by the limited amount of research available on air-entraining agent (AEA) interaction with both the solid and solution components of these systems. This thesis seeks to contribute to the information gap in several ways. Using tensiometry, we are able to quantify the adsorption capacity of cement, fly ash, and fly ash carbon for four commercial AEAs. These results indicate that fly ash interference with air entrainment is due to adsorption onto the glassy particles tucked inside carbon, rather than adsorption onto the carbon itself. Again using tensiometry, we show that two of the AEA show a stronger tendency to micellize and to interact with calcium ions than the others, which seems to be linked to the freezing behavior in mortars, since mortars made with these AEA require smaller dosages to achieve similar levels of protection. We evaluate the frost resistance of cement and cement/fly ash mortars by measuring the strain in the body as it is cooled and reheated. All of the mortars show some expansion at temperatures ≥ -42 °C. Many of the cement mortars are able to maintain net compression during this expansion, but none of the fly ash mortars maintain net compression once expansion begins. Frost resistance improves with an increase in AEA dosage, but no correlation is seen between frost resistance and the air void system. Thus, another factor must contribute to frost resistance, which we propose is the microstructure of the shell around the air void. The strain behavior is attributed to ice growth surrounding the void, which can plug the pores in the shell and reduce or eliminate the negative pore pressure induced by the ice inside the air void; the expansion would then result from the unopposed crystallization pressure, but this must be verified by future work

  16. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  17. BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap

    NASA Technical Reports Server (NTRS)

    Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard

    2006-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.

  18. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.

  19. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  20. Radiation hardening of components and systems for nuclear rocket vehicle applications

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Cheever, P. R.

    1972-01-01

    The results of the analysis of the S-2 and S-4B components, although incomplete, indicate that many Saturn 5 components and subsystems, e.g., pumps, valves, etc., can be radiation hardened to meet NRV requirements by material substitution and minor design modifications. Results of these analyses include (1) recommended radiation tolerance limits for over 100 material applications; (2) design data which describes the components of each system; (3) presentation of radiation hardening examples of systems; and (4) designing radiation effects tests to supply data for selecting materials.

  1. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  2. Update on radiation-hardened microcomputers for robotics and teleoperated systems

    SciTech Connect

    Sias, F.R. Jr.; Tulenko, J.S.

    1993-12-31

    Since many programs sponsored by the Department of Defense are being canceled, it is important to select carefully radiation-hardened microprocessors for projects that will mature (or will require continued support) several years in the future. At the present time there are seven candidate 32-bit processors that should be considered for long-range planning for high-performance radiation-hardened computer systems. For Department of Energy applications it is also important to consider efforts at standardization that require the use of the VxWorks operating system and hardware based on the VMEbus. Of the seven processors, one has been delivered and is operating and other systems are scheduled to be delivered late in 1993 or early in 1994. At the present time the Honeywell-developed RH32, the Harris RH-3000 and the Harris RHC-3000 are leading contenders for meeting DOE requirements for a radiation-hardened advanced 32-bit microprocessor. These are all either compatible with or are derivatives of the MIPS R3000 Reduced Instruction Set Computer. It is anticipated that as few as two of the seven radiation-hardened processors will be supported by the space program in the long run.

  3. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fu, Guo-Tao; Sun, Cui-Li; Wang, Yan-Fang; Wei, Cun-Feng; Cao, Da-Quan; Que, Jie-Min; Tang, Xiao; Shi, Rong-Jian; Wei, Long; Yu, Zhong-Qiang

    2011-10-01

    In this paper, we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution. Due to the polychromatic character of the X-ray spectrum used, cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images, causing reduced image quality. In addition, enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect. The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space. Thus, in the CT images with beam hardening artifacts, enhanced ERFs will be extracted to calculate the modulation transfer function (MTF), obtaining a better spatial resolution that deviates from the real value. Reasonable spatial resolution can be obtained after reducing the artifacts. The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  4. Hardening Doppler Global Velocimetry Systems for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; South, Bruce W.

    2004-01-01

    The development of Doppler Global Velocimetry from a laboratory curiosity to a wind tunnel instrumentation system is discussed. This development includes system advancements from a single velocity component to simultaneous three components, and from a steady state to instantaneous measurement. Improvements to system control and stability are discussed along with solutions to real world problems encountered in the wind tunnel. This on-going development program follows the cyclic evolution of understanding the physics of the technology, development of solutions, laboratory and wind tunnel testing, and reevaluation of the physics based on the test results.

  5. Sorption of radionuclides by cement-based barrier materials

    SciTech Connect

    Li, Kefei Pang, Xiaoyun

    2014-11-15

    This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapid and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.

  6. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  7. Immediate impact on the rim zone of cement based materials due to chemical attack

    SciTech Connect

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2015-01-15

    Cement based materials are in their widespread application fields exposed to various aqueous environments. This can lead to serious chemical changes affecting the durability of the materials. In particular in the context of service life prediction a detailed knowledge of the reaction mechanisms is a necessary base for the evaluation of the aggressivity of an aqueous medium and this is deduced commonly from long term investigations. However, these processes start immediately at the material/water-interface, when a cementitious system comes into contact with an aqueous solution, altering here the chemical composition and microstructure. This rim zone represents the first hurdle that has to be overcome by an attacking aqueous solution. Therefore, the properties of the surface near area should be closely associated with the further course of deterioration processes by reactive transport. In this context short term exposure experiments with hardened cement paste over 4 and 48 h have been carried out with demineralized water, hard tap water and different sulfate solutions. In order to investigate immediate changes in the near-surface region, depth profile cuts have been performed on the cement paste samples by means of focused ion beam preparation techniques. A scanning beam of Gallium ions is applied to cut a sharp edge in the cement paste surface, providing insights into the composition and microstructure of the upper ten to hundred microns. Electron microscopic investigations on such a section of the rim zone, together with surface sensitive X-ray diffraction accompanied by a detailed characterization of the bulk composition confirm that the properties of the material/water interface are of relevance for the durability of cement based systems in contact with aqueous solutions. In this manner, focused ion beam investigations constitute auspicious tools to contribute to a more sophisticated understanding of the reaction mechanisms. - Highlights: • The chemical

  8. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  9. 0-3 cement-based piezoelectric ceramic composites

    NASA Astrophysics Data System (ADS)

    Li, Zongjin; Dong, Biqin

    2003-07-01

    In this paper, study on a new 0-3 type cement-based PZT (Lead Zirconate Titanate) composities is presented. Using a normal mixing and compacting method, up to 50vol% PZT ceramic powder could be incorporated into cement-based composites. The behaviors of the composites under different polarizing conditions are investigated. And the piezoelectric properties of cement-based PZT composites are evaluated both theoretically and experimentally. Moreoever, the impedence spectrum of composites is studied to approve the electromechanical coupling behavior. It shows that cement-based PZT composities have some advantage to the polyer-based PZT composites. There is good potential for application of 0-3 type cement-based piezoelectric composites in civil engineering.

  10. Softening and Hardening of a Micro-electro-mechanical systems (MEMS) Oscillator in a Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah; Edmonds, Terrence

    Micro-electro-mechanical systems or MEMS are used in a variety of today's technology and can be modeled using equations for nonlinear damped harmonic oscillators. Mathematical expressions have been formulated to determine resonance frequency shifts as a result of hardening and softening effects in MEMS devices. In this work we experimentally test the previous theoretical analysis of MEMS resonance frequency shifts in the nonlinear regime. Devices were put under low pressure at room temperature and swept through a range of frequencies with varying AC and DC excitation voltages to detect shifts in the resonant frequency. The MEMS device studied in this work exhibits a dominating spring softening effect due to the device's physical make-up. The softening effect becomes very dominant as the AC excitation is increased and the frequency shift of the resonance peak becomes quite significant at these larger excitations. Hardening effects are heavily dependent on mechanical factors that make up the MEMS devices. But they are not present in these MEMS devices. I will present our results along with the theoretical analysis of the Duffing oscillator model. This work was supported by NSF grant DMR-1461019 (REU) and DMR-1205891 (YL).

  11. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  12. A hardened CARS system utilized for temperature measurements in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; Smith, Michael W.; Jarrett, Olin, Jr.; Northam, G. Burton; Cutler, Andrew D.

    1991-01-01

    A coherent anti-Stokes Raman scattering (CARS) system has been hardened for utilization in a NASA Langley supersonic combustion test cell that can obtain temperature cross sections of the flow at three locations. This system is remotely operated and environmentally protected. Measurements were obtained in a scramjet combustor model consisting of a rearward-facing step, followed by an expansion duct. The freestream conditions were Mach 2, with static pressure that ranged from 0.8 to 1.9 atm, and a static temperature of about 800 K. Data for two different flow conditions were obtained that provided a comparison between reacting and nonreacting mixing of injected hydrogen fuel with the combustion-heated supersonic stream.

  13. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.

    2016-04-01

    Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.

  14. A Hardened CARS System Utilized for Temperature Measurements in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; Smith, Michael W.; Jarret, Olin, Jr.; Northam, G. Burton; Cutler, Andrew D.; Taylor, David J.

    1990-01-01

    A coherent anti-Stokes Raman scattering (CARS) system has been hardened for use in a NASA Langley supersonic combustion test cell. The system can obtain temperature cross sections of the flow at three locations. The system is environmentally protected and remotely operated. Measurements were made in a scram-jet combustor model consisting of a rear- ward-facing step, followed by an expansion duct. The duct is nominally 4 feet in length. The free stream conditions were Mach 2, with static pressure which ranged from 0.8 to 1.9 atm, and a static temperature of approximately 800K. Three vertical slots were machined into each side of the duct to allow optical access. The CARS system utilized a planar BOXCARS beam arrangement. This arrangement allowed the laser beams to pass through the vertical slots in the tunnel. Translation stages were utilized to move the focussing volume within the tunnel. These stages allowed complete cross sections to be obtained at each slot location. A fiber optic carried the signal to a remotely located monochrometer and reticon detector.Data for two different flow conditions were taken at each of the three slot locations. These two conditions provided a comparison between reacting and non-reacting mixing of injected hydrogen fuel with the combustion heated supersonic stream.

  15. Deformation and strain hardening of different steels in impact dominated systems

    SciTech Connect

    Rojacz, H.; Mozdzen, G.; Winkelmann, H.

    2014-04-01

    Strain hardening is a common technique to exploit the full potential of materials in diverse applications. Single impact studies were performed to evaluate work hardening effects of different steels, correlated to their deformation at different energy and momentum levels. Three different steels were examined regarding their forming behavior and their tendency to strain harden in impact loading conditions, revealing different intensities of hardness increase, deformation and coinciding microstructural changes. Detailed studies in the deformed zone such as micro hardness mappings were performed to reveal the materials hardness increase in the deformed zones. Additionally high resolution scanning electron microscopy (HRSEM) supported by electron backscatter diffraction (EBSD) was used to determine microstructural changes. Results indicate, that the influence of different velocities/strain rates at constant energy levels cannot be neglected for the strain hardening behavior of steels and provide data for a better control of the hardness increase in impact dominated materials fabrication operations. - Highlights: • Deformation and strain hardening behaviour of three different steels. • Influence of impact energies and momenta on the strain hardening. • Hardness increase and depth controllable by momentum and energy.

  16. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    NASA Technical Reports Server (NTRS)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  17. A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    NASA Technical Reports Server (NTRS)

    Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.

    2007-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.

  18. Piezoelectric and bonding properties of a cement-based composite for dental application

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Liu, Jinsong; Zhu, Jianguo; Ye, Yongmei; Li, Xiang; Chen, Zhiqing

    2008-11-01

    A cement-based piezoelectric composite was introduced as real-time health monitoring systems to dentin. Lithium sodium potassium niobate and zinc polycarboxylate cement were mixed and made piezoelectric under different poling conditions. X-ray diffraction and scanning electron microscope confirmed the component and microstructure of the cement. The bonding force of the composites was compared to that of pure cement by analysis of variance. The optimum poling method was determined and the influencing factors of piezoelectric coefficient were discussed.

  19. Feasibility of using reject fly ash in cement-based stabilization/solidification processes

    SciTech Connect

    Poon, C.S.; Qiao, X.C.; Cheeseman, C.R.; Lin, Z.S.

    2006-01-15

    Stabilization/solidification (s/s) has been routinely used for the final treatment of hazardous wastes prior to land disposal. These processes involve adding one or more solidifying reagents into the waste to transform it into a monolithic solid with improved structural integrity. Cement-based systems with partial replacement by pulverized fuel ash (PFA) have been widely used to minimize leaching of contaminants from hazardous wastes. The finer fraction of PFA ({lt}45 {mu} m, fine fly ash, MA), produced by passing the raw ash through a classifying process is commonly used in s/s processes. Low-grade fly ash is rejected (rFA) from the ash classifying process, and is largely unused due to high carbon content and large particle size but represents a significant proportion of PFA. This paper presents experimental results of a study that has assessed the feasibility of using rFA in the cement-based s/s of a synthetic heavy metal waste. Results were compared to mixes containing fFA. The strength results show that cement-based waste forms with rFA replacement are suitable for disposal at landfill and that the addition of heavy metal sludge can increase the degree of hydration of fly ash and decrease the porosity of samples. Adding Ca(OH){sub 2} and flue gas desulphurization sludge reduces the retarding effect of heavy metals on strength development. The results of the Toxicity Characteristic Leaching Procedure and Dynamic Leach Test show that rFA can be used in cement-based s/s wastes without compromising performance of the product.

  20. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    SciTech Connect

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W. . E-mail: spiess@mpip-mainz.mpg.de; Hergeth, W.D.

    2005-12-15

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.

  1. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  2. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  3. Chromium speciation in hazardous, cement-based waste forms

    NASA Astrophysics Data System (ADS)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  4. Effect of cysteine on lowering protein aggregation and subsequent hardening of whey protein isolate (WPI) protein bars in WPI/buffer model systems.

    PubMed

    Zhu, Dan; Labuza, Theodore P

    2010-07-14

    Whey protein isolate (WPI) bar hardening without and with cysteine (Cys) or N-ethylmaleimide (NEM) was investigated in model systems (WPI/buffer = 6:4, by weight, pH 6.8, a(w) approximately 0.97) in an accelerated shelf-life test (ASLT) at 45 degrees C over a period of up to 35 days. The formation of insoluble aggregates as determined by solubility and the structural rearrangement of WPI protein aggregates as observed by SEM were responsible for the WPI bars' hardening. As corroborated by electrophoresis analysis, both beta-lactoglobulin (beta-lg) and alpha-lactalbumin (alpha-la) were involved in the formation of aggregates via the thiol-disulfide interchange reaction and/or noncovalent interactions. The former force dominated the bar hardening at an earlier stage, whereas the latter force played a role for the long-term hardening. In comparison with the control bar without Cys, the thiol-disulfide interchange reaction was significantly reduced by Cys (WPI/Cys = 0.05), increased by Cys (WPI/Cys = 0.25), and inhibited by NEM (WPI/NEM = 2). Therefore, bar hardening was significantly delayed by Cys (WPI/Cys = 0.05) and NEM but accelerated by Cys (WPI/Cys = 0.25).

  5. Cement-based grouts in geological disposal of radioactive waste

    SciTech Connect

    Onofrei, M.

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  6. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  7. Solidification/stabilization of technetium in cement-based grouts

    SciTech Connect

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.; Oak Ridge Gaseous Diffusion Plant, TN; Oak Ridge National Lab., TN; Oak Ridge Gaseous Diffusion Plant, TN )

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs.

  8. Strategies for reliable second harmonic of nonlinear acoustic wave through cement-based materials

    NASA Astrophysics Data System (ADS)

    Xie, Fan; Guo, Zhiwei; Zhang, Jinwei

    2014-07-01

    The strategies for retrieving reliable nonlinear second harmonic in cement-based materials are proposed in this paper using high-performance test system, piezoelectric transducers with central frequency in MHz, monochromatic tone-burst excitation and robust data process method.The Fundamental and second-order harmonics are measured to retrieve reliable acoustic nonlinearity with the input power level increased from ∼50 V to ∼280 V. About 173 times repeatable measurements are conducted to verify the stability of the experimental system. Specimens with three distinct aggregate sizes are used to measure the acoustic nonlinearity under uniaxial load. The results show a decrease in the measured acoustic nonlinearity at early damage stage, then a slight increase when large cracks coalesce. The rapid increase in acoustic nonlinearity at the final stage indicates the imminent failure. Our results also suggest that the nonlinear ultrasonic method is more sensitive than P-wave velocity for damage evaluation.

  9. Surface and subsurface damage detection in cement-based materials using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Ruan, T.; Poursaee, A.

    2016-04-01

    Cement-based materials are widely used in infrastructure facilities. However, often the degradation of structures leads to the failures earlier than designed service life. Thus, non-destructive testing techniques are urgently needed to evaluate the health information of the structures. In this paper, the implementation of Electrical Resistance Tomography (ERT) was investigated. This low cost, radiation free and easy to perform modality is based on measuring the electrical properties of the material under test and using that to evaluate the existence of defects in that material. It uses a set of boundary potentials and injected current to reconstruct the conductivity distribution. An automatic measurement system was developed and surface damages as well as subsurface damages on mortar specimens were investigated. The reconstructed images were capable to show the presence and the location of the damages.

  10. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented.

  11. An investigation on 1 3 cement based piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Li, Zongjin; Huang, Shifeng; Qin, Lei; Cheng, Xin

    2007-08-01

    1-3 cement based piezoelectric composites which had good compatibility with civil engineering structural materials were fabricated by the cut-fill technique. The piezoelectric, dielectric and ferroelectric properties of the composites were studied. The acoustic impedance of the composites was also investigated. The results show that the piezoelectric strain constant d33 and the dielectric constant ɛ of the composites increase linearly with the increase of PMN volume fraction, while the piezoelectric voltage constant g33 presents the opposite trend. The g33 values of the composites are much higher than those of pure PMN. The remnant polarization Pr and the coercive field Ec of the composite with 27.26% volume fraction of PMN are 4.12 µC cm-2 and 4.01 kV mm-1, respectively. By enhancing the PMN volume fraction, the acoustic impedance of the composites can be tailored to match that of the civil engineering structural material, i.e. concrete. Therefore, this new kind of composite has potential to be used in civil structure health monitoring.

  12. Microwave nondestructive detection of chloride in cement based materials

    SciTech Connect

    Benally, Aaron D.; Bois, Karl J.; Zoughi, Reza; Nowak, Paul S.

    1999-12-02

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  13. Comment on “Human impacts on headwater fluvial systems in the northern and central Andes” (Carol P. Harden, Geomorphology 79, 249 263)

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert; Celleri, Rolando; Cisneros, Felipe; Wyseure, Guido; Deckers, Seppe

    2008-04-01

    The high altitude grasslands of the tropical Andes, known as páramo, are a very fragile and unique ecosystem. Despite increasing human activities, many of its geomorphological and hydrological processes are still very poorly understood. We therefore welcome the paper of Harden [Harden, C.P., 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79, 249-263.] about "Human impacts on headwater fluvial systems in the northern and central Andes" as a valuable contribution to a better understanding of this complex ecosystem. However, in view of the available literature, we would like to complement the interpretation of the presented results and discuss some of the claims made in the paper.

  14. Novel masked mercaptans based on thiolacetic acid/diallyl bisphenol a adducts as hardeners for epoxy adhesive systems

    SciTech Connect

    Lehmann, H.; Zahir, S.A.

    1995-12-01

    Epoxy resin formulations based on these masked mercaptans show adhesive properties equivalent to epoxy resin formulations cured with classical hardeners such as dicyandiamide. In addition the use of the masked mercaptans as an epoxy resin hardener leads to adhesive joints which show outstanding resistance to moisture. Thus Al/Al joints cured with a clinical epoxy formulation based on dicyandiamide as hardener (AV 8) failed in 30 days after exposure to water at (90{degrees}C) for 90 days. We believe that chemi-adsorption at the interface between metal/adhesive/metal plays an important role in giving this outstanding hot water resistance. This paper discusses the synthesis, the mechanism of cure with epoxide resins and the adhesive properties of these novel masked mercaptans.

  15. Improved method and composition for immobilization of waste in cement-based material

    DOEpatents

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  16. Imaging System for the Automated Determination of Microscopical Properties in Hardened Portland Concrete

    SciTech Connect

    Baumgart, C.W.; Cave, S.P.; Linder, K.E.

    2000-03-08

    During this CRADA, Honeywell FM and T and MoDOT personnel designed a unique scanning system (including both hardware and software) that can be used to perform an automated scan and evaluation of a concrete sample. The specific goals of the CRADA were: (1) Develop a combined system integration, image acquisition, and image analysis approach to mimic the manual scanning and evaluation process. Produce a prototype system which can: (a) automate the scanning process to improve its speed and efficiency; (b) reduce operator fatigue; and (c) improve the consistency of the evaluation process. (2) Capture and preserve the baseline knowledge used by the MoDOT experts in performing the evaluation process. At the present time, the evaluation expertise resides in two MoDOT personnel. Automation of the evaluation process will allow that knowledge to be captured, preserved, and used for training purposes. (3) Develop an approach for the image analysis which is flexible and extensible in order to accommodate the inevitable pathologies that arise in the evaluation process. Such pathologies include features such as cracks and fissures, voids filled with paste or debris, and multiple, overlapping voids. FM and T personnel used image processing, pattern recognition, and system integration skills developed for other Department of Energy applications to develop and test a prototype of an automated scanning system for concrete evaluation. MoDOT personnel provided all the basic hardware (microscope, camera, computer-controlled stage, etc.) for the prototype, supported FM and T in the acquisition of image data for software development, and provided their critical expert knowledge of the process of concrete evaluation. This combination of expertise was vital to the successful development of the prototype system.

  17. Tools and Methods for Hardening Communication Security of Energy Delivery Systems

    SciTech Connect

    Gadgil, Shrirang; Lin, Yow-Jian; Ghosh, Abhrajit; Samtani, Sunil; Kang, Jaewon; Siegell, Bruce; Kaul, Vikram; Unger, John; De Bruet, Andre; Martinez, Catherine; Vermeulen, Gerald; Rasche, Galen; Sternfeld, Scott; Berthier, Robin; Bobba, Rakesh; Campbell, Roy; Sanders, Williams; Lin, Yow-Jian

    2014-06-30

    This document summarizes the research and development work the TT Government Solutions (TTGS), d.b.a. Applied Communication Sciences (ACS), team performed for the Department of Energy Cybersecurity for Energy Delivery Systems (CEDS) program. It addresses the challenges in protecting critical grid control and data communication, including the identification of vulnerabilities and deficiencies of communication protocols commonly used in energy delivery systems (e.g., ICCP, DNP3, C37.118, C12.22), as well as the development of effective means to detect and prevent the exploitation of such vulnerabilities and deficiencies. The team consists of • TT Government Solutions (TTGS), a leading provider of communications solutions that has extensive experience in commercializing communications solutions. TTGS also has deep cyber security research and development expertise supporting a variety of customers. • University of Illinois at Urbana-Champaign (UIUC), a leader in the cyber security research for the power grid. UIUC brings unique experience in designing secure communication protocols to this project. • Electric Power Research Institute (EPRI), an independent nonprofit that conducts research and development relating to the generation, delivery and use of electricity for the benefit of the public. EPRI brings to this effort its extensive technical expertise and its utility connections, with members representing more than 90 percent of the electricity generated and delivered in the United States. • DTE Energy, the 10th largest electric utility in the US, which helps ensure that this project focuses on the needs of utilities and is rightly positioned to address the needs of the market place. We designed, developed, and demonstrated a modular and extensible ADEC-G (Agent-based, Distributed, Extensible Cybersecurity for the Grid) system for monitoring/detecting abnormal energy delivery systems (EDS) protocol usage and ensuring security coverage. Our approach consists

  18. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  19. Summary report on the development of a cement-based formula to immobilize Hanford facility waste

    SciTech Connect

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; Friedman, H.A.; Loflin, J.A.; Mattus, A.J.; Morgan, I.L.; Tallent, O.K.; West, G.A.

    1987-09-01

    This report recommends a cement-based grout formula to immobilize Hanford Facility Waste in the Transportable Grout Facility (TGF). Supporting data confirming compliance with all TGF performance criteria are presented. 9 refs., 24 figs., 50 tabs.

  20. Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Taotao; Shi, Zhifei

    2011-08-01

    An analytical model of the dynamic properties of the 2-2 cement based piezoelectric transducer is proposed using the piezoelectric effect, based on Li's experiments. Then, the exact solutions are obtained by using the displacement method; comparison and discussion with Li's experimental results in related literature are also given and good agreement is found, which could be used for better understanding of Li's experiment. A theoretical method for applying the cement based piezoelectric composite in civil engineering is provided.

  1. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  2. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... Hardening of the arteries often occurs with aging. As you grow older, ... narrows your arteries and makes them stiffer. These changes ...

  3. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  4. Cold Hardening in Citrus Stems

    PubMed Central

    Yelenosky, George

    1975-01-01

    Stem cold hardening developed to different levels in citrus types tested in controlled environments. Exotherms indicated ice spread was more uniform and rapid in unhardened than in cold-hardened stems. All attempts to inhibit the functioning of citrus leaves resulted in less cold hardening in the stems. Citrus leaves contribute a major portion of cold hardening in the wood. PMID:16659340

  5. Simulation of chloride penetration in cement-based materials

    SciTech Connect

    Masi, M.; Colella, D.; Radaelli, G.; Bertolini, L.

    1997-10-01

    Corrosion of reinforcement in concrete can initiate when chloride ion concentration in contact with steel bars exceeds a threshold value. It is then of crucial importance to describe Cl{sup {minus}} penetration through models based on fundamental physico-chemical relationships avoiding the use of empirical parameters. Here, the multicomponent diffusional process was simulated by means of the percolation concepts. Furthermore, the adsorption of chloride within hardened cement paste was also considered. General relationships were derived to calculate binding coefficients and effective diffusivity of ions as a function of technological concrete parameters. The model explains experimental trends in a wide range of operating conditions (e.g., with and without superimposed current) both for cement paste and concrete.

  6. Research on a 0-3 cement-based piezoelectric sensor with excellent mechanical-electrical response and good durability

    NASA Astrophysics Data System (ADS)

    Wang, F. Z.; Wang, H.; Sun, H. J.; Hu, S. G.

    2014-04-01

    In this study, a novel cement-based piezoelectric sensor was prepared with 0-3 cement-based piezoelectric composites as the sensing element and a mixture consisting of epoxy resin and cement as the encapsulation part, and its mechanical-electrical response measurement was carried out by dynamic load. To realize effective load transmission from the structural material to the sensing element, and to better evaluate and improve the sensor durability, the optimum encapsulation system and sensing element location were explored, and the durability of the cement-based piezoelectric sensor under complicated conditions was studied in detail. Results indicated that the sensor possessed excellent linear performance, with the regression confidence exceeding 0.99 in a large range of 0.31-2.34 MPa, when the ratio of cement to epoxy resin was 3:1 and the sensing element was put in a position near the underside of the encapsulation material. The phase shift between the output voltage and input load was nearly zero and the sensor could respond to pulse load quickly. Environmental conditions including fatigue load and water had a negligible effect on the linearity and sensitivity (slope of fitting line) of the sensor, and in the intended temperature range of 0-40 °C the sensor showed good linearity, almost independent of temperature; nevertheless, the output voltage increased with increasing temperature and the sensitivity reached 1811 mV MPa-1 at 40 °C. Generally, the sensor prepared in this research had excellent mechanical-electrical response and good durability.

  7. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  8. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  9. Nondestructive evaluation of the mechanical behavior of cement-based nanocomposites under bending

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Dalla, P. T.; Exarchos, D. A.; Dassios, K.; Matikas, T. E.

