Sample records for hardening program returns

  1. Gaining Control of Occupational Injury and Illness in the U.S. Navy Civilian Work Force

    DTIC Science & Technology

    1990-01-16

    caring for the back. Also monitored by the supervisor is a work -hardening program developed by the clinic physical therapist and physician that... development of a work -hardening program for the returning injured employee to ensure a safe re-entry to the workplace. e. "Green Table" and Medical...physical therapist work closely in developing effective programs for the treatment of occupational injuries. Having an onsite physical therapist available

  2. Cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2013-01-01

    Mental health claims in the workplace are rising, particularly those due to depression. Associated with this is an increase in disability costs for the employer and the disability insurer, but even more important is the human suffering that results. While treatments are available for the depression there is a gap in interventions that specifically target return-to-work preparation. This paper presents cognitive work hardening, a treatment intervention that can bridge this gap by addressing the unique functional issues inherent in depression with a view to increasing return-to-work success. Cognitive work hardening applies the proven principles of classical work hardening (which has typically been applied to people with physical injuries) to the mental health domain. This paper explains how the occupational therapy principle of occupation and the core competency, enablement, are utilized and applied in cognitive work hardening. Key skills of the occupational therapist are also discussed. In addition, the paper considers the relationship of cognitive work hardening to recovery and mental illness, and the role it plays among workplace-based return-to-work interventions in the current movement toward non-clinical return-to-work interventions.

  3. Using intervention mapping to deconstruct cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2014-12-12

    Mental health related work disability leaves are increasing at alarming rates with depression emerging as the most common mental disorder in the workforce. Treatments are available to alleviate depressive symptoms and associated functional impacts; however, they are not specifically aimed at preparing people to return to work. Cognitive work hardening (CWH) is a novel intervention that addresses this gap in the health care system. This paper presents a theoretical analysis of the components and underlying mechanisms of CWH using Intervention Mapping (IM) as a tool to deconstruct its elements. The cognitive sequelae of depression and their relevance to return-to-work (RTW) are examined together with interpersonal skills and other work-related competencies that affect work ability. IM, a tool typically used to create programs, is used to deconstruct an existing program, namely CWH, into its component parts and link them to theories and models in the literature. CWH has been deconstructed into intervention elements which are linked to program performance objectives through underlying theoretical models. In this way, linkages are made between tools and materials of the intervention and the overall program objective of 'successful RTW for people with depression'. An empirical study of the efficacy of CWH is currently underway which should provide added insight and understanding into this intervention. The application of IM to CWH illustrates the theoretical underpinnings of the treatment intervention and assists with better understanding the linkage between intervention elements and intervention objective. Applying IM to deconstruct an existing program (rather than create a program) presents an alternate application of the IM tool which can have implications for other programs in terms of enhancing understanding, grounding in theoretical foundations, communicating program design, and establishing a basis for program evaluation and improvement.

  4. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  5. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  6. Flame hardened snow plow blades.

    DOT National Transportation Integrated Search

    2013-04-15

    Underbody plows and High Speed Ice Blades are an integral part of clearing Iowa roads of snow and ice during winter : operations. Changing these blades requires crews to suspend plowing operations and return to the garage decreasing time : spent clea...

  7. An evolving effective stress approach to anisotropic distortional hardening

    DOE PAGES

    Lester, B. T.; Scherzinger, W. M.

    2018-03-11

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  8. An evolving effective stress approach to anisotropic distortional hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, B. T.; Scherzinger, W. M.

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  9. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  10. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  11. Research on SEU hardening of heterogeneous Dual-Core SoC

    NASA Astrophysics Data System (ADS)

    Huang, Kun; Hu, Keliu; Deng, Jun; Zhang, Tao

    2017-08-01

    The implementation of Single-Event Upsets (SEU) hardening has various schemes. However, some of them require a lot of human, material and financial resources. This paper proposes an easy scheme on SEU hardening for Heterogeneous Dual-core SoC (HD SoC) which contains three techniques. First, the automatic Triple Modular Redundancy (TMR) technique is adopted to harden the register heaps of the processor and the instruction-fetching module. Second, Hamming codes are used to harden the random access memory (RAM). Last, a software signature technique is applied to check the programs which are running on CPU. The scheme need not to consume additional resources, and has little influence on the performance of CPU. These technologies are very mature, easy to implement and needs low cost. According to the simulation result, the scheme can satisfy the basic demand of SEU-hardening.

  12. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface Hardened Stainless Steel

    DTIC Science & Technology

    2013-05-10

    Performance of Interstitially Surface Hardened Stainless Steel 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jones, Jennifer Lynn...interstitial carbon atoms into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or...the corrosion resistance of the stainless steel is retained, rather than degraded, is of particular interest for marine applications. This project

  13. Assessment of BART Fire-Hardening Programs.

    DOT National Transportation Integrated Search

    1982-09-01

    This report presents the results of an assessment of the Bay Area Rapid Transit District (BART) vehicle fire hardening. The report assesses the overall effort to improve the fire safety of the current BART vehicles through the removal of prospective ...

  14. User's guide for analysis of finite elastoplastic deformation: The FIPDEF and FIPAX programs for the CDC 6600

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1974-01-01

    Computer programs are presented which provide incremental finite-element analysis capability for problems of quasi-static, finite, elastoplastic deformation in two spatial dimensions (plane strain, plane stress, axisymmetric). Monotonic or cyclic loading of isotropic hardening materials is considered. The only restriction on the form of the stress-strain curve is that the rate of work hardening exceed some small positive value. The user's guide assumes familiarity with both finite-element analysis and FORTRAN IV programming for the CDC 6600. Sufficient information is provided to support problem solving ultization of the programs.

  15. Update on radiation-hardened microcomputers for robotics and teleoperated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sias, F.R. Jr.; Tulenko, J.S.

    1993-12-31

    Since many programs sponsored by the Department of Defense are being canceled, it is important to select carefully radiation-hardened microprocessors for projects that will mature (or will require continued support) several years in the future. At the present time there are seven candidate 32-bit processors that should be considered for long-range planning for high-performance radiation-hardened computer systems. For Department of Energy applications it is also important to consider efforts at standardization that require the use of the VxWorks operating system and hardware based on the VMEbus. Of the seven processors, one has been delivered and is operating and other systemsmore » are scheduled to be delivered late in 1993 or early in 1994. At the present time the Honeywell-developed RH32, the Harris RH-3000 and the Harris RHC-3000 are leading contenders for meeting DOE requirements for a radiation-hardened advanced 32-bit microprocessor. These are all either compatible with or are derivatives of the MIPS R3000 Reduced Instruction Set Computer. It is anticipated that as few as two of the seven radiation-hardened processors will be supported by the space program in the long run.« less

  16. High Performance Processors for Space Environments: A Subproject of the NASA Exploration Missions Systems Directorate "Radiation Hardened Electronics for Space Environments" Technology Development Program

    NASA Technical Reports Server (NTRS)

    Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.

    2007-01-01

    Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.

  17. Latino Access to Preschool Stalls after Earlier Gains: Certain to Harden Achievement Gaps, Erode Workforce Quality. New Journalism on Latino Children

    ERIC Educational Resources Information Center

    Fuller, Bruce; Kim, Anthony Y.

    2011-01-01

    It has been known that quality preschool can boost children's early literacy and social agility, skills valued highly by employers. The returns to preschool appear to be stronger for Latino children, especially those from non-English speaking families, compared with other populations. But newly available data reveal that preschool enrollment…

  18. CTC Sentinel. Volume 7, Issue 3

    DTIC Science & Technology

    2014-03-01

    foreign fighting, including Finland . In March 2014, the Finnish Security and Intelligence Service (FSIS) stated that over 30 individuals had...hardened jihadists returning to Finland from Syria.5 This article examines the factors that may have contributed to Finnish Muslim participation...Violent Extremism in Finland – Situation Overview 2/2013,” Finland Ministry of the Interior, August 26, 2013. The reports do not clarify whether

  19. Design and implementation of a programming circuit in radiation-hardened FPGA

    NASA Astrophysics Data System (ADS)

    Lihua, Wu; Xiaowei, Han; Yan, Zhao; Zhongli, Liu; Fang, Yu; Chen, Stanley L.

    2011-08-01

    We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 × 105 rad(Si), dose rate survivability of 1.5 × 1011 rad(Si)/s and neutron fluence immunity of 1 × 1014 n/cm2.

  20. Programmable Automated Welding System (PAWS): Control of welding through software and hardware

    NASA Technical Reports Server (NTRS)

    Kline, Martin D.; Doyle, Thomas E.

    1994-01-01

    The ATD phase of the PAWS program ended in November 1992 and the follow-on ManTech program was started in September 1993. The system will be industrially hardened during the first year of this program. Follow-on years will focus upon the transition into specific end-user sites. These implementations will also expand the system into other welding processes (e.g. FCAW, GTAW, PAW). In addition, the architecture is being developed for application to other non-welding robotic processes (e.g. inspection, surface finishing). Future development is anticipated to encompass hardening for extreme environments, expanded exception handling techniques, and application to a range of manipulators.

  1. RHrFPGA Radiation-Hardened Re-programmable Field-Programmable Gate Array

    NASA Technical Reports Server (NTRS)

    Sanders, A. B.; LaBel, K. A.; McCabe, J. F.; Gardner, G. A.; Lintz, J.; Ross, C.; Golke, K.; Burns, B.; Carts, M. A.; Kim, H. S.

    2004-01-01

    Viewgraphs on the development of the Radiation-Hardened Re-programmable Field-Programmable Gate Array (RHrFPGA) are presented. The topics include: 1) Radiation Test Suite; 2) Testing Interface; 3) Test Configuration; 4) Facilities; 5) Test Programs; 6) Test Procedure; and 7) Test Results. A summary of heavy ion and proton testing is also included.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Curzio, Edgar; Rios, Orlando; Marquez-Rossy, Andres Emilio

    ORNL collaborated with Faurecia Interior Systems to investigate the feasibility of developing a thermomagnetic preventive maintenance program for nickel tooling used in powder slush molding. It was found that thermal treatments at temperatures greater than 500°C can anneal strain hardening in nickel tooling and a range of temperatures and times for effective thermal annealing were identified. It was also observed that magnetic fields applied during thermal annealing do not alter the kinetics of strain hardening annealing. The results obtained in this investigation provide a foundation for establishing a preventive maintenance program for nickel tooling.

  3. The Work Softening Behavior of Pure Mg Wire during Cold Drawing.

    PubMed

    Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao

    2018-04-13

    We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.

  4. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  5. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  6. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  7. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  8. Exploration of Self-Regulation in the Natural Swimming of the Paramecium’s Cilium

    DTIC Science & Technology

    2012-02-01

    aquatic environments. These animals propel themselves, albeit with limited maneuverability, by the synchronous motion of numerous tiny cilia...microtubule pairs are the source of cilium hardness during the power stroke ; there is a critical phase near the end of the power stroke where one cross...return stroke ; therefore, in each beat cycle, there must be a reattachment process of the cross-bridge links and re-hardening of the cilium during the

  9. ARES Program Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, S.P.

    This brief letter summarizes three memos about the ARES-Timpani Program and the test ban treaty. "The reasons for hardened designs, the levels of invulnerability, the things to be learned and the broad objectives of the effort are unchanged.

  10. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  11. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Capolungo, Laurent; Patra, Anirban

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  12. RHOBOT: Radiation hardened robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  13. Collected Engineering Data Sheets (Air Force Data Sheet Program)

    DTIC Science & Technology

    1978-12-01

    alloy is a martensitic precipitation hardenable stainless steel developed by the Armco Steel Corporation. It can be heat treated to high strength levels...I12 HP 9-4-25 The HP 9-4-25 alloy is a nickel-cobalt quenched and tempered martensitic steel possessing excellent toughness at yield strength levels up...H900) Bar (ESR) Material Description This alloy is one of the family of precipitation hardening stainless steels which have found wide usage in

  14. A radiation-hardened, computer for satellite applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`smore » Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.« less

  15. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control.

    PubMed

    Bandyopadhyay, Promode R; Hansen, Joshua C

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  16. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2013-06-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  17. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control

    PubMed Central

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing. PMID:23739771

  18. On the structure of nonlinear constitutive equations for fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Jansson, Stefan

    1992-01-01

    The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.

  19. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  20. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  1. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  2. Nondestructive Evaluation of Foam Insulation for the External Tank Return to Flight

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Nondestructive evaluation methods have been developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Terahertz imaging and backscatter radiography have been brought from prototype lab systems to production hardened inspection tools in just a few years. These methods have been demonstrated to be capable of detecting void type defects under many inches of foam which, if not repaired, could lead to detrimental foam loss. The evolution of these methods from lab tools to implementation on the ET will be discussed.

  3. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    PubMed

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Induction Hardening of External Gear

    NASA Astrophysics Data System (ADS)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  5. Space Qualified High Speed Reed Solomon Encoder

    NASA Technical Reports Server (NTRS)

    Gambles, Jody W.; Winkert, Tom

    1993-01-01

    This paper reports a Class S CCSDS recommendation Reed Solomon encoder circuit baselined for several NASA programs. The chip is fabricated using United Technologies Microelectronics Center's UTE-R radiation-hardened gate array family, contains 64,000 p-n transistor pairs, and operates at a sustained output data rate of 200 MBits/s. The chip features a pin selectable message interleave depth of from 1 to 8 and supports output block lengths of 33 to 255 bytes. The UTE-R process is reported to produce parts that are radiation hardened to 16 Rads (Si) total dose and 1.0(exp -10) errors/bit-day.

  6. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  7. The Rate of Return to the High/Scope Perry Preschool Program.

    PubMed

    Heckman, James J; Moon, Seong Hyeok; Pinto, Rodrigo; Savelyev, Peter A; Yavitz, Adam

    2010-02-01

    This paper estimates the rate of return to the High/Scope Perry Preschool Program, an early intervention program targeted toward disadvantaged African-American youth. Estimates of the rate of return to the Perry program are widely cited to support the claim of substantial economic benefits from preschool education programs. Previous studies of the rate of return to this program ignore the compromises that occurred in the randomization protocol. They do not report standard errors. The rates of return estimated in this paper account for these factors. We conduct an extensive analysis of sensitivity to alternative plausible assumptions. Estimated annual social rates of return generally fall between 7-10 percent, with most estimates substantially lower than those previously reported in the literature. However, returns are generally statistically significantly different from zero for both males and females and are above the historical return on equity. Estimated benefit-to-cost ratios support this conclusion.

  8. The Rate of Return to the High/Scope Perry Preschool Program

    PubMed Central

    Heckman, James J.; Moon, Seong Hyeok; Pinto, Rodrigo; Savelyev, Peter A.; Yavitz, Adam

    2010-01-01

    This paper estimates the rate of return to the High/Scope Perry Preschool Program, an early intervention program targeted toward disadvantaged African-American youth. Estimates of the rate of return to the Perry program are widely cited to support the claim of substantial economic benefits from preschool education programs. Previous studies of the rate of return to this program ignore the compromises that occurred in the randomization protocol. They do not report standard errors. The rates of return estimated in this paper account for these factors. We conduct an extensive analysis of sensitivity to alternative plausible assumptions. Estimated annual social rates of return generally fall between 7–10 percent, with most estimates substantially lower than those previously reported in the literature. However, returns are generally statistically significantly different from zero for both males and females and are above the historical return on equity. Estimated benefit-to-cost ratios support this conclusion. PMID:21804653

  9. Rad-hard computer elements for space applications

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.; Longerot, Carl D.; Treece, R. Keith

    1993-01-01

    Space Hardened CMOS computer elements emulating a commercial microcontroller and microprocessor family have been designed, fabricated, qualified, and delivered for a variety of space programs including NASA's multiple launch International Solar-Terrestrial Physics (ISTP) program, Mars Observer, and government and commercial communication satellites. Design techniques and radiation performance of the 1.25 micron feature size products are described.

  10. A finite difference method for off-fault plasticity throughout the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  11. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  12. Modification of Grange-Kiefer Approach for Determination of Hardenability in Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Sushanthi, Neethi; Maity, Joydeep

    2014-12-01

    In this research work, an independent mathematical modeling approach has been adopted for determination of the hardenability of steels. In this model, at first, cooling curves were generated by solving transient heat transfer equation through discretization with pure explicit finite difference scheme coupled with MATLAB-based programming considering variable thermo-physical properties of 1080 steel. Thereafter, a new fundamental approach is proposed for obtaining CCT noses as a function of volume fraction transformed through modification of Grange-Kiefer approach. The cooling curves were solved against 50 pct transformation nose of CCT diagram in order to predict hardening behavior of 1080 steel in terms of hardenability parameters (Grossmann critical diameter, D C; and ideal critical diameter, D I) and the variation of the unhardened core diameter ( D u) to diameter of steel bar ( D) ratio with diameter of the steel bar ( D). The experiments were also performed to ascertain actual D C value of 1080 steel for still water quenching. The D C value obtained by the developed model was found to match the experimental D C value with only 3 pct deviation. Therefore, the model developed in the present work can be used for direct determination of D I, D C and D u without resorting to any rigorous experimentation.

  13. Modeling of polychromatic attenuation using computed tomography reconstructed images

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.

    1999-01-01

    This paper presents a procedure for estimating an accurate model of the CT imaging process including spectral effects. As raw projection data are typically unavailable to the end-user, we adopt a post-processing approach that utilizes the reconstructed images themselves. This approach includes errors from x-ray scatter and the nonidealities of the built-in soft tissue correction into the beam characteristics, which is crucial to beam hardening correction algorithms that are designed to be applied directly to CT reconstructed images. We formulate this approach as a quadratic programming problem and propose two different methods, dimension reduction and regularization, to overcome ill conditioning in the model. For the regularization method we use a statistical procedure, Cross Validation, to select the regularization parameter. We have constructed step-wedge phantoms to estimate the effective beam spectrum of a GE CT-I scanner. Using the derived spectrum, we computed the attenuation ratios for the wedge phantoms and found that the worst case modeling error is less than 3% of the corresponding attenuation ratio. We have also built two test (hybrid) phantoms to evaluate the effective spectrum. Based on these test phantoms, we have shown that the effective beam spectrum provides an accurate model for the CT imaging process. Last, we used a simple beam hardening correction experiment to demonstrate the effectiveness of the estimated beam profile for removing beam hardening artifacts. We hope that this estimation procedure will encourage more independent research on beam hardening corrections and will lead to the development of application-specific beam hardening correction algorithms.

  14. FORTRAN Programs for Aerodynamic Analyses on the Microvax/2000 CAD CAE Workstation

    DTIC Science & Technology

    1988-09-01

    file exists, you must compile the program by typing, FOR DUBLET [Returni The next step is to link the program by entering, LINK DUBLET [Return] The...files DUBLET.EXE and DUBLET.OBJ will now exist and you will be able to run the program. Running the Program To run the program, type DUBLET [Return...by entering 0.1 [Return] Now enter the number of intervals you desire the doublet distribution to have by enter- ing 10 [Return] The screen should now

  15. High Energy Rate Forming Induced Phase Transition in Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Kuzsella, L.

    2017-02-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea means indirect hardening setup. Austenitic stainless steels have high plasticity and can be cold formed easily. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness [1]. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  16. Implementing a collaborative return-to-work program: Lessons from a qualitative study in a large Canadian healthcare organization.

    PubMed

    Skivington, Kathryn; Lifshen, Marni; Mustard, Cameron

    2016-11-22

    Comprehensive workplace return-to-work policies, applied with consistency, can reduce length of time out of work and the risk of long-term disability. This paper reports on the findings from a qualitative study exploring managers' and return-to-work-coordinators' views on the implementation of their organization's new return-to-work program. To provide practical guidance to organizations in designing and implementing return-to-work programs for their employees. Semi-structured qualitative interviews were undertaken with 20 managers and 10 return-to-work co-ordinators to describe participants' perspectives on the progress of program implementation in the first 18 months of adoption. The study was based in a large healthcare organization in Ontario, Canada. Thematic analysis of the data was conducted. We identified tensions evident in the early implementation phase of the organization's return-to-work program. These tensions were attributed to uncertainties concerning roles and responsibilities and to circumstances where objectives or principles appeared to be in conflict. The implementation of a comprehensive and collaborative return-to-work program is a complex challenge. The findings described in this paper may provide helpful guidance for organizations embarking on the development and implementation of a return-to-work program.

  17. Implementing a collaborative return-to-work program: Lessons from a qualitative study in a large Canadian healthcare organization

    PubMed Central

    Skivington, Kathryn; Lifshen, Marni; Mustard, Cameron

    2016-01-01

    BACKGROUND: Comprehensive workplace return-to-work policies, applied with consistency, can reduce length of time out of work and the risk of long-term disability. This paper reports on the findings from a qualitative study exploring managers’ and return-to-work-coordinators’ views on the implementation of their organization’s new return-to-work program. OBJECTIVES: To provide practical guidance to organizations in designing and implementing return-to-work programs for their employees. METHODS: Semi-structured qualitative interviews were undertaken with 20 managers and 10 return-to-work co-ordinators to describe participants’ perspectives on the progress of program implementation in the first 18 months of adoption. The study was based in a large healthcare organization in Ontario, Canada. Thematic analysis of the data was conducted. RESULTS: We identified tensions evident in the early implementation phase of the organization’s return-to-work program. These tensions were attributed to uncertainties concerning roles and responsibilities and to circumstances where objectives or principles appeared to be in conflict. CONCLUSIONS: The implementation of a comprehensive and collaborative return-to-work program is a complex challenge. The findings described in this paper may provide helpful guidance for organizations embarking on the development and implementation of a return-to-work program. PMID:27792035

  18. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    NASA Astrophysics Data System (ADS)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  19. Properties and Commercial Application of Manual Plasma Hardening

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  20. Single-Event Effects in Silicon Carbide Power Devices

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  1. Silicon Carbide Power Devices and Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  2. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    NASA Astrophysics Data System (ADS)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  3. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  4. Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux, R.M.; Ballinger, R.; Lucas, G.