    2015-03-01

    The present paper describes the acoustic emission (AE) behavior and the mechanical properties of Portlant cement-based mortars due to the addition of multi wall carbon nanotubes (MWCNTs). This research aims in investigating the crack growth behavior of modified cement mortar with MWCNTs that act as nanoreinforcement during an unaxial compression test using acoustic emission technique. MWCNTs were used in various concentrations inside the matrix. Density, sound's speed, modulus, bending strength, compression strength were studied for five different concentrations. The adding and the increase of MWCNTs concentrations upper to 0.2 % by weight of cement not improving the mechanical properties of cement-based mortar but increase the acoustic emission activity.

  10. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  11. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  12. Cement-based piezoelectric ceramic composites for sensor applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Dong, Biqin

    The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.

  13. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  14. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  15. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  16. Bond and fatigue characteristics of high-strength cement-based composites

    SciTech Connect

    Chimamphant, S.D.

    1989-01-01

    The results of a series of tests on a variety of high strength cementitious composites yield a model from which an empirical equation of general normalized pull-out stress vs. pull-out displacement relationship is developed. A new variable named the Brittleness Index and is defined and used in the proposed equation. Additionally, the concept of maximum strain is used to predict the fatigue life of high strength concrete. Three sizes of deformed bars and two types of steel fiber with four different volume fractions were used to observe bond-slip and pull-out characteristics of high strength concrete. The results indicate that the maximum slippage of deformed bars is only about 10% of that observed in normal concrete. Consequently, the required development length may have to be longer for high strength concrete members as compared to normal concrete. For the fatigue characteristics study, standard 3 x 6 in. cylinders were tested at the rates of 6 and 12 Hz. in a closed-loop load-controlled system. The results show that as the compressive strength of the composites increases from 4000 to 11000 psi., the fatigue strength increases by 17 percents. The rate of loading does not significantly affect the S-N relationship, fatigue strength and fatigue limit of the high strength cement-based composites. The S-N curves of high strength concrete shows a faster decay rate than those of normal concrete. The maximum strain at any cycle under cyclic loading is always less than the maximum strain at failure under monotonic loading. Also observed is that the maximum strain-cycle relationship is linear. These results indicate that the design code for flexure of normal concrete cannot be applied to high strength concrete.

  17. Hardening treatment of friction surfaces of ball journal bearings

    NASA Astrophysics Data System (ADS)

    Gorlenko, A. O.; Davidov, S. V.

    2016-04-01

    The article presents the technology of finishing plasma hardening by the application of the multi-layer nanocoating Si-O-C-N system to harden the friction surfaces of the ball journal bearings. The authors of the paper have studied the applied wear-resistant anti-friction coating tribological characteristics, which determine the increase in wear resistance of the ball journal bearings.

  18. Thermo-hydro-mechanical modeling and analysis of cement-based energy storages for small-scale dwellings

    NASA Astrophysics Data System (ADS)

    Hailemariam, Henok; Wuttke, Frank

    2016-04-01

    One of the common technologies for balancing the energy demand and supply in district heating, domestic hot water production, thermal power plants and thermal process industries in general is thermal energy storage. Thermal energy storage, in particular sensible heat storage as compared to latent heat storage and thermo-chemical storage, has recently gained much interest in the renewable energy storage sector due to its comparatively low cost and technical development. Sensible heat storages work on the principle of storing thermal energy by raising or lowering the temperature of liquid (commonly water) or solid media, and do not involve material phase change or conversion of thermal energy by chemical reactions or adsorption processes as in latent heat and thermo-chemical storages, respectively. In this study, the coupled thermo-hydro-mechanical behaviour of a cement-based thermal energy storage system for domestic applications has been modeled in both saturated as well as unsaturated conditions using the Finite Element method along with an extensive experimental analysis program for parameter detection. For this purpose, a prototype model is used with three well-known thermal energy storage materials, and the temperature and heat distribution of the system were investigated under specific thermo-hydro-mechanical conditions. Thermal energy samples with controlled water to solids ratio and stored in water for up to 28 days were used for the experimental program. The determination of parameters included: thermal conductivity, specific heat capacity and linear coefficient of thermal expansion (CTE) using a transient line-source measurement technique as well as a steady-state thermal conductivity and expansion meter; mechanical strength parameters such as uni-axial strength, young's modulus of elasticity, poisson's ratio and shear parameters using uniaxial, oedometer and triaxial tests; and hydraulic properties such as hydraulic permeability or conductivity under

  19. Grain boundary hardening and triple junction hardening in polycrystalline molybdenum

    SciTech Connect

    Kobayashi, Shigeaki . E-mail: skoba@ashitech.ac.jp; Tsurekawa, Sadahiro; Watanabe, Tadao

    2005-02-01

    The grain boundary and triple junction hardenings in molybdenum with different carbon content were studied in connection with the character and the connectivity of grain boundaries at triple junctions by the micro-indentation test. The triple junction hardening is smaller at the junctions composed of low-angle and {sigma} boundaries than at the junctions composed of random boundaries. This difference in the hardening depending on the grain boundary connectivity becomes more significant with a decrease in carbon content in molybdenum.

  20. Induction Hardening vs Conventional Hardening of a Heat Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Leitner, Harald; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2014-11-01

    This study focuses on the comparison of mechanical and microstructural properties of induction and conventionally heat-treated steels in the as-quenched state. The investigated steel is a heat treatable 42CrMo4 steel. In order to characterize the mechanical properties, tensile tests and Vickers hardness tests are performed. The yield strength and hardness of the induction hardened condition turn out to be slightly lower compared to the conventionally hardened one. Light optical and scanning electron microscopy show no differences in the martensitic structure of the induction and conventionally hardened condition. However, electron back scatter diffraction investigations reveal a smaller block size within the conventionally hardened specimen. Carbon mappings by electron probe micro analysis show a homogenous carbon concentration in the conventionally hardened and a non-uniform distribution in the induction-hardened case. The segregation of the carbon exhibits line-type features in the induction hardened condition, lowering the total amount of carbon in the matrix. Therefore, the carbon content in the matrix of the conventionally hardened condition is slightly higher, which causes a smaller block size. The smaller block size is believed to be the reason for the higher hardness and yield strength.

  1. Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials.

    PubMed

    Wang, Xinjun; Chen, Jiding; Kong, Yaping; Shi, Xianming

    2014-10-01

    Cement-based and alternative cementitious materials were tested in the laboratory for their capability of removing phosphate from wastewater. The results demonstrated that both Langmuir and Freundlich adsorption isotherms were suitable for describing the adsorption characteristics of these materials. Among the four types of filter media tested, the cement-based mortar A has the highest value of maximum adsorption (30.96 mg g(-1)). The P-bonding energy (KL) and adsorption capacity (K) exhibited a positive correlation with the total content of Al2O3 and Fe2O3 in each mortar. The maximum amount of P adsorbed (Qm) and adsorption intensity (1/n) exhibited a positive correlation with the CaO content in each mortar. For three of them, the P-removal rates were in excess of 94 percent for phosphorus concentrations ranging from 20 to 1000 mg L(-1). The underlying mechanisms were examined using field emission scanning microscopy (FESEM), coupled with energy-dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). The results reveal that the removal of phosphate predominantly followed a precipitation mechanism in addition to weak physical interactions between the surface of adsorbent filter media and the metallic salts of phosphate. The use of cement-based or alternative cementitious materials in the form of ground powder shows great promise for developing a cost-effective and environmentally sustainable technology for P-sequestration and for wastewater treatment.

  2. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  3. Piezoelectric cement-based 1-3 composites

    NASA Astrophysics Data System (ADS)

    Lam, K. H.; Chan, H. L. W.

    2005-11-01

    This paper presents a new functional material for smart structure applications. Piezoelectric PZT/cement 1-3 composites that have good compatibility with civil engineering structural materials have been studied. The composites with different volume fractions of PZT ranging from 0.25 to 0.77 were fabricated by the dice-and-fill method. It was found that the 1-3 composites have good piezoelectric properties that agreed quite well with theoretical modeling. The thickness electromechanical coupling coefficient could reach 0.55 in the composite with a ceramic volume fraction of 0.25. Those composites have potential to be used as sensors in civil structure health monitoring systems.

  4. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based

  5. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  6. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces

    NASA Astrophysics Data System (ADS)

    Lin, Zhong; Li, Victor C.

    1997-05-01

    A new crack bridging model accounting for slip-hardening interfacial shear stress is derived for randomly oriented discontinuous flexible fibers in cement-based composites, based on a micromechanics analysis of single fiber pull-out. The complete composite bridging stress versus crack opening curve ( σB - δ relation) and associated fracture energy are theoretically determined. A micromechanics-based criterion which governs the existence of post-debonding rising branch of the σB - δ curve is obtained. Implications of the present model on various composite properties, including uniaxial tensile strength, flexural strength, ductility and critical fiber volume fraction for strain-hardening, are discussed together with an example of a 2% polyethylene fiber reinforced cement composite. It is found that the present model can very well describe the slip-hardening behavior during fiber pull-out which originates from fiber surface abrasion at fiber/matrix interface. In addition, the new model predicts accurately the enhanced toughness in terms of both ultimate tensile strain and fracture energy of the composite and resolves the deficiency of constant interface shear stress model in predicting the crack opening and ultimate strain, which are critical for material design of pseudo strain hardening engineered cementitious composites (ECCs).

  7. CNT-cement based composites: fabrication, self-sensing properties, and prospective applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Song, Yi; Fabbrocino, Giovanni; Schulz, Mark J.; Shanov, Vesselin

    2013-08-01

    Degradation phenomena can affect civil structures over their lifespan. The recent advances in nanotechnology and sensing allow to monitor the behaviour of a structure, assess its performance and identify damage at an early stage. Thus, maintenance actions can be carried out in a timely manner, improving structural reliability and safety. Structural Health Monitoring (SHM) is traditionally performed at a global level, with a limited number of sensors distributed over a relatively large area of a structure. Thus, only major damage conditions are detectable. Dense sensor networks and innovative structural neural systems, reproducing the structure and the function of the human nervous system, may overcome this drawback of current SHM systems. Miniaturization and embedment are key requirements for successful implementation of structural neural systems. Carbon nanotubes (CNTs) can play an attractive role in the development of embedded sensors and smart structural materials, since they can provide to traditional cement based materials both structural capability and measurable response to applied stresses, strains, cracks and other flaws. In this paper investigations about CNT/cement composites and their self-sensing capabilities are summarized and critically revised. The analysis of available experimental results and theoretical developments provides useful design criteria for the fabrication of CNT/cement composites optimized for SHM applications in civil engineering. Specific attention is paid to the opportunities provided by new RF plasma technologies for the functionalization of CNTs in view of sensor development and SHM applications.

  8. Single event upset hardening techniques

    SciTech Connect

    Weaver, H.T.; Corbett, W.T.

    1990-01-01

    Integrated circuit logic states are maintained by virtue of specific transistor combinations being either on'' (conducting) or off'' (nonconducting). High energy ion strikes on the microcircuit generate photocurrents whose primary detrimental effect is to make off'' transistors appear on,'' confusing the logic state and leading to single event upset (SEU). Protection against these soft errors is accomplished using either technology or circuit techniques, actions that generally impact yield and performance relative to unhardened circuits. We describe, and using circuit simulations analyze, a technique for hardening latches which requires combinations of technology and circuit modifications, but which provides SEU immunity without loss of speed. Specifically, a single logic state is hardened against SEU using technology methods and the information concerning valid states is then used to simplify hardened circuit design. The technique emphasizes some basic hardening concepts, ideas for which will be reviewed. 3 refs., 2 figs.

  9. Development of pulsed gas discharge lasers for shock hardening

    NASA Astrophysics Data System (ADS)

    Hintz, Gerd; Tkotz, R.; Keusch, C.; Negendanck, Matthias; Christiansen, Jens; Hoffmann, D. H. H.

    1996-08-01

    Shock hardening of metals (e.g. Ti, stainless steel) by pulsed lasers offers the possibility of large hardening depth (several millimeters) without serious damage to the surface of the workpiece. Previous investigations for shock hardening have mainly been performed with high power solid state lasers. The adaptation of commercial, high power gas discharge lasers to the shock hardening process could make this process relevant for industrial applications, as high repetition rates may be used. Two different laser systems have been investigated: a TEA carbon-dioxide laser and a XeCl laser. Both systems have pulse energies of some joule, a pulse length of several ten nanoseconds, and pulse repetition rates of up to 10 Hertz. The divergence of the beam was minimized to improve focusing properties. Systematic measurements of the laser induced pressure by means of piezo probes have been performed. An enhancement of the hardness of illuminated Ti(RT15) targets has been found and is reported.

  10. EVALUATION OF ORGANIC VAPOR RELEASE FROM CEMENT-BASED WASTE FORMS

    SciTech Connect

    Cozzi, A; Jack Zamecnik, J; Russell Eibling, R

    2006-09-27

    A cement based waste form was evaluated to determine the rates at which various organics were released during heating caused by the cementitious heat-of-hydration reaction. Saltstone is a cement-based waste form for the disposal of low-level salt solution. Samples were prepared with either Isopar{reg_sign} L, a long straight chained hydrocarbon, or (Cs,K) tetraphenylborate, a solid that, upon heating, decomposes to benzene and other aromatic compounds. The saltstone samples were heated over a range of temperatures. Periodically, sample headspaces were purged and the organic constituents were captured on carbon beds and analyzed. Isopar{reg_sign} L was released from the saltstone in a direct relationship to temperature. An equation was developed to correlate the release rate of Isopar{reg_sign} L from the saltstone to the temperature at which the samples were cured. The release of benzene was more complex and relied on both the decomposition of the tetraphenylborate as well as the transport of the manufactured benzene through the curing saltstone. Additional testing with saltstone prepared with different surface area/volume also was performed.

  11. A micromechanical study of drying and carbonation effects in cement-based materials

    NASA Astrophysics Data System (ADS)

    Shen, W. Q.; Shao, J. F.; Kondo, D.

    2015-01-01

    This paper is devoted to a micromechanical study of mechanical properties of cement-based materials by taking into account effects of water saturation degree and carbonation process. To this end, the cement-based materials are considered as a composite material constituted with a cement matrix and aggregates (inclusions). Further, the cement matrix is seen as a porous medium with a solid phase (CSH) and pores. Using a two-step homogenization procedure, a closed-form micromechanical model is first formulated to describe the basic mechanical behavior of materials. This model is then extended to partially saturated materials in order to account for the effects of water saturation degree on the mechanical properties. Finally, considering the solid phase change and porosity variation related to the carbonation process, the micromechanical model is coupled with the chemical reaction and is able to describe the consequences of carbonation on the macroscopic mechanical properties of material. Some comparisons between numerical results and experimental data are presented.

  12. Quantification of uncertainty of experimental measurement in leaching test on cement-based materials.

    PubMed

    Coutand, M; Cyr, M; Clastres, P

    2011-10-01

    When mineral wastes are reused in construction materials, a current practice is to evaluate their environmental impact using standard leaching test. However, due to the uncertainty of the measurement, it is usually quite difficult to estimate the pollutant potential compared to other materials or threshold limits. The aim of this paper is to give a quantitative evaluation of the uncertainty of leachate concentrations of cement-based materials, as a function of the number of test performed. The relative standard deviations and relative confidence intervals are determined using experimental data in order to give a global evaluation of the uncertainty of leachate concentrations (determination of total relative standard deviation). Various combinations were realized in order to point out the origin of large dispersion of the results (determination of relative standard deviation linked to analytical measured and to leaching procedure), generalisation was suggested and the results were compared to literature. An actual example was given about the introduction of residue (meat and bone meal bottom ash--MBM-BA) in mortar, leaching tests were carried out on various samples with and without residue MBM-BA. In conclusion large dispersion were observed and mainly due to heterogeneity of materials. So heightened attention needed to analyse leaching result on cement-based materials and further more other tests (e.g. ecotoxicology) should be performed to evaluate the environmental effect of these materials.

  13. Strain Hardening in Bidisperse Polymer Glasses

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Hoy, Robert S.

    2009-03-01

    The connections between glassy and rubbery strain hardening have been a matter of great controversy in recent years. Recent experiments and our earlier simulations have suggested that the hardening modulus GR is proportional to the entanglement density in glasses, as it is to the crosslink density in rubbers. In this work we present more extensive studies of strain hardening in bidisperse glasses and its relation to microscopic conformational changes. The mixtures contain chains of very different lengths but equivalent chemistry. GR does not scale simply with the entanglement density. Instead it obeys a simple mixing rule, with GR equal to the volume fraction weighted average of the moduli of the two pure components. As in recent studies of monodisperse systems (R. S. Hoy and M. O. Robbins, Phys. Rev. Lett. 99, 117801 (2007)), the stress is directly correlated to the degree of chain orientation. Chains of a given length undergo almost the same degree of alignment in pure systems and mixtures, explaining why the simple mixing rule applies. The connection to recent analytic theories by K. Chen and K. S. Schweizer (PRL, in press) will be discussed.

  14. Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results

    SciTech Connect

    Dauzeres, A.; Le Bescop, P.; Sardini, P.; Cau Dit Coumes, C.

    2010-08-15

    Within the concepts under study for the geological disposal of intermediate-level long-lived waste, cement-based materials are considered as candidate materials. The clayey surrounding rock and the cement-based material being considered differ greatly in their porewater composition. Experiments are conducted on the diffusion of solutes constituting those porewaters in a confined clay/cement composite system using cells. The test temperature was set at 25 {sup o}C and 2, 6 and 12 months. Results supply new information: carbonation is low and not clog the interface. Such absence of carbonation allows for the diffusion of aqueous species and, thus, for the degradation of the cement paste and the illitisation of illite/smectite interstratifications. The cement material is subjected to a decalcification: portlandite dissolution and a CaO/SiO{sub 2} reduction in the calcium silicate hydrate. The sulphate in diffusion induces non-destructive ettringite precipitation in the largest pores. After 12 months, about 800 {mu}m of cement material is concerned by decalcification.

  15. Assessing the potential of ToF-SIMS as a complementary approach to investigate cement-based materials — Applications related to alkali–silica reaction

    SciTech Connect

    Bernard, Laetitia; Leemann, Andreas

    2015-02-15

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces and chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.

  16. An evaluation of cement-based waste forms using the results of approximately two years of dynamic leaching

    SciTech Connect

    Cote, P.L.; Constable, T.W.; Moreira, A.

    1987-01-01

    The leachability of cement-based waste forms was assessed using a dynamic leaching test, in which solidified waste cubes are immersed in distilled water, and the water renewed at variable time intervals which were calculated assuming bulk diffusion controlled leaching. The four waste forms assessed were produced by solidifying a synthetic sludge containing arsenic, cadmium, chromium and lead, using additives of lime and fly ash, fly ash and cement, bentonite and cement, and cement and soluble silicates. The cumulative fractions of cadmium, chromium and lead leached were smaller than 1% for all the waste forms studied. Arsenic leached more readily, especially from the soluble silicates-cement waste form, attaining 15% after 665 days. The pH of the leachates remained alkaline throughout the testing period. For cadmium, chromium and lead, the rate of leaching was explained by diffusion of the soluble fraction through the pore system of the waste form matrix. For arsenic, the rate of leaching was linear, and it is postulated that the rate was limited by the mobilization of the arsenite ion resulting from carbonation of basic calcium arsenite.

  17. Stabilization of geothermal residues by encapsulation in portland cement-based composites

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1988-05-01

    Presented are the results from a laboratory test program conducted to identify and evaluate materials for converting hazardous geothermal residues to a non-hazardous and potentially usable form. Results indicate that the residues can be effectively incorporated, as a fine aggregate, into portland cement-based composites. Five geothermal residues obtained from sites in the Salton Sea area of California were evaluated. Three of these were classified as hazardous. After mixing with cement, the leach rates were all well below specified levels. Although structural-grade composites were produced, gradual reductions in properties with time up to 1 yr were noted. This indicates ongoing chemical reactions between the cement paste and the constituents of the residues. Further research is necessary before the composites could be considered for use in structural applications. 3 refs., 8 tabs.

  18. Degradation of recycled PET fibers in Portland cement-based materials

    SciTech Connect

    Silva, D.A. . E-mail: denise@ecv.ufsc.br; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gomez, L.A.; Ribeiro, J.L.D.

    2005-09-01

    In order to investigate the durability of recycled PET fibers embedded in cement-based materials, fiber-reinforced mortar specimens were tested until 164 days after mixing. Compressive, tensile, and flexural strengths, elasticity modulus, and toughness of the specimens were determined. The mortars were also analyzed by SEM. The results have shown that PET fibers have no significant influence on mortars strengths and elasticity modulus. However, the toughness indexes I {sub 5}, I {sub 10}, and I {sub 20} decreased with time due to the degradation of PET fibers by alkaline hydrolysis when embedded in the cement matrix. Fourier transform infrared spectroscopy (FT-IR) and SEM analysis of PET fibers immersed and kept for 150 days in alkaline solutions supported the conclusions.

  19. Limit Analysis of Geometrically Hardening Composite Steel-Concrete Systems / Stany Graniczne Geometrycznie Wzmacniających Się Konstrukcji Zespolonych

    NASA Astrophysics Data System (ADS)

    Alawdin, Piotr; Urbańska, Krystyna

    2015-03-01

    The paper considers some results of creating load-carrying composite systems that have uprated strength, rigidity and safety, and therefore are called geometrically (self-) hardening systems. The optimization mathematic models of structures as discrete mechanical systems withstanding dead load, monotonic or low cyclic static and kinematic actions are proposed. To find limit parameters of these actions the extreme energetic principle is suggested what result in the bilevel mathematic programming problem statement. The limit parameters of load actions are found on the first level of optimization. On the second level the power of the constant load with equilibrium preloading is maximized and/or system cost is minimized. The examples of using the proposed methods are presented and geometrically hardening composite steel-concrete system are taken into account. W pracy przedstawiono sposoby projektowania konstrukcji, które ze względu na swoją geometrię oraz topologię posiadają podwyższoną nośność, sztywność i bezpieczeństwo. Systemy takie nazwano geometrycznie (samo-) wzmacniającymi się. Zaproponowano optymalizacyjne modele matematyczne konstrukcji jako dyskretne systemy mechaniczne będące pod obciążeniem stałym, zmiennym monotoniczne lub niskocyklowym, statycznym lub kinematycznym. Dla znalezienia granicznych parametrów obciążeń wprowadzona została ekstremalna zasada energetyczna, przedstawiona jako problem dwupoziomowego programowania matematycznego. Graniczne parametry obciążeń szukane są na pierwszym poziomie optymalizacji. Na drugim poziomie minimalizowany jest koszt systemu i/lub maksymalizowana jest moc stałego równoważącego obciążenia z dociążeniem. Ponadto w pracy przeanalizowano numerycznie i analitycznie zachowanie konstrukcji geometrycznie wzmacniających się na przykładzie konstrukcji zespolonych stalowobetonowych. Pierwszy przykład dotyczy konstrukcji belkowo-prętowej z podciągiem, belkę stanowi stalowy dwuteownik

  20. Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials

    NASA Astrophysics Data System (ADS)

    Eiras, Jesus N.; Kundu, Tribikram; Popovics, John S.; Monzó, José; Borrachero, María V.; Payá, Jordi

    2016-01-01

    Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.

  1. Brownfield reuse of dredged New York Harbor sediment by cement-based solidification/stabilization

    SciTech Connect

    Loest, K.; Wilk, C.M.

    1998-12-31

    Newly effective federal regulations restrict the ocean disposal of sediments dredged from the harbors of New York and Newark. The New York Port Authority is faced with a critical situation: find land-based disposal/uses for 10`s of millions cubic yards of sediments or lose standing as a commercial port for ocean-going ships. One of the technologies now being employed to manage the sediments is portland cement-based solidification/stabilization (S/S) treatment. At least 4 million cubic yards of the sediments will undergo cement-based S/S treatment. This treatment will immobilize heavy metals, dioxin, PCBs and other organic contaminants in the sediment. The treatment changes the sediment from a environmental liability into a valuable structural fill. This structural fill is being used at two properties. The first property is an old municipal landfill in Port Newark, New Jersey. The treated sediments are being used as structural fill to cover about 20 acres of the landfill. This will allow planned redevelopment of the landfill property into a shopping mall. The second property called the Seaboard site, was the location of a coal gasification facility and later a wood preservation facility. This 160-acre property has been designated for brownfield redevelopment. Over 4 million cubic yards of treated sediments will eventually cover this site. Portland cement is the selected S/S binding reagent. Nearly 500,000 tons of cement will eventually be used to treat the sediments. Cement was selected for its ability to (a) change the peanut butter-like consistency of the sediments into a structural material and (b) to physically and chemically immobilize hazardous constituents in the sediment.

  2. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  3. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of…

  4. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  5. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  6. Solution hardening and strain hardening at elevated temperatures

    SciTech Connect

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures.

  7. Kinematic hardening in creep of Zircaloy

    NASA Astrophysics Data System (ADS)

    Sedláček, Radan; Deuble, Dietmar

    2016-10-01

    Results of biaxial creep tests with stress changes on Zircaloy-2 tube samples are presented. A Hollomon-type viscoplastic strain hardening model is extended by the Armstrong-Frederic nonlinear kinematic hardening law, resulting in a mixed (i.e. isotropic and kinematic) strain hardening model. The creep tests with stress changes and similar tests published in the literature are simulated by the models. It is shown that introduction of the kinematic strain hardening in the viscoplastic strain hardening model is sufficient to describe the creep transients following stress drops, stress reversals and stress removals.

  8. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  9. Cement Based Batteries and their Potential for Use in Low Power Operations

    NASA Astrophysics Data System (ADS)

    Byrne, A.; Holmes, N.; Norton, B.

    2015-11-01

    This paper presents the development of an innovative cement-electrolyte battery for low power operations such as cathodic protection of reinforced concrete. A battery design was refined by altering different constituents and examining the open circuit voltage, resistor loaded current and lifespan. The final design consisted of a copper plate cathode, aluminium plate anode, and a cement electrolyte which included additives of carbon black, plasticiser, Alum salt and Epsom salt. A relationship between age, temperature and hydration of the cell and the current it produced was determined. It was found that sealing the battery using varnish increased the moisture retention and current output. Current was also found to increase with internal temperature of the electrolyte and connecting two cells in parallel further doubled or even tripled the current. Parallel-connected cells could sustain an average current of 0.35mA through a 10Ω resistor over two weeks of recording. The preliminary findings demonstrate that cement-based batteries can produce sufficient sustainable electrical outputs with the correct materials and arrangement of components. Work is ongoing to determine how these batteries can be recharged using photovoltaics which will further enhance their sustainability properties.

  10. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.

    PubMed

    Sheikh, Zeeshan; Zhang, Yu Ling; Grover, Liam; Merle, Géraldine E; Tamimi, Faleh; Barralet, Jake

    2015-10-01

    There are two types of DCP: dihydrated (brushite) and anhydrous (monetite). After implantation, brushite converts to hydroxyapatite (HA) which resorbs very slowly. This conversion is not observed after implantation of monetite cements and result in a greater of resorption. The precise mechanisms of resorption and degradation however of these ceramics remain uncertain. This study was designed to investigate the effect of: porosity, surface area and hydration on in vitro degradation and in vivo resorption of DCP. Brushite and two types of monetite cement based grafts (produced by wet and dry thermal conversion) were aged in phosphate buffered saline (PBS) and bovine serum solutions in vitro and were implanted subcutaneously in rats. Here we show that for high relative porosity grafts (50-65%), solubility and surface area does not play a significant role towards in vitro mass loss with disintegration and fragmentation being the main factors dictating mass loss. For grafts having lower relative porosity (35-45%), solubility plays a more crucial role in mass loss during in vitro ageing and in vivo resorption. Also, serum inhibited dissolution and the formation of HA in brushite cements. However, when aged in PBS, brushite undergoes phase conversion to a mixture of octacalcium phosphate (OCP) and HA. This phase conversion was not observed for monetite upon ageing (in both serum and PBS) or in subcutaneous implantation. This study provides greater understanding of the degradation and resorption process of DCP based grafts, allowing us to prepare bone replacement materials with more predictable resorption profiles.

  11. The application of 1-3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures

    NASA Astrophysics Data System (ADS)

    Qin, Lei; Huang, Shifeng; Cheng, Xin; Lu, Youyuan; Li, Zongjin

    2009-09-01

    1-3 cement-based piezoelectric composite has been developed for health monitoring of concrete structures. Transducers made of this type of composite have broadband frequency response. Plain concrete and engineered cement composite (ECC) beams with embedded 1-3 cement-based piezoelectric transducers were prepared and tested. During experiments, the transducers were used to perform active and passive detection of the damage evolution of the beams. In active detection, a damage index based on the average energy of the received waves was proposed and used. In passive detection, acoustic emission (AE) events were recorded and the accumulated AE event number was analyzed with the loading history. Crack localization was also accomplished in the passive monitoring. The results of the two methods demonstrated similar trends in interpreting the damage evolution of the concrete beam. The results were also consistent with each material's characteristics.

  12. Hardened Client Platforms for Secure Internet Banking

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  13. Hardness variability in commercial and hardened technologies

    SciTech Connect

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  14. Hardness variability in commercial and hardened technologies

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Winokur, P. S.; Meisenheimer, T. L.; Sexton, F. W.; Roeske, S. B.; Knoll, M. G.

    1994-01-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is 'built-in' through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  15. DEVELOPMENT & TESTING OF A CEMENT BASED SOLID WASTE FORM USING SYNTHETIC UP-1 GROUNDWATER

    SciTech Connect

    COOKE, G.A.; LOCKREM, L.L.

    2006-11-10

    The Effluent Treatment Facility (ETF) in the 200 East Area of the Hanford Site is investigating the conversion of several liquid waste streams from evaporator operations into solid cement-based waste forms. The cement/waste mixture will be poured into plastic-lined mold boxes. After solidification the bags will be removed from the molds and sealed for land disposal at the Hanford Site. The RJ Lee Group, Inc. Center for Laboratory Sciences (CLS) at Columbia Basin College (CBC) was requested to develop and test a cementitious solids (CS) formulation to solidify evaporated groundwater brine, identified as UP-1, from Basin 43. Laboratory testing of cement/simulant mixtures is required to demonstrate the viability of cement formulations that reduce the overall cost, minimize bleed water and expansion, and provide suitable strength and cure temperature. Technical support provided mixing, testing, and reporting of values for a defined composite solid waste form. In this task, formulations utilizing Basin 43 simulant at varying wt% solids were explored. The initial mixing consisted of making small ({approx} 300 g) batches and casting into 500-mL Nalgene{reg_sign} jars. The mixes were cured under adiabatic conditions and checked for bleed water and consistency at recorded time intervals over a 1-week period. After the results from the preliminary mixing, four formulations were selected for further study. The testing documentation included workability, bleed water analysis (volume and pH) after 24 hours, expansivity/shrinkage, compressive strength, and selected Toxicity Characteristic Leaching Procedure (TCLP) leach analytes of the resulting solid waste form.

  16. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    SciTech Connect

    Lim, Seungmin Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.

  17. Characterisation and use of biomass fly ash in cement-based materials.

    PubMed

    Rajamma, Rejini; Ball, Richard J; Tarelho, Luís A C; Allen, Geoff C; Labrincha, João A; Ferreira, Victor M

    2009-12-30

    This paper presents results about the characterisation of the biomass fly ashes sourced from a thermal power plant and from a co-generation power plant located in Portugal, and the study of new cement formulations incorporated with the biomass fly ashes. The study includes a comparative analysis of the phase formation, setting and mechanical behaviour of the new cement-fly ash formulations based on these biomass fly ashes. Techniques such as X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermal gravimetric and differential thermal analysis (TG/DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and environmental scanning electron spectroscopy (ESEM) were used to determine the structure and composition of the formulations. Fly ash F1 from the thermal power plant contained levels of SiO(2), Al(2)O(3) and Fe(2)O(3) indicating the possibility of exhibiting pozzolanic properties. Fly ash F2 from the co-generation plant contained a higher quantity of CaO ( approximately 25%). The fly ashes are similar to class C fly ashes according to EN 450 on the basis of chemical composition. The hydration rate and phase formation are greatly dependant on the samples' alkali content and water to binder (w/b) ratio. In cement based mortar with 10% fly ash the basic strength was maintained, however, when 20% fly ash was added the mechanical strength was around 75% of the reference cement mortar. The fly ashes contained significant levels of chloride and sulphate and it is suggested that the performance of fly ash-cement binders could be improved by the removal or control of these chemical species.

  18. Characterisation and use of biomass fly ash in cement-based materials.

    PubMed

    Rajamma, Rejini; Ball, Richard J; Tarelho, Luís A C; Allen, Geoff C; Labrincha, João A; Ferreira, Victor M

    2009-12-30

    This paper presents results about the characterisation of the biomass fly ashes sourced from a thermal power plant and from a co-generation power plant located in Portugal, and the study of new cement formulations incorporated with the biomass fly ashes. The study includes a comparative analysis of the phase formation, setting and mechanical behaviour of the new cement-fly ash formulations based on these biomass fly ashes. Techniques such as X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermal gravimetric and differential thermal analysis (TG/DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and environmental scanning electron spectroscopy (ESEM) were used to determine the structure and composition of the formulations. Fly ash F1 from the thermal power plant contained levels of SiO(2), Al(2)O(3) and Fe(2)O(3) indicating the possibility of exhibiting pozzolanic properties. Fly ash F2 from the co-generation plant contained a higher quantity of CaO ( approximately 25%). The fly ashes are similar to class C fly ashes according to EN 450 on the basis of chemical composition. The hydration rate and phase formation are greatly dependant on the samples' alkali content and water to binder (w/b) ratio. In cement based mortar with 10% fly ash the basic strength was maintained, however, when 20% fly ash was added the mechanical strength was around 75% of the reference cement mortar. The fly ashes contained significant levels of chloride and sulphate and it is suggested that the performance of fly ash-cement binders could be improved by the removal or control of these chemical species. PMID:19699034

  19. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  20. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  1. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  2. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    PubMed

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  3. Hardening and yielding in colloidal gels

    NASA Astrophysics Data System (ADS)

    Del Gado, Emanuela; Colombo, Jader; Bouzid, Mehdi

    Attractive colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. With interaction strengths comparable to the thermal energy, their stress-bearing network can locally restructure via breaking and reforming inter-particle bonds. We use molecular dynamics simulations of a model system to investigate the strain hardening and the yielding process. During shear start up protocol, the system exhibits strong localization of tensile stresses that may be released through the breaking and formation of new bonds. In this regime, the small amplitude oscillatory shear analysis shows that the storage and the loss modulus follow a power law behavior that are closely reminiscent of experimental observations. At large accumulated strains, the strain-induced reorganization of the gel may trigger flow heterogeneities and eventually lead to the yielding of the gel via a quasi brittle damage of its structure.

  4. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  5. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum.

  6. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  7. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Huynh, T. D.; Haigh, N. P.; Douglas, J. D.; Rand, D. A. J.; Lakshmi, C. S.; Hollingsworth, P. A.; See, J. B.; Manders, J.; Rice, D. M.

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO 1.1); a central layer (PbO 1.8·PbSO 4); a porous outer layer n(PbO 1.8)·PbSO 4, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to ˜0.09 wt.%) does not affect the self-discharge behaviour of batteries.

  8. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    NASA Astrophysics Data System (ADS)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  9. Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Interactions between damage and leaching

    SciTech Connect

    Stora, E.; Bary, B.; Deville, E.; Montarnal, P.

    2010-08-15

    The assessment of the durability of cement-based materials, which could be employed in underground structures for nuclear waste disposal, requires accounting for deterioration factors, such as chemical attacks and damage, and for the interactions between these phenomena. The objective of the present paper consists in investigating the long-term behaviour of cementitious materials by simulating their response to chemical and mechanical solicitations. In a companion paper (Stora et al., submitted to Cem. Concr. Res. 2008), the implementation of a multi-scale homogenization model into an integration platform has allowed for evaluating the evolution of the mineral composition, diffusive and elastic properties inside a concrete material subjected to leaching. To complete this previous work, an orthotropic micromechanical damage model is presently developed and incorporated in this numerical platform to estimate the mechanical and diffusive properties of damaged cement-based materials. Simulations of the chemo-mechanical behaviour of leached cementitious materials are performed with the tool thus obtained and compared with available experiments. The numerical results are insightful about the interactions between damage and chemical deteriorations.

  10. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism

    PubMed Central

    Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian

    2015-01-01

    This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+. PMID:26583014

  11. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    SciTech Connect

    Zhou Jian; Ye Guang; Breugel, Klaas van

    2010-07-15

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuous depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.

  12. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  13. In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Dong, Biqin; Liu, Yuqing; Qin, Lei; Wang, Yaocheng; Fang, Yuan; Xing, Feng; Chen, Xianchuan

    2015-10-01

    In this paper, the application of a novel cement-based piezoelectric ceramic sensor is stated for the in situ stress monitoring of the reinforced concrete beam under static loading. Smart beam composite structures were designed and characterised by a range of experimental methods. Finite element analysis is used to analyse the mechanical response of the concrete beam under static loading. The results show that the mechanical-electrical response of sensors embedded in reinforced concrete beams follows a linear relationship under various loading conditions. The sensors are able to record the stress history of the beam under static loads. Moreover, the measured stress data agree well with the simulated results and the smart structures are found to be capable of reliably monitoring the response of a beam during stress testing for static loading modes to real concrete structures. The study indicates that such cement-based piezoelectric composites have a high feasibility and applicability to the in situ stress monitoring of reinforced concrete structures.

  14. Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments

    SciTech Connect

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2010-09-15

    Cement based materials permanently exposed to aggressive aqueous environments are subject to chemical changes affecting their durability. However, this holds also for tap water that is considered to be not aggressive to cementitious materials, although in that case a formation of covering layers of CaCO{sub 3} on the alkaline surfaces is commonly supposed to provide protection against reactive transport processes. Thus, investigations of the structural and chemical properties of the material/water interface were carried out in laboratory experiments and case studies to elucidate the consequences of surface reactions for the durability of cement based materials exposed to tap water. Focused Ion Beam investigations revealed that a protective effect of a CaCO{sub 3} covering layer depends on its structural properties, which are in turn affected by the hydro-chemical conditions during crystallization. Surface precipitation of CaCO{sub 3} can trigger further chemical degradation, if the required calcium is supplied by the pore solution of the material.

  15. Radiation-hardened asphaltite composites

    SciTech Connect

    Persinen, A.A.; Trubyatchinskaya, V.N.; Tolmacheva, T.P.

    1981-07-20

    A method is proposed for the production of an asphaltite block material with good physical and mechanical properties. The composite contains epoxide resin, acrylic acid, and asphaltite and radiation or radiation - thermal hardening was used. ED-16 epoxide resin with 490 molecular weight and 17.6% epoxide groups or EBF-23 epoxide resin produced from water-soluble shale phenols with 750 to 800 molecular weight and 21 to 22% epoxide groups was used as the epoxide resin. Analysis of the IR spectra showed that a rapid reaction of acrylic acid with epoxide resin occurs upon the action of ionizing radiation. The mechanical testing showed that the uniform samples obtained had rather high strength and hardness; high heat resistance and low water absorption was noted. The composites are chemically resistant towards concentrated HCl, water, acetone, and benzene. The studies indicated cross-linking occurs as a consequence of the reaction of the epoxide ring with acrylic acid. Asphaltite adds by means of the short alkyl substituents and guinoid structures. 4 tables. (DP)

  16. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  17. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  18. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  19. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  20. Study on the limited hardenability steel

    SciTech Connect

    Xu, L.P.; Li, L.; Min, Y.A.; Xu, M.H.; Le, J.P.; Liu, R.H.

    1998-12-31

    A series of measurements were taken in the limited hardenability bearing steel rings which were induction hardened and tempered. Measurements showed several features which strengthened the rings: (1) Compressive residual stress are generated from surface to a depth of 3.2 mm and high residual compressive stress at the location where fatigue fracture initiates. (2) The matrix of the hardened layer was composed mainly of lath martensite with dispersed carbides whose formula was Me{sub 3} according to the X-ray spectrum analysis. The carbon content of martensite was estimated to be lower than 0.58% (by weight). The core was constituted of troostite transformed from spheroidal carbide. (3) The amount of retained austenite in the hardened layer was about 5% (in volume) which ensures the high dimensional stability of bearing.

  1. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  2. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  3. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  4. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  5. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  6. [Beam hardening correction method for X-ray computed tomography based on subsection beam hardening curves].

    PubMed

    Huang, Kui-dong; Zhang, Ding-hua

    2009-09-01

    After researching the forming principle of X-ray beam hardening and analyzing the usual methods of beam hardening correction, a beam hardening correction model was established, in which the independent variable was the projection gray, and so the computing difficulties in beam hardening correction can be reduced. By considering the advantage and disadvantage of fitting beam hardening curve to polynomial, a new expression method of the subsection beam hardening curves based on polynomial was proposed. In the method, the beam hardening data were fitted firstly to a polynomial curve which traverses the coordinate origin, then whether the got polynomial curve surged in the fore-part or back-part of the fitting range was judged based on the polynomial curvature change. If the polynomial fitting curve surged, the power function curve was applied to replace the surging parts of the polynomial curve, and the C1 continuity was ensured at the joints of the segment curves. The experimental results of computed tomography (CT) simulation show that the method is well stable in the beam hardening correction for the ideal CT images and CT images with added noises, and can mostly remove the beam hardening artifact at the same time.

  7. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    SciTech Connect

    Krakowiak, Konrad J.; Wilson, William; James, Simon; Musso, Simone; Ulm, Franz-Josef

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate the calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.

  8. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  9. Laser Surface Hardening of AISI 1045 Steel

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Jin, Yajuan; Li, Zhuguo; Qi, Kai

    2014-09-01

    The study investigates laser surface hardening in the AISI 1045 steel using two different types of industrial laser: a high-power diode laser (HPDL) and a CO2 laser, respectively. The effect of process parameters such as beam power, travel speed on structure, case depth, and microhardness was examined. In most cases, a heat-affected zone (HAZ) formed below the surface; a substantial increase in surface hardness was achieved. In addition, big differences were found between the hardened specimens after HPDL surface hardening and CO2 laser surface hardening. For HPDL, depths of the HAZ were almost equal in total HAZ o, without surface melting. For CO2 laser, the depths changed a lot in the HAZ, with surface melting in the center. To better understand the difference of laser hardening results when use these two types of laser, numerical (ANSYS) analysis of the heat conduction involved in the process was also studied. For HPDL method, a rectangular beam spot and uniform energy distribution across the spot were assumed, while for CO2 laser, a circular beam spot and Gaussian energy distribution were assumed. The results showed that the energy distribution variety altered the thermal cycles of the HAZ dramatically. The rectangular HPDL laser beam spot with uniform energy distribution is much more feasible for laser surface hardening.

  10. Hardening and welding with high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Ehlers, Bodo; Herfurth, Hans-Joachim; Heinemann, Stefan

    2000-03-01

    Commercially available high power diode lasers (HPDLs) with output powers of up to 6 kW have been recognized as an interesting tool for industrial applications. In certain fields of application they offer many advantages over Nd:YAG and CO2 lasers because of their low maintenance, compact design and low capital costs. Examples of successful industrial implementation of HPDLs include plastic welding, surface hardening and heat conduction welding of stainless steel and aluminum. The joining of plastics with an HPDL offers the advantages of producing a weld seam with high strength, high consistency and superior appearance. One example is the keyless entry system introduced with the Mercedes E-class where the microelectronic circuits are embedded in a plastic housing. Other applications include instrument panels, cell phones, headlights and tail lights. Applications in the field of surface treatment of metals profit from the HPDL's inherent line-shaped focus and the homogeneous intensity distribution across this focus. An HPDL system is used within the industry to harden rails for coordinate measurement machines. This system contains a customized zoom optic to focus the laser light onto the rails. With the addition of a temperature control, even complex shapes can be hardened with a constant depth and minimum distortion.

  11. Near-field microwave inspection and characterization of cement based materials

    NASA Astrophysics Data System (ADS)

    Bois, Karl Joseph

    The objective of this research project has been to investigate the potential of correlating the near-field microwave reflection coefficient properties of hardened cement paste (water and cement powder), mortar (water, cement powder and sand) and concrete (water, cement powder, sand and coarse aggregate) specimens to their various constituent make-up and compressive strengths. The measurements were conducted using open-ended rectangular waveguide probes operating at various microwave frequencies and in-contact with cubic specimens. For each material, various properties of the measured microwave reflection coefficient, such as the mean of the measured magnitude of reflection coefficient, and the standard deviation of the measured magnitude of reflection coefficient at various frequencies were monitored. Subsequently, the measurements were correlated to important parameters such as w/c ratio, s/c ratio, ca/c ratio, cure-state, constituent volume content and compressive strength. Other issues such as the detection of aggregate segregation in concrete as well as the detection chloride in cement paste and mortar were also addressed. Other related issues such as the detection of grout in masonry blocks were also investigated. In achieving these objectives, several theoretical modeling efforts were required, constituting significant contributions to the available literature. A complete analytical full wave expression (i.e. inclusion of higher-order modes) for the fields at the aperture of an open-ended waveguide probe radiating into a dielectric infinite half-space was derived. Also a novel two-port transmission line dielectric property measurement technique for granular and liquid materials was developed. A decision making process, based on the maximum likelihood scheme, was also implemented to determine w/c, s/c and ca/c ratios from the measured mean and standard deviation of reflection coefficient at two frequency bands. Finally, the issue of non-contact measurement was

  12. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  13. Strain Hardening of Hadfield Manganese Steel

    NASA Astrophysics Data System (ADS)

    Adler, P. H.; Olson, G. B.; Owen, W. S.

    1986-10-01

    The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (σ-ɛ) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the σ-ɛ curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.

  14. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  15. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  16. An Anisotropic Hardening Model for Springback Prediction

    NASA Astrophysics Data System (ADS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  17. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  18. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  19. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  20. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  1. Fundamental investigations related to the mitigation of volume changes in cement-based materials at early ages

    NASA Astrophysics Data System (ADS)

    Sant, Gaurav Niteen

    additional Sodium Hydroxide. Further, to quantify the influence of temperature on volume changes in SRA containing materials, deformation measurements are performed at different temperatures. The results indicate maturity transformations are incapable of simulating volume changes over any temperature regime due to the influence of temperature on salt solubility and pore solution composition, crystallization stresses and self-desiccation. The performance of a CaO-based expansive additive is evaluated over a range of additive concentrations and curing conditions to quantify the reduction in restrained and unrestrained volume changes effected in low w/c cement pastes. The results suggest, under unrestrained sealed conditions the additive generates an expansion and reduces the magnitude of total shrinkage experienced by the material. However, the extent of drying shrinkage developed is noted to be similar in all systems and independent of the additive dosage. Under restrained sealed conditions, the additive induces a significant compressive stress which delays tensile stress development in the system. However, a critical additive concentration (around four percent) needs to be exceeded to appreciably reduce the risk of cracking at early-ages. The influence of shrinkage reducing admixtures (SRAs) is quantified in terms of the effects of SRA addition on fluid transport in cement-based materials. The change in the cement paste's pore solution properties, i.e., the surface tension and fluid-viscosity, induced by the addition of a SRA is observed to depress the fluid-sorption and wetting moisture diffusion coefficients, with the depression being a function of the SRA concentration. The experimental results are compared to analytical descriptions of water sorption and a good correlation is observed. These results allow for the change in pore-solution and fluid-transport properties to be incorporated from a fundamental perspective in models which aim to describe the service-life of

  2. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  3. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  4. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    NASA Astrophysics Data System (ADS)

    Economy, D. Ross; Mara, N. A.; Schoeppner, R. L.; Schultz, B. M.; Unocic, R. R.; Kennedy, M. S.

    2016-03-01

    In complex loading conditions ( e.g., sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed regions (as-deposited). Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 µm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022, respectively) were less than that determined for 100 nm systems ( n ≈ 0.041). These results suggest that single-dislocation-based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  5. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  6. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose.

  7. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  8. Deformation in metals after low temperature irradiation: Part II - Irradiation hardening, strain hardening, and stress ratios

    SciTech Connect

    Byun, Thak Sang; Li, Meimei

    2008-03-01

    Effects of irradiation at temperatures 200oC on tensile stress parameters are analyzed for dozens of bcc, fcc, and hcp pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type; typically, the irradiation-hardening rates are large, in the range 100 - 1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa − (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.

  9. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  10. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  11. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  12. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  13. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  14. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    SciTech Connect

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests.

  15. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials.

    PubMed

    Cyr, M; Idir, R; Escadeillas, G

    2012-12-01

    The landfilling of municipal incineration residues is an expensive option for municipalities. This work evaluates an alternative way to render waste inert in cement-based materials by combining the reduction of waste content with the immobilization properties of metakaolin (MK). The functional and environmental properties of ternary and quaternary binders using cement, metakaolin, and two industrial by-products from combustion processes (MSWIFA - Municipal Solid Waste Incineration Fly Ash and SSA - Sewage Sludge Ash) were evaluated. The binders were composed of 75% cement, 22.5% metakaolin and 2.5% residue. Results on the impact of residues on the functional and environmental behavior of mortars showed that the mechanical, dimensional and leaching properties were not affected by the residues. In particular, the use of metakaolin led to a significant decrease in soluble fractions and heavy metals released from the binder matrix. The results are discussed in terms of classification of the leaching behavior, efficiency and role of metakaolin in the immobilization of heavy metals in of MSWIFA and SSA, and the pertinence of the dilution process. PMID:23122733

  16. Hardening communication ports for survival in electrical overstress environments

    NASA Technical Reports Server (NTRS)

    Clark, O. Melville

    1991-01-01

    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.

  17. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  18. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  19. Laser hardening of diesel engine valve

    SciTech Connect

    Androsov, A.P.; Aleksenko, S.I.; Boyarkin, M.V.; Kusidis, V.G.; Petrov, V.I.

    1988-07-01

    Results are presented of a complex investigation of the effect of laser treatment on the structure and properties of steel 40Kh10S2M and of engine tests with diesel engine valves hardened by the newly devised technology. Results of the investigation of the microstructure of steel 40Kh10S2M, heat-treated by a laser beam, showed that when a specimen is hardened with fusion of the surface layer, it contains two distinct zones of laser action. Results of the effect of laser treatment on the fatigue limit and the wear resistance of the steel and engine tests permit the conclusion that the suggested method of treating valves of internal engine valve gear has good prospects.

  20. Prediction of the curing time to achieve maturity of the nano-cement based concrete using the Weibull distribution model: A complementary data set.

    PubMed

    Jo, Byung Wan; Chakraborty, Sumit; Kim, Heon

    2015-09-01

    This data article provides a comparison data for nano-cement based concrete (NCC) and ordinary Portland cement based concrete (OPCC). Concrete samples (OPCC) were fabricated using ten different mix design and their characterization data is provided here. Optimization of curing time using the Weibull distribution model was done by analyzing the rate of change of compressive strength of the OPCC. Initially, the compressive strength of the OPCC samples was measured after completion of four desired curing times. Thereafter, the required curing time to achieve a particular rate of change of the compressive strength has been predicted utilizing the equation derived from the variation of the rate of change of compressive strength with the curing time, prior to the optimization of the curing time (at the 99.99% confidence level) using the Weibull distribution model. This data article complements the research article entitled "Prediction of the curing time to achieve maturity of the nano-cement based concrete using the Weibull distribution model" [1].

  1. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    PubMed

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  2. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  3. Work hardening: occupational therapy in industrial rehabilitation.

    PubMed

    Matheson, L N; Ogden, L D; Violette, K; Schultz, K

    1985-05-01

    Work hardening, presented in this paper as a "new" service for the industrially injured, is actually well grounded in the traditional models and practices of occupational therapy. From the profession's early roots in industrial therapy to the development of a variety of programs for the industrially injured through the 1950s and 1960s, the historical and philosophical bases of occupational therapy support the use of work as an evaluative and therapeutic medium. What is actually new is the adoption of terminology, technology, and a program format that fits in with the needs of consumers in the 1980s. Recent developments that created the need for the specialized services that occupational therapists are uniquely qualified to provide include growth of private sector vocational rehabilitation, changes in workers' compensation laws, and increasing costs of vocational rehabilitation. This paper describes work hardening in its present form. A case example is given that demonstrates how work hardening can be a cost-effective and time-saving bridge which spans the gap between curative medicine and the return to work. PMID:4014411

  4. Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique

    NASA Astrophysics Data System (ADS)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Soriano, L.; Payá, J.

    2014-03-01

    Frost resistance of concrete is a major concern in cold regions. RILEM (International union of laboratories and experts in construction materials, systems and structures) recommendations provide two alternatives for evaluating frost damage by nondestructive evaluation methods for concrete like materials. The first method is based on the ultrasonic pulse velocity measurement, while the second alternative technique is based on the resonant vibration test. In this study, we monitor the frost damage in Portland cement mortar samples with water to cement ratio of 0.5 and aggregate to cement ratio of 3. The samples are completely saturated by water and are frozen for 24 hours at -25°C. The frost damage is monitored after 0, 5, 10, 15 and 20 freezing-thawing cycles by nonlinear impact resonance acoustic spectroscopy (NIRAS). The results obtained are compared with those obtained by resonant vibration tests, the second alternative technique recommended by RILEM. The obtained results show that NIRAS is more sensitive to early stages of damage than the standard resonant vibration tests.

  5. Atomistic interpretation of solid solution hardening from spectral analysis.

    PubMed

    Plendl, J N

    1971-05-01

    From analysis of a series of vibrational spectra of ir energy absorption and laser Raman, an attempt is made to interpret solid solution hardening from an atomistic point of view for the system CaF(2)/SrF(2). It is shown to be caused by the combined action of three atomic characteristics, i.e., their changes as a function of composition. They are deformation of the atomic coordination polyhedrons, overlap of the outer electron shells of the atom pairs, and the ratio of the ionic to covalent share of binding. A striking nonlinear behavior of the three characteristics, as a function of composition, gives maximum atomic bond strength to the 55/45 position of the system CaF(2)/SrF(2), in agreement with the measured data of the solid solution hardening. The curve for atomic bond strength, derived from the three characteristics, is almost identical to the curve for measured microhardness data. This result suggests that the atomistic interpretation, put forward in this paper, is correct.

  6. Physico-mechanical and physico-chemical properties of synthesized cement based on plasma- and wet technologies

    NASA Astrophysics Data System (ADS)

    Sazonova, Natalya; Skripnikova, Nelli

    2016-01-01

    In this work we studied the influence of plasma-chemical technology of cement clinker synthesis under conditions of high-concentrated heat streams on the properties of cement on fixing such factors as raw-material type (chemical and mineralogical composition), fraction composition, homogenization and module characters of the raw-material mixture. In this connection the sludge of the cement plant in town Angarsk, based on which the cement clinker synthesis using the wet- and plasma-chemical technologies was performed, was used in the studies. The results of chemical X-ray-phase analysis, petrography of cement clinkers, differential scanning colorimetry of hardened cement paste are represented in this work. The analysis of building-technical properties of inorganic viscous substances was performed. It was found that in using the identical raw-material mixture the cement produced with temperature higher by 1650 °C than the traditional one may indicate the higher activity. The hardened cement paste compressive strength at the age of 28 days was higher than the strength of the reference samples by 40.8-41.4 %.