    1979-01-01

    An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less

  5. Retrospective Benefit-Cost Evaluation of U.S. DOE Wind Energy R&D Program: Impact of Selected Energy Technology Investments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelsoci, Thomas M.

    This benefit-cost analysis focuses on the DOE Wind Energy Program's public sector R&D investments and returns. The analysis accounts for the program's additionality – that is, comparing what has happened as a result of the program to what would have happened without it. The analysis does not address the return on the investments of private companies ("private returns"). Public returns on the program's investments from 1976 to 2008 are identified and analyzed using retrospective analysis.

  6. Assessment and Planning Using Portfolio Analysis

    ERIC Educational Resources Information Center

    Roberts, Laura B.

    2010-01-01

    Portfolio analysis is a simple yet powerful management tool. Programs and activities are placed on a grid with mission along one axis and financial return on the other. The four boxes of the grid (low mission, low return; high mission, low return; high return, low mission; high return, high mission) help managers identify which programs might be…

  7. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  8. Updated Estimates of the Average Financial Return on Master's Degree Programs in the United States

    ERIC Educational Resources Information Center

    Gándara, Denisa; Toutkoushian, Robert K.

    2017-01-01

    In this study, we provide updated estimates of the private and social financial return on enrolling in a master's degree program in the United States. In addition to returns for all fields of study, we show estimated returns to enrolling in master's degree programs in business and education, specifically. We also conduct a sensitivity analysis to…

  9. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  10. Modeling of Impression Testing to Obtain Mechanical Properties of Lead-Free Solders Microelectronic Interconnects

    DTIC Science & Technology

    2005-12-01

    hardening exponent and Cimp is the impression strain-rate hardening coefficient. The strain-rate hardening exponent m is a parameter that is...exponent and Cimp is the impression strain-rate hardening coefficient. The strain-rate hardening exponent m is a parameter that is related to the creep

  11. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  12. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high-performance signal processing include significant increase in onboard science data processing, enabling orders of magnitude reduction in required communication bandwidth for science data return, orders of magnitude improvement in onboard mission planning and critical decision making, and the ability to rapidly respond to changing mission environments, thus enabling opportunistic science and orders of magnitude reduction in the cost of mission operations through reduction of required staff. Additional benefits of COTS-based, high-performance signal processing include the ability to leverage considerable commercial and academic investments in advanced computing tools, techniques, and infra structure, and the familiarity of the science and IT community with these computing environments.

  13. Effect of preheating on fatigue resistance of gears in spin induction coil hardening process

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Aggarwal, M. L.

    2018-02-01

    Spin hardening inductors are typically used for fine-sized teeth gear geometry. With the proper selection of several design parameters, only the gear teeth can be case surface hardened without affecting the other surface of gear. Preheating may be done to reach an adapted high austenitizing temperature in the root circle to avoid overheating of the tooth tip during final heating. The effect of preheating of gear on control of compressive residual stresses and case hardening has been experimentally discussed in this paper. Present work is about analysing single frequency mode, preheat hardening treatment and compressive residual stresses field for hardening process of spur gear using spin hardening inductors.

  14. The Returns to Quality in Graduate Education

    ERIC Educational Resources Information Center

    Stevenson, Adam

    2016-01-01

    This paper estimates the monetary return to quality in US graduate education, controlling for cognitive ability and self-selection across award level, program quality, and field-of-study. In most program types, I cannot reject the hypothesis of no returns to either degree completion or program quality. Important exceptions include master's…

  15. PECONIC ESTUARY: AN INVENTORY OF SUBMERGED AQUATIC VEGETATION AND HARDENED SHORELINES FOR THE PECONIC ESTUARY, NEW YORK

    EPA Science Inventory

    Executive Summary The Peconic Estuary Program (PEP) is interested in the extent of eelgrass and other submerged aquatic vegetation and in documenting changes in the shorelines of the Peconic Estuary. The Suffolk County Department of Health Services' Office of Ecology provided fun...

  16. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  17. Economic return of clinical trials performed under the pediatric exclusivity program.

    PubMed

    Li, Jennifer S; Eisenstein, Eric L; Grabowski, Henry G; Reid, Elizabeth D; Mangum, Barry; Schulman, Kevin A; Goldsmith, John V; Murphy, M Dianne; Califf, Robert M; Benjamin, Daniel K

    2007-02-07

    In 1997, Congress authorized the US Food and Drug Administration (FDA) to grant 6-month extensions of marketing rights through the Pediatric Exclusivity Program if industry sponsors complete FDA-requested pediatric trials. The program has been praised for creating incentives for studies in children and has been criticized as a "windfall" to the innovator drug industry. This critique has been a substantial part of congressional debate on the program, which is due to expire in 2007. To quantify the economic return to industry for completing pediatric exclusivity trials. A cohort study of programs conducted for pediatric exclusivity. Nine drugs that were granted pediatric exclusivity were selected. From the final study reports submitted to the FDA (2002-2004), key elements of the clinical trial design and study operations were obtained, and the cost of performing each study was estimated and converted into estimates of after-tax cash outflows. Three-year market sales were obtained and converted into estimates of after-tax cash inflows based on 6 months of additional market protection. Net economic return (cash inflows minus outflows) and net return-to-costs ratio (net economic return divided by cash outflows) for each product were then calculated. Net economic return and net return-to-cost ratio. The indications studied reflect a broad representation of the program: asthma, tumors, attention-deficit/hyperactivity disorder, hypertension, depression/generalized anxiety disorder, diabetes mellitus, gastroesophageal reflux, bacterial infection, and bone mineralization. The distribution of net economic return for 6 months of exclusivity varied substantially among products (net economic return ranged from -$8.9 million to $507.9 million and net return-to-cost ratio ranged from -0.68 to 73.63). The economic return for pediatric exclusivity is variable. As an incentive to complete much-needed clinical trials in children, pediatric exclusivity can generate lucrative returns or produce more modest returns on investment.

  18. Economic Return of Clinical Trials Performed Under the Pediatric Exclusivity Program

    PubMed Central

    Li, Jennifer S.; Eisenstein, Eric L.; Grabowski, Henry G.; Reid, Elizabeth D.; Mangum, Barry; Schulman, Kevin A.; Goldsmith, John V.; Murphy, M. Dianne; Califf, Robert M.; Benjamin, Daniel K.

    2009-01-01

    Context In 1997, Congress authorized the Food and Drug Administration (FDA) to grant 6 month extensions of marketing rights through the Pediatric Exclusivity program if industry sponsors complete FDA-requested pediatric trials. The program has been praised for creating incentives for studies in children; it has been criticized as a “windfall” to the innovator drug industry. This critique has been a substantial part of Congressional debate on the program, which is due to sunset in 2007. Objective To quantify the economic return to industry for completing Pediatric Exclusivity. Design Cohort study of programs conducted for Pediatric Exclusivity. We selected 9 drugs that were granted Pediatric Exclusivity. From the final study reports submitted to FDA, we obtained key elements of the clinical trial design and study operations. We estimated the cost of performing each study and converted these into estimates of after-tax cash outflows. We obtained 3-year market sales and converted these into estimates of after-tax cash inflows based upon 6 months of additional market protection. We then calculated the net economic return (cash inflows less outflows) and ratio net return to costs (net economic return divided by cash outflows) for each product. Main Outcome Measures Net economic return and ratio of net return to cost. Results The indications studied reflected a broad representation of the program: asthma, tumors, attention deficit disorder, hypertension, depression/generalized anxiety disorder, diabetes, gastroesophageal reflux, bacterial infection, and bone mineralization. The distribution of net economic return for 6 months of exclusivity varied substantially among products [net return ranged from (−)$8.9 million to (+)$507.9 million; ratio of return to cost ranged from −0.68 to 73.6] Conclusions The economic return for pediatric exclusivity is highly variable. Pediatric Exclusivity, as an incentive to complete much-needed clinical trials in children, can generate lucrative returns, but more frequently produces more modest return on investment. PMID:17284698

  19. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  20. Supporting Women Returning to Work: A European Perspective.

    ERIC Educational Resources Information Center

    Shepherd, Jan; Saxby-Smith, Sue

    A 2-year project examined the effectiveness of courses for returning workers in enabling women to make a sustained return to paid employment in the following countries: France; Spain; Ireland; and the United Kingdom. In each country, a short foundation-level program and a longer accredited return-to-work program were selected for evaluation.…

  1. Do employee health management programs work?

    PubMed

    Serxner, Seth; Gold, Daniel; Meraz, Angela; Gray, Ann

    2009-01-01

    Current peer review literature clearly documents the economic return and Return-on-Investment (ROI) for employee health management (EHM) programs. These EHM programs are defined as: health promotion, self-care, disease management, and case management programs. The evaluation literature for the sub-set of health promotion and disease management programs is examined in this article for specific evidence of the level of economic return in medical benefit cost reduction or avoidance. The article identifies the methodological challenges associated with determination of economic return for EHM programs and summarizes the findings from 23 articles that included 120 peer review study results. The article identifies the average ROI and percent health plan cost impact to be expected for both types of EHM programs, the expected time period for its occurrence, and caveats related to its measurement.

  2. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  3. Does graded return-to-work improve sick-listed workers' chance of returning to regular working hours?

    PubMed

    Høgelund, Jan; Holm, Anders; McIntosh, James

    2010-01-01

    Using Danish register and survey data, we examine the effect of a national graded return-to-work program on the probability of sick-listed workers returning to regular working hours. During program participation, the sick-listed worker works fewer hours and receives the normal hourly wage for the hours worked and sickness benefit for the hours off work. When the worker's health improves, working hours are increased until the sick-listed worker is able to work regular hours. Taking account of unobserved differences between program participants and non-participants, we find that participation in the program significantly increases the probability of returning to regular working hours. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojacz, H., E-mail: rojacz@ac2t.at

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less

  5. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  6. Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results

    NASA Astrophysics Data System (ADS)

    Coelho, R. T.; Tanikawa, S. T.

    2009-11-01

    High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.

  7. Variables Influencing the Return on Investment in Management Training Programs: A Utility Analysis of 10 Swiss Cases

    ERIC Educational Resources Information Center

    Chochard, Yves; Davoine, Eric

    2011-01-01

    In this article, we present the utility analysis approach as an alternative and promising approach to measure the return on investment in managerial training programs. This approach, linking economic value with competencies developed by trainees, enables researchers and decision-makers to compare the return on investment from different programs in…

  8. Structural heredity influence upon principles of strain wave hardening

    NASA Astrophysics Data System (ADS)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  9. Project Return and Babygram Hospital Outreach, 1993-94.

    ERIC Educational Resources Information Center

    Weiler, Jeanne

    Project Return, a dropout recovery program to assist pregnant and parenting teenagers and parents of elementary school children to return to school, was first implemented in 1989-90, and by 1993-94 had expanded to serve 19 sites in New York City. The Babygram Hospital Outreach program, an outgrowth of Project Return, operated in 12 hospitals and…

  10. Materials science. Modeling strain hardening the hard way.

    PubMed

    Gumbsch, Peter

    2003-09-26

    The plastic deformation of metals results in strain hardening, that is, an increase in the stress with increasing strain. Materials engineers can provide a simple approximate description of such deformation and hardening behavior. In his perspective, Gumbsch discusses work by Madec et al. who have undertaken the formidable task of computing the physical basis for the development of strain hardening by individually following the fate of all the dislocations involved. Their simulations show that the collinear dislocation interaction makes a substantial contribution to strain hardening. It is likely that such simulations will play an important role in guiding the development of future engineering descriptions of deformation and hardening.

  11. Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Yu, Long

    2018-05-01

    Linear and square superposition hardening models are compared for the surface nanoindentation of ion-irradiated materials. Hardening mechanisms of both dislocations and defects within the plasticity affected region (PAR) are considered. Four sets of experimental data for ion-irradiated materials are adopted to compare with theoretical results of the two hardening models. It is indicated that both models describe experimental data equally well when the PAR is within the irradiated layer; whereas, when the PAR is beyond the irradiated region, the square superposition hardening model performs better. Therefore, the square superposition model is recommended to characterize the hardening behavior of ion-irradiated materials.

  12. Silicon Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Campola, Michael; Ladbury, Raymond; Label, Kenneth; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    Recent work for the NASA Electronic Parts and Packaging Program Power MOSFET task is presented. The Task technology focus, roadmap, and partners are given. Recent single-event effect test results on commercial, automotive, and radiation hardened trench power MOSFETs are summarized with an emphasis on risk of using commercial and automotive trench-gate power MOSFETs in space applications.

  13. "Harden Up and Face Reality:" Exploring Underlying Bullying Beliefs in New Zealand

    ERIC Educational Resources Information Center

    Balanovic, Jovana; Stuart, Jaimee; Jeffrey, Jenny

    2018-01-01

    A growing body of research illustrating the detrimental consequences of bullying has led to many antibullying interventions being developed. Despite good intentions, evidence suggests that such programs vary considerably in their efficacy. The current study examines the social discourse around bullying in the New Zealand environment in order to…

  14. Effect of shot peening on the microstructure of laser hardened 17-4PH

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua

    2010-12-01

    In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.

  15. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  16. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...

  17. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...

  18. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...

  19. Influence of Microstructural and Load Wave Form Control on Fatigue Crack Growth behavior of Precipitation Hardening Stainless Steels

    DTIC Science & Technology

    1976-07-01

    heating to temperatures below the Acl precipitates a copper -rich phase within the martensite increasing hardness and strength. The stress relieving effect...experimental approach varied the heat treatment of two precipitation hardening martensitic alloys , 17-4 PH1 and 15-b PH. Fatigue-crack growth data was...hardenable by precipitation hardening. Alloys that do harden by this mechanism have only one thing in common, this is, a decreasing solubility for one phase

  20. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  1. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  2. Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in Drosophila Melanogaster

    PubMed Central

    McColl, G.; Hoffmann, A. A.; McKechnie, S. W.

    1996-01-01

    To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance. PMID:8844150

  3. Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery.

    PubMed

    Villar-Salvador, Pedro; Planelles, Rosa; Oliet, Juan; Peñuelas-Rubira, Juan L; Jacobs, Douglass F; González, Magdalena

    2004-10-01

    Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.

  4. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  5. Survivability of the Hardened Mobile Launcher When Attacked by a Hypothetical Rapidly Retargetable ICBM System.

    DTIC Science & Technology

    1986-03-01

    Aimpoints 22 Overviev 22 Random Movement of the RML 23 Computing Burst Locations and the HMIL’s Final Location 23 Selecting the HIMLs Speed. 29...described threat. The actual model used in this study is an MEASIC computer program . written and run on an Apple Macintosh computer . It is described in...mechanics of the computer program that models the warheads’ flight time sequence, it will be helpful to explain some of the elements of the sequence

  6. Minimally access versus conventional hydrocelectomy: a randomized trial.

    PubMed

    Saber, Aly

    2015-01-01

    To compare our previously published new minimally access hydrocelectomy versus Jaboulay's procedure regarding operative outcome and patient's satisfaction. A total of 124 adult patients were divided into two groups: A and B. Group A patients were subjected to conventional surgical hydrocelectomy (Jaboulay's procedure) and group B patients were subjected to the new minimal access hydrocelectomy. The primary endpoint of the study was recurrence defined as a clinically detectable characteristic swelling in the scrotum and diagnosed by the two surgeons and confirmed by ultrasound imaging study. The secondary endpoints were postoperative hematoma, wound sepsis and persistent edema and hardening. The mean operative time in group B was 15.1 ± 4.24 minutes and in group A was 32.5 ± 4.76 minutes (P ≤ 0.02). The mean time to return to work was 8.5 ± 2.1 (7-10) days in group B while in group A was 12.5 ± 3.53 (10-15) days (P=0.0001). The overall complication rate in group B was 12.88% and in group A was 37%. The parameters of the study were postoperative hematoma, degree of scrotal edema, wound infection, patients' satisfaction and recurrence. Hydrocelectomy is considered the gold standard technique for the treatment of hydrocele and the minimally access maneuvers provide the best operative outcomes regarding scrotal edema and hardening and patient's satisfaction when compared to conventional eversion-excision hydrocelectomies.

  7. Peer tutoring program for academic success of returning nursing students.

    PubMed

    Bryer, Jennifer

    2012-01-01

    High attrition rates among students in associate degree nursing programs are a concern for faculty, administrators, and students. Programs offering academic and emotional support for students at risk for failing a clinical course may decrease attrition rates and improve academic performance. A peer tutoring program was developed for returning nursing students who were unsuccessful in a previous clinical course. Peer tutors met with returning students weekly to review course work, complete case studies and practice NCLEX questions. Trusting, supportive relationships developed among students and a significant increase in grades was noted at the end of the course for 79% of students. Implementation of peer tutoring was beneficial for returning students, tutors, and the nursing program and may be valuable in other courses where academic achievement is a concern.

  8. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    NASA Technical Reports Server (NTRS)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  9. PLANE STRAIN FRACTURE TOUGHNESS DATA FOR HANDBOOK PRESENTATION

    DTIC Science & Technology

    An experimental program was conducted to determine the plane strain fracture toughness (K sub IC) of the following classes of: (1) AISI Alloy Steels...4340, 4140 ); (2) 5Cr-Mo-V Steels; (3) Precipitation-Hardening Stainless Steels (17-7 PH, PH 15-7 Mo, 17-4, AM355); (4) Titanium Alloy, Ti-6Al-4V. The

  10. An Operational Utility Assessment: Measuring the Effectiveness of the Experimental Forward Operating Base Program

    DTIC Science & Technology

    2014-06-01

    SPACES product brochure . Retrieved from https://www.iristechnology.com/manuals/BR-Iris-SPACES.pdf Jameson, LLC. (2014, April 11). EMI hardened LED...Army. (2010). TRADOC generating force study (TRADOC Pamphlet 525-8-1). Retrieved from http://www.tradoc.army.mil/tpubs/pams/tp525-8-1.pdf U.S. Army

  11. Effect of cutting parameters on strain hardening of nickel–titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Wang, Guijie; Liu, Zhanqiang; Ai, Xing; Huang, Weimin; Niu, Jintao

    2018-07-01

    Nickel–titanium shape memory alloy (SMA) has been widely used as implant materials due to its good biocompatibility, shape memory property and super-elasticity. However, the severe strain hardening is a main challenge due to cutting force and temperature caused by machining. An orthogonal experiment of nickel–titanium SMA with different milling parameters conditions was conducted in this paper. On the one hand, the effect of cutting parameters on work hardening is obtained. It is found that the cutting speed has the most important effect on work hardening. The depth of machining induced layer and the degree of hardening become smaller with the increase of cutting speed when the cutting speed is less than 200 m min‑1 and then get larger with further increase of cutting speed. The relative intensity of diffraction peak increases as the cutting speed increase. In addition, all of the depth of machining induced layer, the degree of hardening and the relative intensity of diffraction peak increase when the feed rate increases. On the other hand, it is found that the depth of machining induced layer is closely related with the degree of hardening and phase transition. The higher the content of austenite in the machined surface is, the higher the degree of hardening will be. The depth of the machining induced layer increases with the degree of hardening increasing.

  12. Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

    NASA Astrophysics Data System (ADS)

    Niu, Li-Bin; Ishitake, Hisamitsu; Izumi, Sakae; Shiokawa, Kunio; Yamashita, Mitsuo; Sakai, Yoshihiro

    2018-03-01

    Stress corrosion cracking (SCC) behavior of the hardening-treated materials of 13Cr stainless steel was examined with SSRT tests and constant load tests. In the simulated geothermal water and even in the test water without addition of impurities, the hardening-treated materials showed a brittle intergranular fracture due to the sensitization, which was caused by the present hardening-treatments.

  13. Kinematic hardening of a porous limestone

    NASA Astrophysics Data System (ADS)

    Cheatham, J. B.; Allen, M. B.; Celle, C. C.

    1984-10-01

    A concept for a kinematic hardening yield surface in stress space for Cordova Cream limestone (Austin Chalk) developed by Celle and Cheatham (1981) has been improved using Ziegler's modification of Prager's hardening rule (Ziegler, 1959). Data to date agree with the formulated concepts. It is shown how kinematic hardening can be used to approximate the yield surface for a wide range of stress states past the initial yield surface. The particular difficulty of identifying the yield surface under conditions of unloading or extension is noted. A yield condition and hardening rule which account for the strain induced anisotropy in Cordova Cream Limestone were developed. Although the actual yield surface appears to involve some change of size and shape, it is concluded that true kinematic hardening provides a basis for engineering calculations.

  14. Return-to-Work Program for Injured Workers: Factors of Successful Return to Employment.

    PubMed

    Awang, Halimah; Shahabudin, Sharifah Muhairah; Mansor, Norma

    2016-11-01

    This study examined the factors of successful return to employment among participants in the return to work program (RTW) following work-related injury. Data were obtained from the Social Security Organization database containing 9850 injured workers who underwent RTW in 2010 to 2013. About 65% had successfully returned to employment. Significant factors of successful return include gender, employer interest, motivation, age, intervention duration, and type of injury. Male and motivated employees were more likely to return to employment compared with female and unmotivated employees, respectively. Participants from interested employers were 23.22 times more likely to return to work than those from uninterested employers, whereas participants whose intervention period exceeded 5 months were 41% less likely to return to work compared with those whose intervention period was within 3 months. Appropriate strategy and enhanced collaboration between the stakeholders would improve the proportion of successful return to employment. © 2016 APJPH.