  7. Prediction of Phase Transformation and Hardness Distribution of AISI 1045 Steel After Spot Continual Induction Hardening

    NASA Astrophysics Data System (ADS)

    Zhu, Shengxiao; Wang, Zhou; Qin, Xunpeng; Mao, Huajie; Gao, Kai

    2015-10-01

    An numerical and experimental study of spot continual induction hardening (SCIH) for AISI 1045 steel was carried out to gain a better understanding of this non-stationary and transverse flux induction hardening treatment. The SCIH device was set up by assembling the single-turn coil inductor to a five-axis cooperating computer numerical control system. The influence of inductor velocity, input current, and quenching medium on temperature field was estimated via the SCIH model, and the simulated micro-hardness and microstructure were validated by experimental verification. The heating delay phenomenon appearing in the SCIH process had been analyzed.

  8. A radiation-hardened, computer for satellite applications

    SciTech Connect

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`s Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.

  9. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  10. Specialized induction machines for deep surface and surface hardening

    SciTech Connect

    Andryushchenko, V.T.

    1988-01-01

    Designs of specialized hardening equipment for electrothermal hardening of parts using induction heating are described. These designs include induction machines for deep surface hardening of truck axle shafts, the outer and inner rings of railroad car axle roller bearings, camshafts, axle parts, and the side members of truck frames. This study and others help develop and transmit the technology for producing and introducing specialized induction machines which are effective in heat treatment of heavily loaded machine parts and consume less amounts of metal.

  11. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  12. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  13. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study.

    PubMed

    Shikhaliev, Polad M

    2005-12-21

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate

  14. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2005-12-01

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate

  15. Photothermal characterization of grind-hardened steel

    NASA Astrophysics Data System (ADS)

    Prekel, H.; Ament, Ch.; Goch, G.

    2003-01-01

    Grind hardening is a promising production process which combines grinding and hardening within one step. Due to the fact that many material and process parameters partially influence the properties of the workpieces in a nonlinear way, it is difficult to predict for instance the surface hardness and hardness penetration depth. In this study, photothermal radiometry is used as an approach to determine the hardness penetration depth. Photothermal phase signals have been measured as a function of frequency. First measurements showed a strong influence of surface roughness, causing phase signal maxima at unexpected high frequencies (f>60 Hz). After finishing of the surfaces, the maxima of phase signals shifted toward lower frequencies (f<10 Hz). In an attempt to extract a preliminary calibration curve, the measured phase values of each sample were added and correlated to the hardness penetration depth. The resulting curve reveals a good correlation between phase sum and the hardness penetration depth. Further research is necessary to collect more experimental data and to support the current results by theoretical models.

  16. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    PubMed

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.

  17. Multi-species beam hardening calibration device for x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  18. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  19. [Hardening of dental tissue by CO2 laser radiation].

    PubMed

    Aboites, V; Díaz, O; Cuevas, F

    1989-03-01

    A study was conducted to test the effects of CO2 laser irradiation on dental tissue. It was found that hardening of the dental tissue occurs. This was observed qualitatively by direct observation and by X-ray radiography. The hardening produced was also quantitatively measured using a hardness-meter on Rockwell scale.

  20. The hardening phenomenon in irritant contact dermatitis: an interpretative update.

    PubMed

    Watkins, Shannon A; Maibach, Howard I

    2009-03-01

    Irritant contact dermatitis (ICD) is common and poses a significant problem in high-risk populations. In most cases, ICD resolves despite continued exposure in a process known as 'hardening', allowing individuals to continue with their work. Those who cannot clear ICD develop chronic ICD, which is a significant source of emotional, physical, and financial distress for affected individuals. While hardening is well known among labourers and clinicians, its mechanism remains to be elucidated. Much can be learned from the study of self-healing processes like the hardening phenomenon. This overview briefly documents the pathogenesis of ICD, focuses on the latest advances pertaining to the hardening phenomenon in ICD, and then highlights potential avenues of productive research. A better understanding of the 'hardening' process in the skin will hopefully lead to advances for the treatment of ICD.

  1. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images.

  2. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  3. Dilatant hardening of fluid-saturated sandstone

    NASA Astrophysics Data System (ADS)

    Makhnenko, Roman Y.; Labuz, Joseph F.

    2015-02-01

    The presence of pore fluid in rock affects both the elastic and inelastic deformation processes, yet laboratory testing is typically performed on dry material even though in situ the rock is often saturated. Techniques were developed for testing fluid-saturated porous rock under the limiting conditions of drained, undrained, and unjacketed response. Confined compression experiments, both conventional triaxial and plane strain, were performed on water-saturated Berea sandstone to investigate poroelastic and inelastic behavior. Measured drained response was used to calibrate an elasto-plastic constitutive model that predicts undrained inelastic deformation. The experimental data show good agreement with the model: dilatant hardening in undrained triaxial and plane strain compression tests under constant mean stress was predicted and observed.

  4. Rapid cold hardening: a gut feeling.

    PubMed

    Worland, M R; Convey, P; Luke ov, A

    2000-01-01

    This study examined the rate of cold hardening of a field population of Antarctic springtails and the effect of eating food with particular levels of ice nucleating activity on the animal's whole body freezing point. The SCPs of samples of c. 20, freshly collected, Cryptopygus antarcticus were measured hourly over a 32 hour collection period using differential scanning calorimetry and related to habitat temperature. The mean SCP of the springtails increased from -24 to -10 degree C during which time the habitat temperature warmed slowly from -2.5 to +2.5 degree C. In laboratory experiments, previously starved, cold tolerant springtails were fed on selected species of algae with measured SCP's but there was no clear correlation between the SCP of food and that of the animals after feeding. Microscopic examination of faecal pellets and guts from springtails showed that algal cells were completely destroyed during digestion.

  5. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  6. Iron piston having selectively hardened ring groove

    SciTech Connect

    Brann, D.E.; Lindsay, J.E.

    1987-02-17

    This patent describes a long-lasting cast iron piston body for an internal combustion engine, the piston body comprising a generally cylindrical sidewall and having an annular groove in the wall encircling the body for receiving a piston ring. The groove is defined by opposed faces that intersect the wall, the piston body being composed predominantly of gray iron characterized by an as-cast pearlitic microstructure, the groove face comprising an integrally cast, selectively hardened iron band adjacent the piston sidewall and encircling the piston body. The band is characterized by a martensitic microstructure substantially harder than the pearlitic microstructure and is effective to reduce wear resulting from a piston ring seated within the groove.

  7. Laser hardening process simulation for mechanical parts

    NASA Astrophysics Data System (ADS)

    Tani, G.; Orazi, L.; Fortunato, A.; Campana, G.; Cuccolini, G.

    2007-02-01

    In this paper a numerical simulation of laser hardening process is presented. The Finite Difference Method (FDM) was used to solve the heat transfer and the carbon diffusion equations for a defined workpiece geometry. The model is able to predict the thermal cycle into the target material, the phase transformations and the resulting micro-structures according to the laser parameters, the workpiece dimensions and the physical properties of the workpiece. The effects of the overlapping tracks of the laser beam on the resulting micro-structures is also considered. The initial workpiece micro-structure is taken into account in the simulation by a digitized photomicrograph of the ferrite perlite distribution before the thermal cycle. Experimental tests were realized on a C43 plate and the good agreement between the theoretical and experimental results is shown.

  8. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization.

    PubMed

    Zhang, Junli; Liu, Jianguo; Li, Cheng; Jin, Yiying; Nie, Yongfeng; Li, Jinhui

    2009-06-15

    Cement rotary kiln co-processing of hazardous wastes and cement based solidification/stabilization could both immobilize heavy metals. The different retention mechanisms of the two technologies lead to different fixation effects of heavy metals. The same amount of heavy metal compounds were treated by the two types of fixation technologies. Long-term leaching test (160 days), the maximum availability leaching test (NEN 7341) and a modified three-step sequential extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR) were employed to compare the fixation effects of the two fixation technologies. The leaching concentrations in NEN 7341 and long-term leaching tests were compared with identification standard for hazardous wastes (GB5085.3-1996) and drinking water standard (GB5749-2005). The results indicate that the leaching concentrations of the long-term leaching test and NEN 7341 test were lower than the regulatory limits and the leached ratios were small. Both cement based solidification/stabilization and cement rotary kiln co-processing could effectively fix heavy metals. Calcination in a cement rotary kiln and the following hydration that follows during cement application could fix As, Cd, Pb and Zn more effectively and decrease the release to the environment. Cement solidification/stabilization technology has better effect in immobilizing Cr and Ni. Cr wastes are more fitful to be treated by cement solidification/stabilization.

  9. Evaluation of beam hardening and photon scatter by brass compensator for IMRT.

    PubMed

    Hashimoto, Shimpei; Karasawa, Katsuyuki; Fujita, Yukio; Miyashita, Hisayuki; Chang, Weishan; Kawachi, Toru; Katayose, Tetsurou; Kobayashi, Nao; Kunieda, Etsuo; Saitoh, Hidetoshi

    2012-11-01

    When a brass compensator is set in a treatment beam, beam hardening may take place. This variation of the energy spectrum may affect the accuracy of dose calculation by a treatment planning system and the results of dose measurement of brass compensator intensity modulated radiation therapy (IMRT). In addition, when X-rays pass the compensator, scattered photons are generated within the compensator. Scattered photons may affect the monitor unit (MU) calculation. In this study, to evaluate the variation of dose distribution by the compensator, dose distribution was measured and energy spectrum was simulated using the Monte Carlo method. To investigate the influence of beam hardening for dose measurement using an ionization chamber, the beam quality correction factor was determined. Moreover, to clarify the effect of scattered photons generated within the compensator for the MU calculation, the head scatter factor was measured and energy spectrum analyses were performed. As a result, when X-rays passed the brass compensator, beam hardening occurred and dose distribution was varied. The variation of dose distribution and energy spectrum was larger with decreasing field size. This means that energy spectrum should be reproduced correctly to obtain high accuracy of dose calculation for the compensator IMRT. On the other hand, the influence of beam hardening on k(Q) was insignificant. Furthermore, scattered photons were generated within the compensator, and scattered photons affect the head scatter factor. These results show that scattered photons must be taken into account for MU calculation for brass compensator IMRT.

  10. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  11. Tailored work hardening descriptions in simulation of sheet metal forming

    NASA Astrophysics Data System (ADS)

    Vegter, Henk; Mulder, Hans.; van Liempt, Peter; Heijne, Jan

    2013-12-01

    In the previous decades much attention has been given on an accurate material description, especially for simulations at the design stage of new models in the automotive industry. Improvements lead to shorter design times and a better tailored use of material. It also contributed to the design and optimization of new materials. The current description of plastic material behaviour in simulation models of sheet metal forming is covered by a hardening curve and a yield surface. In this paper the focus will be on modelling of work hardening for advanced high strength steels considering the requirements of present applications. Nowadays work hardening models need to include the effect of hard phases in a soft matrix and the effect of strain rate and temperature on work hardening. Most material tests to characterize work hardening are only applicable to low strains whereas many practical applications require hardening data at relatively high strains. Therefore, physically based hardening descriptions are needed allowing reliable extensions to high strain values.

  12. Tradeoffs in Flight Design Upset Mitigation in State of the Art FPGAs: Hardened by Design vs. Design Level Hardening

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Roosta, Ramin

    2004-01-01

    This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions

  13. Strain hardening of metal parts with use of impulse wave

    NASA Astrophysics Data System (ADS)

    Kirichek, A. V.; Soloviev, D. L.

    2016-04-01

    This work describes a strain hardening method with the use of impulse waves. This method increases energy transfer to the strained material extending its technological capabilities with development of a deep strengthened layer and allowing formation of a heterogeneous hardened structure using plastic deformation. This structure has specified distribution of the hard and soft (visco-plastic) areas. Due to development of the heterogeneous structure in the surface layer created by strain hardening with impulse wave, durability of parts that suffer contact fatigue loading is significantly increased.

  14. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  15. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  16. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  17. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison.

    PubMed

    Michaud, M Robert; Denlinger, David L

    2007-10-01

    Flesh flies can enhance their cold hardiness by entering a photoperiod-induced pupal diapause or by a temperature-induced rapid cold-hardening process. To determine whether the same or different metabolites are involved in these two responses, derivatized polar extracts from flesh flies subjected to these treatments were examined using gas chromatography-mass spectrophotometry (GC-MS). This metabolomic approach demonstrated that levels of metabolites involved in glycolysis (glycerol, glucose, alanine, pyruvate) were elevated by both treatments. Metabolites elevated uniquely in response to rapid cold-hardening include glutamine, cystathionine, sorbitol, and urea while levels of beta-alanine, ornithine, trehalose, and mannose levels were reduced. Rapid cold-hardening also uniquely perturbed the urea cycle. In addition to the elevated metabolites shared with rapid cold-hardening, leucine concentrations were uniquely elevated during diapause while levels of a number of other amino acids were reduced. Pools of two aerobic metabolic intermediates, fumarate and citrate, were reduced during diapause, indicating a reduction of Krebs cycle activity. Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts. We discuss the possible contribution of each altered metabolite in enhancing the overall cold hardiness of the organism, as well as the efficacy of GC-MS metabolomics for investigating insect physiological systems.

  18. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  19. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  20. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-03-24

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon.

  1. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis.

  2. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  3. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.

    PubMed

    Du, Yan-Jun; Jiang, Ning-Jun; Shen, Shui-Long; Jin, Fei

    2012-07-30

    Remediation of contaminated lands in China urban areas is of great concern. Degradation of construction facilities caused by acid rain is a serious environmental pollution issue in China. This paper presents an investigation of the effects of acid rain on leaching and hydraulic properties of cement-based solidified/stabilized lead contaminated soil. Laboratory tests including infiltration test and soaking test are conducted. It is found that the soil hydraulic conductivity decreases with increase in the pore volume of flow of permeant liquids (acid rain and distilled water). The decreasing rate in the case of the acid rain is lower than that in the case of the distilled water. The soaking test results show that pH and the presence of sulfate ions of acid rain have considerable influence on the leached concentrations and leaching rate of calcium.

  4. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.

    PubMed

    Du, Yan-Jun; Jiang, Ning-Jun; Shen, Shui-Long; Jin, Fei

    2012-07-30

    Remediation of contaminated lands in China urban areas is of great concern. Degradation of construction facilities caused by acid rain is a serious environmental pollution issue in China. This paper presents an investigation of the effects of acid rain on leaching and hydraulic properties of cement-based solidified/stabilized lead contaminated soil. Laboratory tests including infiltration test and soaking test are conducted. It is found that the soil hydraulic conductivity decreases with increase in the pore volume of flow of permeant liquids (acid rain and distilled water). The decreasing rate in the case of the acid rain is lower than that in the case of the distilled water. The soaking test results show that pH and the presence of sulfate ions of acid rain have considerable influence on the leached concentrations and leaching rate of calcium. PMID:22614025

  5. Experimental study of beam hardening artifacts in photon counting breast computed tomography

    NASA Astrophysics Data System (ADS)

    Bisogni, M. G.; Del Guerra, A.; Lanconelli, N.; Lauria, A.; Mettivier, G.; Montesi, M. C.; Panetta, D.; Pani, R.; Quattrocchi, M. G.; Randaccio, P.; Rosso, V.; Russo, P.

    2007-10-01

    We are implementing an X-ray breast Computed Tomography (CT) system on the gantry of a dedicated single photon emission tomography system for breast Tc-99 imaging. For the breast CT system we investigated the relevance of the beam hardening artifact. We studied the use of a single photon counting silicon pixel detector (0.3 mm thick, 256×256 pixel, 55μm pitch, bump-bonded to the Medipix2 photon counting readout chip) as detector unit in our X-ray CT system. We evaluated the beam hardening "cupping" artifact using homogeneous PMMA slabs and phantoms up to 14 cm in diameter, used as uncompressed breast tissue phantoms, imaged with a tungsten anode tube at 80 kVp with 4.2 mm Al filtration. For beam hardening evaluation we used a bimodal energy model. The CT data show a "cupping" artifact going from 4% (4-cm thick material) to 18% (14-cm thick material). This huge artifacts is influenced by the low detection efficiency and the charge sharing effect of the silicon pixel detector.

  6. Laser-ultrasonic hardening of the surface of steel

    SciTech Connect

    Gureev, D M

    1998-03-31

    An investigation was made of the feasibility of laser-ultrasonic hardening of the surface of steel with a controlled change in the structurally stressed state of the surface layer. The advantages of the laser-ultrasonic treatment were demonstrated by the formation of harder and deeper surface hardening zones with simultaneous control of their structure and phase composition and of the formation of residual stresses. (interaction of laser radiation with matter. laser plasma)

  7. Strain hardening of fcc metal surfaces induced by microploughing

    SciTech Connect

    Day, R.D.; Dickerson, R.M.; Russell, P.E.

    1998-12-01

    Microploughing experiments were used as a method for better understanding the ploughing mechanism in gold and iridium single crystals. The plough depths ranged from 20 nm in iridium to 1,600 nm in gold. Yield stress profiles and TEM analyses indicate that both materials strain harden even when very small volumes of material are involved. Strain hardening theory, as applied to bulk material, is useful in analyzing the results.

  8. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment.

    PubMed

    Chen, Quanyuan; Ke, Yujuan; Zhang, Lina; Tyrer, Mark; Hills, Colin D; Xue, Gang

    2009-07-15

    The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment. PMID:19128876

  9. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2010-03-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  10. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2009-12-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  11. Electromagnetic pulse (EMP): Phenomena, simulation, and hardening. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning natural and nuclear electromagnetic pulse (EMP) phenomena, simulation, and hardening. Topics include analyses, evaluations, and simulations of EMP interactions, and EMP coupling with various susceptible systems, devices, objects, and materials. Protective methods and technology for specific devices and overall premises are included along with testing methodologies and experimental results from simulated EMP phenomena. Computer aided analysis of EMP phenomena is also included. (Contains a minimum of 240 citations and includes a subject term index and title list.)

  12. Electromagnetic pulse (EMP): Phenomena, simulation, and hardening. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning natural and nuclear electromagnetic pulse (EMP) phenomena, simulation, and hardening. Topics include analyses, evaluations, and simulations of EMP interactions, and EMP coupling with various susceptible systems, devices, objects, and materials. Protective methods and technology for specific devices and overall premises are included along with testing methodologies and experimental results from simulated EMP phenomena. Computer aided analysis of EMP phenomena is also included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  13. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  14. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  15. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  16. Strain hardening in 2D discrete dislocation dynamics simulations: A new '2.5D' algorithm

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Curtin, W. A.

    2016-10-01

    The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called '2.5D' constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new '2.5D' DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.

  17. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  18. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  19. The origins of high hardening and low ductility in magnesium.

    PubMed

    Wu, Zhaoxuan; Curtin, W A

    2015-10-01

    Magnesium is a lightweight structural metal but it exhibits low ductility-connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena-which makes it difficult to form and use in energy-saving lightweight structures. We employ long-time molecular dynamics simulations utilizing a density-functional-theory-validated interatomic potential, and reveal the fundamental origins of the previously unexplained phenomena. Here we show that the key 〈c + a〉 dislocation (where 〈c + a〉 indicates the magnitude and direction of slip) is metastable on easy-glide pyramidal II planes; we find that it undergoes a thermally activated, stress-dependent transition to one of three lower-energy, basal-dissociated immobile dislocation structures, which cannot contribute to plastic straining and that serve as strong obstacles to the motion of all other dislocations. This transition is intrinsic to magnesium, driven by reduction in dislocation energy and predicted to occur at very high frequency at room temperature, thus eliminating all major dislocation slip systems able to contribute to c-axis strain and leading to the high hardening and low ductility of magnesium. Enhanced ductility can thus be achieved by increasing the time and temperature at which the transition from the easy-glide metastable dislocation to the immobile basal-dissociated structures occurs. Our results provide the underlying insights needed to guide the design of ductile magnesium alloys.

  20. Anisotropic hardening model based on non-associated flow rule and combined nonlinear kinematic hardening for sheet materials

    NASA Astrophysics Data System (ADS)

    Taherizadeh, Aboozar; Green, Daniel E.; Yoon, Jeong W.

    2013-12-01

    A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill's 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill's 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger's effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multi-stage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.

  1. General analytical shakedown solution for structures with kinematic hardening materials

    NASA Astrophysics Data System (ADS)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-04-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  2. Reduction of work hardening rate in low-carbon steels

    NASA Astrophysics Data System (ADS)

    Yalamanchili, Bhaskar Rao

    Low carbon grades of steel rods are used to produce finished products such as fine wire, coat hangers, staples, and roofing nails. These products are subject to ductility failures during production due to excessively high work hardening rates during wire drawing. The high work hardening rates are attributed to the presence of residuals, free nitrogen, or combinations thereof. This research concludes that the most cost-effective way to reduce the work hardening rate during wire drawing is to combine boron with nitrogen to form boron nitride, and thus reducing its work hardening contribution. The results of this study also conclude the following: (1) Boron/Nitrogen ratio is the more significant factor than rod tensile strength, which affects work hardening rate. Higher ratio is better in the 0.79 to 1.19 range. (2) Maintaining this narrow B/N range requires precise process control. (3) Process conditions such as dissolved oxygen (<25 ppm), carbon (≤0.05%) and ladle refining temperature (<2930°F) are necessary for optimizing boron recovery. (4) An average of 89% boron recovery is obtained with the above controlled process conditions. (5) Use of Boron has no adverse effects on the several metallurgical properties tested except with minor difficulty with scale for descaling. North Star Steel Texas (North Star) benefited from this research by being able to provide a competitive edge in both quality and cost of its low carbon boron grades thus making North Star a preferred supplier of wire rod for these products.

  3. Dynamic bake hardening of interstitial-free steels

    SciTech Connect

    Dehghani, K.; Jonas, J.J.

    2000-05-01

    Two types of dynamic strain aging (DSA) strengthening methods were investigated to determine their potentials for industrial use. They are referred to here as dynamic-static bake hardening (DSBH) and dynamic bake hardening (DBH). For this purpose, a 0.06 pct Ti interstitial-free (IF) steel was reheated to 900 C and cooled at 12 C/s to room temperature. It was then dynamically bake hardened in the temperature range 100 C to 250 C to strains of 2 to 8 pct at a strain rate of 10{sup {minus}3} s{sup {minus}1}. The tensile properties were determined before and after these treatments. It was found that the occurrence of DSA during dynamic baking led to significant increases in work-hardening rate as well as in the final strength. The results indicate that, for a given solute carbon level, the dynamically and then statically aged samples have higher strengths than those that are bake hardened in the conventional way.

  4. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  5. Strain Hardening and Strain Softening of Reversibly Cross-linked Supramolecular Polymer Networks.

    PubMed

    Xu, Donghua; Craig, Stephen L

    2011-09-27

    The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (k(d) ∼ 1450 s(-1)), whereas strain hardening is observed for samples with slower cross-linkers (k(d) ∼ 17 s(-1)). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system.

  6. Strain Hardening and Strain Softening of Reversibly Cross-linked Supramolecular Polymer Networks

    PubMed Central

    Xu, Donghua; Craig, Stephen L.

    2011-01-01

    The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (kd ∼ 1450 s−1), whereas strain hardening is observed for samples with slower cross-linkers (kd ∼ 17 s−1). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system. PMID:22043083

  7. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  8. Proteolysis of Xenopus laevis egg envelope ZPA triggers envelope hardening.

    PubMed

    Lindsay, Leann L; Hedrick, Jerry L

    2004-11-12

    The egg envelope of most animal eggs is modified following fertilization, resulting in the prevention of polyspermy and hardening of the egg envelope. In frogs and mammals a prominent feature of envelope modification is N-terminal proteolysis of the envelope glycoprotein ZPA. We have purified the ZPA protease from Xenopus laevis eggs and characterized it as a zinc metalloprotease. Proteolysis of isolated egg envelopes by the isolated protease resulted in envelope hardening. The N-terminal peptide fragment of ZPA remained disulfide bond linked to the ZPA glycoprotein moiety following proteolysis. We propose a mechanism for egg envelope hardening involving ZPA proteolysis by an egg metalloprotease as a triggering event followed by induction of global conformational changes in egg envelope glycoproteins. PMID:15474476

  9. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  10. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    SciTech Connect

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S. )

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of {gamma}{prime} (Ni{sub 3}(Al,Ti)) has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300{degree}C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the {gamma}{prime} (Ni{sub 3}(Al,Ti)) system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100{degree}C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni{sub 3}(Al,Ti) phase was active with respect to the matrix. The peak in activity near 100{degree}C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate {gamma}{prime} on the grain boundaries. 20 refs., 23 figs., 3 tabs.

  11. Mechanism of work hardening in Hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Dastur, Y. N.; Leslie, W. C.

    1981-05-01

    When Hadfield manganese steel in the single-phase austenitic condition was strained in tension, in the temperature range - 25 to 300 °C, it exhibited jerky (serrated) flow, a negative (inverse) strain-rate dependence of flow stress and high work hardening, characteristic of dynamic strain aging. The strain rate-temperature regime of jerky flow was determined and the apparent activation energies for the appearance and disappearance of serrations were found to be 104 kJ/mol and 146 kJ/mol, respectively. The high work hardening cannot be a result of mechanical twinning because at -50 °C numerous twins were produced, but the work hardening was low and no twins were formed above 225 °C even though work hardening was high. The work hardening decreased above 300 °C because of the cessation of dynamic strain aging and increased again above 400 °C because of precipitation of carbides. An apparent activation energy of 138 kJ/mol was measured for static strain aging between 300 and 400 °C, corresponding closely to the activation energies for the disapperance of serrations and for the volume diffusion of carbon in Hadfield steel. Evidence from the present study, together with the known effect of manganese on the activity of carbon in austenite and previous internal friction studies of high-manganese steels, lead to the conclusion that dynamic strain aging, brought about by the reorientation of carbon members of C-Mn couples in the cores of dislocations, is the principal cause of rapid work hardening in Hadfield steel.

  12. Determination of Anisotropic Hardening of Sheet Metals by Shear Tests

    NASA Astrophysics Data System (ADS)

    Schikorra, Marco; Brosius, Alexander; Kleiner, Matthias

    2005-08-01

    With regard to the increasing necessity of accurate material data determination for the prediction of springback, a material testing equipment has been developed and set up for the measurement of material hardening within cyclic loading. One reason for inaccurate springback predictions can be seen in a missing consideration of load reversal effects in a realistic material model description. Due to bending and unbending while the material is drawn from the flange over a radius of a deep drawing tool, a hardening takes place which leads to an expanding or shifting of the elastic area and yield locus known as isotropic, kinematic, or combined hardening. Since springback is mainly influenced by the actual stress state and a correct distinction between elastic and elastic-plastic regions, an accurate prediction of these stress and strain components is basically required to simulate springback accurately, too. The presented testing method deals with shearing of sheet metal specimens in one or more load cycles to analyze the change of yield point and yield curve. The experimental set up is presented and discussed and the results are shown for different materials such as aluminum A199.5, stainless steel X5CrNi18.10, dual phase steel DP600, and copper Cu99.99. To guarantee a wide experimental range, different sheet thicknesses were used additionally. Simulations using the finite element method were carried out to compare the measured results with calculated results from different yield criterions and different hardening laws mentioned above. It was possible to show that commonly used standard material hardening laws like isotropic and kinematic hardening laws often do not lead to accurate stress state predictions when load reversals occur. The work shows the range of occurring differences and strategies to obtain to a more reliable prediction.