  15. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  16. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  17. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    NASA Astrophysics Data System (ADS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  18. Return to work of workers without a permanent employment contract, sick-listed due to a common mental disorder: design of a randomised controlled trial.

    PubMed

    Lammerts, Lieke; Vermeulen, Sylvia J; Schaafsma, Frederieke G; van Mechelen, Willem; Anema, Johannes R

    2014-06-12

    Workers without a permanent employment contract represent a vulnerable group within the working population. Mental disorders are a major cause of sickness absence within this group. Common mental disorders are stress-related, depressive and anxiety disorders. To date, little attention has been paid to effective return to work interventions for this type of sick-listed workers. Therefore, a participatory supportive return to work program has been developed. It combines elements of a participatory return to work program, integrated care and direct placement in a competitive job.The objective of this paper is to describe the design of a randomised controlled trial to evaluate the cost-effectiveness of this program compared to care as usual. The cost-effectiveness of the participatory supportive return to work program will be examined in a randomised controlled trial with a follow-up of twelve months.The program strongly involves the sick-listed worker in the identification of obstacles for return to work and possible solutions, resulting in a consensus based action plan. This plan will be used as a starting point for the search of suitable competitive employment with support of a rehabilitation agency. During this process the insurance physician of the sick-listed worker contacts other caregivers to promote integrated care.Workers eligible to participate in this study have no permanent employment contract, have applied for a sickness benefit at the Dutch Social Security Agency and are sick-listed between two and fourteen weeks due to mental health problems.The primary outcome measure is the duration until first sustainable return to work in a competitive job. Outcomes are measured at baseline and after three, six, nine and twelve months. If the participatory supportive return to work program proves to be cost-effective, the social security system, the sick-listed worker and society as a whole will benefit. A cost-effective return to work program will lead to a reduction of costs related to sickness absence. For the sick-listed worker a cost-effective program results in earlier sustainable return to work, which can be associated with both social and health benefits. The trial registration number and date is NTR3563, August 7, 2012.

  19. Return to work of workers without a permanent employment contract, sick-listed due to a common mental disorder: design of a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Workers without a permanent employment contract represent a vulnerable group within the working population. Mental disorders are a major cause of sickness absence within this group. Common mental disorders are stress-related, depressive and anxiety disorders. To date, little attention has been paid to effective return to work interventions for this type of sick-listed workers. Therefore, a participatory supportive return to work program has been developed. It combines elements of a participatory return to work program, integrated care and direct placement in a competitive job. The objective of this paper is to describe the design of a randomised controlled trial to evaluate the cost-effectiveness of this program compared to care as usual. Methods/Design The cost-effectiveness of the participatory supportive return to work program will be examined in a randomised controlled trial with a follow-up of twelve months. The program strongly involves the sick-listed worker in the identification of obstacles for return to work and possible solutions, resulting in a consensus based action plan. This plan will be used as a starting point for the search of suitable competitive employment with support of a rehabilitation agency. During this process the insurance physician of the sick-listed worker contacts other caregivers to promote integrated care. Workers eligible to participate in this study have no permanent employment contract, have applied for a sickness benefit at the Dutch Social Security Agency and are sick-listed between two and fourteen weeks due to mental health problems. The primary outcome measure is the duration until first sustainable return to work in a competitive job. Outcomes are measured at baseline and after three, six, nine and twelve months. Discussion If the participatory supportive return to work program proves to be cost-effective, the social security system, the sick-listed worker and society as a whole will benefit. A cost-effective return to work program will lead to a reduction of costs related to sickness absence. For the sick-listed worker a cost-effective program results in earlier sustainable return to work, which can be associated with both social and health benefits. Trial registration The trial registration number and date is NTR3563, August 7, 2012. PMID:24919561

  20. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    PubMed

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling performance under xeric outplanting conditions. However, fertilization increased growth under mesic conditions, whereas drought hardening decreased growth. We conclude that drought hardening and N fertilization applied under typical container nursery operational conditions exert opposite effects on the physiological stress tolerance of P. pinea seedlings. While drought hardening increases overall stress tolerance, N nutrition reduces it and yet has no effect on the drought acclimation capacity of seedlings.

  1. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  2. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  3. Radar target classification studies: Software development and documentation

    NASA Astrophysics Data System (ADS)

    Kamis, A.; Garber, F.; Walton, E.

    1985-09-01

    Three computer programs were developed to process and analyze calibrated radar returns. The first program, called DATABASE, was developed to create and manage a random accessed data base. The second program, called FTRAN DB, was developed to process horizontal and vertical polarizations radar returns into different formats (i.e., time domain, circular polarizations and polarization parameters). The third program, called RSSE, was developed to simulate a variety of radar systems and to evaluate their ability to identify radar returns. Complete computer listings are included in the appendix volumes.

  4. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events?

    PubMed

    Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S

    2018-05-29

    Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.

  5. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  6. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langelier, Brian, E-mail: langelb@mcmaster.ca; Esmaeili, Shahrzad

    2015-03-15

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particlesmore » containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities.« less

  7. PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Gorti, Sarma B; Peter, William H

    A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less

  8. Investigation of Thermal Hardening of the FCC Material Containing Strengthening Particles with an L12 Superstructure

    NASA Astrophysics Data System (ADS)

    Daneyko, O. I.; Kulaeva, N. A.; Kovalevskaya, C. A.; Kolupaeva, S. N.

    2015-07-01

    A mathematical model of plastic deformation of dispersion-hardened materials with an fcc matrix containing strengthening particles with an L12 superstructure having a coherent relationship with the matrix is presented. The model is based on the balance equations of deformation defects of different types with taking into account their transformation during plastic deformation. The influence of scale characteristics of the hardening phase, temperature, and deformation rate on the evolution of the dislocation subsystem and strain hardening of an alloy with an fcc matrix hardened by particles with an L12 super structure is studied. A temperature anomaly of mechanical properties is found for the materials with different fcc matrices (Al,Cu, Ni). It is shown that the temperature anomaly is more pronounced for the material with larger volume fraction of the hardening phase.

  9. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening.

    PubMed

    Beck, Erwin H; Heim, Richard; Hansen, Jens

    2004-12-01

    This introductory overview shows that cold, in particular frost, stresses a plant in manifold ways and that the plant's response, being injurious or adaptive, must be considered a syndrome rather than a single reaction. In the course of the year perennial plants of the temperate climate zones undergo frost hardening in autumn and dehardening in spring. Using Scots pine (Pinus sylvestris L.) as a model plant the environmental signals inducing frost hardening and dehardening, respectively, were investigated. Over 2 years the changes in frost resistance of Scots pine needles were recorded together with the annual courses of day-length and ambient temperature. Both act as environmental signals for frost hardening and dehardening. Climate chamber experiments showed that short day-length as a signal triggering frost hardening could be replaced by irradiation with far red light, while red light inhibited hardening. The involvement of phytochrome as a signal receptor could be corroborated by respective night-break experiments. More rapid frost hardening than by short day or far red treatment was achieved by applying a short period (6 h) of mild frost which did not exceed the plant's cold resistance. Both types of signals were independently effective but the rates of frost hardening were not additive. The maximal rate of hardening was - 0.93 degrees C per day and frost tolerance of less than < - 72 degrees C was achieved. For dehardening, temperature was an even more effective signal than day-length.

  10. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  11. Heat removal capability of divertor coaxial tube assembly

    NASA Astrophysics Data System (ADS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications.

  12. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  13. A Model for Diagnostics in Neurological Rehabilitation: An Answer to the Biopsychosocial Disease Consequence Model in Rehabilitation of Talo et al.

    ERIC Educational Resources Information Center

    Faby, S.

    1998-01-01

    Discusses the bio-psycho-social disease consequence model in rehabilitation and the model's development in the Finnish "Work Hardening Program for Chronic Pain." The theoretical background of the model is explained and the possibility of applying the model to other fields of rehabilitation is explored. (Author/CR)

  14. Voyager electronic parts radiation program, volume 1

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Price, W. E.

    1977-01-01

    The Voyager spacecraft is subject to radiation from external natural space, from radioisotope thermoelectric generators and heater units, and from the internal environment where penetrating electrons generate surface ionization effects in semiconductor devices. Methods for radiation hardening and tests for radiation sensitivity are described. Results of characterization testing and sample screening of over 200 semiconductor devices in a radiation environment are summarized.

  15. Report to the Congress on the Strategic Defense Initiative, 1991

    DTIC Science & Technology

    1991-05-01

    ultraviolet, and infrared radiation-hardened charge-coupled device images , step-stare sensor signal processing algorithms , and processor...Demonstration Experiment (LODE) resolved central issues associated with wavefront sensing and control and the 4-meter I Large Advanced Mirror Program (LAMP...21 Figure 4-16 Firepond CO 2 Imaging Radar Demonstration .......................... 4-22 Figure 4-17 IBSS and the Shuttle

  16. Prefabricated Roof Beams for Hardened Shelters

    DTIC Science & Technology

    1993-08-01

    beam with a composite concrete slab. Based on the results of the concept evaluation, a test program was designed and conducted to validate the steel...ultimaw, strength. The results of these tests showed that the design procedure accurately predicts the response of the ste,-confined concrete composite...BENDING OF EXTERNALLY REINFORCED CONCRETE BEAMS ........ 67 TABLE 9. SINGLE POINT LOAD BEAM TEST RESULTS

  17. Some Characteristics of an Effective Language Learning Program. CATESOL Occasional Papers, No. 1.

    ERIC Educational Resources Information Center

    Sutherland, Kenton

    Children learn a second language quickly and easily simply by being exposed to it. Adults generally learn more slowly and less well. It is hypothesized that the brain in youth is extremely plastic, but hardens with adolescence and adulthood and becomes less receptive. Children learn in an active way, during play, and the language is reinforced by…

  18. Radiation-hardened backside-illuminated 512 x 512 charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bates, Philip A.; Levine, Peter A.; Sauer, Donald J.; Hsueh, Fu-Lung; Shallcross, Frank V.; Smeltzer, Ronald K.; Meray, Grazyna M.; Taylor, Gordon C.; Tower, John R.

    1995-04-01

    A four-port 512 X 512 charge coupled device (CCD) imager hardened against proton displacement damage and total dose degradation has been fabricated and tested. The device is based upon an established thinned, backside illuminated, triple polysilicon, buried channel CCD process technology. The technology includes buried blooming drains. A three step approach has been taken to hardening the device. The first phase addressed hardening against proton displacement damage. The second phase addressed hardening against both proton displacement damage and total dose degradation. The third phase addresses final optimization of the design. Test results from the first and second phase efforts are presented. Plans for the third phase are discussed.

  19. Work-hardening behaviour of Mg single crystals oriented for basal slip

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Niewczas, M.

    2011-06-01

    Work-hardening behaviour of Mg single crystals oriented for basal slip was studied by means of tensile tests carried out at 4, 78 and 295 K. The crystals show critical resolved shear stress values (CRSS) for a {0001} ? basal slip system in the range 1-1.5 MPa. The samples exhibit two-stage work hardening characteristics consisting of a long easy glide stage and a stage of rapid hardening terminated by failure. The onset of the plastic flow up to the point of fracture is accompanied by a low work-hardening rate in the range 5 × 10-5-5 × 10-4 µ, corresponding to the hardening rate in Stage I of copper single crystals. The analysis of thermally activated glide parameters suggests that forest interactions are rate-controlling processes. The very low value of the activation distance found at 4 K, ∼0.047 b, is attributed to zero-point energy effects. The failure of crystals occurs well before their hardening capacity is exhausted by mechanisms which are characteristic of deformation temperature.

  20. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  1. Sick-listed persons' experiences with taking part in an in-patient occupational rehabilitation program based on Acceptance and Commitment Therapy: a qualitative focus group interview study.

    PubMed

    Rise, Marit B; Gismervik, Sigmund Ø; Johnsen, Roar; Fimland, Marius S

    2015-11-27

    Occupational medicine has shifted emphasis from disease treatment to disability rehabilitation and management. Hence, newly developed occupational rehabilitation programs are often generic and multicomponent, aiming to influence the sick-listed persons' perception on return to work, and thereby support the return to work process. The aim of this study was to explore sick-listed persons' experiences with taking part in an in-patient occupational rehabilitation program based on Acceptance and Commitment Therapy. Twenty-nine adults on sickness benefit or work assessment allowance due to musculoskeletal and/or common mental health disorders participated in this study. They were interviewed in focus groups at the beginning and at the end of a 3.5 week inpatient group-based occupational rehabilitation program in Central Norway. Key elements in the program were Acceptance and Commitment Therapy (ACT), physical exercise and creating a work-participation plan. The program was mainly group-based including participants with different diagnoses. Data was analyzed according to a phenomenological approach. At the start of the program most participants expressed frustration regarding being sick-listed, external anticipations as well as hindrances towards returning to work, and described hope that the program would provide them with the skills and techniques necessary to cope with health problems and being able to return to work. At the end of the program the participants described that they had embarked upon a long process of increased awareness. This process encompassed four areas; an increased awareness of what was important in life, realizing the strain from external expectations and demands, a need to balance different aspects of life, and return to work as part of a long and complex process. The occupational rehabilitation program induced a perceived meaningful reorientation encompassing several aspects of life. However, the return to work process was described as diffuse and uncertain for most participants. The providers of occupational rehabilitation program should balance this reorientation with specific steps towards return to work. Effect studies and long-term qualitative studies evaluating how this affects long-term work- and health outcomes are underway.

  2. Return on Investment (ROI): Calculating the Monetary Return of a Leadership Development Program

    ERIC Educational Resources Information Center

    Rohs, Frederick R.

    2004-01-01

    Measuring the Return on Investment (ROI) in training and development has consistently earned a place among the critical issues in the human resource development (HRD) field. Leadership educators may soon find that program sponsors and administrators asking for ROI information as well. This paper reports the ROI of the Southern Extension Leadership…

  3. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Wu, Chia-Chang; Chen, Chih-Yuan; Yang, Jer-Ren; Chiu, Po-Kay; Fang, Jason

    2007-08-01

    A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ɛ martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

  4. Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-12-01

    In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  5. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    NASA Astrophysics Data System (ADS)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  6. Report of the Secretary of Defense Frank C. Carlucci to the Congress on the FY 1990/FY 1991 Biennial Budget and FY 1990-94 Defense Programs

    DTIC Science & Technology

    1990-01-01

    effective ways of promoting U.S. interests. Finally, our Denton Amendment space-available transportation program continues assisting generous American hu... Eglin AFB, FL 9th SOS, Eglin AFB, FL 55th SOS, Eglin AFB, FL 1724th Special Tactics Squadron, Pope AFB, NC 67th SOS, RAF Woodbridge, UK 21st SOS...almost all of which were built from 1962 to 1966 - faced block obsolescence within a decade, and their missiles would not be effective against hardened

  7. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  8. Portfolio optimization in enhanced index tracking with goal programming approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. Enhanced index tracking aims to generate excess return over the return achieved by the market index without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio to maximize the mean return and minimize the risk. The objective of this paper is to determine the portfolio composition and performance using goal programming approach in enhanced index tracking and comparing it to the market index. Goal programming is a branch of multi-objective optimization which can handle decision problems that involve two different goals in enhanced index tracking, a trade-off between maximizing the mean return and minimizing the risk. The results of this study show that the optimal portfolio with goal programming approach is able to outperform the Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  9. Comparison of lead attenuation and lead hardening equivalence of materials used in respect of diagnostic X-ray shielding.

    PubMed

    Okunade, Akintunde Akangbe

    2002-12-01

    Present interest is in the shielding of diagnostic X-ray units. Numerical comparison has been made of the attenuation and hardening properties of lead and some particular alternative materials: steel, plate glass and gypsum wallboard. Results show, for particular choices of thickness, that lead and steel can be made to provide closely similar attenuation and spectral hardening, values of lead attenuation equivalent (LAE) and lead hardening equivalent (LHE) thicknesses being nearly the same. Significant differences in the attenuation and hardening properties of lead are found in comparison with plate glass and gypsum wallboard. LAE produces better matching of exposure for lead-plate glass and lead-gypsum wallboard than LHE.

  10. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  11. 25 CFR 1000.318 - When will the Secretary return management of a reassumed program?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... management of a reassumed program? A reassumed program may be included in future AFAs, but the Secretary may... 25 Indians 2 2014-04-01 2014-04-01 false When will the Secretary return management of a reassumed program? 1000.318 Section 1000.318 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT...

  12. 25 CFR 1000.318 - When will the Secretary return management of a reassumed program?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... management of a reassumed program? A reassumed program may be included in future AFAs, but the Secretary may... 25 Indians 2 2013-04-01 2013-04-01 false When will the Secretary return management of a reassumed program? 1000.318 Section 1000.318 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT...

  13. 25 CFR 1000.318 - When will the Secretary return management of a reassumed program?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... management of a reassumed program? A reassumed program may be included in future AFAs, but the Secretary may... 25 Indians 2 2011-04-01 2011-04-01 false When will the Secretary return management of a reassumed program? 1000.318 Section 1000.318 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT...

  14. 25 CFR 1000.318 - When will the Secretary return management of a reassumed program?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... management of a reassumed program? A reassumed program may be included in future AFAs, but the Secretary may... 25 Indians 2 2012-04-01 2012-04-01 false When will the Secretary return management of a reassumed program? 1000.318 Section 1000.318 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT...

  15. 25 CFR 1000.318 - When will the Secretary return management of a reassumed program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... management of a reassumed program? A reassumed program may be included in future AFAs, but the Secretary may... 25 Indians 2 2010-04-01 2010-04-01 false When will the Secretary return management of a reassumed program? 1000.318 Section 1000.318 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT...

  16. Economic feasibility analysis of conventional and dedicated energy crop production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.G.; Langemeier, M.R.; Krehbiel, L.R.

    Economic feasibilities (net return per acre) associated with conventional agricultural crop production versus that of dedicated bioenergy crop (herbaceous energy crops) were investigated for northeastern Kansas. Conventional agricultural crops examined were corn, soybeans, wheat, sorghum and alfalfa and dedicated herbaceous energy crops included big bluestem/indiangrass, switchgrass, eastern gamagrass, brome, fescue and cane hay. Costs, prices and government program information from public and private sources were used to project the net return per acre over a six-year period beginning in 1997. Three soil productivity levels (low, average and high), which had a direct effect on the net return per acre, weremore » used to model differences in expected yield. In all three soil productivity cases, big bluestem/indiangrass, switchgrass and brome hay provided a higher net return per acre versus conventional crops grown on both program and non-program acres. Eastern gamagrass, fescue hay and cane hay had returns that were similar or less than returns provided by conventional crops.« less

  17. Evaluating the Generality and Limits of Blind Return-Oriented Programming Attacks

    DTIC Science & Technology

    2015-12-01

    consider a recently proposed information disclosure vulnerability called blind return-oriented programming (BROP). Under certain conditions, this...implementation disclosure attacks 15. NUMBER OF PAGES 75 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF...Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT We consider a recently proposed information disclosure vulnerability called blind return

  18. Suspension of enrollment in the Federal Employees Health Benefits (FEHB) Program for Peace Corps volunteers. Final rule.

    PubMed

    2006-11-17

    The Office of Personnel Management is issuing a final regulation to allow Peace Corps volunteers who are FEHB Program enrolled annuitants, survivors, and former spouses to suspend their FEHB enrollments and then return to the FEHB Program during the Open Season, or return to FEHB coverage immediately, if they involuntarily lose health benefits coverage under the Peace Corps. The intent of this final rule is to allow these beneficiaries to avoid the expense of continuing to pay FEHB Program premiums while they have other health coverage as Peace Corps volunteers, without endangering their ability to return to the FEHB Program in the future.

  19. Induction of a Hardening Phenomenon and Quantitative Changes of Ceramides in Stratum Corneum

    PubMed Central

    Park, Sook Young; Kim, Jin Hye; Cho, Soo Ick; Kim, Kyeong Il; Cho, Hee Jin; Park, Chun Wook; Lee, Cheol Heon

    2014-01-01

    Background Hardening phenomenon of human skin after repeated exposure to the irritants is well-known, but the precise mechanism remains elusive. Objective To modify the previous experimental model of hardening phenomenon by repeated applications of two different concentrations of sodium lauryl sulfate (SLS) solutions to Korean healthy volunteers and to investigate the quantitative changes of ceramides in stratum corneum before and after chronic repeated irritation. Methods Eight hundred microliters of distilled water containing 0.1% and 2% SLS was applied for 10 minutes on the forearm of 41 healthy volunteers for 3 weeks. After an intervening 3-week rest, 24-hour patch tests with 1% SLS were conducted on previously irritated sites. Transepidermal water loss (TEWL), erythema index and quantity of ceramide were measured in the stratum corneum before and after irritation. Results TEWL values on the sites preirritated with 2% SLS were lower than those with 0.1% SLS. Hardening phenomenon occurred in 24 volunteers at day 44. The changes in ceramide levels were not significantly higher in the hardened skin than in the non-hardened skin. Conclusion Repetitive stimulation with a higher concentration of SLS can more easily trigger skin hardening. PMID:24648684

  20. Contact allergy to epoxy hardeners.

    PubMed

    Aalto-Korte, Kristiina; Suuronen, Katri; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Jolanki, Riitta

    2014-09-01

    Diglycidylether of bisphenol A resin is the most important sensitizer in epoxy systems, but a minority of patients develop concomitant or solitary contact allergy to epoxy hardeners. At the Finnish Institute of Occupational Health, several in-house test substances of epoxy hardeners have been tested in a special epoxy compound patch test series. To analyse the frequency and clinical relevance of allergic reactions to different epoxy hardeners. Test files (January 1991 to March 2013) were screened for contact allergy to different epoxy hardeners, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. The most commonly positive epoxy hardeners were m-xylylenediamine (n = 24), 2,4,6-tris-(dimethylaminomethyl)phenol (tris-DMP; n = 14), isophorone-diamine (n = 12), and diethylenetriamine (n = 9). Trimethylhexamethylenediamine (n = 7), tetraethylenepentamine (n = 4), and triethylenetetramine (n = 2) elicited some reactions, although most patients were found to have no specific exposure. Allergic reactions to hexamethylenetetramine, dimethylaminopropylamine and ethylenediamine dihydrochloride were not related to epoxy products. Tris-DMP is an important sensitizer in epoxy hardeners, and should be included in the patch test series of epoxy chemicals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Second Wind: A Program for Returning Women Students.