  13. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    SciTech Connect

    Yun, Tae Sup; Kim, Kwang Yeom; Choo, Jinhyun; Kang, Dong Hun

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  14. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  15. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  16. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  17. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  18. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  19. The anisotropic work-hardening of WC crystals

    SciTech Connect

    Luyckx, S.B.; Nabarro, F.R.N.; Wai, S.W.; James, M.N. )

    1992-07-01

    This paper reports that it has been found that indented (1010) surfaces of WC crystals exhibit piled-up material next to the indentations while (0001) surfaces exhibit sunk-in material. Since in some metals sunk-in material around indenters indicates a higher work-hardening capacity than piled-up material, slip line and etch pit patterns around indentations were analyzed, in order to deduce the dislocation reactions occurring in each case. It was found that 1/6(1210) sessile dislocations can be produced only when indenting (0001) surfaces, which is consistent with a higher work-hardening capacity of (0001) surfaces.

  20. Statistical thermodynamics of strain hardening in polycrystalline solids

    SciTech Connect

    Langer, James S.

    2015-01-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  1. On the hardening and softening of nanocrystalline materials

    SciTech Connect

    Fougere, G.E.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. . Materials Science Div.)

    1993-04-01

    Nanocrystalline Pd and Cu samples have been thermally treated to determine whether the relation between hardness and grain size depend on the method used to vary the grain sizes. Previous reports indicate that hardening with decreasing grain size resulted from data obtained using individual samples, while softening with decreasing grain size resulted from data from a given sample that had been thermally treated. Hardening and softening regimes were evident for the nanocrystalline cu, and the hardness improvements over the original as-consolidated state were maintained throughout the thermal treatments. This review examines our hardness results for Cu and Pd and those for other nanocrystalline materials.

  2. Precipitation hardening of a novel aluminum matrix composite

    SciTech Connect

    Suarez, Oscar Marcelo

    2002-09-15

    Deterioration of properties in cast aluminum matrix composites (AMCs) due to matrix/reinforcement chemical reactions is absent when AlB{sub 2} particles are used as reinforcements. This communication reports the fabrication of a heat-treatable AMC reinforced with borides. Final hardness values can be adjusted by solution and precipitation, which harden the composite. Evolution of the microstructure is concisely presented as observed by secondary electron microscopy. Precipitation hardening of the aluminum matrix, observed by microhardness measurements, has been corroborated by differential thermal analysis.

  3. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. Hardening transition in a one-dimensional model for ferrogels.

    PubMed

    Annunziata, Mario Alberto; Menzel, Andreas M; Löwen, Hartmut

    2013-05-28

    We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our description the magnetic particles are represented by hard spheres with a magnetic dipole moment in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elastic deformations of the matrix, where a memory effect of the orientations is included. Although the particles are displaced along one spatial direction only, the system already shows rich behavior: as a function of the magnetic dipole moment, we find a phase transition between "soft-elastic" states with finite interparticle separation and finite compressive elastic modulus on the one hand, and "hardened" states with touching particles and therefore diverging compressive elastic modulus on the other hand. Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles. In addition, we consider a situation in which a spatially homogeneous magnetization is initially imprinted into the material. Depending on the strength of the magneto-mechanical coupling between the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromagnetic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose of our work is to provide a largely analytically solvable approach that can provide a benchmark to test future descriptions of higher complexity. From an applied point of view, our results could be exploited, for example, for the construction of novel damping devices of tunable shock absorbance.

  5. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology.

  6. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  7. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  8. Experimental study on the contribution of the quantum tunneling effect to the improvement of the conductivity and piezoresistivity of a nickel powder-filled cement-based composite

    NASA Astrophysics Data System (ADS)

    Han, B. G.; Han, B. Z.; Yu, X.

    2009-06-01

    The voltage-current characteristics of a nickel powder (NP)-filled cement-based composite (NPCC) and the variation of electrical resistivity of NPCC under compression are studied by using a four-pole method based on embedded loop electrodes. The generation of conductivity and piezoresistivity in NPCC is investigated by examining the morphology of NPCC by SEM and studying the variation of distance between NP particles under compression. Experimental results indicate that the electrical conductivity of NPCC is ohmic when the voltage is below 3.5 V. Although NP particles are dispersed in the cement matrix and they do not form a connected conductive network, NPCC has a low electrical resistivity of 2.29 × 103Ω cm without loading. A decrease of 0.042% in the fractional change in volume of NPCC under compression causes the tunneling distance to decrease 0.60-1.42 nm and the fractional change in electrical resistivity to reach 62.61%. It is therefore concluded that the improvement of conductivity and piezoresistivity of NPCC is due to the quantum tunneling effect.

  9. Effects of the content level and particle size of nickel powder on the piezoresistivity of cement-based composites/sensors

    NASA Astrophysics Data System (ADS)

    Han, B. G.; Han, B. Z.; Yu, X.

    2010-06-01

    To explore the effects of the content level and particle size of spiky spherical nickel powder on electrical conductivity and piezoresistivity, three types of spiky spherical nickel powder with different particle sizes (3-7 µm, 2.6-3.3 µm and 2.2-2.8 µm) were dispersed into the cement-matrix to fabricate the nickel powder filled cement-based composites/sensors. Experimental results indicate that a high content level and a small practical size are beneficial for the improvement of electrically conductivity. The piezoresistive sensitivities of composites/sensors with 20, 24 and 22 vol% of nickel powder increase orderly when nickel powder particle size is in the range of 3-7 µm. The piezoresistive sensitivities of composites/sensors with different particle sizes of nickel powder decrease with an increase of nickel powder particle sizes at 24 vol% of nickel powder content level. The piezoresistive sensitivity is highly dependent on the conductive network in the composites, which is dominated by the content level and the particle size of the spiky spherical nickel powder.

  10. Mixed waste solidification testing on thermosetting polymer and cement based waste forms in support of Hanford`s WRAP Module 2A Facility

    SciTech Connect

    Burbank, D.A.; Weingardt, K.M.

    1993-03-01

    A testing program has been conducted by the Westinghouse Hanford Company to confirm the baseline waste form selection for use in Waste Receiving and Processing (WRAP) Module 2A. WRAP Module 2A will provide treatment required to properly dispose of containerized contact-handled, mixed low-level waste at the US Department of Energy Hanford Site in south-central Washington State. Solidification/stabilization has been chosen as the appropriate treatment for this waste. This work is intended to test cement-based and thermosetting polymer solidification media to confirm the baseline technologies selected for WRAP Module 2A. Screening tests were performed using the major chemical constituent of each waste type to measure the gross compatibility with the immobilization media and to determine formulations for more detailed testing. Surrogate wastes representing each of the eight waste types were prepared for testing. Surrogates for polymer testing were sent to a vendor commissioned for that portion of the test work. Surrogates for the grout testing were used in the Westinghouse Hanford Company laboratory responsible for the grout performance testing. Detailed discussion of the laboratory work and results are contained in this report.

  11. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. PMID:25590872

  12. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  13. Copper-based dispersion hardened materials obtained by extrusion

    SciTech Connect

    Agbalyan, S.A.; Martirosyan, N.S.; Arutyunyan, A.S.

    1994-07-01

    Using the results of differential thermal analysis, the sintering parameters and extrusion temperatures for the fabrication of Cu-Cr-Zn-TiC powder alloys were determined. The optimal compositions, and techniques for their production were identified. Industrial tests of electrodes prepared by extrusion of the dispersion hardened materials showed that their durability is 3-5 times greater than that of standard electrodes.

  14. RTM of Italy applies power lasers to welding, hardening

    NASA Astrophysics Data System (ADS)

    Larane, A.

    1985-09-01

    The Institute for Mechanical Technology Research and Automation (RTM) has five power lasers, including one with a 15-kW output all lasers are used for process development like, sheet metal welding and spot hardening feasibility tests of mechanical part machining and surface treatment are described.

  15. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-02-04

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology.

  16. Numerical Integration of Elastoviscoplasticity Model with Stiff Hardening and Softening

    SciTech Connect

    Vorobiev, O.Y.; Lomov, I.N; Glenn, L.A.; Rubin, M.B.

    2000-02-01

    The constitutive equations for viscoplasticity typically are stiff differential equations and require special numerical methods to integrate them efficiently. The objective of this paper is to propose a class of rate-dependent viscoplastic constitutive equations which can be integrated by an efficient explicit scheme that includes the first order effect of pressure and plastic strain hardening.

  17. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  18. Genetic study of glutathione accumulation during cold hardening in wheat.

    PubMed

    Kocsy, G; Szalai, G; Vágújfalvi, A; Stéhli, L; Orosz, G; Galiba, G

    2000-01-01

    The effect of cold hardening on the accumulation of glutathione (GSH) and its precursors was studied in the shoots and roots of wheat (Triticum aestivum L.) cv. Cheyenne (Ch, frost-tolerant) and cv. Chinese Spring (CS, moderately frost-sensitive), in a T. spelta L. accession (Tsp, frost-sensitive) and in chromosome substitution lines CS (Ch 5A) and CS (Tsp 5A). The fast induction of total glutathione accumulation was detected during the first 3 d of hardening in the shoots, especially in the frost-tolerant Ch and CS (Ch 5A). This observation was corroborated by the study of de novo GSH synthesis using [(35)S]sulfate. In Ch and CS (Ch 5A) the total cysteine, gamma-glutamylcysteine (precursors of GSH), hydroxymethylglutathione and GSH contents were greater during the 51-d treatment than in the sensitive genotypes. After 35 d hardening, when the maximum frost tolerance was observed, greater ratios of reduced to oxidised hydroxymethylglutathione and glutathione were detected in Ch and CS (Ch 5A) compared to the sensitive genotypes. A correspondingly greater glutathione reductase (EC 1.6.4.2) activity was also found in Ch and CS (Ch 5A). It can be assumed that chromosome 5A of wheat has an influence on GSH accumulation and on the ratio of reduced to oxidised glutathione as part of a complex regulatory function during hardening. Consequently, GSH may contribute to the enhancement of frost tolerance in wheat. PMID:10664136

  19. UVA rush hardening for the treatment of solar urticaria.

    PubMed

    Beissert, S; Ständer, H; Schwarz, T

    2000-06-01

    Induction of tolerance by subsequent UV exposures is the most effective therapy for solar urticaria; however, it is time-consuming and takes a long time until protection is achieved. Three patients with solar urticaria were exposed to multiple UVA irradiations at 1-hour intervals per day. With this rush hardening regimen, protection was achieved within 3 days. PMID:10827409

  20. Fatigue crack growth characteristics of laser-hardened 4130 steel

    SciTech Connect

    Wei, M.Y.; Chen, C. . Inst. of Materials Science and Engineering)

    1994-11-15

    Laser surface hardening of steels is one of many successful applications in laser material processing. The effect of the microstructure on the da/dN of various steels has been reported by several investigators who concluded that tempered martensite has a higher resistance to da/dN than does as-quenched (AQ) martensite. In addition to the microstructure, the residual stress also has a significant influence on da/dN. Importantly, the distribution of residual stresses is not uniform through the depth of the hardened zone and may change as crack propagating takes place in the test. Owing to the complicated nature of residual stresses, it is difficult to quantitatively analyze such an influence on the da/dN of laser-hardened steels. The present study was to investigate the characteristics of da/dN in laser-hardened AISI 4130 steels. Residual stress measurements was performed on distinct laser-treated specimens in the evaluation process.

  1. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  2. Radiation hardening design of nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Schmidt, R. E.

    1987-01-01

    The design and operation of space systems utilizing nuclear fueled power systems must consider the radiation environment from the earliest stages of their design. A range of nuclear systems are being considered for present and future satellite systems capable of supplying tens of kilowatts to multimegawatt and generating a corresponding range of radiation environments. The effects of these radiations on electronics and materials can be minimized by implementing early design considerations which maximize the design efficiency and minimize the impact on system mass. Space systems design considerations for the radiation environment must include all sources in addition to the self induced gamma ray and neutron radiation. These include the orbital dependent environment from the high energy electron and protons encountered in natural space. The system trades which the designer must consider in the development of space platforms which utilize nuclear reactor power supplies are discussed.

  3. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    SciTech Connect

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.; Ivanov, A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM`s to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby.

  4. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida.

    PubMed

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-11-01

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.

  5. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida

    PubMed Central

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-01-01

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda–Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. PMID:22675161

  6. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida.

    PubMed

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-11-01

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. PMID:22675161

  7. Modeling of solid/liquid/gas mass transfer for environmental evaluation of cement-based solidified waste.

    PubMed

    Tiruta-Barna, L R; Barna, R; Moszkowicz, P

    2001-01-01

    A physicochemical and transport model has been developed for the long term prediction of environmental leaching behavior of porous materials containing inorganic waste solidified with hydraulic binders and placed in a reuse scenario. The reuse scenario considered in the paper is a storage tank open to the atmosphere including material leaching with water and carbonation through the leachate contact with air. The model includes three levels: (i) the physicochemical pollution source term (chemical equilibria in the pore water and diffusion in the porous system); (ii) chemical equilibria and mass transfer in the tank; and (iii) gas/liquid transfer of carbon dioxide. The model was applied to the case of a material obtained through solidification of Air Pollution Control (APC) residues from Municipal Solid Waste Incinerator (MSWI). The simulation results are in good agreement with two scale experimental data: laboratory and field tests. Experimental data and simulations show the main trends for release of elements contained in the material: (i) the release of alkaline metals and chloride is not significantly influenced by carbonation and (ii) the release of Ca and Pb is governed by chemical equilibria in pore water and diffusion, while their speciation in the leachate is determined by pH and the presence of carbonate ions.

  8. Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C-S-H

    SciTech Connect

    Blanc, Ph.; Bourbon, X.; Lassin, A.; Gaucher, E.C.

    2010-09-15

    In the context of waste confinement, concrete may be used both as a confinement and as a building material. Concerning radwaste, the heat released during radioactive decay will modify the equilibrium constants of the minerals forming the concrete. The present work aims to elucidate the temperature dependency of the thermodynamic functions related to minerals from the concrete or associated with some of its degradation products. A large set of experimental data has been collected, for the chemical systems SO{sub 3}-Al{sub 2}O{sub 3}-CaO-CO{sub 2}-Cl-H{sub 2}O and SiO{sub 2}-Al{sub 2}O{sub 3}-CaO-H{sub 2}O, including iron and magnesium bearing phases. Most of the data collected concern experiments in aqueous media but results from calorimetric studies were also included, when available. Based on selected thermodynamic properties for each phase, predominance diagrams were drawn for the chemical elements listed above. Phase relations reported into predominance diagram appear rather consistent with most of the literature results. The case of katoite has been especially discussed, because it shows inconsistencies with respect to a hydrogarnet-grossular solid solution and with respect to phase relations reported into already published works. Finally, we underline the chemical compatibility of Portland cement pastes with carbonate aggregates, compared to silicates, for long-term storage applications.

  9. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92–200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92–200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  10. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  11. Recovery of strain-hardening rate in Ni-Si alloys.

    PubMed

    Yang, C L; Zhang, Z J; Cai, T; Zhang, P; Zhang, Z F

    2015-10-21

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  12. Recovery of strain-hardening rate in Ni-Si alloys

    PubMed Central

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-01-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects. PMID:26487419

  13. Electromagnetic pulse (EMP): Phenomena, simulation, and hardening. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning natural and nuclear electromagnetic pulse (EMP) phenomena, simulation, and hardening. Topics include analyses, evaluations, and simulations of EMP interactions, and EMP coupling with various susceptible systems, devices, objects, and materials. Protective methods and technology for specific devices and overall premises are included along with testing methodologies and experimental results from simulated EMP phenomena. Computer aided analysis of EMP phenomena is also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Method and equipment for induction surface hardening of the leading edges of turbine blades

    SciTech Connect

    Sorokina, T.M.; Dymchenko, V.V.

    1988-01-01

    Methodology and equipment for hardening the leading edges of blades for large nuclear reactor steam turbines was investigated using blades made of 15Kh11MF hardened and tempered steel. A machine was designed and built for hardening the blade leading edges with a vacuum-tube oscillator and 66,000 Hz frequency. The electrical parameters of the induction heating were recorded. Hardening of the actual blades made it possible to obtain a hardened case with a depth of 1-3 mm and up to 5 mm in the lower portion of the blade and increased erosion resistance.

  15. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  16. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    PubMed

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects.

  17. Springback After the Lateral Bending of T-Section Rails of Work-Hardening Materials

    NASA Astrophysics Data System (ADS)

    Song, Youshuo; Yu, Zhonghua

    2013-11-01

    This paper studies the springback after the lateral bending of T-section rails, considering the work-hardening materials. A linear-hardening model and an elastic-plastic power-exponent hardening model of the material are adopted and compared with the real experimental stress-strain curve obtained from the uniaxial tension tests. The analytical formulas for the springback and residual curvatures are given. The numerical results indicate that the material hardening directly affects the accuracy of springback prediction compared with the experimental results. Besides, springback prediction is not sensitive to hardening parameters in the beginning of elastic-plastic bending deformation. Although there is an apparent yield stage in the true stress-strain curve, the adopted hardening models can achieve an allowable relative error, if hardening parameters are properly selected.

  18. CMOS inverter design-hardened to the total dose effect

    SciTech Connect

    Roche, F.M.; Salager, L.

    1996-12-01

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to {sup 60}Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption.

  19. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  20. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  1. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  2. Irradiation hardening of pure tungsten exposed to neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-11-01

    Pure tungsten samples have been neutron irradiated in HFIR at 90-850 °C to 0.03-2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relatively modest dose (>0.6 dpa). The precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  3. Stress and Distortion Evolution During Induction Case Hardening of Tube

    NASA Astrophysics Data System (ADS)

    Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Ferguson, Lynn; Li, Zhichao

    2013-07-01

    Simulation of stresses during heat treatment relates usually to furnace heating. Induction heating provides a very different evolution of temperature in the part and therefore different stresses. This may be positive for service properties or negative, reducing component strength or even causing cracks. A method of coupled simulation between electromagnetic, thermal, structural, stress, and deformation phenomena during induction tube hardening is described. Commercial software package ELTA is used to calculate the power density distribution in the load resulting from the induction heating process. The program DANTE is used to predict temperature distribution, phase transformations, stress state, and deformation during heating and quenching. Analyses of stress and deformation evolution were made on a simple case of induction hardening of external (1st case) and internal (2nd case) surfaces of a thick-walled tubular body.

  4. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  5. Transformation hardening of steel sheet for automotive applications

    NASA Astrophysics Data System (ADS)

    Takechi, H.

    2008-12-01

    Among high-strength steels, transformation hardening steels such as dual-phase (DP) steel and transformation-induced plasticity (TRIP) steel offer a superior relationship between tensile strength (TS) and elongation (El) on a commercial scale. As demand has grown for lighter-weight automobiles, so also has the demand for higher TS, lower yield ratio, and higher hole expansion ratio grown. Recently DP steel has been developed with precipitation hardening and grain refining by TiC. A new TRIP steel composed of 5Mn-2Si and control-rolled with niobium addition suggests the formation of retained austenite ( γ R ) as much as 30% and TS × El = 3,000 kgf/mm2·%.

  6. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  7. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  8. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, D.

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line {Theta} = {Theta}{sub 0} {minus} K{sub 2}{sigma}, where {Theta}{sub 0} is theoretical work hardening rate at zero stress and K{sub 2} is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of {Theta}{sub 0} and K{sub 2} and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The {Theta}{sub 0} and K{sub 2} associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of {Theta}{sub 0} and K{sub 2}. The actual value of K{sub 2} in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K{sub 2} than microstructures that remain partially or fully unrecrystallized. The higher K{sub 2} value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  9. A beam hardening correction method based on HL consistency

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Tang, Shaojie; Yu, Hengyong

    2006-08-01

    XCT with polychromatic tube spectrum causes artifact called beam hardening effect. The current correction in CT device is carried by apriori polynomial from water phantom experiment. This paper proposes a new beam hardening correction algorithm that the correction polynomial depends on the relativity of projection data in angles, which obeys Helgasson-Ludwig Consistency (HL Consistency). Firstly, a bi-polynomial is constructed to characterize the beam hardening effect based on the physical model of medical x-ray imaging. In this bi-polynomial, a factor r(γ,β) represents the ratio of the attenuation contributions caused by high density mass (bone, etc.) to low density mass (muscle, vessel, blood, soft tissue, fat, etc.) respectively in the projection angle β and fan angle γ. Secondly, let r(γ,β)=0, the bi-polynomial is degraded as a sole-polynomial. The coefficient of this polynomial can be calculated based on HL Consistency. Then, the primary correction is reached, which is also more efficient in theoretical than the correction method in current CT devices. Thirdly, based on the result of a normal CT reconstruction from the corrected projection data, r(γ,β) can be estimated. Fourthly, the coefficient of bi-polynomial can also be calculated based HL Consistency and the final correction are achieved. Experiments of circular cone beam CT indicate this method an excellent property. Correcting beam hardening effect based on HL Consistency, not only achieving a self-adaptive and more precise correction, but also getting rid of regular inconvenient water phantom experiments, will renovate the correction technique of current CT devices.

  10. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  11. Single cell mechanics: stress stiffening and kinematic hardening.

    PubMed

    Fernández, Pablo; Ott, Albrecht

    2008-06-13

    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the complex rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Despite the complexity of the living cell, its mechanical properties can be cast into simple, well-defined rules. Our results reveal the key role of crosslink slippage in determining mechanical cell strength and robustness. PMID:18643547

  12. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  13. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    SciTech Connect

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  14. Description of full-range strain hardening behavior of steels.

    PubMed

    Li, Tao; Zheng, Jinyang; Chen, Zhiwei

    2016-01-01

    Mathematical expression describing plastic behavior of steels allows the execution of parametric studies for many purposes. Various formulas have been developed to characterize stress strain curves of steels. However, most of those formulas failed to describe accurately the strain hardening behavior of steels in the full range which shows various distinct stages. For this purpose, a new formula is developed based on the well-known Ramberg-Osgood formula to describe the full range strain hardening behavior of steels. Test results of all the six types of steels show a three-stage strain hardening behavior. The proposed formula can describe such behavior accurately in the full range using a single expression. The parameters of the formula can be obtained directly and easily through linear regression analysis. Excellent agreements with the test data are observed for all the steels tested. Furthermore, other formulas such as Ludwigson formula, Gardner formula, UGent formula are also applied for comparison. Finally, the proposed formula is considered to have wide suitability and high accuracy for all the steels tested.

  15. Description of full-range strain hardening behavior of steels.

    PubMed

    Li, Tao; Zheng, Jinyang; Chen, Zhiwei

    2016-01-01

    Mathematical expression describing plastic behavior of steels allows the execution of parametric studies for many purposes. Various formulas have been developed to characterize stress strain curves of steels. However, most of those formulas failed to describe accurately the strain hardening behavior of steels in the full range which shows various distinct stages. For this purpose, a new formula is developed based on the well-known Ramberg-Osgood formula to describe the full range strain hardening behavior of steels. Test results of all the six types of steels show a three-stage strain hardening behavior. The proposed formula can describe such behavior accurately in the full range using a single expression. The parameters of the formula can be obtained directly and easily through linear regression analysis. Excellent agreements with the test data are observed for all the steels tested. Furthermore, other formulas such as Ludwigson formula, Gardner formula, UGent formula are also applied for comparison. Finally, the proposed formula is considered to have wide suitability and high accuracy for all the steels tested. PMID:27563511

  16. Disaster-hardened imaging POD for PACS

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice; Frost, Meryll

    2005-04-01

    After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be operated on emergency power, a limited, but effective number of studies could be performed. However, in a digital department, there is a reliance on the network infrastructure to deliver images to viewing locations. The system developed for our institution uses several imaging PODS, a name we chose because it implied to us a safe, contained environment. Each POD is a stand-alone emergency powered network capable of generating images and displaying them in the POD or printing them to a DICOM printer. The technology we used to create a POD consists of a computer with dual network interface cards joining our private, local POD network, to the hospital network. In the case of an infrastructure failure, each POD can and does work independently to produce CTs, CRs, and Ultrasounds. The system has been tested during disaster drills and works correctly, producing images using equipment technologists are comfortable using with very few emergency switch-over tasks. Purpose: To provide imaging capabilities in the event of a natural or man-made disaster with infrastructure failure. Method: After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be

  17. Features of thermal processes of plasma deposition and hardening of coatings with external modulation parameters of the arc

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.; Maltsev, A. F.

    2016-06-01

    In the work on the basis of mathematical modeling analysis of processes of plasma deposition of coatings with modulation of the electrical parameters of the extension arc. The effect of modulation on the temperature field in the system "coating-basis" on a local scale, proportionate to the diameter of the spot attachment of the arc to the surface, and at the macrolevel of evaporation surface. It justifies the preconditions of the improvement of plasma deposition and hardening coatings.

  18. Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sizonenko, O. N.; Grigoryev, E. G.; Zaichenko, A. D.; Pristash, N. S.; Torpakov, A. S.; Lipyan, Ye V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2016-04-01

    The new approach in developed plasma methods consists in that dispersionhardening additives (TiC, TiB2 in particular) are not mechanically added to powder mixture as additional component, as in conventional methods, but are instead synthesized during high voltage electric discharges (HVED) in disperse system “hydrocarbon liquid - powder” preservation of ultrafine structure is ensured due to use of spark plasma sintering (SPS) as a consolidation method. HVED in disperse system “hydrocarbon liquid - powder” due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. SPS is the passage of pulsed current (superposition of direct and alternating current) through powder with the simultaneous mechanical compressing. The formation of plasma is initiated in gaseous phase that fills gaps between particles. SPS allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10 - 20%), hardness and wear-resistance (by 30 - 60%) of obtained materials.

  19. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    SciTech Connect

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko; Blalock, Benjamin

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  20. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jones, Jennifer L.; Koul, Michelle G.; Schubbe, Joel J.

    2014-06-01

    A surface hardening technique called "interstitial hardening" is commercially available, whereby interstitial carbon atoms are introduced into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or fasteners would improve performance regarding cavitation and galling resistance, and has intensified interest in this process. However, there remains a need to characterize and validate the specific performance characteristics of the hardened materials. This paper describes experimental testing conducted on 316L stainless steel that has been surface hardened using available commercial techniques, using carbon as the interstitial atom. The corrosion performance of the hardened surface is assessed using electrochemical potentiodynamic testing to determine the breakdown potential in 3.5 wt.% NaCl solution to identify the most promising method. The hardness and thickness of the surface-hardened layer is characterized and compared using metallography and microhardness profiling. Corrosion fatigue and slow strain rate testing of untreated, hardened, and damaged, hardened surfaces exposed to ASTM seawater is conducted. Finally, critical galling stresses are determined and compared. Post-test examination of damage attempts to identify mechanisms of material failure and characterize how corrosion-assisted cracks initiate and grow in surface-hardened materials.

  1. Gradient single-crystal plasticity within a Mises-Hill framework based on a new formulation of self- and latent-hardening

    NASA Astrophysics Data System (ADS)

    Gurtin, Morton E.; Reddy, B. Daya

    2014-08-01

    This paper develops a theory of rate-independent single-crystal plasticity at small length scales. The theory is thermodynamically consistent, and makes provision for power expenditures resulting from vector and scalar microscopic stresses respectively conjugate to slip rates and their tangential gradients on the individual slip systems. Scalar generalized accumulated slips form the basis for a new hardening relation, which takes account of self- and latent-hardening. The resulting initial-boundary value problem is placed in a variational setting in the form of a global variational inequality.

  2. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  3. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  4. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  5. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  6. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo; Hakanen, Merja; Sorsa, Aki; Leiviskä, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  7. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-07-20

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10{sup 18} cm{sup {minus}3} and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10{sup 17} cm{sup {minus}3}, a thicker silicon film (300 nm) must be used.