    ERIC Educational Resources Information Center

    Carter, Jane O., Ed.

    Since most college programs are designed for young people, new programs need to be developed that overcome personal and institutional barriers, including sex-role stereotyping and sex-role socialization, that restrict returning women's educational opportunities on the college campus. This project establishes a model low-cost, self-perpetuating…

  2. Early Learning: Return on Investment. Annotated Bibliography

    ERIC Educational Resources Information Center

    Hite, Jenny

    2014-01-01

    Today's researchers seek to determine if contemporary pre-K programs provide the strong return on investment found by researchers in the 1960's High/Scope Perry Preschool Program and 1970's North Carolina Abecedarian Project. Research then showed that these two programs created positive academic effects that accompanied their students as they…

  3. Paving asphalts : reduction of oxidative hardening of asphalts by treatment with hydrated lime : a mechanistic study

    DOT National Transportation Integrated Search

    1977-04-01

    This study showed that lime treatment removes polar, viscosity-building components and reduces the susceptibility of the asphalt to laboratory oxidative hardening. The beneficial effects of lime treatment in reducing asphalt oxidative hardening were ...

  4. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  5. Creation of Vapor/Gas Impermeable Coatings for CB Hardening of Existing Structures

    DTIC Science & Technology

    2013-04-05

    TEST REPORT for POLYMERight, Inc. Coating Agent Testing Prepared for: POLYMERight, Inc. Prepared by: Edward Soja Brian Blackstone ...POLYMERight, Inc. Mr. Alex Vainer 4404-C Enterprise Place Fremont, CA 94538 Prepared by: Edward Soja Brian Blackstone Battelle 505 King Ave...Inc. Coating Agent Testing 24 7.0 Contacts Contact Role Location Phone Brian Blackstone Program Manager Battelle, West Jefferson (614) 424

  6. Borehole Plugging Program (Waste Disposal). Report 1. Initial Investigations and Preliminary Data

    DTIC Science & Technology

    1978-01-01

    on current technology, they are believed to be capable of being developed to have physical and chemical properties compatible with the various earth...attack, low permeability to both water and gas, and controlled expansive characteristics along with the normal properties of hardened and unhardened...American Admixtures Co. Sika Chemical Corp. Diamond Shamrock Chemical Co. Halliburton Co. * Natural pozzolans: Filter-Cel is uncalcined diatomite

  7. Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming

    NASA Astrophysics Data System (ADS)

    Vercher, Enriqueta

    2008-08-01

    This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.

  8. Minimally access versus conventional hydrocelectomy: a randomized trial

    PubMed Central

    Saber, Aly

    2015-01-01

    ABSTRACT Objective: To compare our previously published new minimally access hydrocelectomy versus Jaboulay's procedure regarding operative outcome and patient's satisfaction. Materials and Methods: A total of 124 adult patients were divided into two groups: A and B. Group A patients were subjected to conventional surgical hydrocelectomy (Jaboulay's procedure) and group B patients were subjected to the new minimal access hydrocelectomy. The primary endpoint of the study was recurrence defined as a clinically detectable characteristic swelling in the scrotum and diagnosed by the two surgeons and confirmed by ultrasound imaging study. The secondary endpoints were postoperative hematoma, wound sepsis and persistent edema and hardening. Results: The mean operative time in group B was 15.1±4.24 minutes and in group A was 32.5±4.76 minutes (P≤0.02). The mean time to return to work was 8.5±2.1 (7–10) days in group B while in group A was 12.5±3.53 (10–15) days (P=0.0001). The overall complication rate in group B was 12.88% and in group A was 37%. The parameters of the study were postoperative hematoma, degree of scrotal edema, wound infection, patients’ satisfaction and recurrence. Conclusion: Hydrocelectomy is considered the gold standard technique for the treatment of hydrocele and the minimally access maneuvers provide the best operative outcomes regarding scrotal edema and hardening and patient's satisfaction when compared to conventional eversion-excision hydrocelectomies. PMID:26401869

  9. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langelier, B., E-mail: langelb@mcmaster.ca

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. Itmore » has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.« less

  10. Analysis of the regimes in the scanner-based laser hardening process

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Lamikiz, A.; Ukar, E.; Calleja, A.; Arrizubieta, J. A.; Lopez de Lacalle, L. N.

    2017-03-01

    Laser hardening is becoming a consolidated process in different industrial sectors such as the automotive industry or in the die and mold industry. The key to ensure the success in this process is to control the surface temperature and the hardened layer thickness. Furthermore, the development of reliable scanners, based on moving optics for guiding high power lasers at extremely fast speeds allows the rapid motion of laser spots, resulting on tailored shapes of swept areas by the laser. If a scanner is used to sweep a determined area, the laser energy density distribution can be adapted by varying parameters such us the scanning speed or laser power inside this area. Despite its advantages in terms of versatility, the use of scanners for the laser hardening process has not yet been introduced in the thermal hardening industry because of the difficulty of the temperature control and possible non-homogeneous hardness thickness layers. In the present work the laser hardening process with scanning optics applied to AISI 1045 steel has been studied, with special emphasis on the influence of the scanning speed and the results derived from its variation, the evolution of the hardened layer thickness and different strategies for the control of the process temperature. For this purpose, the hardened material has been studied by measuring microhardness at different points and the shape of the hardened layer has also been evaluated. All tests have been performed using an experimental setup designed to keep a nominal temperature value using a closed-loop control. The tests results show two different regimes depending on the scanning speed and feed rate values. The experimental results conclusions have been validated by means of thermal simulations at different conditions.

  11. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  12. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  13. A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.

    1994-01-01

    Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.

  14. A study of the microstructural and mechanical properties of novel spring steels

    NASA Astrophysics Data System (ADS)

    Harris-Pointer, Cheryl Faye

    This work is concerned with track spring components manufactured by Pandrol from a SiMn alloy in the quenched and tempered condition. For many years low to medium carbon based spring steel has been manufactured via an oil quench temper route producing components with suitable mechanical and microstructural properties. The current problem facing the spring manufacturer with the traditional heat treatment route involve a number of technical issues including a sensitivity to temper embrittlement and susceptibility to stress corrosion cracking. In addition, economic factors and component handling problems led Pandrol to seek solutions via the manufacturing process and materials selection. A programme of research was therefore proposed to identify a possible replacement alloy system and production route which could exclude the costly tempering operation and instil a degree of production control. The initial program of work involved the examination of several alloy systems based loosely around three separate microstructures, i.e. a fully pearlitic, bainitic and martensitic microstructure. In turn, each alloy was examined and assessed with respect to their suitability for the industrial application given their mechanical properties.From the initial research, a selected number of promising alloy systems were examined further, namely a chromium molybdenum alloy, salt bath quenched to produce a bainitic microstructure, a water quenched low carbon chromium and low carbon boron martensitic type alloy. The low carbon boron alloy was considered the most promising, with similar mechanical properties in both the plain bar and clip form compared to the existing Pandrol alloy. However, concern was raised over the amount of plastic deformation (permanent set) suffered by a clip component whilst in service. In response to this, the use of cold work was examined to further strengthen the microstructure with notable success.On identifying several possible alternative alloy systems to replace the existing oil quenched and tempered variant, the second stage of this research work concentrated on understanding the degree and type of microstructural strengthening involved on each particular alloy system. The effect of plastic deformation in each alloy type was also thoroughly investigated via transmission electron microscopy / true stress strain analysis and an attempt was made to relate microstructural changes to obtained mechanical properties. In addition the work hardening characteristics of the tempered microstructure were investigated, and compared to the straight through hardened variants. Qualitative Transmission Electron Microscopy studies confirmed that dislocation density / mobility played a crucial role in determining the work hardening rate. This project has studied the phenomena of work hardening in body centred cubic materials in the through hardened and untempered condition. A series of novel alloys have been developed with strengths equal to or above an oil quenched and tempered counterpart. However, these new alloys do not require a temper treatment thereby removing the risk of temper embrittlement. A clearer understanding of the work hardening characteristics has been developed through an assessment of the work hardening coefficient of these material variants.

  15. Strain hardening behavior during manufacturing of tube shapes by hydroforming

    NASA Astrophysics Data System (ADS)

    Park, Hyun Kyu; Yi, Hyae Kyung; Van Tyne, Chester J.; Moon, Young Hoon

    2009-12-01

    Safe and robust process design relies on knowledge of the evolution of the mechanical properties in a tube during hydroforming. The manufacturing of tubular shapes generally consists of three main stages: bending, preforming, and expansion. The latter is usually called hydroforming. As a result of these three steps, the final product's strain hardening history is nonlinear. In the present study, the strain hardening behavior during hydroforming was experimentally investigated. The variation of local flow stress and/or local hardness was used as an index of the strain hardening during the various steps and the local flow stress and/or local hardness were used with respective correlations to determine the effective strain. The strain hardening behavior during hydroforming after preforming has been successfully analyzed by using the relationships between hardness, flow stress, and effective strain for variable pre-strains prior to hydroforming. The comparison of predicted hardness with measured hardness confirms that the methodology used in this study is feasible, and that the strain hardening behavior can be quantitatively estimated with good accuracy.

  16. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  17. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  18. A Comprehensive Expedient Methods Field Manual.

    DTIC Science & Technology

    1984-09-01

    structures. " Revetments may be constructed of sandbags, sod blocks , and other expedients [17:933." Bunkers are emplacements with overhead protective...Lapland Fence............................. 75 19. Hardening: Dimensional Timber (Soil Bin) Revetment ............................................. 76...20. Hardening: Log Bulkhead (Soil Bin) Revetment ... 77 21. Hardening: Landing Mat Bulkhead (Soil Bin) Revetment

  19. Comparison of air void content measurements in fresh versus hardened concretes.

    DOT National Transportation Integrated Search

    1990-01-01

    This study compares the air content of freshly mixed and hardened concretes. At the fresh stage, pressure meters (Types A and B) and a volumetric meter were used to determine the air content. At the hardened stage, the air content was calculated usin...

  20. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended...

  1. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended...

  2. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended...

  3. Laser Surface Hardening of Groove Edges

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  4. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun

    2014-01-01

    The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.

  5. Implementation of Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.

    2000-01-01

    Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.

  6. The Effects of Stress State on the Strain Hardening Behaviors of TWIP Steel

    NASA Astrophysics Data System (ADS)

    Liu, F.; Dan, W. J.; Zhang, W. G.

    2017-05-01

    Twinning-Induced Plasticity (TWIP) steels have received great attention due to their excellent mechanical properties as a result of austenite twinning during straining. In this paper, the effects of stress state on the strain hardening behaviors of Fe-20Mn-1.2C TWIP steel were studied. A twinning model considering stress state was presented based on the shear-band framework, and a strain hardening model was proposed by taking dislocation mixture evolution into account. The models were verified by the experimental results of uniaxial tension, simple shear and rolling processes. The strain hardening behaviors of TWIP steel under different stress states were predicted. The results show that the stress state can improve the austenite twining and benefit the strain hardening of TWIP steel.

  7. Effect of Plate Hardening Behavior on the Deformation of Stainless Steel Metal Bellows

    NASA Astrophysics Data System (ADS)

    Hao, Zengliang; Luo, Shuyi; Zhao, He; Zhang, Chunxiang; Luo, Junting

    2017-11-01

    Tensile tests of original plate samples from three types of stainless steel metal bellows were performed at room temperature. The constitutive equations for the three hardening curves were obtained and fitted. The analysis results of the microstructure and fracture morphology of the tensile specimens show that the grain size of the plate with a high logarithmic-exponential hardening rate is uneven and the dimple of the shear fracture is elongated into an ellipse. By contrast, the grain size of the plate with a relatively low linear hardening rate is even and the dimple of the fracture is uniformly equiaxial. Finite element simulations of the hydraulic bulging and repeated limit bending deformation of the metal bellows of the three types of materials were also conducted. The repeated limit bending deformation process was tested experimentally. Although the effect of the hardening exponent on the residual stress of the metal bellows after hydraulic bulging is minimal, this exponent considerably influences the repeated limit bending deformation of the metal bellows after subsequent use. The trough hardening phenomenon is serious in the repeated limit bending process. Moreover, when the hardening exponent of the original plate is high, the resistance to bending fracture at the trough area is poor.

  8. Unfolding the values of work - therapists´ experience of addressing the return to work process in occupational rehabilitation based on Acceptance and Commitment Therapy.

    PubMed

    Klevanger, Nina E; Fimland, Marius S; Johnsen, Roar; Rise, Marit B

    2018-04-27

    Facilitating return to work can be challenging due to the complexity of work disability. Few studies have examined rehabilitation programs based on Acceptance and Commitment Therapy that intend to support return to work, and none have investigated therapists' experience with providing such programs. The aim of this study was therefore to explore therapists' experience of addressing the return to work process in an inpatient occupational rehabilitation program based on Acceptance and Commitment Therapy. This was a qualitative interview study supported by participant observation. Therapists were interviewed regarding their experiences with addressing return to work in an inpatient occupational rehabilitation program based on Acceptance and Commitment Therapy. In addition, the rehabilitation program was investigated through participant observation. The interviews were analysed according to Interpretative Phenomenological Analysis and informed by an analysis of field notes from the participant observation. Acceptance and Commitment Therapy was experienced as a meaningful approach to facilitate return to work, as it allowed therapists to address all relevant aspects of the individual participant's life that might influence work participation. The therapists' twofold goal was to support participants in building both a meaningful life and sustainable work participation. To do so, they attempted to instil long-term and interrelated processes concerning ownership, causes of sick leave, relation to expectations, the values of work, and the scope of agency. Unfolding values connected to work participation might reconcile the tension between work and family life by integrating work with other areas of life. Providing work participation with personal meaning also seems especially commensurable with a context where economy presents a poor incentive for return to work. Therapists should, however, be attentive to the need to secure the prominence of return to work by relating participants' chosen themes explicitly to their return to work process. Therapists should also be aware of the dilemma that may arise when they attempt to refrain from providing advice while simultaneously encouraging actions they consider appropriate to facilitate sustainable work participation. In addition, having an individual-oriented approach to occupational rehabilitation may obscure the extent to which return to work is a multi-stakeholder process.

  9. WORK RELATED INJURY AND ILLNESS: EXPLORING THE RETURN-TO-WORK PROGRAM IN MALAYSIA.

    PubMed

    Awang, Halimah; Mansor, Norma; Rodrigo, Shamsulbahriah K A

    2015-11-01

    Illness and injury have a significant impact on employees, their families and employers. The consequences faced by an injured worker could lead to disability, which could then lead to inability to work. This study examined the patterns of the Return to Work (RTW) using data from The Social Security Organisation (SOCSO) of Malaysia RTW database from 2010 to 2013. Factors of successful return to work, employees' salary upon returning to formal employment were also investigated. Gender, age, year of injury, industry, and job hierarchy were found to be significant predictors of employees' salary upon returning to work. Although there are other costs involved on the part of employers and employees, themselves, in the long term the financial returns that can be brought back by injured workers who have successfully returned to work combined with the qualitative benefits substantially outweighs the costs of RTW program.

  10. Integrated Portfolio Analysis: Return on Investment and Real Options Analysis of Intelligence Information Systems (Cryptologic Carry On Program)

    DTIC Science & Technology

    2006-09-30

    unlimited. Prepared for: Naval Postgraduate School, Monterey, California 93943 Integrated Portfolio Analysis : Return on Investment and Real Options... Analysis of Intelligence Information Systems (Cryptologic Carry On Program) 30 September 2006 by LCDR Cesar G. Rios, Jr., Naval Postgraduate...October 2005 – 30 September 2006 4. TITLE AND SUBTITLE Integrated Portfolio Analysis : Return on Investment and Real Options Analysis of Intelligence

  11. Computer program for discounted cash flow/rate of return evaluations

    NASA Technical Reports Server (NTRS)

    Robson, W. D.

    1971-01-01

    Technique, incorporated into set of three computer programs, provides economic methodology for reducing all parameters to financially sound common denominator of present worth, and calculates resultant rate of return on new equipment, processes, or systems investments.

  12. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  13. The Pre-Blast Concept for use on Armour Materials

    DTIC Science & Technology

    2016-02-01

    to improve blast resistance Repeated blast test results (up to 7 times) of candidate armour materials showed that the greatest deformation...may be used to increase blast resistance of steels. To test this, the ‘pre-blast’ concept test program includes hardening of materials by sheet charge...steels with hardness 450 HV or higher (up to 650 HV). In general, the improvement in deformation resistance is associated with increases in

  14. New technologies for radiation-hardening analog to digital converters

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.

    1982-01-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years.

  15. USSR Report Machine Tools and Metalworking Equipment.

    DTIC Science & Technology

    1986-04-22

    directors decided to teach the Bulat a new trade. This generator is now used to strengthen high-speed cutting mills by hardening them in a medium of...modules (GPM) and flexible production complexes ( GPK ). The flexible automated line is usually used for mass production of components. Here the...of programmable coordinates (x^ithout grip) 5 4 Method of programming teaching Memory capacity of robot system, points 300 Positioning error, mm

  16. Irradiate-anneal screening of total dose effects in semiconductor devices. [radiation hardening of spacecraft components of Mariner spacecraft

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.

  17. Placement from community-based mental retardation programs: how well do clients do?

    PubMed

    Schalock, R L; Harper, R S

    1978-11-01

    Mentally retarded clients (N = 131) placed during a 2-year period from either an independent living or competitive employment training program were evaluated as to placement success. Thirteen percent returned to the training program. Successful independent living placement was related to intelligence and demonstrated skills in symbolic operations, personal maintenance, clothing care and use, socially appropriate behavior, and functional academics. Successful employment was related to sensorimotor, visual-auditory processing, language, and symbolic-operations skills. Major reasons for returning from a job to the competitive employment training program included inappropriate behavior or need for more training; returning from community living placement was related to money management, apartment cleanliness, social behavior, and meal preparation.

  18. Hardening fertilization and nutrient loading of conifer seedlings

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Continuing to fertilize bareroot and container seedlings during the hardening process (from cessation of height growth until lifting) can improve seedling viability. The process of fertilizing during hardening has many names, but in the last decade a new term, nutrient loading, has come into use. The process of nutrient loading seedlings leads to luxury consumption...

  19. Hardening [Chapter 12

    Treesearch

    Douglass F. Jacobs; Thomas D. Landis

    2009-01-01

    To promote survival and growth following outplanting, nursery stock must undergo proper hardening. Without proper hardening, plants do not store well over winter and are likely to grow poorly or die on the outplanting site. It is important to understand that native plant nurseries are different from traditional horticultural systems in that native plants must endure an...

  20. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Treesearch

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  1. A Comparison of Deformation Textures and Mechanical Properties Predicted by Different Crystal Plasticity Codes

    DTIC Science & Technology

    2008-04-01

    ensemble (TEX), from which pole figures can be calculated, and the effective Taylor factor (M) for the ensemble. All employ a form of the Voce hardening...strain rate, using a strain-rate sensitivity exponent, m = 1/n. Both hardening and non-hardening conditions were investigated using an empirical Voce

  2. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less

  3. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  4. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  5. An interval kicking progression for return to soccer following lower extremity injury.

    PubMed

    Arundale, Amelia; Silvers, Holly; Logerstedt, David; Rojas, Jaime; Snyder-Mackler, Lynn

    2015-02-01

    The majority of all soccer injuries affect the lower extremities. Regardless of whether the injured limb is an athlete's preferred kicking or stance leg, a lower extremity injury may affect their ability to impact the ball. Sport-specific biomechanical progressions to augment loading and gradually reintroduce a player to the demands of sport have been developed for upper extremity sports such as baseball, softball, tennis, and golf. Generalized return to soccer progressions have also been published in order to assist clinicians in safely returning athletes to sport; however, there are no specific progressions for the early stages of kicking designed to introduce stance leg loading and kicking leg impact. Thus, the purpose of this clinical commentary was to review the existing literature elucidating the biomechanics of kicking a soccer ball and propose a progressive kicking program to support clinicians in safely returning their soccer athletes to the demands of sport. The interval kicking program (IKP) describes clinical guidelines for readiness to begin a kicking program as well as possible readiness to return to sport measures. The program is performed on alternate days integrating therapeutic exercise and cardiovascular fitness. The IKP gradually introduces a player to the loading and impact of kicking. The progression increases kicking distance (using the markings of a soccer field as a guide), volume, and intensity and uses proposed soreness rules, effusion guidelines, and player feedback in order to assist clinicians in determining readiness for advancement though the stages. The IKP also recommends utility of specific tests and measures to determine readiness for return to sport. Gradual reintroduction to sport specific demands is essential for a safe return to soccer. This return to sport progression provides a framework integrating injury specific therapeutic exercise, cardiovascular fitness, and the return to kicking progression, to assist clinicians in initiating an athletes' return to soccer. Level 5.