  8. Radiation-Hardened Software for Space Flight Science Applications

    NASA Astrophysics Data System (ADS)

    Mehlitz, P. C.; Penix, J. J.; Markosian, L. Z.

    2005-12-01

    Hardware faults caused by radiation-induced Single Event Effects (SEEs) are a serious issue in space flight, especially affecting scientific missions in earth orbits crossing the poles or the South Atlantic Anomaly. Traditionally, SEEs are treated as a hardware problem, for example mitigated by radiation-hardened processors and shielding. Rad-hardened processors are expensive, exhibit a decade performance gap compared to COTS technology, have a larger form factor and require more power. Shielding is ineffective for high energy particles and increases launch weight. Hardware approaches cannot dynamically adapt protection levels for different radiation scenarios depending on solar activity and flight phase. Future hardware will exacerbate the problem due to higher chip densities and lower power levels. An alternative approach is to use software to mitigate SEEs. This "Radiation Hardened Software" (RHS) approach has two components: (1) RHS library and application design guidelines To increase robustness, we combine SEE countermeasures in three areas: prevention and detection; recovery; and reconfiguration. Prevention and detection includes an application- and heap-aware memory scanner, and dynamically adapted software Error Correction Codes to handle cache and multi-bit errors. Recovery mechanisms include exception firewalls and transaction-based software design patterns, to minimize data loss. Reconfiguration includes a heap manager to avoid damaged memory areas. (2) Software-based SEE Simulation Probabilistic effects require extensive simulation, with test environments that do not require original flight hardware and can simulate various SEE profiles. We use processor emulation software, interfaced to a debugger, to analyze SEE propagation and optimize RHS mechanisms. The simulator runs unmodified binary flight code, enables injecting randomized transient and permanent memory errors, providing execution traces and precise failure reproduction. The goal of RHS is to

  9. X-ray beam hardening correction by minimizing reprojection distance

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Varslot, Trond K.

    2012-10-01

    We address the problem of tomographic image quality degradation due to the effects of beam hardening when using a polychromatic X-ray source. Beam hardening refers to the preferential attenuation of low-energy (or soft) X-rays resulting in a beam with a higher average energy (i.e., harder). In projection images, thin or low-Z materials appear more dense relative to thick or higher-Z materials. This misrepresentaion produces artifacts in the reconstructed image such as cupping and streaking. Our method involves a post-acquisition software correction that applies a beam-hardening correction curve to remap the linearised projection intensities. The curve is modelled by an eighth-order polynomial and assumes an average material for the object. The process to determine the best correction curve requires precisely 8 reconstructions and re-projections of the experiment data. The best correction curve is defined as that which generates a projection set p that minimises the reprojection distance. Reprojection distance is defined as the L2 norm of the difference between p, a set of projections, and RR†p, the result after p is reconstructed and then reprojected, i.e., ║RR†p - p║2. Here R denotes the projection operator and R† is its Moore-Penrose pseudoinverse, i.e., the reconstruction operator. This technique was designed for single-material objects and in this case the calculated curve matches that determined experimentally. However, this technique works very well for multiple-material objects where the resulting curve is a kind of average of all materials present. We show that this technique corrects for both cupping and streaking in tomographic images by including several experimental examples. Note that this correction method requires no knowledge of the X-ray spectrum or materials present and can therefore be applied to old data sets.

  10. [The effect of daily exposure to low hardening temperature on plant vital activity].

    PubMed

    Markovskaia, E F; Sysoeva, M I; Sherudilo, E G

    2008-01-01

    Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia x hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher rate of increase in cold tolerance (cf. two- or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3-4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to rapidly increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible methods underlying the plant response to daily short-term exposure to low temperature are proposed.

  11. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  12. Surface hardening of steel by laser and electron beam. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined. (Contains a minimum of 93 citations and includes a subject term index and title list.)

  13. Surface hardening of steel by laser and electron beam. (Latest citations from Metadex). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Improved impact toughness of 13Cr martensitic stainless steel hardened by laser

    NASA Astrophysics Data System (ADS)

    Tsay, L. W.; Chang, Y. M.; Torng, S.; Wu, H. C.

    2002-08-01

    The impact toughness of AISI 403 martensitic stainless steel plate and laser-hardened specimens tempered at various temperatures were examined. Phosphorus was the primary residual impurity responsible for tempered embrittlement of this alloy. The experimental result also indicated that AISI 403 stainless steel was very sensitive to reverse-temper embrittlement. The improved impact toughness of the laser-hardened specimen was attributed to the refined microstructure in the laser-hardened zone.

  15. Precipitation hardening of a beta-titanium alloy by the alpha-two phase. Technical report

    SciTech Connect

    Quattrocchi, L.S.; Koss, D.A.; Scarr, G.

    1991-09-25

    The age hardening of beta titanium alloys by the formation of ordered alpha two precipitates based on Ti3Al has been investigated by transmission electron microscopy and hardness observations. Results of tests based on the alloy Ti 23Nb 11 Al (at. %) show a large precipitation hardening response at temperatures considerably higher than is possible in current beta titanium alloys. TEM identifies the hardening to be caused by the formation of ordered, alpha two precipitates.

  16. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  17. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  18. Ductility and work hardening in nano-sized metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-01

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ˜18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ˜3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  19. Action Of Cement Hardening On Artificial Hip Joint Components

    NASA Astrophysics Data System (ADS)

    Roder, U.; Niess, N.; Plitz, W.

    1981-05-01

    Artificial acetabular cups loose their original shape and undergo deformations during implantation, caused by the polymerization shrinkage of the bone cement. In laboratory experiments, two acetabula of different material - both common in clinical use - were studied by holographic real-time interferometry during cement hardening. This method picks up characteristic features in the transient behaviour of the form changes. It is shown, that temperature, porosity and shrinkage of the cement has a large influence on the form of a polyethylene acetabulum, whereas there is only little effect on an acetabulum, made of alumina ceramic.

  20. A radiation hardened 256 x 4 bulk CMOS RAM

    NASA Technical Reports Server (NTRS)

    Napoli, L. S.; Smeltzer, R. K.; Donnelly, R.; Yeh, J.

    1982-01-01

    A radiation hardened version of the C2L process has been developed that utilizes all-low-temperature processes subsequent to channel oxidation. This process has been used on 1K RAMS. The RAMs functioned reliably at a dose of 200,000 rads (Si) and failed at a dose of 500,000 rads (Si). The 1K RAM is capable of operating from 7.5 to 12 volts and has an access time from address change of 160 nsec at 10 volts

  1. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.

    PubMed

    Loeschcke, Volker; Hoffmann, Ary A

    2007-02-01

    Heat hardening increases thermal resistance to more extreme temperatures in the laboratory. However, heat hardening also has negative consequences, and the net benefit of hardening has not been evaluated in the field. We tested short-term heat hardening effects on the likelihood of Drosophila melanogaster to be caught at different temperatures at baits in field sites without natural resources. We predicted that hardened flies should be more frequently caught at the baits at high but not low temperatures. Under cool conditions, flies hardened at 36 degrees C, and to a lesser extent at 34 degrees C, were less frequently caught at baits than nonhardened flies a few hours after release, indicating a negative effect of hardening. In later captures, negative effects tended to disappear, particularly in males. Under warm conditions, there was an overall balance of negative and positive effects, though with a different temporal resolution. Under very hot conditions, when capture rates were low, there was a large benefit of hardening at 36 degrees C and 34 degrees C but not 33 degrees C. Finally, based on climatic records, the overall benefit of hardening in D. melanogaster is discussed as an evolved response to high temperatures occasionally experienced by organisms at some locations.

  2. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  3. Laser surface hardening of gray cast iron used for piston ring

    NASA Astrophysics Data System (ADS)

    Hwang, Jong-Hyun; Kim, Dae-Young; Youn, Joong-Geun; Lee, Yun-Sig

    2002-06-01

    The process parameters for laser surface-hardening has been experimentally established for improving the wear life of piston rings used for marine diesel engines by the formation of a proper hardened layer on it. The parameters of interest were the laser power and travel speed. Various hardened layers of gray cast iron were analyzed with respect to microstructure, hardness value, hardening depth, surface roughness, and wear resistance. The hardness of the laser-hardened layer was in a range between 840 and 950 Hv0.1, regardless of the laser power and travel speed range studied. Both the surface roughness and hardening depth increased in an almost linear manner with the increase in the heat input applied. Thus, the hardened layers formed with heat input ranges between 30 and 45 J/mm satisfied the piston ring application requirements for surface roughness (<6.3 µm in Ra) and the minimum effective hardening depth of 0.3 mm (>450 in Vickers number). Wear-test results obtained using a pin-on-disk-type wear-test machine showed that the wear life of the laser-hardened layer was almost twice that of the untreated one. This was directly attributed to the formation of the martensitic microstructure.

  4. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  5. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  6. Folding and faulting of strain-hardening sedimentary rocks

    USGS Publications Warehouse

    Johnson, A.M.

    1980-01-01

    The question of whether single- or multi-layers of sedimentary rocks will fault or fold when subjected to layer-parallel shortening is investigated by means of the theory of elastic-plastic, strain-hardening materials, which should closely describe the properties of sedimentary rocks at high levels in the Earth's crust. The most attractive feature of the theory is that folding and faulting, intimately related in nature, are different responses of the same idealized material to different conditions. When single-layers of sedimentary rock behave much as strain-hardening materials they are unlikely to fold, rather they tend to fault, because contrasts in elasticity and strength properties of sedimentary rocks are low. Amplifications of folds in such materials are negligible whether contacts between layer and media are bonded or free to slip for single layers of dolomite, limestone, sandstone, or siltstone in media of shale. Multilayers of these same rocks fault rather than fold if contacts are bonded, but they fold readily if contacts between layers are frictionless, or have low yield strengths, for example due to high pore-water pressure. Faults may accompany the folds, occurring where compression is increased in cores of folds. Where there is predominant reverse faulting in sedimentary sequences, there probably were few structural units. ?? 1980.

  7. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  8. Quantifying characters: polygenist anthropologists and the hardening of heredity.

    PubMed

    Hume, Brad D

    2008-01-01

    Scholars studying the history of heredity suggest that during the 19th-century biologists and anthropologists viewed characteristics as a collection of blended qualities passed on from the parents. Many argued that those characteristics could be very much affected by environmental circumstances, which scholars call the inheritance of acquired characteristics or "soft" heredity. According to these accounts, Gregor Mendel reconceived heredity--seeing distinct hereditary units that remain unchanged by the environment. This resulted in particular traits that breed true in succeeding generations, or "hard" heredity. The author argues that polygenist anthropology (an argument that humanity consisted of many species) and anthropometry in general should be seen as a hardening of heredity. Using a debate between Philadelphia anthropologist and physician, Samuel G. Morton, and Charleston naturalist and reverend, John Bachman, as a springboard, the author contends that polygenist anthropologists hardened heredity by conceiving of durable traits that might reappear even after a race has been eliminated. Polygenists saw anthropometry (the measurement of humans) as one method of quantifying hereditary qualities. These statistical ranges were ostensibly characteristics that bred true and that defined racial groups. Further, Morton's interest in hybridity and racial mixing demonstrates that the polygenists focused as much on the transmission and recognition of "amalgamations" of characters as they did on racial categories themselves. The author suggests that seeing race science as the study of heritable, statistical characteristics rather than broad categories helps explain why "race" is such a persistent cultural phenomenon.

  9. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  10. Continuous Hardening During Isothermal Aging at 723 K (450 °C) of a Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada-Casero, Carola; Chao, Jesús; Urones-Garrote, Esteban; San Martin, David

    2016-11-01

    The isothermal aging behavior of a cold-rolled precipitation hardening stainless steel has been studied at 723 K (450 °C) for holding times up to 72 hours. The precipitation hardening has been investigated using microhardness Vickers (Hv), thermoelectric power (TEP) measurements, and tensile testing. Microhardness compared to TEP measurements is more sensitive to detect the initial stages of aging. Two precipitation regimes have been observed: the first one related to the formation of Cu-clusters for aging times below 1 hour and a second one associated with formation of Ni-rich precipitates. The results show that the material exhibits an outstanding continuous age strengthening response over the aging time investigated, reaching a hardness of 710 ± 4 HV1 and an ultimate tensile strength ( σ UTS) of 2.65 ± 0.02 GPa after 72 hours. Engineering stress-plastic strain curves reveal that the strength increases and the ductility decreases as the aging time increases. However, after prolonged holding times (24-72 hours) and, although small, a rise in both the strength and the total elongation is observed. The precipitation kinetics can be well predicted over the entire range of aging times by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Finally, a reliable linear hardness-yield strength correlation has been found, which enables a rapid evaluation of the strength from bulk hardness measurements.

  11. Continuous Hardening During Isothermal Aging at 723 K (450 °C) of a Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada-Casero, Carola; Chao, Jesús; Urones-Garrote, Esteban; San Martin, David

    2016-06-01

    The isothermal aging behavior of a cold-rolled precipitation hardening stainless steel has been studied at 723 K (450 °C) for holding times up to 72 hours. The precipitation hardening has been investigated using microhardness Vickers (Hv), thermoelectric power (TEP) measurements, and tensile testing. Microhardness compared to TEP measurements is more sensitive to detect the initial stages of aging. Two precipitation regimes have been observed: the first one related to the formation of Cu-clusters for aging times below 1 hour and a second one associated with formation of Ni-rich precipitates. The results show that the material exhibits an outstanding continuous age strengthening response over the aging time investigated, reaching a hardness of 710 ± 4 HV1 and an ultimate tensile strength (σ UTS) of 2.65 ± 0.02 GPa after 72 hours. Engineering stress-plastic strain curves reveal that the strength increases and the ductility decreases as the aging time increases. However, after prolonged holding times (24-72 hours) and, although small, a rise in both the strength and the total elongation is observed. The precipitation kinetics can be well predicted over the entire range of aging times by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Finally, a reliable linear hardness-yield strength correlation has been found, which enables a rapid evaluation of the strength from bulk hardness measurements.

  12. Studying the Warm Layer and the Hardening Factor in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.

  13. Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

    PubMed Central

    Albe, Karsten

    2013-01-01

    Summary The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single-crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing pressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation. PMID:23616936

  14. Silylated Acid Hardened Resist [SAHR] Technology: Positive, Dry Developable Deep UV Resists

    NASA Astrophysics Data System (ADS)

    Thackeray, James W.; Bohland, John F.; Pavelchek, , Edward K.; Orsula, George W.; McCullough, Andrew W.; Jones, Susan K.; Bobbio, Stephen M.

    1990-01-01

    This paper describes continuing efforts in the development of Acid Hardened Resist (AHR) systems for use in deep UV photolithography. The Silylated AHR (SAHR) process treats a highly absorbing resist, such as XP-8928, with trimethylsilyldiethylamine. The exposed, crosslinked areas show virtually no reactivity with the silylating agent, and the unexposed areas incorporate 10 to 12% by weight silicon in the film. The silicon appears to incorporate from the exterior in a constant concentration, consistent with Case II diffusion. Subsequent dry etching leads to a positive tone image. The contrast is 5, and the photospeed is ~10 mJ/cm2. Resolution of 0.5 μm line/space pairs has been demonstrated, although substantial proximity effects are encountered.

  15. The design of radiation-hardened ICs for space - A compendium of approaches

    NASA Technical Reports Server (NTRS)

    Kerns, Sherra E.; Shafer, B. D; Rockett, L. R., Jr.; Pridmore, J. S.; Berndt, D. F.

    1988-01-01

    Several technologies, including bulk and epi CMOS, CMOS/SOI-SOS (silicon-on-insulator-silicon-on-sapphire), CML (current-mode logic), ECL (emitter-coupled logic), analog bipolar (JI, single-poly DI, and SOI) and GaAs E/D (enhancement/depletion) heterojunction MESFET, are discussed. The discussion includes the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D (analog/digital) converters, and the computer simulation of radiation effects on microelectronic ISs.

  16. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  17. Strain hardening during mechanical twining and dislocation channeling in irradiated 316 stainless steels

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2007-01-01

    Localized deformation mechanisms and strain-hardening behaviors in irradiated 316 and 316LN stainless steels were investigated, and a theoretical model was proposed to explain the linear strain-hardening behavior during the localized deformation. After low temperature irradiation to significant doses the deformation microstructure changed from dislocation tangles to channels or to mechanical twins. It was also observed that irradiation hardening straightened gliding dislocations and increased the tendency for forming pileups. Regardless of these microstructural changes, the strain-hardening behavior was relatively insensitive to the irradiation. This dose-independent strain-hardening rate resulted in dose independence of the true stress parameters such as the plastic instability stress and true fracture stress. In the proposed model, the long-range back stress was formulated as a function of the number of pileup dislocations per slip band and the number of slip bands in a grain. The calculation results confirmed the experimental observation that strain-hardening rate was insensitive to the change in deformation mechanism because the long-range back stress hardening became as high as the hardening by tangled dislocations.

  18. The Effect of Hardenability Variation on Phase Transformation of Spiral Bevel Gear in Quenching Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Shi, Wankai; Yang, Lin; Gu, Zhifei; Li, Zhichao

    2016-07-01

    The hardenability of gear steel is dependent on the composition of alloying elements and is one of important criteria to assess process of phase transformation. The variation of hardenability has to be considered in control of the microstructures and distortion during gear quenching. In this paper, the quantitative effect of hardenability has been investigated on phase transformations of spiral bevel gears in die quenching. The hardenability deviation of 22CrMoH steel was assessed by using Jominy test. The dilatometry experiments were conducted to build phase transformation kinetic models for steels with low and high hardenability, respectively. The complete die quenching process of spiral bevel gear was modeled to reveal the significant difference on microstructures and temperature history with variation of hardenability. The final microstructures of the gear are martensite in surface layer after quenching process. There are bainite inside the gear tooth and the mixture of bainite and ferrite inside gear for the gear with low hardenability. The microstructure is bainite inside the gear with high hardenability.

  19. [Optimal coefficient of overlap of light spots during laser hardening of medical instruments].

    PubMed

    Stepanova, G A; Pogibenko, A V; Gerasev, G P

    1982-01-01

    The optimum coefficient of light spot intercepts in the course of laser hardening medical instruments is determined for the case when there are no unirradiated sites on the surface under treatment. The increase in the light spot diameter during irradiation has been shown to be followed by more rapid expansion of the hardened area in comparison with the one of the tempered zone.

  20. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial

  1. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy

    PubMed Central

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-01-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy. PMID:26928719

  2. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy.

    PubMed

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-03-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy.

  3. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy

    NASA Astrophysics Data System (ADS)

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-03-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy.

  4. Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models

    NASA Astrophysics Data System (ADS)

    Choi, Jisik; Lee, Jinwoo; Bae, Gihyun; Barlat, Frederic; Lee, Myoung-Gyu

    2016-07-01

    The effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression-tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.

  5. New distortional hardening model capable of predicting eight ears for textured aluminum sheet

    SciTech Connect

    Yoon, J. H.; Cazacu, O.; Yoon, J. W.; Dick, R. E.

    2011-05-04

    The effects of the anisotropy evolution and of the directionality in hardening on the predictions of the earing profile of a strongly textured aluminum alloy are investigated using a new distortional hardening model that incorporates multiple hardening curves corresponding to uniaxial tension along several orientations with respect to the rolling direction, and to biaxial tension. Yielding is described using a form of CPB06ex2 yield function (Plunkett et al. (2008)) which is tailored for metals with no tension-compression asymmetry. It is shown that even if directional hardening and its evolution are neglected, this yield function predicts a cup with eight ears as was observed experimentally. However, directional hardening can be of considerable importance for improved accuracy in prediction of the non-uniformity of the cup height profile.

  6. Influence of cold hardening on water relations of three Eucalyptus species.

    PubMed

    Valentini, R; Mugnozza, G S; Giordano, E; Kuzminsky, E

    1990-03-01

    Water relations of three Eucalyptus species (E. x trabutii Wilm., E. viminalis Labill., E. dalrympleana Maid.), widely planted in the Mediterranean basin, were analyzed throughout an entire year in relation to natural cold hardening. Osmotic potential, both at saturation and at the turgor loss point, showed a greater reduction during hardening in the more frost-resistant E. viminalis and E. dalrympleana than in the more frost-sensitive E. x trabutii. The hardening capabilities of all species were analyzed in relation to the freezing dehydration index, FDI, a parameter derived from pressure-volume analysis which represents the water lost when cells, initially at the turgor loss point, attain thermodynamic equilibrium with extraplasmatic ice. The FDI at the killing temperature showed little variation either between frost-sensitive and frost-resistant species, or between hardened and non-hardened plants. The index may, therefore, be useful for evaluating a plant's potential for injury by freeze-induced desiccation. PMID:14972956

  7. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  8. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  9. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  10. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  11. Thermoelastoplastic and residual stress analysis during induction hardening of steel

    SciTech Connect

    Jahanian, S.

    1995-12-01

    A theoretical model was developed to predict the thermoelastoplastic and residual stresses developed in a round steel bar during induction hardening. For numerical analysis, a quasi-static, uncoupled thermoelastoplastic solution based on the hyperbolic sine law of Tien and Richmond was formulated. The properties of the material were assumed to be temperature dependent. The phase transformation was considered in the numerical calculation, and the results were compared with the case where phase transformation is avoided. The cylinder was heated rapidly; once the temperature of the outer surface exceeded the transformation temperature, the cylinder was rapidly cooled. Accordingly, in the numerical calculation, only the area at the vicinity of the outer surface was assumed to transform to martensite. The results showed that the compressive residual stresses at the vicinity of the outer surface were considerably higher than the tensile stresses at the center.

  12. Method of forming a hardened surface on a substrate

    SciTech Connect

    Branagan, Daniel J.

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  13. Strain Hardening Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Colla, V.; de Sanctis, M.; Dimatteo, A.; Lovicu, G.; Solina, A.; Valentini, R.

    2009-11-01

    A detailed qualitative and quantitative examination of the microstructure and mechanical properties of three different classes of DP600 and DP450 dual-phase (DP) steels was carried out. The tested DP steels are characterized by different alloying elements: aluminum, boron, and phosphorus. Among them, aluminum DP steels showed the lowest percentages of hard phases, while phosphorus DP steels exhibited the highest resistance values. The Hollomon, Pickering, Crussard-Jaoul (CJ), and Bergstrom models were used to reproduce the strain hardening behavior of DP steels. Relationships that correlate the fitting parameters with the chemical composition and the thermal cycle parameters were found, and the predictive abilities of different models were evaluated. The Pickering equation, among the tested models, is the best one in the reproduction of the experimental stress-strain data.

  14. Switchable hardening of a ferromagnet at fixed temperature.

    PubMed

    Silevitch, D M; Aeppli, G; Rosenbaum, T F

    2010-02-16

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above.

  15. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Chrissafis, K.; Psyllaki, P.

    2010-01-21

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950 deg. C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  16. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  17. Characterization and hardening of concrete with ultrasonic testing.

    PubMed

    del Río, L M; Jiménez, A; López, F; Rosa, F J; Rufo, M M; Paniagua, J M

    2004-04-01

    In this study, we describe a technique which can be used to characterize some relevant properties of 26 cylindrical samples (15 x 30 cm2) of concrete. The characterization has been performed, according to Spanish regulations in force, by some destructive and ultrasound-based techniques using frequencies of 40 kHz. Samples were manufactured using different water/cement ratios (w/c), ranging from 0.48 to 0.80, in order to simulate different values of compressive strength at each sample. We have correlated the propagation velocity v of ultrasonic waves through the samples to compressive strength R values. As some other authors remark, there exists an exponential relationship between the two above parameters. We have found that a highly linear relationship is present between R and w/c concentration at the samples. Nevertheless, when the same linear model is adopted to describe the relationship between v and w/c, the value of r decreases significantly. Thus, we have performed a multiple regression analysis which takes into account the impact of different concrete constituents (water, cement, sand, etc.) on ultrasound propagation speed. One of the most relevant practical issues addressed in our study is the estimation of the hardening curve of concrete, which can be used to quantify the viability of applying the proposed method in a real scenario. Subsequently, we also show a detailed analysis of the temporal evolution of v and R through 61 days, beginning at the date where the samples were manufactured. After analyzing both parameters separately, a double reciprocal relationship is deduced. Using the above parameters, we develop an NDE-based model which can be used to estimate hardening time of concrete samples.

  18. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings.

  19. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings. PMID:23387278

  20. Light and temperature dependent inhibition of photosynthesis in frost-hardened and un-hardened seedlings of pine.

    PubMed

    Oquist, G; Malmberg, G

    1989-06-01

    Needles of un-hardened and frost-hardended seedlings of Pinus sylvestris and Pinus contorta were exposed to photoinhibitory photon flux densities at temperatures between 0 and 35°C under laboratory conditions. Photoinhibition of photosynthesis was assayed by measuring oxygen evolution under saturating CO2 in a leaf disc oxygen electrode or by recording of photosystem II fluorescence induction kinetics at 77 K. It was demonstrated that frost hardening of pine did not affect the susceptibility of photosynthesis to short time (2 h) photoinhibition at 15°C. The two pine species irrespective of acclimative state were equally sensitive to photoinhibition as assayed by apparent photon yield analyses of photosynthetic oxygen evolution. Plots of the apparent photon yield of oxygen evolution vs. F v /F m revealed a non-linear relationship.In the temperature range of 15-20°C short term photoinhibition caused a loss of F v without effect on F 0 . However, photoinhibition at temperatures lower or higher caused F 0 to increase and decrease, respectively. In fact the decrease of F v v /F upon lowering the temperature was mainly caused by the temperature effect on F 0 . Besides photoinhibition causing the well established quenching of F v by increased radiationless decay somewhere in the reaction center-antenna complex, it is suggested that F 0 generally increases as a result of loss of functional reaction centers causing decreased trapping of excitation energy. However, the high temperature induced quenching of F 0 suggests that the quenching process (or processes) induced under photoinhibitory conditions is temperature dependent; i.e. it increases with the increase of temperature.In pine the photon yield of photosynthesis was much more sensitive to short term photoinhibition than was the rate of light saturated photosynthesis. This difference is explained by photosystem II and electron transport having surplus capacity relative to that of reductive carbon metabolism. PMID

  1. The development of high strength corrosion resistant precipitation hardening cast steels

    NASA Astrophysics Data System (ADS)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels

  2. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Partridge, Linda

    2008-01-01

    Carbon dioxide is a commonly used anaesthetic in Drosophila research. While any detrimental effects of CO2 exposure on behaviour or traits are largely unknown, a recent study observed significant effects of CO2 exposure on rapid cold hardening and chill-coma recovery in Drosophila melanogaster. In this study we investigated the effect of a brief CO2 exposure on heat hardening and cold acclimation in D. melanogaster, measuring heat knockdown and chill-coma recovery times of flies exposed to CO2 for 1 min after hardening or acclimation. CO2 anaesthesia had a significant negative effect on heat hardening, with heat knockdown rates in hardened flies completely reduced to those of controls after CO2 exposure. Chill-coma recovery rates also significantly increased in acclimated flies that were exposed to CO2, although not to the same extent seen in the heat populations. CO2 exposure had no impact on heat knockdown rates of control flies, while there was a significant negative effect of the anaesthetic on chill-coma recovery rates of control flies. In light of these results, we suggest that CO2 should not be used after hardening in heat resistance assays due to the complete reversal of the heat hardening process upon exposure to CO2.

  3. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.

    PubMed

    Mondéjar, Irene; Martínez-Martínez, Irene; Avilés, Manuel; Coy, Pilar

    2013-09-01

    Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% ± 5.14%, and 35.14% ± 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families.

  4. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  5. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    SciTech Connect

    Langelier, Brian Esmaeili, Shahrzad

    2015-03-15

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities.