  6. Apparatus, Method, and Computer Program for a Resolution-Enhanced Pseudo-Noise Code Technique

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2015-01-01

    An apparatus, method, and computer program for a resolution enhanced pseudo-noise coding technique for 3D imaging is provided. In one embodiment, a pattern generator may generate a plurality of unique patterns for a return to zero signal. A plurality of laser diodes may be configured such that each laser diode transmits the return to zero signal to an object. Each of the return to zero signal includes one unique pattern from the plurality of unique patterns to distinguish each of the transmitted return to zero signals from one another.

  7. Effectiveness of a multidisciplinary care program on recovery and return to work of patients after gynaecological surgery; design of a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Return to work after gynaecological surgery takes much longer than expected, irrespective of the level of invasiveness. In order to empower patients in recovery and return to work, a multidisciplinary care program consisting of an e-health intervention and integrated care management including participatory workplace intervention was developed. Methods/Design We designed a randomized controlled trial to assess the effect of the multidisciplinary care program on full sustainable return to work in patients after gynaecological surgery, compared to usual clinical care. Two hundred twelve women (18-65 years old) undergoing hysterectomy and/or laparoscopic adnexal surgery on benign indication in one of the 7 participating (university) hospitals in the Netherlands are expected to take part in this study at baseline. The primary outcome measure is sick leave duration until full sustainable return to work and is measured by a monthly calendar of sickness absence during 26 weeks after surgery. Secondary outcome measures are the effect of the care program on general recovery, quality of life, pain intensity and complications, and are assessed using questionnaires at baseline, 2, 6, 12 and 26 weeks after surgery. Discussion The discrepancy between expected physical recovery and actual return to work after gynaecological surgery contributes to the relevance of this study. There is strong evidence that long periods of sick leave can result in work disability, poorer general health and increased risk of mental health problems. We expect that this multidisciplinary care program will improve peri-operative care, contribute to a faster return to work of patients after gynaecological surgery and, as a consequence, will reduce societal costs considerably. Trial registration Netherlands Trial Register (NTR): NTR2087 PMID:22296950

  8. Effectiveness of a multidisciplinary care program on recovery and return to work of patients after gynaecological surgery; design of a randomized controlled trial.

    PubMed

    Vonk Noordegraaf, Antonie; Huirne, Judith A F; Brölmann, Hans A M; Emanuel, Mark H; van Kesteren, Paul J M; Kleiverda, Gunilla; Lips, Jos P; Mozes, Alexander; Thurkow, Andreas L; van Mechelen, Willem; Anema, Johannes R

    2012-02-01

    Return to work after gynaecological surgery takes much longer than expected, irrespective of the level of invasiveness. In order to empower patients in recovery and return to work, a multidisciplinary care program consisting of an e-health intervention and integrated care management including participatory workplace intervention was developed. We designed a randomized controlled trial to assess the effect of the multidisciplinary care program on full sustainable return to work in patients after gynaecological surgery, compared to usual clinical care. Two hundred twelve women (18-65 years old) undergoing hysterectomy and/or laparoscopic adnexal surgery on benign indication in one of the 7 participating (university) hospitals in the Netherlands are expected to take part in this study at baseline. The primary outcome measure is sick leave duration until full sustainable return to work and is measured by a monthly calendar of sickness absence during 26 weeks after surgery. Secondary outcome measures are the effect of the care program on general recovery, quality of life, pain intensity and complications, and are assessed using questionnaires at baseline, 2, 6, 12 and 26 weeks after surgery. The discrepancy between expected physical recovery and actual return to work after gynaecological surgery contributes to the relevance of this study. There is strong evidence that long periods of sick leave can result in work disability, poorer general health and increased risk of mental health problems. We expect that this multidisciplinary care program will improve peri-operative care, contribute to a faster return to work of patients after gynaecological surgery and, as a consequence, will reduce societal costs considerably. Netherlands Trial Register (NTR): NTR2087.

  9. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    NASA Astrophysics Data System (ADS)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  10. A comparison of heavy ion induced single event upset susceptibility in unhardened 6T/SRAM and hardened ADE/SRAM

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zeng, Chuanbin; Geng, Chao; Liu, Tianqi; Khan, Maaz; Yan, Weiwei; Hou, Mingdong; Ye, Bing; Sun, Youmei; Yin, Yanan; Luo, Jie; Ji, Qinggang; Zhao, Fazhan; Liu, Jie

    2017-09-01

    Single event upset (SEU) susceptibility of unhardened 6T/SRAM and hardened active delay element (ADE)/SRAM, fabricated with 0.35 μm silicon-on-insulator (SOI) CMOS technology, was investigated at heavy ion accelerator. The mechanisms were revealed by the laser irradiation and resistor-capacitor hardened techniques. Compared with conventional 6T/SRAM, the hardened ADE/SRAM exhibited higher tolerance to heavy ion irradiation, with an increase of about 80% in the LET threshold and a decrease of ∼64% in the limiting upset cross-section. Moreover, different probabilities between 0 → 1 and 1 → 0 transitions were observed, which were attributed to the specific architecture of ADE/SRAM memory cell. Consequently, the radiation-hardened technology can be an attractive alternative to the SEU tolerance of the device-level.

  11. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  12. Case report: a work simulation program for a manual worker with a fracture injury.

    PubMed

    Chan, Chi-Chung; Chow, Jonathan H.W.

    2000-01-01

    Work rehabilitation programs targeting different client groups are available in nearly all major hospital occupational therapy departments in Hong Kong. Clients receiving work rehabilitation are referred from various out-patient clinics and other occupational therapists. Those clients experience limitation in work after their injuries or diseases and plan to return to work after rehabilitation. Program objectives are 1) to assist clients to reach maximum work capacity as rapidly as possible 2) to ensure clients return to work safely 3) to improve clients' work readiness. This case report describes an individualized work simulation program at a general hospital in Hong Kong provided for a typical client who is preparing to return to his worker role. Specific job analysis, goals and program rationale for the client are discussed.

  13. What can a pilot congestive heart failure disease management program tell us about likely return on investment?: A case study from a program offered to federal employees.

    PubMed

    vanVonno, Catherine J; Ozminkowski, Ronald J; Smith, Mark W; Thomas, Eileen G; Kelley, Doniece; Goetzel, Ron; Berg, Gregory D; Jain, Susheel K; Walker, David R

    2005-12-01

    In 1999, the Blue Cross and Blue Shield Federal Employee Program (FEP) implemented a pilot disease management program to manage congestive heart failure (CHF) among members. The purpose of this project was to estimate the financial return on investment in the pilot CHF program, prior to a full program rollout. A cohort of 457 participants from the state of Maryland was matched to a cohort of 803 nonparticipants from a neighboring state where the CHF program was not offered. Each cohort was followed for 12 months before the program began and 12 months afterward. The outcome measures of primary interest were the differences over time in medical care expenditures paid by FEP and by all payers. Independent variables included indicators of program participation, type of heart disease, comorbidity measures, and demographics. From the perspective of the funding organization (FEP), the estimated return on investment for the pilot CHF disease management program was a savings of $1.08 in medical expenditure for every dollar spent on the program. Adding savings to other payers as well, the return on investment was a savings of $1.15 in medical expenditures per dollar spent on the program. The amount of savings depended upon CHF risk levels. The value of a pilot initiative and evaluation is that lessons for larger-scale efforts can be learned prior to full-scale rollout.

  14. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.

  15. Description and User Manual for a Web-Based Interface to a Transit-Loss Accounting Program for Monument and Fountain Creeks, El Paso and Pueblo Counties, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Krammes, Gary S.; Beal, Vivian J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 with the following objectives: (1) Apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise an existing accounting program for Fountain Creek to easily incorporate ongoing and future changes in management of return flows of reusable water, and (4) integrate the two accounting programs into a single program and develop a Web-based interface to the integrated program that incorporates simple and reliable data entry that is automated to the fullest extent possible. This report describes the results of completing objectives (2), (3), and (4) of that study. The accounting program for Monument Creek was developed first by (1) using the existing accounting program for Fountain Creek as a prototype, (2) incorporating the transit-loss results from a stream-aquifer modeling analysis of Monument Creek, and (3) developing new output reports. The capabilities of the existing accounting program for Fountain Creek then were incorporated into the program for Monument Creek and the output reports were expanded to include Fountain Creek. A Web-based interface to the new transit-loss accounting program then was developed that provided automated data entry. An integrated system of 34 nodes and 33 subreaches was integrated by combining the independent node and subreach systems used in the previously completed stream-aquifer modeling studies for the Monument and Fountain Creek reaches. Important operational criteria that were implemented in the new transit-loss accounting program for Monument and Fountain Creeks included the following: (1) Retain all the reusable water-management capabilities incorporated into the existing accounting program for Fountain Creek; (2) enable daily accounting and transit-loss computations for a variable number of reusable return flows discharged into Monument Creek at selected locations; (3) enable diversion of all or a part of a reusable return flow at any selected node for purposes of storage in off-stream reservoirs or other similar types of reusable water management; (4) and provide flexibility in the accounting program to change the number of return-flow entities, the locations at which the return flows discharge into Monument or Fountain Creeks, or the locations to which the return flows are delivered. The primary component of the Web-based interface is a data-entry form that displays data stored in the accounting program input file; the data-entry form allows for entry and modification of new data, which then is rewritten to the input file. When the data-entry form is displayed, up-to-date discharge data for each station are automatically computed and entered on the data-entry form. Data for native return flows, reusable return flows, reusable return flow diversions, and native diversions also are entered automatically or manually, if needed. In computing the estimated quantities of reusable return flow and the associated transit losses, the accounting program uses two sets of computations. The first set of computations is made between any two adjacent streamflow-gaging stations (termed 'stream-segment loop'); the primary purpose of the stream-segment loop is to estimate the loss or gain in native discharge between the two adjacent streamflow-gaging stations. The second set of computations is made between any two adjacent nodes (termed 'subreach loop'); the actual transit-loss computations are made in the subreach loop, using the result from the stream-segment loop. The stream-segment loop is completed for a stream segment, and then the subreach loop is completed for each subreach within the segment. When the subreach loop is completed for all subreaches within a stream segment, the stream-segment loop is initiated for the ne

  16. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  17. A Simple Model of the Pulmonary Circulation for Hemodynamic Study and Examination.

    ERIC Educational Resources Information Center

    Gaar, Kermit A., Jr.

    1983-01-01

    Describes a computer program allowing students to study such circulatory variables as venus return, cardiac output, mean circulatory filling pressure, resistance to venous return, and equilibrium point. Documentation for this Applesoft program (or diskette) is available from author. (JM)

  18. A Study on Low-Cost Case Hardening of Mild and Alloy Steels Utilizing Cassava Leaf Media

    NASA Astrophysics Data System (ADS)

    Gordon, Renee Erica

    Conventional case hardening processes have major drawbacks in being expensive and hazardous to perform. A novel cyaniding technique has been developed to case harden steel which involves the use of cassava leaf. Cassava is ideal for use in this process as it contains varying degrees of cyanogenic glucoside (15-1000 mg of HCN per kg of cassava). The entire hardening process involves direct thermal decomposition of the HCN, which produced C and N gas that then diffused into the steel creating a hardened surface. Pulverized cassava leaf was involved in the pack-cyaniding of AISI 1018 and Nitralloy 135 within three varying process atmospheres. The use of barium carbonate (BaCO3) as an energizer was employed at the high temperature regime while barium chloride (BaCl2) was utilized at low temperatures. Vickers microhardness testing, microstructural characterization, and diffraction techniques were utilized for analysis. While no improvement was observed at low temperatures, processing within the high temperature regime showed significant hardening. The addition of BaCO3 to pulverized cassava leaf accelerated the hardening process by substantially increasing the resident surface microhardness while generating a shallow case layer distance. Diffusion theory was used to identify changes experienced with the variation in parameters. The presence of barium carbonate during processing decreased the diffusivity of hardening agents. This manifested in a very large, initial mass transfer of diffusing species localized in the case region followed by a minimum of any further increase in case depths, even as treatment time intervals were increased. The level of influence each parameter delivered was assessed using stepwise regression analysis and a unified model was constructed.

  19. Deep Drawing Simulations With Different Polycrystalline Models

    NASA Astrophysics Data System (ADS)

    Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie

    2004-06-01

    The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.

  20. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    PubMed Central

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  1. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    NASA Astrophysics Data System (ADS)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  2. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2017-02-01

    The development of smart materials in aeronautical structures consisting of compounds based on epoxy resins having self-repair capability has been hampered by some criticalities. One of the main critical points is related to the impossibility to use primary amines (e.g.: 4,4‧-diaminodiphenyl sulfone, DDS) as hardeners, because they can poison the catalyst responsible for the healing mechanisms. In this paper, the synthesis, characterization and some tests of applicability of a new hardener, the tetramethylated diaminodiphenyl sulfone (tm-DDS), are shown. The tm-DDS is able to rapidly react with epoxy resin, giving a composite material having some characteristics significantly better than composites hardened with different tertiary amines. The new hardener is able to increase the glass transition temperature (Tg) of about 90 °C with respect to the more common hardener, ancamine K54, already used in self-healing epoxy formulations.

  3. INDOT Research Program Benefit Cost Analysis—Return on Investment for Projects Completed in FY 2016

    DOT National Transportation Integrated Search

    2017-12-01

    The Governors Office requested an annual financial analysis of the INDOT Research Program to determine the return on the research investment (ROI). The current financial analysis is for research projects that completed in FY 2016. Analyses on prev...

  4. 7 CFR 247.26 - Return of administrative funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.26 Return of administrative... legislatively mandated grant per assigned caseload slot. (Approved by the Office of Management and Budget under...

  5. 7 CFR 247.26 - Return of administrative funds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.26 Return of administrative... legislatively mandated grant per assigned caseload slot. (Approved by the Office of Management and Budget under...

  6. 7 CFR 247.26 - Return of administrative funds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.26 Return of administrative... legislatively mandated grant per assigned caseload slot. (Approved by the Office of Management and Budget under...

  7. 7 CFR 247.26 - Return of administrative funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.26 Return of administrative... legislatively mandated grant per assigned caseload slot. (Approved by the Office of Management and Budget under...

  8. 7 CFR 247.26 - Return of administrative funds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.26 Return of administrative... legislatively mandated grant per assigned caseload slot. (Approved by the Office of Management and Budget under...

  9. Building uncertainty into cost-effectiveness rankings: portfolio risk-return tradeoffs and implications for decision rules.

    PubMed

    O'Brien, B J; Sculpher, M J

    2000-05-01

    Current principles of cost-effectiveness analysis emphasize the rank ordering of programs by expected economic return (eg, quality-adjusted life-years gained per dollar expended). This criterion ignores the variance associated with the cost-effectiveness of a program, yet variance is a common measure of risk when financial investment options are appraised. Variation in health care program return is likely to be a criterion of program selection for health care managers with fixed budgets and outcome performance targets. Characterizing health care resource allocation as a risky investment problem, we show how concepts of portfolio analysis from financial economics can be adopted as a conceptual framework for presenting cost-effectiveness data from multiple programs as mean-variance data. Two specific propositions emerge: (1) the current convention of ranking programs by expected return is a special case of the portfolio selection problem in which the decision maker is assumed to be indifferent to risk, and (2) for risk-averse decision makers, the degree of joint risk or covariation in cost-effectiveness between programs will create incentives to diversify an investment portfolio. The conventional normative assumption of risk neutrality for social-level public investment decisions does not apply to a large number of health care resource allocation decisions in which health care managers seek to maximize returns subject to budget constraints and performance targets. Portfolio theory offers a useful framework for studying mean-variance tradeoffs in cost-effectiveness and offers some positive predictions (and explanations) of actual decision making in the health care sector.

  10. Radiation-hard analog-to-digital converters for space and strategic applications

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Dantas, A. R. V.

    1985-01-01

    During the course of the Jet Propulsion Laboratory's program to study radiation-hardened analog-to-digital converters (ADCs), numerous milestones have been reached in manufacturers' awareness and technology development and transfer, as well as in user awareness of these developments. The testing of ADCs has also continued with twenty different ADCs from seven manufacturers, all tested for total radiation dose and three tested for neutron effects. Results from these tests are reported.

  11. Subgrain refinement strengthening. Second quarterly progress report, January 1, 1975-March 31, 1975. [Epsilon-Brite 26-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klundt, R.; Walser, B.; Monma, Y.

    During the past quarter (January-March 1975) we have initiated mechanical properties studies on type 304 stainless steel and on a ferritic alloy, E-Brite 26-1. Purpose of these studies was to establish a sound data base from which the alloys specifically chosen for this program can be evaluated (namely, ferritic steel, precipitation hardening austenitic stainless steel and a nickel rich austenitic alloy).

  12. Gaining Control of Occupational Injury and Illness in the U.S. Navy Civilian Work Force

    DTIC Science & Technology

    1990-01-16

    developing survey instruments, interviews were conducted with key participants at the naval shipyards, naval public works center, naval air repair...currently in place at naval shipyards. After compiling data on those processes, NAVCAMPRO was developed in an effort to take control of the management of...physician. The attending physician participates with the physical therapist and supervisor in the development of a work -hardening program for the

  13. Design, fabrication, testing, and delivery of improved beam steering devices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development, manufacture, and testing of an optical steerer intended for use in spaceborne optical radar systems are described. Included are design principles and design modifications made to harden the device against launch and space environments, the quality program and procedures developed to insure consistent product quality throughout the manufacturing phase, and engineering qualification model testing and evaluation. The delivered hardware design is considered conditionally qualified pending action on further recommended design modifications.

  14. Hardened Reentry Vehicle Development Program. Erosion-Resistant Nosetip Technology

    DTIC Science & Technology

    1978-01-01

    Best Available Copy .- / L A- UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Enttered) _____________________ REPORT DOCUMENTATION PAGE...OF PAGES t Washington, D. C. 20305 3" TK~ 14 MONITORING AGENCY NAME a ADDRESfrif different troin Controllmng~ Office) IS. SECURITY CLA5--M~e7ry...tests indicate( 1 low probability of survival for DD IJAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UCASFE 41 -n0 SECURITY CLASSIFICATION OF THIS PAGE

  15. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  16. Laser Transformation Hardening of Firing Zone Cutout Cams.

    DTIC Science & Technology

    1981-06-01

    bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel

  17. Rad-Hard/HI-REL FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.

    1997-01-01

    The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.

  18. Radiation Hardened DDR2 SDRAM Solution

    NASA Astrophysics Data System (ADS)

    Wang, Pierre-Xiao; Sellier, Charles

    2016-08-01

    The Radiation Hardened (RH) DDR2 SDRAM Solution is a User's Friendly, Plug-and-Play and Radiation Hardened DDR2 solution, which includes the radiation tolerant stacking DDR2 modules and a radiation intelligent memory controller (RIMC) IP core. It provides a high speed radiation hardened by design DRAM solution suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The DDR2 module has been guaranteed with SEL immune and TID > 100Krad(Si), on the other hand the RIMC IP core provides a full protection against the DDR2 radiation effects such as SEFI and SEU.

  19. Method for chemically inactivating energetic materials and forming a nondetonable product therefrom

    DOEpatents

    Tadros, Maher E.

    2002-01-01

    A method for rendering nondetonble energetic materials, such as are contained in or removed from decommissioned ordnance. The energetic materials are either combined with epoxy hardener or are combined with other compounds, preferably amine compounds, to form a substance that functions as an epoxy hardener. According to the invention, energetic materials (including TNT, RDX and Composition B) that are treated according to the invention method yield a reaction product that is non-explosive, that serves to harden or cure conventional epoxy resin to form a stable, nonexplosive waste product. Epoxy hardener made using the method of the invention is also described.

  20. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  1. Strain Hardening of Hadfield Manganese Steel

    NASA Astrophysics Data System (ADS)

    Adler, P. H.; Olson, G. B.; Owen, W. S.

    1986-10-01

    The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (σ-ɛ) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the σ-ɛ curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.

  2. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  3. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  4. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  5. Shear punch and ball microhardness measurements of 14 MeV neutron irradiation hardening in five metals

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Lucas, G. E.; Odette, G. R.

    1985-08-01

    The irradiation hardening response of five metals irradiated in RTNS-II was investigated using a combination of ball microhardness and shear punch test techniques. The specimens were transmission electron microscopy disks of pure nickel, Ni-5wt%Si, pure iron, solution annealed prime candidate alloy (PCA) for Path A, and 40% cold worked MFE 316 stainless steel. Specimens were irradiated in RTNS-II to fluences in the range 6 × 10 16 to 6 × 10 17 n/cm 2. Only limited ball microhardness data could be obtained because of disk thickness. However, the ball microhardness data obtained were in good agreement with shear punch data. It was found that the pure metals exhibited little hardening after exposure to fluences of ~1 × 10 17 n/cm 2, but Ni-5 Si exhibited significant hardening after 6 × 10 17 n/cm 2. Hardening in PCA was similar to that observed in solution annealed 316 stainless steel; and hardening in 40% cold worked MFE 316 was relatively small after 6 × 10 17 n/cm 2. The Ni-5 Si response may be due to irradiation induced precipitation.