  6. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  7. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  8. Experimental insight into the cyclic softening/hardening behavior of austenitic stainless steel using ultrasonic higher harmonics

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-zhen; Xiang, Yanxun; Zhao, Peng

    2014-11-01

    The correlation of cyclic hardening/softening behavior of 304 stainless steel (SS) was investigated using nonlinear ultrasonic wave technique. Results reveal that primary hardening leads to the increase of acoustic nonlinearity, while secondary hardening causes the reverse tendency. This distinct phenomenon is governed by two competitive mechanisms: in the primary-hardening stage, the ascended acoustic nonlinearity is related to the increase of planar dislocation structures. While in the second-hardening stage, the decrease of acoustic nonlinearity is partly caused by the development of cell structures. In addition, the deformation-induced martensitic transformation also contributes to the increase of acoustic nonlinearity under higher stress amplitudes.

  9. Influence of grain structure and solute composition on the work hardening behavior of aluminium at cryogenic temperatures

    SciTech Connect

    Chu, D.; Morris, J.W. Jr.

    1993-07-01

    An unrecrystallized structure is found to significantly improve the work hardening characteristics by lowering the work hardening rate during early stages of deformation. This is in contrast to a recrystallized structure, which requires a higher work hardening rate to accommodate the greater degree of multiple slip necessary to maintain strain compatibility between the more randomly oriented grains. The stronger texture associated with the unrecrystallized structure allows deformation to occur more efficiently. Addition of magnesium also improves work hardening by increasing overall level of the work hardening rate. The improved characteristics of the work hardening behavior result in a parallel increase in both the strength and ductility at cryogenic temperatures. These findings are positive since they suggest a method by which improvements in the work hardening behavior and subsequent mechanical properties may be obtained through practical modifications of the microstructure and composition.

  10. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  11. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  12. Switchable hardening of a ferromagnet at fixed temperature.

    PubMed

    Silevitch, D M; Aeppli, G; Rosenbaum, T F

    2010-02-16

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  13. Grain Size Hardening Effects in Mg-Gd Solid Solutions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Devarajan; Cáceres, Carlos H.; Griffiths, John R.

    2016-11-01

    Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension-compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall-Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension-compression asymmetry is explained by the operation of { {10bar{1}1} } (contraction) twinning in the concentrated alloys in place of { {10bar{1}2} } (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of { {10bar{1}1} } twinning in the more concentrated alloys accounts for their lower k-value.

  14. A radiation-hardened SOI-based FPGA

    NASA Astrophysics Data System (ADS)

    Xiaowei, Han; Lihua, Wu; Yan, Zhao; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Chen, Stanley L.; Zhongli, Liu; Fang, Yu; Kai, Zhao

    2011-07-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 × 1011 rad(Si)/s and a neutron fluence immunity of 1 × 1014 n/cm2.

  15. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  16. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997).

  17. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  18. Hardening by bubbles in He-implanted Ni

    SciTech Connect

    Knapp, J. A.; Follstaedt, D. M.; Myers, S. M.

    2008-01-01

    Detailed finite-element modeling of nanoindentation data is used to obtain the mechanical properties of Ni implanted with 1-10 at. % He. The mechanical properties of this material elucidate the fundamental materials science of dislocation pinning by nanometer-size gas bubbles and also have implications for radiation damage of materials. Cross-section transmission electron microscopy showed that implantation of 1-5 at. % He at room temperature or at 200 deg. C produced a highly damaged layer extending to a depth of 700-800 nm and containing a fine dispersion of He bubbles with diameters of 1.1{+-}0.2 nm. Implantation at 500 deg. C enlarged the bubble sizes. By fitting the nanoindentation data with a finite-element model that includes the responses of both the implanted layer and the unimplanted substrate in the deformation, the Ni(He) layers are shown to have hardnesses as much as approximately seven times that of untreated Ni, up to 8.3{+-}0.6 GPa. Examination of the dependence of yield strength on He concentration, bubble size, and bubble density reveals that an Orowan hardening mechanism is likely to be in operation, indicating that the bubbles pin dislocation motion as strongly as hard second-phase precipitates do. This strong pinning of dislocations by bubbles is also supported by our numerical simulations, which show that substantial applied shear stress is required to move a dislocation through an empty cavity.

  19. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  20. Magnetic hardening of Fe30Co70 nanowires.

    PubMed

    Viñas, Sara Liébana; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-16

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

  1. Work hardening in Inconel X-750: Study of Stage II

    SciTech Connect

    Valle, J.A. del |; Picasso, A.C.; Romero, R. |

    1998-03-23

    The effect of the precipitate structure on plastic behavior during the Stage II of work hardening in nickel-base superalloy Inconel X-750 has been studied. Tensile tests were carried out at room temperature. The measures were analyzed by the application of the generalized stress components superposition rule {sigma} = {sigma}{sub f} + {sigma}{sub ss} + ({sigma}{sub {gamma}{prime}}{sup q} + {sigma}{sub d}{sup q}){sup 1/q} for combining the stress components due to: lattice friction {sigma}{sub f}, solid solution {sigma}{sub ss}, {gamma}{prime}-precipitates {sigma}{sub {gamma}{prime}} and dislocation-dislocation interaction {sigma}{sub d}, with q as an adjustable parameter. By using this criterion, the stress component associated with the dislocation density was determined. The results are discussed in the framework of ``one parameter`` models by means of {sigma}{sub d}(d{sigma}{sub d}/d{var_epsilon}) vs {sigma}{sub d} graphs, the structural evolution during Stage II has been characterized along the transition from shearable to unshearable {gamma}{prime}-precipitates.

  2. Strain hardening mechanisms in a Ni-Mo-Cr alloy

    SciTech Connect

    Dymek, S. ); Dollar, M. ); Klarstrom, D.L. )

    1991-01-01

    HAYNES 242 alloy has been recently developed for gas turbine components applications. This age-hardenable alloy, consisting essentially of Ni-25%Mo-8%Cr, utilizes a long-range-ordering reaction to form uniformly sized and distributed, extremely small (on the order of 10nm), ordered particles. Excellent strength and ductility at elevated temperatures, low thermal expansion characteristics and good oxidation resistance of Haynes 242 alloy has encouraged a number of studies designed to characterize its properties. What is lacking is an attempt to understand the fundamentals of the deformation and strengthening mechanisms in this alloy. This on-going research has been undertaken to explore deformation mechanisms in unaged and aged Haynes 242 alloy. The emphasis has been put on the effects of initial precipitation structure on the development of deformation structure and how it controls selected mechanical properties. This paper presents selected results and reports a change in the deformation mode from crystallographic glide in an unaged alloy into twinning in the presence of ordered particles. Deformation twinning in Ni-Mo and Ni-Mo-Cr alloys was reported earlier but was not discussed in detail. This research sheds light on possible origins of particle-induced twinning in alloys strengthened by small ordered particles.

  3. Grain Size Hardening Effects in Mg-Gd Solid Solutions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Devarajan; Cáceres, Carlos H.; Griffiths, John R.

    2016-08-01

    Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension-compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall-Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension-compression asymmetry is explained by the operation of {10bar{1}1} (contraction) twinning in the concentrated alloys in place of {10bar{1}2} (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of {10bar{1}1} twinning in the more concentrated alloys accounts for their lower k-value.

  4. Degradation of sulfur mustard and sarin over hardened cement paste.

    PubMed

    Tang, Hairong; Cheng, Zhenxing; Zhou, Liming; Zuo, Guomin; Kong, Lingce

    2009-03-01

    A study has been done to examine the degradation of sulfur mustard (HD) and sarin (GB) over hardened cement paste (HCP). The HCP behaved as a typical base like CaO and Ca(OH)2. The base sites over the HCP were not entirely poisoned by H2O and CO2 in air, and about 0.47 mmol/g base sites could still be evidenced by chemisorption of CO2. A large amount of water irreversibly adsorbed by HCP was experimentally demonstrated. Ten kinds of products through hydrolysis S(N)1 (C-Cl), elimination E1 or E2 (C-Cl, C-H), and addition-elimination (A-E) under the action of base sites and water from the degradation of HD over HCP were detected and identified by GC-FPD, GC-MS, and NMR approaches. Their distribution and kinds varied with time of degradation and water content Both degradation activity and distribution of products from HD were strongly determined by the strength and density of base sites and the water content in HCP. The molecules of GB adsorbed over HCP in comparison with HD could be more quickly and completely degraded into hydrolyzed products such as isopropyl methylphosphonic acid and methylphosphonic acid by adsorbed water, in comparison with HD. PMID:19350934

  5. Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Hussein, Abdel-Hamid A.; Abdu, Mahmoud T.; El-Banna, El-Sayed M.; Soliman, Saied E.; Tash, Mahmoud M.

    2016-04-01

    Four medium carbon and low-alloy steels were hardened through oil and forced air cooling. Tempering was then performed in the temperature range 250-600 °C. The martensite content increased with an increased hardenability and/or the rate of cooling. Tempering at T > M s caused a gradual decline in both hardness and strength and an improvement in the Charpy V-notch impact toughness. The low-alloy steels underwent tempered martensite embrittlement (as a result of the formation of carbides at the martensite interlaths and prior austenite grain boundaries) and enhancement of phosphorus segregation (particularly in the presence of Ni). Higher hardenability steels were found to be better hardened via the more recent forced air quenching rather than the conventional oil quenching. In this work, a modest, novel attempt is presented to empirically correlate the impact toughness with the hardness measurements to enable future prediction of impact toughness from hardness measurements.

  6. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  7. Analysis of structure and phase composition of rails subjected to differential hardening at different regimes

    SciTech Connect

    Gromov, V. E. Morozov, K. V. Konovalov, S. V.; Alsaraeva, K. V.; Semina, O. A.; Ivanov, Yu. F.; Volkov, K. V.

    2014-11-14

    Differential hardening of rails by compressed air in different regimes is accompanied by formation of morphologically different structure, being formed according to the diffusion mechanism of γ↔α transformation and consisting of grains of lamellar pearlite, free ferrite and grains of ferrite-carbide mixture. By methods of transmission electron microscopy the layer by layer analysis of differentially hardened rails has been carried out, the quantitative parameters of the structure, phase composition and dislocation substructure have been established and their comparison has been made for different regimes of hardening. It has been found that the structure-phase states being formed have gradient character, defined by the hardening regime, direction of study from the surface of rolling and by depth of location of layer under study.

  8. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions.

  9. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    SciTech Connect

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-08-05

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  10. The effect of twinning on the work hardening behavior in Hafnium

    SciTech Connect

    Cerreta, E. K.; Gray, G. T. , III; Yablinsky, C.

    2004-01-01

    In many HCP metals, both twinning and slip are known to be important modes of deformation. However, the interaction of the two mechanisms and their effect on work hardening is not well understood. In hafnium, twinning and work hardening rates increase with increasing strain, increasing strain rate, and decreasing temperature. At low strains and strain rates and at higher temperatures, slip dominates deformation and rates of work hardening are relatively lower. To characterize the interaction of slip and twinning, Hf specimens were prestrained quasi-statically in compression at 77K, creating specimens that were heavily twinned. These specimens were subsequently reloaded at room temperature. Twinning within the microstructures was characterized optically and using transmission electron microscopy. The interaction of slip with the twins was investigated as a function of prestrain and correlated with the observed rates of work hardening.

  11. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  12. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. PMID:26807773

  13. Distinct Hardening Behavior of Ultrafine-Grained Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Smith, Thale; Hu, Tao; Topping, Troy D.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-10-01

    The age-hardening response for ultrafine-grained, powder-metallurgy-consolidated aluminum 7091 was investigated for the first time. Peak hardening occurred after aging at 353 K (80 °C) for only 4 hours; further aging for up to 26 hours resulted in only slight fluctuations in hardness values. After the 4-hour aging, the precipitate population consists of a high density of nanoscale GP zones (diameter ~3 nm) and nanoscale η' phase (<30 nm); η phase is not present.

  14. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-06-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  15. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  16. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  17. Simulation and experimental verification of induction hardening process for some kinds of steel

    SciTech Connect

    Inoue, T.; Inout, H.; Uehara, T.

    1996-12-31

    Structure evolution and stress/distortion by induction hardening process of stationary type are simulated for ring shaped specimen made of several kinds of steel. Applicability of the method of simulation is evaluated by comparing the results of calculation on stress and distortion with the experiments for steels with and without hardenability and also for different geometry. Detail discussions on the distribution of residual stresses and the mode of distortion are made in relation to the material properties.

  18. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  19. Studies of Frost Hardiness in Woody Plants. II. Effect of Temperature on Hardening.

    PubMed

    Sakai, A

    1966-02-01

    The effect of temperature on hardening was studied at temperatures ranging from 0 degrees to -20 degrees using twigs of willow and poplar. In October and in late April when the twigs are not very frost hardy, hardening at 0 degrees produced a considerable increase in their frost hardiness, although the effectiveness of hardening at 0 degrees decreased with a decrease in the environmental temperature. In twigs which could withstand continuous freezing without injury, hardening at -3 degrees to -5 degrees was most effective in increasing the frost hardiness of the twigs. Below -20 degrees , only negligible increase was observed either in frost hardiness or sugar content.The rate of starch to sugar conversion differed remarkably in different twig tissues. The starch in xylem was more slowly converted to sugar than that in the cortex. The optimum temperature for converting starch into sugar during frost hardening was also found to be -3 degrees to -5 degrees . In addition, the greater the effectiveness of the hardening treatment, the greater the rate of conversion from starch to sugar. The frost hardiness of a twig is closely related to the sugar content of the twig, especially in the xylem. PMID:16656262

  20. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    NASA Astrophysics Data System (ADS)

    Oliveira, M. C.; Alves, J. L.; Chaparro, B. M.; Menezes, L. F.

    2005-08-01

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the "Benchmark 3" of the Numisheet'2005 Conference: the "Channel Draw". Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaître and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of `Deep Drawing 3-D IMPlicit code').

  1. Electromagnetic pulse (EMP): Phenomena, simulation, and hardening. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning natural and nuclear electromagnetic pulse (EMP) phenomena, simulation, and hardening. Topics include analyses, evaluations, and simulations of EMP interactions, and EMP coupling with various susceptible systems, devices, objects, and materials. Protective methods and technology for specific devices and overall premises are included along with testing methodologies and experimental results from simulated EMP phenomena. Computer aided analysis of EMP phenomena is also included. (Contains a minimum of 196 citations and includes a subject term index and title list.)

  2. Effect of Hf on structure and age hardening of Ti–Al-N thin films

    PubMed Central

    Rachbauer, R.; Blutmager, A.; Holec, D.; Mayrhofer, P.H.

    2012-01-01

    Protective coatings for high temperature applications, as present e.g. during cutting and milling operations, require excellent mechanical and thermal properties during work load. The Ti1 − xAlxN system is industrially well acknowledged as it covers some of these requirements, and even exhibits increasing hardness with increasing temperature in its cubic modification, known as age hardening. The thermally activated diffusion at high temperatures however enables for the formation of wurtzite AlN, which causes a rapid reduction of mechanical properties in Ti1 − xAlxN coatings. The present work investigates the possibility to increase the formation temperature of w-AlN due to Hf alloying up to 10 at.% at the metal sublattice of Ti1 − xAlxN films. Ab initio predictions on the phase stability and decomposition products of quaternary Ti1 − x − yAlxHfyN alloys, as well as the ternary Ti1 − xAlxN, Hf1 − xAlxN and Ti1 − zHfzN systems, facilitate the interpretation of the experimental findings. Vacuum annealing treatments from 600 to 1100 °C indicate that the isostructural decomposition, which is responsible for age hardening, of the Ti1 − x − yAlxHfyN films starts at lower temperatures than the ternary Ti1 − xAlxN coating. However, the formation of a dual phase structure of c-Ti1 − zHfzN (with z = y/(1 − x)) and w-AlN is shifted to ~ 200 °C higher temperatures, thus retaining a film hardness of ~ 40 GPa up to ~ 1100 °C, while the Hf free films reach the respective hardness maximum of ~ 38 GPa already at ~ 900 °C. Additional annealing experiments at 850 and 950 °C for 20 h indicate a substantial improvement of the oxidation resistance with increasing amount of Hf in Ti1 − x − yAlxHfyN. PMID:22319223

  3. Undrained heating and anomalous pore-fluid pressurization of a hardened cement paste

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    Temperature increase in a fluid-saturated porous material in undrained condition leads to volume change and pore pressure increase due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the pore volume. This increase of the pore fluid pressure induces a reduction of the effective mean stress, and can lead to shear failure or hydraulic fracturing. This phenomenon is important is important in environmental engineering for radioactive (exothermal) waste disposal in deep clay geological formations as well as in geophysics in the studies of rapid fault slip events when shear heating tends to increase the pore pressure and to decrease the effective compressive stress and the shearing resistance of the fault material (Sulem et al. 2007). This is also important in petroleum engineering where the reservoir rock and the well cement lining undergo sudden temperature changes for example when extracting heavy oils by steam injection methods. This rapid increase of temperature could damage cement sheath integrity of wells and lead to loss of zonal isolation. The values of the thermal pressurization coefficient, defined as the pore pressure increase due to a unit temperature increase in undrained condition, is largely dependent upon the nature of the material, the state of stress, the range of temperature change, the induced damage. The large variability of the thermal pressurization coefficient reported in the literature for different porous materials with values from 0.01MPa/°C to 1.5MPa/°C highlights the necessity of laboratory studies. This phenomenon of thermal pressurization is studied experimentally for a fluid-saturated hardened cement paste in an undrained heating test. Careful analysis of the effect of the dead volume of the drainage system of the triaxial cell has been performed based on a simple correction method proposed by Ghabezloo and Sulem (2008, 2009). The drained and undrained thermal expansion coefficients of the hardened

  4. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  5. Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja A; Suuronen, Katri

    2015-10-01

    Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material

  6. Computer simulation of residual stresses/distortion and structural change in the course of scanning induction hardening

    SciTech Connect

    Ikuta, F.; Arimoto, K.; Inoue, T.

    1996-12-31

    Simulated results of structural change, residual stresses and distortion are presented for carbon steel cylinder in the scanning-type induction hardening process by a CAE system {open_quotes}HEARTS (HEAt tReaTment Simulation system){close_quotes}. The system HEARTS has been developed to simulate heat treatment processes based on {open_quotes}metallo-thermo-mechanics{close_quotes} available for describing the coupling effect between metallurgical change due to phase transformation, temperature and inelastic stress/strain. A steel cylinder is treated as an axisymmetric model with scanning internal heat generation and convection boundary. The results under different scanning velocity and magnitude of the heat source from induction coil are compared with experimental data of distortions, volume fraction of metallic phases as well as residual stresses.

  7. Determination of Constant Parameters of Copper as Power-Law Hardening Material at Different Test Conditions

    NASA Astrophysics Data System (ADS)

    Kowser, Md. A.; Mahiuddin, Md.

    2014-11-01

    In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.

  8. IR and NMR analyses of hardening and maturation of glass-ionomer cement.

    PubMed

    Matsuya, S; Maeda, T; Ohta, M

    1996-12-01

    It has been reported that the silicate phase as well as the cross-linking of the polycarboxylic acid by aluminum and calcium ions played an important role in the hardening of glass-ionomer cement. The objective of this study was to investigate the structural change during hardening of the cements by means of infrared (IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy and to confirm the role of the silica phase in the hardening of the cement. For that purpose, we measured the change in compressive strength of an experimental glass-ionomer cement, two commercial glass-ionomer cements, and a polycarboxylate cement and carried out 29Si and 27Al NMR analyses of the cement samples after the strength measurement. In the IR spectra during hardening, a characteristic band of the silicate network around 1000 cm-1 shifted toward high frequency with time. The spectrum after hardening was similar to that for a hydrated amorphous silica structure. The 27Al NMR analysis showed that Al3+ ion was tetrahedrally coordinated by oxygen in the original glass, but a part of the Al3+ ion was octahedrally coordinated after hardening to form Al polyacrylate gel. The chemical shift of Si in the 29Si NMR spectra also changed during hardening. The variation in the chemical shift reflected the structural change in the silicate network. The initial increase in compressive strength of the cement was mainly caused by polycarboxylate gel formation. However, it was concluded that the reconstruction of the silicate network contributed to the increase in strength with time during the period after the gelation by cross-linking was completed.

  9. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  10. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.

    PubMed

    Lee, Joon Hwan; Holland, Troy B; Mukherjee, Amiya K; Zhang, Xinghang; Wang, Haiyan

    2013-01-01

    Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by using an in situ transmission electron microscope nanoindentation tool, the direct observation of dynamic work hardening event in nanocrystalline nickel. During strain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. This study provides both the evidence to explain the roots of work hardening at small length scales and the insight for future design of ductile nanocrystalline metals.

  11. Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves.

    PubMed

    Apostol, Simona; Szalai, Gabriella; Sujbert, László; Popova, Losanka P; Janda, Tibor

    2006-01-01

    The effect of irradiance during low temperature hardening was studied in a winter wheat variety. Ten-day-old winter wheat plants were cold-hardened at 5 degrees C for 11 days under light (250 micromol m(-2) S(-1)) or dark (20 micromol m(-2) s(-1)) conditions. The effectiveness of hardening was significantly lower in the dark, in spite of a slight decrease in the Fv/Fm chlorophyll fluorescence induction parameter, indicating the occurrence of photoinhibition during the hardening period in the light. Hardening in the light caused a downshift in the far-red induced AG (afterglow) thermoluminescence band. The faster dark re-reduction of P700+, monitored by 820-nm absorbance, could also be observed in these plants. These results suggest that the induction of cyclic photosynthetic electron flow may also contribute to the advantage of frost hardening under light conditions in wheat plants. PMID:17137122

  12. Predictions for weak mechanical ignition of strain hardened granular explosive

    NASA Astrophysics Data System (ADS)

    Gonthier, Keith A.

    2004-04-01

    Predictions are given for the coupled bulk and grain scale response of initially unstressed, strain hardened granular HMX (C4H8N8O8) due to mild piston impact (impact speeds <100 m/s). Importantly, this response depends on the material's strain history as the stress necessary for bulk inelastic compaction (crush up) increases with the solid volume fraction. Although the quasistatic compaction behavior of HMX is well characterized, the influence of strain history on the bulk and grain scale dynamic loading response has largely been unexplored. In this study, the initial solid volume fraction of the unstressed material is varied over the range of φf⩽φ0⩽1, where φf=0.655 is its free pour value. A Hugoniot analysis for the bulk material identifies three dispersed compaction wave structures that depend on the impact speed and initial solid volume fraction, and are analogous to elastic-plastic waves in dynamically loaded solids. For increasing impact speed, these structures consist of (1) a single viscoelastic wave; (2) a leading viscoelastic wave and a trailing viscoplastic wave; and (3) a single viscoplastic wave. It is shown that the resulting localized heating near intergranular contact surfaces can trigger sustained combustion of the material. Predictions for the grain scale thermochemical response indicate that significant bulk viscoplastic heating is required for ignition of materials with φf⩽φ0⩽0.88, whereas bulk viscoelastic heating leads to the ignition of denser materials (φ0>0.91). Both viscoelastic and viscoplastic heating are predicted to be important for ignition of materials having 0.88⩽φ0⩽0.91. Within this transition range there is predicted a sharp increase in impact sensitivity as the power input needed for ignition rapidly decreases to a value close to that for the free pour density (0.40 MW/cm2) before increasing again. This result is important for assessing the impact sensitivity and deflagration-to-detonation transition of

  13. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    SciTech Connect

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  14. Magnetic Hardening of Ce2Fe14-xCoxB

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Skoug, E. J.; Meyer, M. S.; Pinkerton, F. E.

    2013-03-01

    Permanent magnets based on R2Fe14B (R = rare earth element) are essential to a wide variety of applications, among them automotive traction motors. Current state-of-the-art materials rely on R = Nd and Dy, both of which are currently subject to supply and cost instability. A possible alternative is R = Ce, the most abundant rare earth, but Ce2Fe14B has several disadvantages, including a low Curie temperature (Tc) that restricts the maximum operating point to well below that required for some applications. Given that substitution of Co for Fe is known to enhance Tc significantly in other R2Fe14B compounds, we systematically investigate magnetic hardening of Ce2Fe14-xCoxB by melt spinning alloys having compositions guided by our previous work on the Ce-Fe-B system. We find the range of Co solubility in Ce2Fe14B to be markedly lower than for other R2Fe14B materials, a consequence of the fact that Ce2Co14B apparently does not form.

  15. The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopaedics

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Hadasik, E.; Szymszal, J.

    2012-05-01

    The purpose of this research is to evaluate electrochemical corrosion resistance of wire with modified surface, made of stainless steel of Cr-Ni-Mo type, widely used in implants for orthopaedics, depending on hardening created in the process of drawing. Tests have been carried out in the environment imitating human osseous tissue. Pitting corrosion was determined on the ground of registered anodic polarisation curves by means of potentiodynamic method with application of electrochemical testing system VoltaLab® PGP 201. Wire corrosion tests were carried out in Tyrode solution on samples that were electrochemically polished as well as electrochemically polished and finally chemically passivated. Initial material for tests was wire rod made of X2CrNiMo17-12-2 steel with diameter of 5.5 mm in supersaturated condition. Wire rod was drawn up to diameter of 1.35 mm. This work shows the course of flow curve of wire made of this grade of steel and mathematical form of yield stress function. The study also presents exemplary curves showing the dependence of polarisation resistance in strain function in the drawing process of electrochemically passivated and electrochemically polished and then chemically passivated wire.

  16. Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.

    2000-01-01

    This paper presents a new reconstruction algorithm for both single- and dual-energy computed tomography (CT) imaging. By incorporating the polychromatic characteristics of the X-ray beam into the reconstruction process, the algorithm is capable of eliminating beam hardening artifacts. The single energy version of the algorithm assumes that each voxel in the scan field can be expressed as a mixture of two known substances, for example, a mixture of trabecular bone and marrow, or a mixture of fat and flesh. These assumptions are easily satisfied in a quantitative computed tomography (QCT) setting. We have compared our algorithm to three commonly used single-energy correction techniques. Experimental results show that our algorithm is much more robust and accurate. We have also shown that QCT measurements obtained using our algorithm are five times more accurate than that from current QCT systems (using calibration). The dual-energy mode does not require any prior knowledge of the object in the scan field, and can be used to estimate the attenuation coefficient function of unknown materials. We have tested the dual-energy setup to obtain an accurate estimate for the attenuation coefficient function of K2 HPO4 solution.

  17. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  18. [Case of a Plasmacytoid Urothelial Carcinoma Identified Due to the Hardening of the Abdominal Wall].

    PubMed

    Yanagisawa, Masahiro; Kawakami, Toshifumi; Suzuki, Kotaro; Nakayama, Takashi

    2016-02-01

    The patient was a 75 year-old male. Noticing areas of hardening in the lower abdomen, and consequently feelings of systemic fatigue and difficulty in walking, the patient visited a clinic and was diagnosed with kidney failure prior to the visit to our clinic. Computed tomography and magnetic resonance imaging showed thickness of the rectus abdominis muscle and the bladder wall, and bilateral hydronephrosis was also identified. As no explicit tumor was identified in the bladder, the patient underwent biopsies of the abdominal wall and bladder membrane mucous, and was diagnosed with a plasmacytoid urothelial carcinoma primarily developed in the bladder. The patient displayed a poor general state of health and died five months after the diagnosis. It is known that plasmacytoid urothelial carcinomas progress rapidly and the prognosis is poorer than for the micropapillary variant. It is important to obtain a tissue specimen in the early stage of this disease because there are cases in which no explicit tumor can be identified. Furthermore, the value of carbohydrate antigen (CA) 19-9 of the patient was much higher than would be expected as normal at the first visit. It kept rising during the follow-up and was useful as a marker to indicate the progress of the disease.