  6. Project Return: Community Education Initiative and Babygram Hospital Outreach, 1991-92.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    Project Return, a dropout recovery program to assist pregnant and parenting teenagers and parents of elementary school children to return to school, was first implemented in 1989-90. By 1991-92, there were two components of Project Return: its community education initiative in seven elementary schools, and the Babygram Hospital Outreach Program…

  7. A Simulation Modeling Framework to Optimize Programs Using Financial Incentives to Motivate Health Behavior Change.

    PubMed

    Basu, Sanjay; Kiernan, Michaela

    2016-01-01

    While increasingly popular among mid- to large-size employers, using financial incentives to induce health behavior change among employees has been controversial, in part due to poor quality and generalizability of studies to date. Thus, fundamental questions have been left unanswered: To generate positive economic returns on investment, what level of incentive should be offered for any given type of incentive program and among which employees? We constructed a novel modeling framework that systematically identifies how to optimize marginal return on investment from programs incentivizing behavior change by integrating commonly collected data on health behaviors and associated costs. We integrated "demand curves" capturing individual differences in response to any given incentive with employee demographic and risk factor data. We also estimated the degree of self-selection that could be tolerated: that is, the maximum percentage of already-healthy employees who could enroll in a wellness program while still maintaining positive absolute return on investment. In a demonstration analysis, the modeling framework was applied to data from 3000 worksite physical activity programs across the nation. For physical activity programs, the incentive levels that would optimize marginal return on investment ($367/employee/year) were higher than average incentive levels currently offered ($143/employee/year). Yet a high degree of self-selection could undermine the economic benefits of the program; if more than 17% of participants came from the top 10% of the physical activity distribution, the cost of the program would be expected to always be greater than its benefits. Our generalizable framework integrates individual differences in behavior and risk to systematically estimate the incentive level that optimizes marginal return on investment. © The Author(s) 2015.

  8. A simulation modeling framework to optimize programs using financial incentives to motivate health behavior change

    PubMed Central

    Basu, Sanjay; Kiernan, Michaela

    2015-01-01

    Introduction While increasingly popular among mid- to large-size employers, using financial incentives to induce health behavior change among employees has been controversial, in part due to poor quality and generalizability of studies to date. Thus, fundamental questions have been left unanswered: to generate positive economic returns on investment, what level of incentive should be offered for any given type of incentive program and among which employees? Methods We constructed a novel modeling framework that systematically identifies how to optimize marginal return on investment from programs incentivizing behavior change by integrating commonly-collected data on health behaviors and associated costs. We integrated “demand curves” capturing individual differences in response to any given incentive with employee demographic and risk factor data. We also estimated the degree of self-selection that could be tolerated, i.e., the maximum percentage of already-healthy employees who could enroll in a wellness program while still maintaining positive absolute return on investment. In a demonstration analysis, the modeling framework was applied to data from 3,000 worksite physical activity programs across the nation. Results For physical activity programs, the incentive levels that would optimize marginal return on investment ($367/employee/year) were higher than average incentive levels currently offered ($143/employee/year). Yet a high degree of self-selection could undermine the economic benefits of the program; if more than 17% of participants came from the top 10% of the physical activity distribution, the cost of the program would be expected to always be greater than its benefits. Discussion Our generalizable framework integrates individual differences in behavior and risk to systematically estimate the incentive level that optimizes marginal return on investment. PMID:25977362

  9. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    NASA Astrophysics Data System (ADS)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  10. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  11. Fuzzy bi-objective linear programming for portfolio selection problem with magnitude ranking function

    NASA Astrophysics Data System (ADS)

    Kusumawati, Rosita; Subekti, Retno

    2017-04-01

    Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.

  12. The Relative Value of Skills, Knowledge, and Teaching Methods in Explaining Master of Business Administration (MBA) Program Return on Investment

    ERIC Educational Resources Information Center

    van Auken, Stuart; Wells, Ludmilla Gricenko; Chrysler, Earl

    2005-01-01

    In this article, the authors provide insight into alumni perceptions of Master of Business Administration (MBA) program return on investment (ROI). They sought to assess the relative value of skills, knowledge, and teaching methods in explaining ROI. By developing insight into the drivers of ROI, the real utility of MBA program ingredients can be…

  13. Return on Investment for Digital Behavioral Counseling in Patients With Prediabetes and Cardiovascular Disease.

    PubMed

    Su, Wenqing; Chen, Fang; Dall, Timothy M; Iacobucci, William; Perreault, Leigh

    2016-01-28

    We calculated the health and economic impacts of participation in a digital behavioral counseling service that is designed to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with prediabetes and cardiovascular disease risk factors (Prevent, Omada Health, San Francisco, California). This program enhances the Centers for Disease Control and Prevention's Diabetes Prevention Recognition Program. Participants completed a 16-week core program followed by an ongoing maintenance program. Analysis was conducted for 2 populations meeting criteria for lifestyle intervention: 1) prediabetes (n = 1,663), and 2) high cardiovascular disease risk (n = 2,152). The Markov-based model simulated clinical and economic outcomes related to obesity and diabetes annually over 10 years for the 2 defined populations. Comparisons were made between participants and propensity-matched controls from the community. The return-on-investment break-even point was 3 years in both populations. Simulated return on investment for the population with prediabetes was $9 and $1,565 at years 3 and 5, respectively. Simulated return on investment for the population with cardiovascular disease risk was $96 and $1,512 at years 3 and 5, respectively. Results suggest that program participation reduces diabetes incidence by 30% to 33% and stroke by 11% to 16% over 5 years. Digital Behavioral Counseling provides significant health benefits to patients with prediabetes and cardiovascular disease and a positive return on investment.

  14. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).

    PubMed

    Vo, Pacific; Gridi-Papp, Marcos

    2017-05-01

    Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5°C. Pre-metamorphic tadpoles hardened by 1.18°C, while metamorphic tadpoles hardened by 0.36°C. When raised at 21°C, tadpoles acclimated expanding their cold tolerance by 1.3°C in relation to larvae raised at 28°C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experimental validation of plastic constitutive hardening relationship based upon the direction of the Net Burgers Density Vector

    NASA Astrophysics Data System (ADS)

    Sarac, Abdulhamit; Kysar, Jeffrey W.

    2018-02-01

    We present a new methodology for experimental validation of single crystal plasticity constitutive relationships based upon spatially resolved measurements of the direction of the Net Burgers Density Vector, which we refer to as the β-field. The β-variable contains information about the active slip systems as well as the ratios of the Geometrically Necessary Dislocation (GND) densities on the active slip systems. We demonstrate the methodology by comparing single crystal plasticity finite element simulations of plane strain wedge indentations into face-centered cubic nickel to detailed experimental measurements of the β-field. We employ the classical Peirce-Asaro-Needleman (PAN) hardening model in this study due to the straightforward physical interpretation of its constitutive parameters that include latent hardening ratio, initial hardening modulus and the saturation stress. The saturation stress and the initial hardening modulus have relatively large influence on the β-variable compared to the latent hardening ratio. A change in the initial hardening modulus leads to a shift in the boundaries of plastic slip sectors with the plastically deforming region. As the saturation strength varies, both the magnitude of the β-variable and the boundaries of the plastic slip sectors change. We thus demonstrate that the β-variable is sensitive to changes in the constitutive parameters making the variable suitable for validation purposes. We identify a set of constitutive parameters that are consistent with the β-field obtained from the experiment.

  16. Cost-effectiveness of a participatory return-to-work intervention for temporary agency workers and unemployed workers sick-listed due to musculoskeletal disorders: design of a randomised controlled trial.

    PubMed

    Vermeulen, Sylvia J; Anema, Johannes R; Schellart, Antonius J M; van Mechelen, Willem; van der Beek, Allard J

    2010-03-28

    Within the working population there is a vulnerable group: workers without an employment contract and workers with a flexible labour market arrangement, e.g. temporary agency workers. In most cases, when sick-listed, these workers have no workplace/employer to return to. Also, for these workers access to occupational health care is limited or even absent in many countries. For this vulnerable working population there is a need for tailor-made occupational health care, including the presence of an actual return-to-work perspective. Therefore, a participatory return-to-work program has been developed based on a successful return-to-work intervention for workers, sick-listed due to low back pain.The objective of this paper is to describe the design of a randomised controlled trial to study the (cost-)effectiveness of this newly developed participatory return-to-work program adapted for temporary agency workers and unemployed workers, sick-listed due to musculoskeletal disorders, compared to usual care. The design of this study is a randomised controlled trial with one year of follow-up. The study population consists of temporary agency workers and unemployed workers sick-listed between 2 and 8 weeks due to musculoskeletal disorders. The new return-to-work program is a stepwise program aimed at making a consensus-based return-to-work implementation plan with the possibility of a (therapeutic) workplace to return-to-work. Outcomes are measured at baseline, 3, 6, 9 and 12 months. The primary outcome measure is duration of the sickness benefit period after the first day of reporting sick. Secondary outcome measures are: time until first return-to-work, total number of days of sickness benefit during follow-up; functional status; intensity of musculoskeletal pain; pain coping; and attitude, social influence and self-efficacy determinants. Cost-benefit is evaluated from an insurer's perspective. A process evaluation is part of this study. For sick-listed workers without an employment contract there can be gained a lot by improving occupational health care, including return-to-work guidance, and by minimising the 'labour market handicap' by creating a return-to-work perspective. In addition, reduction of sickness absence and work disability, i.e. a reduction of disability claims, may result in substantial benefits for the Dutch Social Security System. NTR1047.

  17. Implementing reduced-risk integrated pest management in fresh-market cabbage: improved net returns via scouting and timing of effective control.

    PubMed

    Burkness, Eric C; Hutchison, W D

    2008-04-01

    During 1998-2001, field studies were done to assess the efficacy of an integrated pest management (IPM) program using an action threshold and "reduced-risk" insecticides. The IPM program was compared with a conventional grower-based program. Program performance was evaluated based on management of Trichoplusia ni (Hiibner), Pieris (=Artogeia) rapae (L.), and Plutella xylostella (L.), as well as the economic impact of each program on net returns. The action threshold used in the IPM program consisted of 10% plants infested with T. ni larvae, based on previous small-plot experiment station trials. In all years of the study, the IPM program resulted in significantly lower percentages of plants infested than the conventional program or untreated check. The mean reduction in insecticide applications for the IPM program compared with the conventional program was 23.5%, whereas, on average, the costs of the IPM program were 46.0% higher than the conventional program. Pest reduction in the IPM program resulted in an average of 10.5% higher marketable yields than the conventional program. Percentages of marketable heads in the IPM program ranged from 82 to 99% and from 63 to 96% in the conventional program. Mean net returns for the IPM program exceeded the conventional program by $984.20/ha. These results indicated that the IPM program reduced insecticide use overall, even though costs of the IPM program, with either spinosad or indoxacarb, were sometimes higher. Overall, net returns of the IPM program were higher due to active pest scouting, improved application timing, and increases in marketable yield. Given the potential decrease in insecticide applications and increases in net profit resulting from this IPM program, additional analyses should be conducted to quantify the economic risk, or consistency of the results, to fully evaluate the benefits of the IPM program compared with a conventional program.

  18. Program management aid for redundancy selection and operational guidelines

    NASA Technical Reports Server (NTRS)

    Hodge, P. W.; Davis, W. L.; Frumkin, B.

    1972-01-01

    Although this criterion was developed specifically for use on the shuttle program, it has application to many other multi-missions programs (i.e. aircraft or mechanisms). The methodology employed is directly applicable even if the tools (nomographs and equations) are for mission peculiar cases. The redundancy selection criterion was developed to insure that both the design and operational cost impacts (life cycle costs) were considered in the selection of the quantity of operational redundancy. These tools were developed as aids in expediting the decision process and not intended as the automatic decision maker. This approach to redundancy selection is unique in that it enables a pseudo systems analysis to be performed on an equipment basis without waiting for all designs to be hardened.

  19. Evaluation of an occupational rehabilitation program.

    PubMed

    Goodman, Glenn; Browning, Margaret; Campbell, Sims; Hudak, Huison

    2005-01-01

    The purpose of this study was to report the findings of a program evaluation for an occupational rehabilitation program in the Midwest. An ex-post facto chart review was performed on 50 charts using demographic data, results from tests of performance and pain measures, and data from patient satisfaction questionnaires to find evidence of excellence in the program, and to identify areas for improvement. Over 97% of the participants actually completed the program and 76% returned to work within 3 months after program completion. Ninety-two percent indicated overall satisfaction with the program, and all aspects of the program were rated with a mean score of 4.25 or above on a 1 to 5 Likert scale. Evaluation of perceived pain scales of the participants indicate no discernable relationship between intensity of pain and successful return to work. The program showed a high completion rate, a high return to work rate, and high levels of patient satisfaction. Suggestions for improvement include an increase in use of real and simulated work activities, better documentation of pain measures, better programs to address psychosocial issues, lengthening the program, and increased communication with case managers and professionals outside of the work program.

  20. Embryos of a moss can be hardened to desiccation tolerance: effects of rate of drying on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae).

    PubMed

    Brinda, John C; Stark, Lloyd R; Clark, Theresa A; Greenwood, Joshua L

    2016-01-01

    Embryonic sporophytes of the moss Aloina ambigua are inducibly desiccation tolerant (DT). Hardening to DT describes a condition of temporary tolerance to a rapid-drying event conferred by a previous slow-drying event. This paper aimed to determine whether sporophytic embryos of a moss can be hardened to DT, to assess how the rate of desiccation influences the post-rehydration dynamics of recovery, hardening and dehardening, and to determine the minimum rate of drying for embryos and shoots. Embryos were exposed to a range of drying rates using wetted filter paper in enclosed Petri dishes, monitoring relative humidity (RH) inside the dish and equilibrating tissues with 50% RH. Rehydrated embryos and shoots were subjected to a rapid-drying event at intervals, allowing assessments of recovery, hardening and dehardening times. The minimum rate of slow drying for embryonic survival was ∼3·5 h and for shoots ∼9 h. Hardening to DT was dependent upon the prior rate of drying. When the rate of drying was extended to 22 h, embryonic hardening was strong (>50% survival) with survival directly proportional to the post-rehydration interval preceding rapid drying. The recovery time (repair/reassembly) was so short as to be undetectable in embryos and shoots desiccated gradually; however, embryos dried in <3·5 h exhibited a lag time in development of ∼4 d, consistent with recovery. Dehardening resulted in embryos incapable of surviving a rapid-drying event. The ability of moss embryos to harden to DT and the influence of prior rate of drying on the dynamics of hardening are shown for the first time. The minimum rate of drying is introduced as a new metric for assessing ecological DT, defined as the minimum duration at sub-turgor during a drying event in which upon rehydration the plant organ of interest survives relatively undamaged from the desiccating event. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Embryos of a moss can be hardened to desiccation tolerance: effects of rate of drying on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae)

    PubMed Central

    Brinda, John C.; Stark, Lloyd R.; Clark, Theresa A.; Greenwood, Joshua L.

    2016-01-01

    Background and Aims Embryonic sporophytes of the moss Aloina ambigua are inducibly desiccation tolerant (DT). Hardening to DT describes a condition of temporary tolerance to a rapid-drying event conferred by a previous slow-drying event. This paper aimed to determine whether sporophytic embryos of a moss can be hardened to DT, to assess how the rate of desiccation influences the post-rehydration dynamics of recovery, hardening and dehardening, and to determine the minimum rate of drying for embryos and shoots. Methods Embryos were exposed to a range of drying rates using wetted filter paper in enclosed Petri dishes, monitoring relative humidity (RH) inside the dish and equilibrating tissues with 50 % RH. Rehydrated embryos and shoots were subjected to a rapid-drying event at intervals, allowing assessments of recovery, hardening and dehardening times. Key Results The minimum rate of slow drying for embryonic survival was ∼3·5 h and for shoots ∼9 h. Hardening to DT was dependent upon the prior rate of drying. When the rate of drying was extended to 22 h, embryonic hardening was strong (>50 % survival) with survival directly proportional to the post-rehydration interval preceding rapid drying. The recovery time (repair/reassembly) was so short as to be undetectable in embryos and shoots desiccated gradually; however, embryos dried in <3·5 h exhibited a lag time in development of ∼4 d, consistent with recovery. Dehardening resulted in embryos incapable of surviving a rapid-drying event. Conclusions The ability of moss embryos to harden to DT and the influence of prior rate of drying on the dynamics of hardening are shown for the first time. The minimum rate of drying is introduced as a new metric for assessing ecological DT, defined as the minimum duration at sub-turgor during a drying event in which upon rehydration the plant organ of interest survives relatively undamaged from the desiccating event. PMID:26354931

  2. Return on Investment in Disease Management: A Review

    PubMed Central

    Goetzel, Ron Z.; Ozminkowski, Ronald J.; Villagra, Victor G.; Duffy, Jennifer

    2005-01-01

    The results of 44 studies investigating financial impact and return on investment (ROI) from disease management (DM) programs for asthma, congestive heart failure (CHF), diabetes, depression, and multiple illnesses were examined. A positive ROI was found for programs directed at CHF and multiple disease conditions. Some evidence suggests that diabetes programs may save more than they cost, but additional studies are needed. Results are mixed for asthma management programs. Depression management programs cost more than they save in medical expenses, but may save money when considering productivity outcomes. PMID:17288065

  3. Return on investment in disease management: a review.

    PubMed

    Goetzel, Ron Z; Ozminkowski, Ronald J; Villagra, Victor G; Duffy, Jennifer

    2005-01-01

    The results of 44 studies investigating financial impact and return on investment (ROI) from disease management (DM) programs for asthma, congestive heart failure (CHF), diabetes, depression, and multiple illnesses were examined. A positive ROI was found for programs directed at CHF and multiple disease conditions. Some evidence suggests that diabetes programs may save more than they cost, but additional studies are needed. Results are mixed for asthma management programs. Depression management programs cost more than they save in medical expenses, but may save money when considering productivity outcomes.

  4. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  5. Numerical nonlinear inelastic analysis of stiffened shells of revolution. Volume 1: Theory manual for STARS-2P digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.; Levine, H.

    1975-01-01

    The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.

  6. A truly healthy bottom line: improving financial results through effective health and productivity programs.

    PubMed

    Wolff, Shelly

    2008-01-01

    Financially speaking, an effective, comprehensive, properly executed health and productivity (H&P) program can drive significant business results. Unfortunately, many companies are not getting the same return on their investments in H&P programs as their peers. This article defines program effectiveness and describes the specific activities of employers that have implemented successful H&P strategies leading to improved health, increased productivity and lower benefit costs-and, in turn, higher levels of performance, returns to shareholders and market premium.

  7. Residual thermal stresses in a solid sphere cast from a thermosetting material

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  8. Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bong, H. J.; Ha, J.; Choi, J.; Barlat, F.; Lee, M.-G.

    2018-05-01

    In this study, a numerical sensitivity analysis of the springback prediction was performed using advanced strain hardening models. In particular, the springback in U-draw bending for dual-phase 780 steel sheets was investigated while focusing on the effect of the initial yield stress determined from the cyclic loading tests. The anisotropic hardening models could reproduce the flow stress behavior under the non-proportional loading condition for the considered parametric cases. However, various identification schemes for determining the yield stress of the anisotropic hardening models significantly influenced the springback prediction. The deviations from the measured springback varied from 4% to 13.5% depending on the identification method.

  9. Construction of a General Purpose Command Language for Use in Computer Dialog.

    DTIC Science & Technology

    1980-09-01

    Page 1 Skeletal Command Action File...............35 2 Sample from Cyber Action File.................36 3 Program MONITOR Structure Chart...return indicates subroutine call and no return Fig 3. Program MONITOR Structure Chart 48 IV. Validation The general purpose command language was...executive control of these functions, in C addition to its role as interpreter. C C The structure , concept, design, and implementation of program C

  10. SSA Disability: Other Programs May Provide Lessons for Improving Return-to-Work Efforts. Testimony before the Subcommittee on Social Security, Committee on Ways and Means, House of Representatives.

    ERIC Educational Resources Information Center

    Bovbjerg, Barbara D.

    This report compares the Social Security Administration's Disability Insurance (DI) program and the practices of the private sector and other countries in helping people with severe disabilities return to work. Information was gathered in in-depth interviews and a review of policy documents and program data at three private sector disability…

  11. Clinical effectiveness of behavioral signs for screening chronic low-back pain patients in a work-oriented physical rehabilitation program.

    PubMed

    Werneke, M W; Harris, D E; Lichter, R L

    1993-12-01

    This prospective study investigated the relationship between behavioral sign scores (from Waddell) and the return to work status of chronic low-back pain patients who completed a work-oriented physical rehabilitation program without formal facility-related psychologic or social services. Further, the authors monitored the effect of this program on changing these scores. The program consisted of physical reconditioning through resistive exercises, flexibility and aerobic training, posture and body mechanics education, and progressive work simulation tasks and activities of daily living. One hundred eighty-three nonworking or partially disabled low-back pain patients with an average duration of 8.7 months' disability were included in the study. The presence of each of eight behavioral signs was tested for on entry and again on completion of the program. Analysis showed a significant drop in behavioral sign scores for patients who successfully returned to work. There was no significant reduction in scores for patients who did not return to work. The results suggest these signs may predict the effectiveness of treating chronic low-back pain patients in a return-to-work physical rehabilitation program. Conversely, screening for behavioral signs may identify low-back pain patients who would benefit from intensive behavioral and psychiatric testing and intervention efforts.

  12. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Tension-compression asymmetry of a rolled Mg-Y-Nd alloy

    NASA Astrophysics Data System (ADS)

    Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong

    2017-07-01

    In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.

  14. Resistance of dichromated gelatin as photoresist

    NASA Astrophysics Data System (ADS)

    Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-09-01

    Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.

  15. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  16. Development of Age-Hardening Technology for Ultrafine-Grained Al-Li-Cu Alloys Fabricated by High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Motoshima, Hiroaki; Hirosawa, Shoichi; Lee, Seungwon; Horita, Zenji; Matsuda, Kenji; Terada, Daisuke

    The age-hardening behavior and precipitation microstructures with high dislocation density and ultrafine grains have been studied for cold-rolled and severely deformed 2091 Al-Li-Cu alloy. The age-hardenability at 463K was reduced by high-pressure torsion (HPT) due to the accelerated formation of larger 8-AlLi precipitates at grain boundaries, in place of transgranular precipitation of refined δ'-Al3Li particles that are predominantly observable in the no-deformed and 10%-rolled specimens. When aged at 373K, however, it was successfully achieved for the HPT specimen to increase the hardness up to 290HV, the highest level of hardness among conventional wrought aluminum alloys. The corresponding TEM microstructures confirmed that refined δ' particles precipitate within ultrafine grains while keeping the grain size at 206nm. This result suggests that the combined processing of severe plastic deformation with age-hardening technique enables the fabrication of novel aluminum alloys concurrently strengthened by ultrafine-grained and precipitation hardenings.

  17. Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 C

    NASA Technical Reports Server (NTRS)

    Colaiuta, Jason F.; Lerch, Bradley (Technical Monitor)

    2001-01-01

    Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.

  18. Options for Hardening FinFETS with Flowable Oxide Between Fins

    DTIC Science & Technology

    2017-03-01

    thus hardening by process is needed. Using the methodology of CV measurements on inexpensive experimental blanket oxides we have determined options...NY 10598 Abstract: A methodology using radiation-induced charge measurements by CV techniques on blanket oxides is shown to aid in the choice...of process options for hardening FinFETs. Net positive charge in flowable oxides was reduced by 50 % using a simple non -intrusive process change

  19. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  20. Radiation effects in LDD MOS devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, R.L.; Adams, J.R.

    1987-12-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined thatmore » the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10/sup 6/ rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10/sup 6/ rads(Si), and shows promise for achieving 1.0 x 10/sup 7/ rad(Si) total-dose capability.« less

  1. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  2. Precipitation and Hardening in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  3. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  4. On the Spectral Hardening at gsim300 keV in Solar Flares

    NASA Astrophysics Data System (ADS)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.

  5. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  6. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    PubMed

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®

  7. Strain Hardening Behaviour and Its Effect on Properties of ZrB2 Reinforced Al Composite Prepared by Powder Metallurgy Technique

    NASA Astrophysics Data System (ADS)

    Kaku, Sai Mahesh Yadav; Khanra, Asit Kumar; Davidson, M. J.

    2018-04-01

    Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al-ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450-575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al-ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.

  8. Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe

    DOE PAGES

    Dunn, Aaron; Dingreville, Remi; Capolungo, Laurent

    2015-11-27

    A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses.more » With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10 –2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. In conclusion, the development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.« less

  9. Anterior cruciate ligament- specialized post-operative return-to-sports (ACL-SPORTS) training: a randomized control trial

    PubMed Central

    2013-01-01

    Background Anterior cruciate ligament reconstruction (ACLR) is standard practice for athletes that wish to return to high-level activities; however functional outcomes after ACLR are poor. Quadriceps strength weakness, abnormal movement patterns and below normal knee function is reported in the months and years after ACLR. Second ACL injuries are common with even worse outcomes than primary ACLR. Modifiable limb-to-limb asymmetries have been identified in individuals who re-injure after primary ACLR, suggesting a neuromuscular training program is needed to improve post-operative outcomes. Pre-operative perturbation training, a neuromuscular training program, has been successful at improving limb symmetry prior to surgery, though benefits are not lasting after surgery. Implementing perturbation training after surgery may be successful in addressing post-operative deficits that contribute to poor functional outcomes and second ACL injury risk. Methods/Design 80 athletes that have undergone a unilateral ACLR and wish to return to level 1 or 2 activities will be recruited for this study and randomized to one of two treatment groups. A standard care group will receive prevention exercises, quadriceps strengthening and agility exercises, while the perturbation group will receive the same exercise program with the addition of perturbation training. The primary outcomes measures will include gait biomechanics, clinical and functional measures, and knee joint loading. Return to sport rates, return to pre-injury level of activity rates, and second injury rates will be secondary measures. Discussion The results of this ACL-Specialized Post-Operative Return To Sports (ACL-SPORTS) Training program will help clinicians to better determine an effective post-operative treatment program that will improve modifiable impairments that influence outcomes after ACLR. Trial registration Randomized Control Trial NIH 5R01AR048212-07. ClinicalTrials.gov: NCT01773317 PMID:23522373

  10. Return-to-work success despite conflicts: an exploration of decision-making during a work rehabilitation program.

    PubMed

    Gouin, Marie-Michelle; Coutu, Marie-France; Durand, Marie-José

    2017-11-12

    Collective decision-making by stakeholders appears important to return-to-work success, yet few studies have explored the processes involved. This study aims to explore the influence of decision-making on return-to-work for workers with musculoskeletal or common mental disorders. This study is a secondary analysis using data from three earlier multiple-case studies that documented decision-making during similar and comparable work rehabilitation programs. Individual interviews were conducted at the end of the program with stakeholders, namely, the disabled workers and representatives of health care professionals, employers, unions and insurers. Verbatims were analysed inductively. The 28 decision-making processes (cases) led to 115 different decisions-making instances and included the following components: subjects of the decisions, stakeholders' concerns and powers, and types of decision-making. No differences were found in decision-making processes relative to the workers' diagnoses or return-to-work status. However, overall analysis of decision-making revealed that stakeholder agreement on a return-to-work goal and acceptance of an intervention plan in which the task demands aligned with the worker's capacities were essential for return-to-work success. These results support the possibility of return-to-work success despite conflictual decision-making processes. In addition to facilitating consensual decisions, future studies should be aimed at facilitating negotiated decisions. Implications for rehabilitation Facilitating decision-making, with the aim of obtaining agreement from all stakeholders on a return-to-work goal and their acceptance of an intervention plan that respects the worker's capacities, is important for return-to-work success. Rehabilitation professionals should constantly be on the lookout for potential conflicts, which may either complicate the reach of an agreement between the stakeholders or constrain return-to-work possibilities. Rehabilitation professionals should also be constantly watching for workers' and employers' return-to-work concerns, as they may change during work rehabilitation, potentially challenging a reached agreement.

  11. Time course of upper limb function and return-to-work post-radiotherapy in young adults with breast cancer: a pilot randomized control trial on effects of targeted exercise program.

    PubMed

    Ibrahim, Marize; Muanza, Thierry; Smirnow, Nadia; Sateren, Warren; Fournier, Beatrice; Kavan, Petr; Palumbo, Michael; Dalfen, Richard; Dalzell, Mary-Ann

    2017-12-01

    Breast cancer (BC) diagnosis in young adults (YA) is rising, and both disease and treatments are aggressive in this population. Evidence supports the use of physical activity in reducing shoulder dysfunction, which is common among BC survivors. A pilot randomized clinical trial was performed to determine the effectiveness of a 12-week post-radiation exercise program in minimizing upper extremity dysfunction in YA with BC. Participants were randomized to either an exercise arm or a control arm receiving standard care. Data was collected over six time points using: the Disability of Arm, Shoulder, and Hand (DASH); the Metabolic Equivalent of Task-hours per week (MET-hours/week), and a post hoc questionnaire on return to work. In total, 59 young women participated in the study (n = 29 exercise; n = 30 control). No statistically significant differences were found in overall DASH results between groups; however, those who underwent total mastectomy had residual upper limb dysfunction (p < 0.05). Both groups returned to pre-diagnosis activity levels by 18 months. Final evaluation showed that 86% of the women returned to work, and 89% resumed prior work activities with a decrease of 8.5 h/week. Although the short-term targeted exercise program had no effect on long-term upper limb function post-radiation, timing and program specificity may require consideration of tissue healing post-radiation and surgery type. The majority of participants returned to work, however not returning to pre-diagnosis work hours. Exercise interventions alone may not reverse the long-term sequelae of breast cancer treatment and allow young adult patients to return to work.

  12. Returning HEU Fuel from the Czech Republic to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Dr. Igor Bolshinsky

    In December 1999, representatives from the United States, Russian Federation, and International Atomic Energy Agency began working on a program to return Russian supplied, highly enriched, uranium fuel stored at foreign research reactors to Russia. Now, under the Global Threat Reduction Initiative’s Russian Research Reactor Fuel Return Program, this effort has repatriated over 800 kg of highly enriched uranium to Russia from over 10 countries. In May 2004, the “Agreement Between the Government of the United States of America and the Government of the Russian Federation Concerning Cooperation for the Transfer of Russian Produced Research Reactor Nuclear Fuel to themore » Russian Federation” was signed. This agreement provides legal authority for the Russian Research Reactor Fuel Return Program and establishes parameters whereby eligible countries may return highly enriched uranium spent and fresh fuel assemblies and other fissile materials to Russia. On December 8, 2007, one of the largest shipments of highly enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together. In February 2003, Russian Research Reactor Fuel Return Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their highly enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This article discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.« less

  13. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  14. Mechanism of work hardening in Hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Dastur, Y. N.; Leslie, W. C.

    1981-05-01

    When Hadfield manganese steel in the single-phase austenitic condition was strained in tension, in the temperature range - 25 to 300 °C, it exhibited jerky (serrated) flow, a negative (inverse) strain-rate dependence of flow stress and high work hardening, characteristic of dynamic strain aging. The strain rate-temperature regime of jerky flow was determined and the apparent activation energies for the appearance and disappearance of serrations were found to be 104 kJ/mol and 146 kJ/mol, respectively. The high work hardening cannot be a result of mechanical twinning because at -50 °C numerous twins were produced, but the work hardening was low and no twins were formed above 225 °C even though work hardening was high. The work hardening decreased above 300 °C because of the cessation of dynamic strain aging and increased again above 400 °C because of precipitation of carbides. An apparent activation energy of 138 kJ/mol was measured for static strain aging between 300 and 400 °C, corresponding closely to the activation energies for the disapperance of serrations and for the volume diffusion of carbon in Hadfield steel. Evidence from the present study, together with the known effect of manganese on the activity of carbon in austenite and previous internal friction studies of high-manganese steels, lead to the conclusion that dynamic strain aging, brought about by the reorientation of carbon members of C-Mn couples in the cores of dislocations, is the principal cause of rapid work hardening in Hadfield steel.

  15. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  16. Early Learning: Readiness for School. Annotated Bibliography

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2014

    2014-01-01

    Current research seeks to determine if today's pre-K programs provide strong returns on investment similar to the returns from the classic 1960's High/Scope Perry Preschool Program and 1970's North Carolina Abecedarian Project. These were known for the positive academic effects that children experienced as they moved through school. Policy-makers…

  17. 34 CFR 682.417 - Determination of Federal funds or assets to be returned.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL FAMILY EDUCATION LOAN (FFEL) PROGRAM Administration of the Federal Family Education Loan Programs by a Guaranty Agency § 682.417 Determination of... 34 Education 3 2010-07-01 2010-07-01 false Determination of Federal funds or assets to be returned...

  18. Comparison between goal programming and cointegration approaches in enhanced index tracking

    NASA Astrophysics Data System (ADS)

    Lam, Weng Siew; Jamaan, Saiful Hafizah Hj.

    2013-04-01

    Index tracking is a popular form of passive fund management in stock market. Passive management is a buy-and-hold strategy that aims to achieve rate of return similar to the market return. Index tracking problem is a problem of reproducing the performance of a stock market index, without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio that minimizes risk or tracking error. An improved index tracking (enhanced index tracking) is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the tracking error. Enhanced index tracking aims to generate excess return over the return achieved by the index. The objective of this study is to compare the portfolio compositions and performances by using two different approaches in enhanced index tracking problem, which are goal programming and cointegration. The result of this study shows that the optimal portfolios for both approaches are able to outperform the Malaysia market index which is Kuala Lumpur Composite Index. Both approaches give different optimal portfolio compositions. Besides, the cointegration approach outperforms the goal programming approach because the cointegration approach gives higher mean return and lower risk or tracking error. Therefore, the cointegration approach is more appropriate for the investors in Malaysia.

  19. Synthesis of a new hardener agent for self-healing epoxy resins

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  20. Advanced Technology for Naval Gun Tubes

    DTIC Science & Technology

    1971-02-01

    maraging steel of the same strength level. Steel G. Precipitation -hardened stainless steels There are several different grades of precipitation -hardened...to a yield strength of 180,000 psi would be higher than about 20 ft. -lbs. The corrosion resistance of the precipitation -hardened stainless steels ...be over 25 ft.-lbs. at -40oF. 17 Maraging and stainless steels , which may have some future application for gun tubes, should also be considered in

  1. An Anisotropic Hardening Model for Springback Prediction

    NASA Astrophysics Data System (ADS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  2. Safe emergency department removal of a hardened steel penile constriction ring.

    PubMed

    Peay, Jeremy; Smithson, James; Nelson, James; Witucki, Peter

    2009-10-01

    Penile constriction devices are used for the enhancement of sexual performance. These devices have the potential to become incarcerated, leading to necrosis and amputation if not removed promptly. This article presents a step-by-step approach for the safe removal of a hardened steel penile constriction device using somewhat unorthodox tools found in a hospital. We present a case of an incarcerated hardened steel penile constriction ring that was not able to be removed with conventional techniques. We describe a novel technique using an electric grinder and laryngoscope blade. The technique described in this article is a valuable and relatively safe technique for the Emergency Physician to facilitate the timely removal of a hardened steel constriction device.

  3. A NASA Perspective and Validation and Testing of Design Hardening for the Natural Space Radiation Environment (GOMAC Tech 03)

    NASA Technical Reports Server (NTRS)

    Day, John H. (Technical Monitor); LaBel, Kenneth A.; Howard, James W.; Carts, Martin A.; Seidleck, Christine

    2003-01-01

    With the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discuss the implications of validating these methods for the natural space radiation environment issues: total ionizing dose (TID) and single event effects (SEE). Topics of discussion include: Types of tests that are required, Design coverage (i.e., design libraries: do they need validating for each application?) A new task within NASA to compare existing design. This latter task is a new effort in FY03 utilizing a 8051 microcontroller core from multiple design hardening developers as a test vehicle to evaluate each mitigative technique.

  4. Returning nurses to the workforce: developing a fast track back program.

    PubMed

    Burns, Helen K; Sakraida, Teresa J; Englert, Nadine C; Hoffmann, Rosemary L; Tuite, Patricia; Foley, Susan M

    2006-01-01

    Fast Track Back: Re-entry into Nursing Practice program. Describes the development, implementation, and evaluation of a state-of-the-art re-entry program facilitating the return of licensed nonpracticing RNs to the workforce through a quality education program that retools them for the workforce in the areas of pharmacology, skill development using the latest technology, practice standards, and nursing issues. The program consists of didactic content taught via classroom, Internet, skills laboratory, and high fidelity human simulated technology and a clinical component. The program is a mechanism that enables re-entry nurses to improve skills and competencies necessary to practice in today's healthcare environment.

  5. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE PAGES

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; ...

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  6. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal,more » 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.« less

  7. Cost-effectiveness of a participatory return-to-work intervention for temporary agency workers and unemployed workers sick-listed due to musculoskeletal disorders: design of a randomised controlled trial

    PubMed Central

    2010-01-01

    Background Within the working population there is a vulnerable group: workers without an employment contract and workers with a flexible labour market arrangement, e.g. temporary agency workers. In most cases, when sick-listed, these workers have no workplace/employer to return to. Also, for these workers access to occupational health care is limited or even absent in many countries. For this vulnerable working population there is a need for tailor-made occupational health care, including the presence of an actual return-to-work perspective. Therefore, a participatory return-to-work program has been developed based on a successful return-to-work intervention for workers, sick-listed due to low back pain. The objective of this paper is to describe the design of a randomised controlled trial to study the (cost-)effectiveness of this newly developed participatory return-to-work program adapted for temporary agency workers and unemployed workers, sick-listed due to musculoskeletal disorders, compared to usual care. Methods/Design The design of this study is a randomised controlled trial with one year of follow-up. The study population consists of temporary agency workers and unemployed workers sick-listed between 2 and 8 weeks due to musculoskeletal disorders. The new return-to-work program is a stepwise program aimed at making a consensus-based return-to-work implementation plan with the possibility of a (therapeutic) workplace to return-to-work. Outcomes are measured at baseline, 3, 6, 9 and 12 months. The primary outcome measure is duration of the sickness benefit period after the first day of reporting sick. Secondary outcome measures are: time until first return-to-work, total number of days of sickness benefit during follow-up; functional status; intensity of musculoskeletal pain; pain coping; and attitude, social influence and self-efficacy determinants. Cost-benefit is evaluated from an insurer's perspective. A process evaluation is part of this study. Discussion For sick-listed workers without an employment contract there can be gained a lot by improving occupational health care, including return-to-work guidance, and by minimising the 'labour market handicap' by creating a return-to-work perspective. In addition, reduction of sickness absence and work disability, i.e. a reduction of disability claims, may result in substantial benefits for the Dutch Social Security System. Trial registration Trial registration number: NTR1047. PMID:20346183

  8. Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES): A Proposed Program for an Interstellar Rendezvous and Return Architecture

    NASA Astrophysics Data System (ADS)

    Obousy, R.

    While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.

  9. Return to work in sick-listed cancer survivors with job loss: design of a randomised controlled trial.

    PubMed

    van Egmond, Martine P; Duijts, Saskia F A; Vermeulen, Sylvia J; van der Beek, Allard J; Anema, Johannes R

    2015-02-18

    Despite long-term or permanent health problems, cancer survivors are often motivated to return to work. For cancer survivors who have lost their job, return to work can be more challenging compared to employed survivors, as they generally find themselves in a more vulnerable social and financial position. Cancer survivors with job loss may therefore be in need of tailored return to work support. However, there is a lack of return to work intervention programs specifically targeting these cancer survivors. The number of cancer survivors with job loss in developed countries is rising due to, amongst others, increases in the incidence and survivor rate of cancer, the retirement age and the proportion of flexible employment contracts. Hence, we consider it important to develop a tailored return to work intervention program for cancer survivors with job loss, and to evaluate its effectiveness compared to usual care. This study employs a two-armed randomised controlled trial with a follow-up period of 12 months. The study population (n = 164) will be recruited from a national sample of cancer survivors (18-60 years), who have been sick-listed for 12-36 months. Participants will be randomised by using computerized blocked randomisation (blocks of four). All participants will receive usual care as provided by the Dutch Social Security Agency. Additionally, participants in the intervention group will receive a tailored return to work intervention program, which includes vocational rehabilitation and supportive psychosocial components, as well as (therapeutic) placement at work. The primary outcome measure is duration until sustainable return to work; the secondary outcome measure is rate of return to work. Other parameters include, amongst others, fatigue, coping strategy and quality of life. We will perform Cox regression analyses to estimate hazard ratios for time to sustainable return to work. The hypothesis of this study is that a tailored approach for cancer survivors with job loss is more effective, regarding return to work, compared to usual care. The results of this study will provide insight into the ways in which return to work can be facilitated for cancer survivors with job loss. Netherlands Trial Register: NTR3562 .

  10. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  11. A Longitudinal Study of Student Outcomes from Participation in an International Study Tour: Some Preliminary Findings

    ERIC Educational Resources Information Center

    Tucker, Mark; Weaver, Debbi

    2013-01-01

    Students returning from an international business study tour program were interviewed about their experiences and perceptions of the professional and personal impact of the program. When interviews were conducted within 3-4 months of the students' return, mixed responses were received, with some students highly positive about their experiences,…

  12. Blade loss transient dynamics analysis, volume 2. Task 2: TETRA 2 user's manual

    NASA Technical Reports Server (NTRS)

    Black, Gerald; Gallardo, Vincente C.

    1986-01-01

    This is the user's manual for the TETRA 2 Computer Code, a program developed in the NASA-Lewis Blade Loss Program. TETRA 2 calculates a turbine engine's dynamic structural response from applied stimuli. The calculation options are: (1) transient response; and (2) steady state forced response. Based on the method of modal syntheses, the program allows the use of linear, as well as nonlinear connecting elements. Both transient and steady state options can include: flexible Bladed Disk Module, and Nonlinear Connecting Elements (including deadband, hardening/softening spring). The transient option has the additional capability to calculate response with a squeeze film bearing module. TETRA 2 output is summarized in a plotfile which permits post processing such as FFT or graphical animation with the proper software and computer equipment.

  13. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.

  14. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  15. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  16. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  17. Future Development of Dense Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.

    2001-01-01

    The availability of high density, radiation tolerant, nonvolatile memories is critical for space applications. Ferroelectric memories, when fabricated with radiation hardened complementary metal oxide semiconductors (CMOS), can be manufactured and packaged to provide high density replacements for Flash memory, which is not radiation tolerant. Previous work showed ferroelectric memory cells to be resistant to single event upsets and proton irradiation, and ferroelectric storage capacitors to be resistant to neutron exposure. In addition to radiation hardness, the fast programming times, virtually unlimited endurance, and low voltage, low power operation make ferroelectric memories ideal for space missions. Previously, a commercial double level metal 64-kilobit ferroelectric memory was presented. Although the capabilities of radiation hardened wafer fabrication facilities lag behind those of the most modern commercial wafer fabrication facilities, several paths to achieving radiation tolerant, dense ferroelectric memories are emerging. Both short and long term solutions are presented in this paper. Although worldwide major semiconductor companies are introducing commercial ferroelectric memories, funding limitations must be overcome to proceed with the development of high density, radiation tolerant ferroelectric memories.