  19. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    NASA Astrophysics Data System (ADS)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  20. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  1. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  2. Cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2013-01-01

    Mental health claims in the workplace are rising, particularly those due to depression. Associated with this is an increase in disability costs for the employer and the disability insurer, but even more important is the human suffering that results. While treatments are available for the depression there is a gap in interventions that specifically target return-to-work preparation. This paper presents cognitive work hardening, a treatment intervention that can bridge this gap by addressing the unique functional issues inherent in depression with a view to increasing return-to-work success. Cognitive work hardening applies the proven principles of classical work hardening (which has typically been applied to people with physical injuries) to the mental health domain. This paper explains how the occupational therapy principle of occupation and the core competency, enablement, are utilized and applied in cognitive work hardening. Key skills of the occupational therapist are also discussed. In addition, the paper considers the relationship of cognitive work hardening to recovery and mental illness, and the role it plays among workplace-based return-to-work interventions in the current movement toward non-clinical return-to-work interventions.

  3. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  4. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  5. Alternating current potential drop for measuring the case depth of hardened steel

    NASA Astrophysics Data System (ADS)

    Quddes, Mohammad R.; Ji, Yuan; Bowler, John R.

    2015-03-01

    Multi-frequency alternate current potential drop measurements have been made to estimate the case depth of case hardened steels using four point probes. The probes have four parallel sprung loaded pins in a line with a 1.5 mm separation between the contact points. A printed circuit board has been used to ensure the electrical connections to the pins are close to the surface of the material. This has the effect of reducing the mutual induction between driver and pick-up pins. The case depth is estimated from measurements at frequencies typically from 10 Hz to 10 kHz. The real part of the voltage phasor representing the AC potential drop is used to evaluate the case depth. The imaginary part includes the contribution due to mutual induction. To estimate the case depth of the hardened samples, the measured potential drop has been fitted to theoretical predictions. The substrate material properties of the hardened samples are extracted from multi-frequency potential drop measurements on non-harden samples. The estimated case hardened depths, deduced from potential drop measurements, are similar to those found from destructive measurements.

  6. Incorporating the effect of orientation hardening in an effective temperature nonequilibrium theory for glassy polymers

    NASA Astrophysics Data System (ADS)

    Guo, Jingkai; Xiao, Rui; Nguyen, Thao

    Amorphous polymers exhibit a wide range of time and temperature dependent behavior. Recently, Xiao and Nguyen developed an effective temperature theory that can capture a wide variety of nonequilibrium behaviors at moderate strains. At large strains, the stress response of glassy polymers is dominated by strain hardening as a result of chain alignment. The goal of this study was to extend the effective temperature theory to large deformation and make it capable of modeling strain hardening from deformation-induced molecular alignment. We compared two approaches. In the spirit of internal state variable thermodynamics theory, we introduced a series of stretch-like internal state variables to characterize the molecular resistance to plastic flow associated with each inelastic mechanism. The dependence of free energy on the internal state variables naturally gives rise to a deformation dependent back stress. The flow rule and the evolution of effective temperatures were derived in a thermodynamically consistent manner. In the second approach, we introduced a steady-state limit in the evolution of the effective temperature characterizing the nonequilibrium structure of the material. Both approaches can well capture the experimentally measured phenomena of orientation hardening, including the development of deformation-induced anisotropy in the yield strength and hardening modulus, the Bauschinger effect, and differences in the hardening moduli in tension and compression of pre-oriented specimens.

  7. Mechanisms of Neutron Irradiation Hardening in Impurity-Doped Ferritic Alloys

    NASA Astrophysics Data System (ADS)

    Nishiyama, Y.; Liu, X. Y.; Kameda, J.

    2008-05-01

    Mechanisms of neutron irradiation hardening in phosphorus (P)-doped, sulfur (S)-doped, and copper (Cu)-doped ferritic alloys have been studied by applying a rate theory to the temperature dependence of the yield strength. Hardening behavior induced by neutron irradiation at various temperatures (473 to 711 K) is characterized in terms of the variations in athermal stress and activation energy for plasticity controlled by precipitation or solid solution, and kink-pair formation with the content and type of impurities. In P-doped alloys, neutron irradiation below 563 K brings about a remarkable increase in the athermal stress and activation energy, due to the dispersion of fine (˜1.7-nm) P-rich precipitates that is more extensive than that for the Cu-rich precipitates reported in irradiated steel. During neutron irradiation above 668 K, precipitation hardening occurs to some extent in Cu-doped and S-doped alloys, compared to small or negligible hardening in the P-doped alloys. In alloys with a low to moderate content of various dissolved impurities subjected to high-temperature irradiation, the formation of kink pairs becomes considerably difficult. Differing dynamic interactions of dissolved and precipitated impurities, i.e., P and Cu, with the nucleation and growth of dislocations are discussed, giving rise to irradiation hardening.

  8. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  9. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    SciTech Connect

    Bashchenko, Lyudmila P. Gromov, Viktor E. Budovskikh, Evgenii A. Soskova, Nina A.; Ivanov, Yurii F.

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  10. Densification and strain hardening of a metallic glass under tension at room temperature.

    PubMed

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  11. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  12. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars.

    PubMed

    Li, L L; Zhang, Z J; Tan, J; Jiang, C B; Qu, R T; Zhang, P; Yang, J B; Zhang, Z F

    2015-10-22

    Vast experiments have demonstrated that the external specimen size makes a large difference in the deformation behavior of crystalline materials. However, as one important kind of internal planar defects, the role of grain boundary (GB) in small scales needs to be clarified in light of the scarce and inconsistent experimental results at present. Through compression of Cu bicrystal and its counterpart monocrystal micropillars, it is found that, in contrast to the monocrystals, the bicrystals are characterized by work hardening with discrete strain bursts. Interestingly, the stress rise between two adjacent strain bursts of the bicrystals increases with the decrease of specimen size. The results suggest that GBs play a critical role in the work hardening of materials in small scales, which may provide important implications to further understand the general work hardening behaviors of materials in the future.

  13. Strength, Hardening, and Failure Observed by In Situ TEM Tensile Testing.

    PubMed

    Kiener, Daniel; Kaufmann, Petra; Minor, Andrew M

    2012-11-01

    We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100-200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening. The hardening behavior at 1% plastic strain is even more pronounced compared to compression samples of the same orientation due to the absence of sample taper and the interface to the compression platen. Moreover, we show for the first time that the strain rate sensitivity of such FIB prepared samples is an order of magnitude higher than that of bulk Cu.

  14. Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1995-01-01

    Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.

  15. A Users manual for the nonlinear kinematic hardening model for cyclic loading

    SciTech Connect

    Puso, M

    2000-09-15

    This report describes the implementation of the Chaboche type Nonlinear Kinematic Hardening Model developed for the PNGV SPP (Partnership for the Next Generation Vehicle, Spring-back Predictability Project). The material model includes a nonlinear kinematic and isotropic hardening law, transverse anisotropy, strain range memorization for cyclic hardening/softening and viscoplasticity. This report is a companion to the report: ''A Return Mapping Algorithm for Cyclic Viscoplastic Constitutive Models'' which concentrates on the theoretical aspects of the model. This report summarizes the necessary parameters for the model, briefly discusses their interpretation and shows some numerical simulations. The report also specifies the data structure requirements for linking the material model software by explicitly referencing the source code delivered to the SPP collaborators.

  16. Analysis of the infrared spectrum and microstructure of hardened cement paste

    SciTech Connect

    Gao, X.F.; Lo, Y.; Tam, C.M.; Chung, C.Y. )

    1999-06-01

    Phase transformation was found in hardened cement paste exposed to dynamic loading caused by typhoon and the normal static-dynamic loading. The concrete samples were obtained from a 20-year-old residential building. The bonding characteristics and microstructure of the hardened cement paste with different loading history have been carefully studied using scanning electron microscopy analysis and infrared spectrum technique. The scanning electron microscopy micrographs indicate that there is a morphological difference in the concrete microstructure. The infrared spectrum analysis has provided information for understanding the phase transformation characteristics of the primary bonds and secondary bonds. This has led to the establishment of a microscopic model describing the correlation between the behavior of the hydrate lime and the properties of the hardened cement paste.

  17. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  18. Quantification of age hardening in maraging steels and an Ni-base superalloy

    SciTech Connect

    Sha, W.

    2000-02-01

    Age hardening process in metallic alloys due to precipitation can be quantified using phase transformation theories. Two ageing stages are of particular interest, for both theory and practice. The early stage of precipitation hardening is under the description of the Johnson-Mehl-Avrami equation. Wilson has recently provided a detailed theoretical analysis for early stages of ageing. Wilson successfully used equations in the quantification of early and over-ageing stages of hardening in an Fe-12Ni-6Mn maraging-type alloy. In the present work, these were applied to further alloys. All the hardness data were taken from published literature. Original references should be consulted for details of materials, testing and characterization.

  19. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  20. Intense two-cycle laser pulses induce time-dependent bond hardening in a polyatomic molecule.

    PubMed

    Dota, K; Garg, M; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; Mathur, D

    2012-02-17

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules such as TMS do not exhibit a prominent molecular ion (TMS(+)) as unimolecular dissociation into [Si(CH(3))(3)](+) proceeds very fast. Under a strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond hardening: a field-induced potential well is created in the TMS(+) potential energy curve that effectively traps a wave packet. The time dependence of this bond-hardening process is verified using longer-duration (≥100 fs) pulses; the relatively slower falloff of optical field in such pulses allows the initially trapped wave packet to leak out, thereby rendering TMS(+) unstable once again.

  1. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light. PMID:17537468

  2. Mechanisms of formation of hardening precipitates and hardening in aging of Al-Li-Cu-Mg model alloys with silver additions

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Zhuravleva, P. L.; Onuchina, M. R.; Klochkova, Yu. Yu.

    2015-11-01

    The mechanisms of the influence of silver additions on the phase transformations that occur in aging are revealed. The contribution of Ω'-phase particles to the deformation stress in Al alloys is estimated. The mechanisms of the effect of low (up to 0.5 wt %) silver additions and the copper content on the structure of the Ω'-phase precipitates in Al alloys are found. According to the proposed model, silver atoms remain immobile during the decomposition of a solid solution and nucleation centers of the Ω' phase form near them in low-temperature aging. Upon hardening aging, fragmented Ω'-phase particles intersect with each other, and the contribution of the intersection regions to the hardening of alloys by Ω'-phase particles is principal.

  3. Differential influence of ampullary and isthmic derived epithelial cells on zona pellucida hardening and in vitro fertilization in ovine.

    PubMed

    Dadashpour Davachi, Navid; Zare Shahneh, Ahmad; Kohram, Hamid; Zhandi, Mahdi; Shamsi, Helia; Hajiyavand, Amir M; Saadat, Mozafar

    2016-03-01

    The central role of the oviduct, as the site of zona pellucida (ZP) maturation, fertilization and early embryogenesis, has been recognized. The objective of this study was to investigate whether ampullary and isthmic derived epithelial cells have different effects on in vitro ZP hardening, in vitro fertilization (IVF) and in vitro culture (IVC) of the resulting embryos. Cumulus oocyte complexes (COCs) were matured in a coculture system with ampullary/isthmic epithelial cells, TCM199 supplemented with insulin-like growth factor I (IGF-I) and epithelial derived growth factor (EGF) (GF treated group), conditioned media produced using ampullary (ACM), isthmic (ICM), COCs+ampullary, and COCs+isthmic epithelial cells, contactless culture system, oviductal fluid, GF+ACM/ICM, and drops of TCM199 (control), for 24h. The matured oocytes were randomly divided into two groups: Group I was subjected to ZP digestion; Group II underwent IVF. The duration of the ZP digestion, in a coculture system with ampullary epithelial cells (AE) was significantly increased (p<0.05), compared with other groups. Penetrated oocytes and monospermic fertilization were significantly increased (p<0.05) in the AE group. The mean number of spermatozoa per penetrated oocyte was reduced dramatically for the AE group (p<0.05). A significant increase (p<0.05) in the embryo development was observed in all treated groups, compared to the control. Results revealed that epithelial cells harvested from the ampullary segment of the oviduct had in vitro specialized role in ZP hardening and have subsequent IVF and IVC outcomes.

  4. On the Decomposition of Martensite During Bake Hardening of Thermomechanically Processed TRIP Steels

    SciTech Connect

    Pereloma, E. V.; Miller, Michael K; Timokhina, I. B.

    2008-01-01

    Thermomechanically processed (TMP) CMnSi transformation-induced plasticity (TRIP) steels with and without additions of Nb, Mo, or Al were subjected to prestraining and bake hardening. Atom probe tomography (APT) revealed the presence of fine C-rich clusters in the martensite of all studied steels after the thermomechanical processing. After bake hardening, the formation of iron carbides, containing from 25 to 90 at. pct C, was observed. The evolution of iron carbide compositions was independent of steel composition and was a function of carbide size.

  5. The coupled effect of grain size and solute on work hardening of Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shadkam, A.; Sinclair, C. W.

    2015-12-01

    A modified grain size-dependent model developed to capture the combined effects of solute and grain size on the work hardening behaviour of fine-grained Cu-Ni alloys is provided. This work builds on a recent model that attributes the grain size-dependent work hardening of fine-grained Cu to backstresses. In the case of Cu-Ni alloys, unlike commercially pure Cu, a grain size-dependent separation between the Kocks-Mecking curves develops, this being explained here based on an extra contribution from geometrically necessary dislocations in the solid solution alloy. This is corroborated by strain-rate sensitivity experiments.

  6. Age Hardening Kinetics in 7xxx Type (Al-Mg-Zn) Alloys

    SciTech Connect

    Vevecka-Priftaj, A.; Lamani, E.; Fjerdingen, J.; Langsrud, Y.; Gjoennes, J.; Hansen, V.

    2007-04-23

    Age hardening in industrial 7xxx alloys at the temperature 100 deg. and 150 deg. C up to 144 hrs, after solid solution treatments at 450 deg. and 550 deg. C, has been followed by measurements of Vickers hardness, scanning and transmission electron microscopy. The influence of silicon on phase and kinetic of age hardening zones and precipitates has been studied. High iron and silicon content increase the number of primary particle in the alloy. Size distribution of {eta}'-precipitates has been determined.

  7. Fractography of induction-hardened steel fractured in fatigue and overload

    SciTech Connect

    Santos, C.G.; Laird, C.

    1997-07-01

    The fracture surfaces of induction-hardened steel specimens obtained from an auto axle were characterized, macroscopically and microscopically, after being fractured in fatigue and monotonic overload. Specimens were tested in cyclic three-point bending under load control, and the S-N curve was established for specimens that had been notched by spark machining to facilitate fractography. Scanning electron microscopy of the fractured surfaces obtained for lives spanning the range 17,000 to 418,000 cycles revealed diverse fracture morphologies, including intergranular fracture and transgranular fatigue fracture. The results are being offered to assist in the analysis of complex field failures in strongly hardened steel.

  8. On the Decomposition of Martensite during Bake Hardening of Thermomechanically Processed Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Miller, M. K.; Timokhina, I. B.

    2008-12-01

    Thermomechanically processed (TMP) CMnSi transformation-induced plasticity (TRIP) steels with and without additions of Nb, Mo, or Al were subjected to prestraining and bake hardening. Atom probe tomography (APT) revealed the presence of fine C-rich clusters in the martensite of all studied steels after the thermomechanical processing. After bake hardening, the formation of iron carbides, containing from 25 to 90 at. pct C, was observed. The evolution of iron carbide compositions was independent of steel composition and was a function of carbide size.

  9. 47. INTERIOR VIEW, DETAIL OF CONVEYOR BELT SYSTEM SYSTEM WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. INTERIOR VIEW, DETAIL OF CONVEYOR BELT SYSTEM SYSTEM WITH BACK BELT DROPPING HARDENED NAILS ON THE FRONT BELT TO BE TEMPERED; MOTION STOPPED - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  10. H2O and CO2 confined in cement based materials: an ab initio molecular dynamics study with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    de Almeida, James; Miranda, Caetano; Fazzio, Adalberto

    2013-03-01

    Although the cement has been widely used for a long time, very little is known regarding the atomistic mechanism behind its functionality. Particularly, the dynamics of molecular systems at confined nanoporous and water hydration is largely unknown. Here, we study the dynamical and structural properties of H2O and CO2 confined between Tobermorite 9Å(T9) surfaces with Car-Parrinello molecular dynamics with and without van der Waals (vdW) interactions, at room temperature. For H2O confined, we have observed a broadening in the intra and intermolecular bond angle distribution. A shift from an ice-like to a liquid-like infrared spectrum with the inclusion of vdW interactions was observed. The bond distance for the confined CO2 was increased, followed with the appearance of shorter (larger) intramolecular (intermolecular) angles. These structural modifications result in variations on the CO2 symmetric stretching Raman active vibration modes. The diffusion coefficient obtained for both confined H2O and CO2 were found to be lower than their bulk counterparts. Interestingly, during the water dynamics, a proton exchange between H2O and the T9 surface was observed. However, for confined CO2, no chemical reactions or bond breaking were observed.

  11. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation.

    PubMed

    Aparicio, Julia Lucas; Rueda, Carmen; Manchón, Ángel; Ewald, Andrea; Gbureck, Uwe; Alkhraisat, Mohammad Hamdan; Jerez, Luis Blanco; Cabarcos, Enrique López

    2016-01-01

    A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering. PMID:27481549

  12. 75 FR 42722 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ..., Department of Defense. F021 AFSPC A System name: Cable Affairs Personnel/Agency Records (June 11, 1997; 62 FR... that cross or could cross, inundate, or otherwise affect the Hardened Intersite Cable System (HICS) and... personnel/agencies who affect, or are affected by, the Hardened Intersite Cable System and its...

  13. Double Sided Irradiation for Laser-assisted Shearing of Ultra High Strength Steels with Process Integrated Hardening

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus; Weinbach, Matthias

    Most small or medium sized parts produced in mass production are made by shearing and forming of sheet metal. This technology is cost effective, but the achievable quality and geometrical complexity are limited when working high and highest strength steel. Based on the requirements for widening the process limits of conventional sheet metal working the Fraunhofer IPT has developed the laser-assisted sheet metal working technology. With this enhancement it is possible to produce parts made of high and highest strength steel with outstanding quality, high complexity and low tool wear. Additionally laser hardening has been implemented to adjust the mechanical properties of metal parts within the process. Currently the process is limited to lower sheet thicknesses (<2 mm) to maintain short cycle times. To enable this process for larger geometries and higher sheet thicknesses the Fraunhofer IPT developed a system for double sided laser-assisted sheet metal working within progressive dies.

  14. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.

    PubMed

    Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

    2014-01-01

    In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system.

  15. Transmission and scanning electron microscope study on the secondary cyclic hardening behavior of interstitial-free steel

    SciTech Connect

    Shih, Chia-Chang; Ho, New-Jin; Huang, Hsing-Lu

    2009-11-15

    Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.

  16. Optimization of an anion-exchange high performance liquid chromatography-inductively coupled plasma-mass spectrometric method for the speciation analysis of oxyanion-forming metals and metalloids in leachates from cement-based materials.

    PubMed

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2010-10-01

    A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2-2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5-12.4; CrO(4)(2-), MoO(4)(2-) and VO(4)(3-) were detected in most of the leachates.

  17. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades

    NASA Astrophysics Data System (ADS)

    Soriano, C.; Leunda, J.; Lambarri, J.; García Navas, V.; Sanz, C.

    2011-06-01

    A study of the laser surface hardening process of two austempered ductile iron grades, with different austempering treatments has been carried out. Hardening was performed with an infrared continuous wave Nd:YAG laser in cylindrical specimens. The microstructure of the laser hardened samples was investigated using an optical microscope, microhardness profiles were measured and surface and radial residual stresses were studied by an X-ray diffractometer. Similar results were achieved for both materials. A coarse martensite with retained austenite structure was found in the treated area, resulting in a wear resistant effective layer of 0.6 mm to 1 mm with a microhardness between 650 HV and 800 HV. Compressive residual stresses have been found at the hardened area being in agreement with the microhardness and microstructural variations observed. The achieved results point out that the laser surface hardening is a suitable method for improving the mechanical properties of austempered ductile irons.

  18. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    PubMed

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts. PMID:26390451

  19. Goal Structured Notation in a Radiation Hardening Safety Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, Arthur; Austin, Rebekah; Reed, Robert; Karsai, Gabor; Mahadevan, Nag; Sierawski, Brian; Evans, John; LaBel, Ken

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structured Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  20. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    PubMed

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts.

  1. "Deviance Proneness" and Adolescent Smoking 1980 versus 2001: Has There Been a "Hardening" of Adolescent Smoking?

    ERIC Educational Resources Information Center

    Chassin, Laurie; Presson, Clark; Morgan-Lopez, Antonio; Sherman, Steven J.

    2007-01-01

    In a midwestern community sample, we tested for evidence of "hardening" of adolescent cigarette smoking between 1980 and 2001 by comparing adolescent smokers and nonsmokers at these two times on measures indicative of "deviance proneness" in Jessor and Jessor's [Jessor, R., & Jessor, S. L. (1977). "Problem behavior and psychosocial development: A…

  2. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  3. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths.

    PubMed

    Jiao, Z B; Luan, J H; Miller, M K; Yu, C Y; Liu, C T

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  4. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    NASA Astrophysics Data System (ADS)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  5. Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Arase, S.; Yamamoto, T.; Wells, P.; Onishi, T.; Odette, G. R.

    2016-04-01

    Radiation hardening and embrittlement of A533B steels is heavily dependent on the Cu content. In this study, to investigate the effect of copper on the microstructural evolution of these materials, A533B steels with different Cu levels were irradiated with 2.4 MeV Fe ions and 1.0 MeV electrons. Ion irradiation was performed from room temperature (RT) to 350 °C with doses up to 1 dpa. At RT and 290 °C, low dose (<0.1 dpa) hardening trend corresponded with ΔH ∝ (dpa)n, with n initially approximately 0.5 and consistent with a barrier hardening mechanism, but saturating at ≈0.1 dpa. At higher dose levels, the radiation-induced hardening exhibited a strong Cu content dependence at 290 °C, but not at 350 °C. Electron irradiation using high-voltage electron microscopy revealed the growth of interstitial-type dislocation loops and enrichment of Ni, Mn, and Si in the vicinities of pre-existing dislocations at doses for which the radiation-induced hardness due to ion irradiation was prominent.

  6. Finite-Element Simulation of Conventional and High-Speed Peripheral Milling of Hardened Mold Steel

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2009-12-01

    A finite-element model (FEM) with the flow stress and typical fracture is used to simulate a hard machining process, which before this work could not adequately represent the constitutive behavior of workpiece material that is usually heat treated to hardness levels above 50 Rockwell C hardness (HRC). Thus, a flow stress equation with a variation in hardness is used in the computer simulation of hard machining. In this article, the influence of the milling speed on the cutting force, chip morphology, effective stress, and cutting temperature in the deformation zones of both conventional and high-speed peripheral milling hardened mold steel is systematically studied by finite-element analysis (FEA). By taking into consideration the importance of material characteristics during the milling process, the similar Johnson-Cook’s constitutive equation with hardened mold steel is introduced to the FEM to investigate the peripheral milling of hardened mold steel. In comparison with the experimental data of the cutting force at various cutting speeds, the simulation result is identical with the measured data. The results indicate that the model can be used to accurately predict the behavior of hardened mold steel in both conventional and high-speed milling.

  7. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  8. Modifications of the Response of Materials to Shock Loading by Age Hardening

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy C. F.

    2015-10-01

    The shock response of two age-hardened alloys, aluminum 6061 and copper-2 wt pct beryllium (CuBe), has been investigated in terms of their microstructual state; either solution treated or age hardened. While age hardening induces large increases in strength at quasi-static strain rates, age hardening does not produce the same magnitude of strength increase during shock loading. Examination of the shocked microstructures (of 6061) indicates that the presence of a fine distribution of precipitates throughout the microstructure hinders the motion and generation of dislocations and hence reduces the strain-rate sensitivity of the aged material, thus allowing the properties of the solution-treated state to approach those of the aged. It has also been observed that the shear strength of solution-treated CuBe is near identical to that of pure copper. It is suggested that this is the result of two competing processes; large lattice strains as beryllium substitutes onto the copper lattice inducing a high degree of solution strengthening acting against a reduction in shear strength caused by twinning in the alloy.

  9. Effects of induction hardening and prior cold work on a microalloyed medium carbon steel

    SciTech Connect

    Cunningham, J.L. ); Medlin, D.J. ); Krauss, G. )

    1999-08-01

    The torsional strength and microstructural response to induction hardening of a 10V45 steel with prior cold work was evaluated. The vanadium-microalloyed 1045 (10V45) steel was characterized in three conditions: as-hot-rolled, 18% cold-reduced, and 29% cold-reduced. Two of these evaluations, 10V45 as-hot-rolled and 10V45-18%, were subjected to stationary and progressive induction hardening to three nominal case depths: 2, 4, and 6 mm. All specimens were subsequently furnace tempered at 190 C for 1 h. The martensitic case microstructures contained residual lamellar carbides due to incomplete dissolution of the pearlitic carbides in the prior microstructure. Torsional overload strength, as measured by maximum torque capacity, is greatly increased by increasing case depth, and to a lesser extent by increasing prior cold work level. Maximum torque capacity ranges from 2520 to 3170 N[center dot]m, depending upon induction hardening processing. Changing induction hardening processing from stationary (single-shot) to progressive (scan) had little effect on torque capacity.

  10. The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-01-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  11. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  12. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.

    1987-09-01

    A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.

  13. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  14. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Ukar, E.; Lamikiz, A.; Liebana, F.

    2011-01-01

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink. The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part. The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  15. Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.; Pustovalov, AS

    2016-01-01

    This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.

  16. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Farabi, N.; Chen, D. L.; Zhou, Y.

    2012-02-01

    The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

  17. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  18. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    PubMed

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes.

  19. Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual Phase Precipitation Hardened Powder Metallurgy Stainless Steels

    NASA Astrophysics Data System (ADS)

    Stewart, Jennifer

    2011-12-01

    Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538°C in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile

  20. Minimalist fault-tolerance techniques for mitigating single-event effects in non-radiation-hardened microcontrollers

    NASA Astrophysics Data System (ADS)

    Caldwell, Douglas Wyche

    Commercial microcontrollers--monolithic integrated circuits containing microprocessor, memory and various peripheral functions--such as are used in industrial, automotive and military applications, present spacecraft avionics system designers an appealing mix of higher performance and lower power together with faster system-development time and lower unit costs. However, these parts are not radiation-hardened for application in the space environment and Single-Event Effects (SEE) caused by high-energy, ionizing radiation present a significant challenge. Mitigating these effects with techniques which require minimal additional support logic, and thereby preserve the high functional density of these devices, can allow their benefits to be realized. This dissertation uses fault-tolerance to mitigate the transient errors and occasional latchups that non-hardened microcontrollers can experience in the space radiation environment. Space systems requirements and the historical use of fault-tolerant computers in spacecraft provide context. Space radiation and its effects in semiconductors define the fault environment. A reference architecture is presented which uses two or three microcontrollers with a combination of hardware and software voting techniques to mitigate SEE. A prototypical spacecraft function (an inertial measurement unit) is used to illustrate the techniques and to explore how real application requirements impact the fault-tolerance approach. Low-cost approaches which leverage features of existing commercial microcontrollers are analyzed. A high-speed serial bus is used for voting among redundant devices and a novel wire-OR output voting scheme exploits the bidirectional controls of I/O pins. A hardware testbed and prototype software were constructed to evaluate two- and three-processor configurations. Simulated Single-Event Upsets (SEUs) were injected at high rates and the response of the system monitored. The resulting statistics were used to evaluate