  18. The effect of heat treatment on microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Dobbs, J. R.; Mayo, D. E.

    1986-01-01

    Changes in the microfissuring susceptibility of alloy 718 due to solution annealing and age hardening are studied. The effects of Ni3Nb (delta) precipitation during solution annealing and gamma-prime + gamma-double-prime precipitation during age hardening on microfissuring are investigated. It is observed that solution annealing reduces microfissuring and age hardening increases it, and the two precipitates do not affect microfissuring susceptibility. Potential causes for the detected intergranular segregation of the alloy are discussed.

  19. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  20. Control of the surface quality parameters of machine components during static pulsed treatment

    NASA Astrophysics Data System (ADS)

    Komkov, V. A.; Rabinskii, L. N.; Kokoreva, O. G.; Kuprikov, N. M.

    2016-12-01

    A technique is developed to determine the homogeneity of the structure in a surface layer subjected to strain hardening. Static pulsed treatment is found to be one of the most effective surface plastic deformation methods that can be used to control the uniformity of hardening a surface layer. This treatment makes it possible to create a hardened surface layer to a depth of 10 mm with a homogeneous or heterogeneous structure.

  1. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    NASA Astrophysics Data System (ADS)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  2. Occupational contact dermatitis caused by 1,3-benzenedimethanamine, N-(2-phenylethyl) derivatives in hardeners for epoxy paints and coatings.

    PubMed

    Pesonen, Maria; Kuuliala, Outi; Suomela, Sari; Aalto-Korte, Kristiina

    2016-12-01

    Amines in epoxy hardeners are significant causes of occupational allergic contact dermatitis among workers who use epoxy resin systems. To describe a novel group of contact allergens: N-(2-phenylethyl) derivatives of the reactive amine 1,3-benzenedimethanamine (1,3-BDMA). We describe the clinical examinations and exposure of 6 patients with occupational contact allergy to derivatives of 1,3-BDMA. Of the 6 patients, 4 were spray painters who used epoxy paints, 1 was a floor layer who handled a variety of epoxy coatings, and 1 was a worker in epoxy hardener manufacture. We were able to confirm exposure to epoxy hardeners that contained derivatives of 1,3-BDMA in 5 of the 6 sensitized patients. Despite the close structural resemblance between derivatives of 1,3-BDMA and m-xylylenediamine (MXDA), only 3 patients reacted positively to MXDA. Concomitant contact allergy to diglycidyl ether of bisphenol A resin was seen in 2 of the 6 patients. Because of the lack of a commercially available patch test substance, the diagnosis of contact allergy to derivatives of 1,3-BDMA requires patch testing with either the epoxy hardener product or a hardener ingredient that contains the derivatives of 1,3-BDMA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys

    PubMed Central

    Bermudo, Carolina; Sevilla, Lorenzo; Martín, Francisco; Trujillo, Francisco Javier

    2017-01-01

    The application of incremental processes in the manufacturing industry is having a great development in recent years. The first stage of an Incremental Forming Process can be defined as an indentation. Because of this, the indentation process is starting to be widely studied, not only as a hardening test but also as a forming process. Thus, in this work, an analysis of the indentation process under the new Modular Upper Bound perspective has been performed. The modular implementation has several advantages, including the possibility of the introduction of different parameters to extend the study, such as the friction effect, the temperature or the hardening effect studied in this paper. The main objective of the present work is to analyze the three hardening models developed depending on the material characteristics. In order to support the validation of the hardening models, finite element analyses of diverse materials under an indentation are carried out. Results obtained from the Modular Upper Bound are in concordance with the results obtained from the numerical analyses. In addition, the numerical and analytical methods are in concordance with the results previously obtained in the experimental indentation of annealed aluminum A92030. Due to the introduction of the hardening factor, the new modular distribution is a suitable option for the analysis of indentation process. PMID:28772914

  4. Anomalous temperature dependence of yield stress and work hardening coefficient of B2-stabilized NiTi alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoda, Hideki; Mishima, Yoshinao; Suzuki, Tomoo

    Yield stress and work hardening coefficient of B2-stabilized NiTi alloys are investigated using compression tests. Compositions of NiTi alloys are based on Ni-49mol.%Ti, to which Cr, Co and Al are chosen as ternary elements which reduce martensitic transformation temperatures of the B2 phase. Mechanical tests are carried out in liquid nitrogen at 77 K, air at room temperature (R.T.) and in an argon atmosphere between 473 K and 873 K. Only at 77 K, some alloys show characteristic stress-strain curves which indicate stress induced martensitic transformation (SIMT), but the others do not. Work hardening coefficient is found to be betweenmore » 2 and 11GPa in all the test temperature range. The values are extremely high compared with Young`s modulus of B2 NiTi. Yield stress and work hardening coefficient increase with test temperature between R.T. and about 650 K in most alloys. The anomalous temperature dependence of mechanical properties is not related to SIMT but to precipitation hardening and/or anomalous dislocation motion similar to B2-type CoTi. Solution hardening by adding ternary elements is evaluated to be small for Cr and Co additions, and large for Al addition, depending on difference in atomic size of the ternary element with respect to Ni or Ti.« less

  5. Age-26 Cost-Benefit Analysis of the Child-Parent Center Early Education Program

    PubMed Central

    Reynolds, Arthur J.; Temple, Judy A.; White, Barry A.; Ou, Suh-Ruu; Robertson, Dylan L.

    2013-01-01

    We conducted a cost-benefit analysis of the Child-Parent Center (CPC) early childhood intervention. Using data collected up to age 26 on health and well-being, the study is the first adult economic analysis of a sustained large-scale and publicly-funded intervention. As part of the Chicago Longitudinal Study, a complete cohort of 900 low-income children who enrolled in 20 CPCs beginning at age 3 were compared to 500 well-matched low-income children who participated in the usual educational interventions for the economically disadvantaged in Chicago schools. School-age services were provided up to age 9 (third grade). Findings indicated that the three components of CPC had economic benefits in 2007 dollars that exceeded costs. The preschool program provided a total return to society of $10.83 per dollar invested (net benefits per participant of $83,708). Benefits to the public (other than program participants and families) were $7.20 per dollar invested. The primary sources of benefits were increased earnings and tax revenues, averted criminal justice system and victim costs, and savings for child welfare, special education, and grade retention. The school-age program had a societal return of $3.97 per dollar invested and a $2.11 public return. The extended intervention program (4 to 6 years of participation) had a societal return of $8.24 and public return of $5.21. Estimates were robust across a wide range of discount rates and alternative assumptions, and were consistent with the results of Monte Carlo simulations. Males, 1-year preschool participants, and children from higher risk families had greater economic benefits. Findings provide strong evidence that sustained early childhood programs can contribute to well-being for individuals and society. PMID:21291448

  6. Department of the Air Force Supporting Data for Fiscal Year 1993 Budget Estimates Submitted to Congress January 1992 Descriptive Summaries. Research, Development, Test and Evaluation

    DTIC Science & Technology

    1992-01-01

    Spacecraft Technology 0503401F 450 35 Space Systems Environmental Interactions Technology 060341 OF 468 36 Space Subsystems Technology 0603428F 472 37...Space Systems Environmental Interactions Technology 35 468 0603402F Space Test Program (STP) 191 462 030591OF SPACETRACK 85 195 0604233F Specialized...is in the mid- 1990’s. Combat force commanders and units (equipped with EMP-hardened, secure radio equipment) interact with nearby relay nodes for

  7. Structural Technology Evaluation and Analysis Program (STEAP) Delivery Order 0042: Development of the Equivalent Overload Model, Demonstration of the Failure of Superposition, and Relaxation/Redistribution Measurement

    DTIC Science & Technology

    2011-09-01

    with the bilinear plasticity relation. We used the bilinear relation, which allowed a full range of hardening from isotropic to kinematic to be...43 Table 12. Verification of the Weight Function Method for Single Corner Crack at a Hole in an Infinite ...determine the “Young’s Modulus,” or the slope of the linear region of the curve, the experimental data is curve fit with

  8. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  9. Exploration Technology Developments Program's Radiation Hardened Electronics for Space Environments (RHESE) Project Overview

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.

  10. Allies of a Kind: Canadian Army-US Army Relations and the Korean War, 1950-1953

    DTIC Science & Technology

    2015-01-01

    lective debauch — the only unit action of its type by Canadians in the Korean War — outraged Stone and hardened his heart to complaints about food...weapons firing that by design drove the faint- hearted and unfit Patricias from his ranks. His program of forced attrition alarmed Canadian personnel...Detention Barracks 1st Canadian Field Security Service 25th Canadian Public Relations Unit 25th Canadian Field Dental Unit, RCDC Unless formally

  11. Application of Optical Fibers to DNA’s Testing Program.

    DTIC Science & Technology

    1980-10-15

    economic impact. In addition to benefitting UGT , advances in fiber optic technology can greatly impact other DNA activities such as hardening of military...components and simulation and testing in high radiation environments. Using the UGT environment as a test bed, optical fibers can be characterized in...OPTIC SYSTEMS 33 3-3.1 Active System Design 37 4 USE OF FIBERS IN UGT 47 4-1 ADVANTAGES OF FIBERS FOR UGT 47 4-2 DIAGNOSTIC APPLICATIONS 4-3 EFFECTS

  12. The surface fatigue life of contour induction hardened AISI 1552 gears

    NASA Astrophysics Data System (ADS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-07-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  13. Study on the Strain Hardening Behaviors of TWIP/TRIP Steels

    NASA Astrophysics Data System (ADS)

    Huang, T. T.; Dan, W. J.; Zhang, W. G.

    2017-10-01

    Due to the complex coupling of twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP), and dislocation glide in TWIP/TRIP steels, it is difficult as well as essential to build a comprehensive strain hardening model to describe the interactions between different deformation mechanisms ( i.e., deformation twinning, martensitic transformation, and dislocation glide) and the resulted strain hardening behaviors. To address this issue, a micromechanical model is established in this paper to predict the deformation process of TWIP/TRIP steels considering both TWIP and TRIP effects. In the proposed model, the generation of deformation twinning and martensitic transformation is controlled by the stacking fault energy (SFE) of the material. In the thermodynamic calculation of SFE, deformation temperature, chemical compositions, microstrain, and temperature rise during deformation are taken into account. Varied by experimental results, the developed model can predict the stress-strain response and strain hardening behaviors of TWIP/TRIP steels precisely. In addition, the improved strength and enhanced strain hardening in Fe-Mn-C TWIP/TRIP steels due to the increased carbon content is also analyzed, which consists with literature.

  14. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  15. The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-01-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  16. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    PubMed

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Influence of Austenite Stability on Steel Low Cycle Fatigue Response

    NASA Astrophysics Data System (ADS)

    Lehnhoff, G. R.; Findley, K. O.

    Austenitic steels were subjected to tensile and total strain controlled, fully reversed axial low cycle fatigue (LCF) testing to determine the influence of stacking fault energy on austenite stability, or resistance to strain induced martensitic transformation during tensile and fatigue deformation. Expected differences in stacking fault energy were achieved by modifying alloys with different amounts of silicon and aluminum. Al alloying was found to promote martensite formation during both tensile and LCF loading, while Si was found to stabilize austenite. Martensite formation increases tensile work hardening rates, though Si additions also increase the work hardening rate without martensite transformation. Similarly, secondary cyclic strain hardening during LCF is attributed to strain induced martensite formation, but Si alloying resulted in less secondary cyclic strain hardening. The amount of secondary cyclic hardening scales linearly with martensite fraction and depends only on the martensite fraction achieved and not on the martensite (i.e. parent austenite) chemistry. Martensite formation was detrimental to LCF lives at all strain amplitudes tested, although the total amount of martensitic transformation during LCF did not always monotonically increase with strain amplitude nor correlate to the amount of tensile transformation.

  18. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.

    1987-09-01

    A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.

  19. Investigation of radiation hardened SOI wafer fabricated by ion-cut technique

    NASA Astrophysics Data System (ADS)

    Chang, Yongwei; Wei, Xing; Zhu, Lei; Su, Xin; Gao, Nan; Dong, Yemin

    2018-07-01

    Total ionizing dose (TID) effect on Silicon-on-Insulator (SOI) wafers due to inherent buried oxide (BOX) is a significant concern as it leads to the degradation of electrical properties of SOI-based devices and circuits, even failures of the systems associated with them. This paper reports the radiation hardening implementation of SOI wafer fabricated by ion-cut technique integrated with low-energy Si+ implantation. The electrical properties and radiation response of pseudo-MOS transistors are analyzed. The results demonstrate that the hardening process can significantly improve the TID tolerance of SOI wafers by generating Si nanocrystals (Si-NCs) within the BOX. The presence of Si-NCs created through Si+ implantation is evidenced by high-resolution transmission electron microscopy (HR-TEM). Under the pass gate (PG) irradiation bias, the anti-radiation properties of H-gate SOI nMOSFETs suggest that the radiation hardened SOI wafers with optimized Si implantation dose can perform effectively in a radiation environment. The radiation hardening process provides an excellent way to reinforce the TID tolerance of SOI wafers.

  20. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; ...

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  1. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  2. 49 CFR 40.305 - How does the return-to-duty process conclude?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false How does the return-to-duty process conclude? 40.305 Section 40.305 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty...

  3. 49 CFR 40.305 - How does the return-to-duty process conclude?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false How does the return-to-duty process conclude? 40.305 Section 40.305 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty...

  4. 49 CFR 40.305 - How does the return-to-duty process conclude?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false How does the return-to-duty process conclude? 40.305 Section 40.305 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty...

  5. 49 CFR 40.305 - How does the return-to-duty process conclude?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How does the return-to-duty process conclude? 40.305 Section 40.305 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty...

  6. 49 CFR 40.305 - How does the return-to-duty process conclude?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false How does the return-to-duty process conclude? 40.305 Section 40.305 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Substance Abuse Professionals and the Return-to-Duty...

  7. Everywoman's Guide to College.

    ERIC Educational Resources Information Center

    Gray, Eileen

    Information and advice in this guide focuses on the emotional, financial, and academic realities of women returning to school. Chapter One examines the opportunities available today, including such topics as special programs for returning women and the societal factors causing women to return to school. In Chapter Two the decision-making process…

  8. Ongoing Recovery Basic Information Tool (ORBIT)

    NASA Technical Reports Server (NTRS)

    Oberg, Donald

    1993-01-01

    The Federal Drug Free Work Place Program (DFWP) has now matured to the point of being able to return employees to sensitive testing designated positions (TDP) after completion of treatment of their addiction. The known tendency of addicted individuals to suffer multiple relapses prior to their final recovery has resulted in several positive urine tests (relapses) occurring among those Federal employees who have already completed treatment and who have been returned to TDP's. The very real potential for further relapses occurring after additional employees return to TDP's will be a critical factor in the ultimate success of the DFWP and in the public's impression of the program's effectiveness. In response to this concern, NASA has begun development of its Ongoing Recovery Basic Information Tool (ORBIT) instrument. The aim of the NASA ORBIT is to provide Employee Assistance Program (EAP) professionals with an advanced clinical tool which will be helpful in supporting recovery from substance abuse and which will allow more accurate determinations of when clients may be successfully returned to sensitive positions.

  9. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  10. Assessment of the microstructure and torsional fatigue performance of an induction hardened vanadium microalloyed medium-carbon steel

    NASA Astrophysics Data System (ADS)

    Rothleutner, Lee M.

    Vanadium microalloying of medium-carbon bar steels is a common practice in industry for a number of hot rolled as well as forged and controlled-cooled components. However, use of vanadium microalloyed steels has expanded into applications beyond their originally designed controlled-cooled processing scheme. Applications such as transmission shafts often require additional heat-treatments such as quench and tempering and/or induction hardening to meet packaging or performance requirements. As a result, there is uncertainty regarding the influence of vanadium on the properties of heat-treated components, specifically the effect of rapid heat-treating such as induction hardening. In the current study, the microstructural evolution and torsional fatigue behavior of induction hardened 1045 and 10V45 (0.08 wt pct V) steels were examined. Torsional fatigue specimens specifically designed for this research were machined from the as-received, hot rolled bars and induction hardened using both scanning (96 kHz/72 kW) and single-shot (31 kHz/128 kW) methods. Four conditions were evaluated, three scan hardened to 25, 32, and 44 pct nominal effective case depths and one single-shot hardened to 44 pct. Torsional fatigue tests were conducted at a stress ratio of 0.1 and shear stress amplitudes of 550, 600, and 650 MPa. Physical simulations using the thermal profiles from select induction hardened conditions were conducted in the GleebleRTM 3500 to augment microstructural analysis of torsional fatigue specimens. Thermal profiles were calculated by a collaborating private company using electro-thermal finite element analysis. Residual stresses were evaluated for all conditions using a strain gage hole drilling technique. The results showed that vanadium microalloying has an influence on the microstructure in the highest hardness region of the induction-hardened case as well as the total case region. Vanadium microalloyed conditions consistently exhibited a greater amount of non-martensitic transformation products in the induction-hardened case. In the total case region, vanadium reduced the total case depth by inhibiting austenite formation at low austenitizing temperatures; however, the non-martensitic constituents in the case microstructure and the reduced total case depth of the vanadium microalloyed steel did not translate directly to a degradation of torsional fatigue properties. In general, vanadium microalloying was not found to affect torsional fatigue performance significantly with one exception. In the 25 pct effective case depth condition, the 10V45 steel had a ~75 pct increase in fatigue life at all shear stress amplitudes when compared to the 1045 steel. The improved fatigue performance is likely a result of the significantly higher case hardness this condition exhibited compared to all other conditions. The direct influence of vanadium on the improved fatigue life of the 25 pct effective case depth condition is confounded with the slightly higher carbon content of the 10V45 steel. In addition, the 10V45 conditions showed a consistently higher case hardness than the in 1045 conditions. The increased hardness of the 10V45 steel did not increase the compressive residual stresses at the surface. Induction hardening parameters were more closely related to changes in residual stress than vanadium microalloying additions. Torsional fatigue data from the current study as well as from literature were used to develop an empirical multiple linear regression model that accounts for case depth as well as carbon content when predicting torsional fatigue life of induction hardened medium-carbon steels.

  11. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  12. Estimating the net benefit of a specialized return-to-work program for workers on short-term disability related to a mental disorder: an example exploring investment in collaborative care.

    PubMed

    Dewa, Carolyn S; Hoch, Jeffrey S

    2014-06-01

    This article estimates the net benefit for a company incorporating a collaborative care model into its return-to-work program for workers on short-term disability related to a mental disorder. Employing a simple decision model, the net benefit and uncertainty were explored. The breakeven point occurs when the average short-term disability episode is reduced by at least 7 days. In addition, 85% of the time, benefits could outweigh costs. Model results and sensitivity analyses indicate that organizational benefits can be greater than the costs of incorporating a collaborative care model into a return-to-work program for workers on short-term disability related to a mental disorder. The results also demonstrate how the probability of a program's effectiveness and the magnitude of its effectiveness are key factors that determine whether the benefits of a program outweigh its costs.

  13. MECHANICAL PROPERTIES OF TYPE 410 EXPERIMENTAL MOTOR TUBES TEMPERED AT 1150 F. Includes WAPD CTA(MEE)-510, Attachment (A): 1150 F TEMPERED TYPE 410 STAINLESS STEEL CORROSION PROGRAM. Attachment (B): 1150 F TEMPERED TYPE 410 STAINLESS STEEL METALLURGICAL EVALUATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faduska, A.; Rau, E.; Alger, J.V.

    Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)

  14. Mobility, strength, and fitness after a graded activity program for patients with subacute low back pain. A randomized prospective clinical study with a behavioral therapy approach.

    PubMed

    Lindström, I; Ohlund, C; Eek, C; Wallin, L; Peterson, L E; Nachemson, A

    1992-06-01

    Patients with nonspecific mechanical low back pain (n = 103), examined by an orthopaedic surgeon and a social worker, were randomized to an activity group (n = 51) and a control group (n = 52). Patients with defined orthopaedic, medical, or psychiatric diagnoses were excluded before randomization. No patients were excluded due to place of birth or difficulties in speaking or understanding the Swedish language. The purpose of the study was to compare mobility, strength and fitness after traditional care and after traditional care plus a graded activity program with a behavioral therapy approach. A graded activity program, with a behavioral therapy approach was given under the guidance of a physical therapist. The endpoint of the graded activity program was return to work. This program significantly increased mobility, strength, and fitness more than could be explained by only a time recovery effect, especially in males. The patients in the activity group returned to work earlier than did the patients in the control group. Spinal rotation, abdominal muscle endurance time and lifting capacity were significantly correlated to rate of return to work. Traditional care plus a graded activity program were superior to only traditional care, evaluated in terms of mobility, strength and fitness. The graded activity program proved to be a successful method of restoring occupational function and facilitating return to work in subacute low back pain patients. The patients in the graded activity program learned that it is safe to move, while regaining function.

  15. Strategies in disability management. Corporate disability management programs implemented at the work site.

    PubMed

    Kalina, C M

    1999-10-30

    Managers are challenged to demonstrate all programs as economically essential to the business, generating an appreciable return on investment. Further challenge exists to blend and integrate clinical and business objectives in program development. Disability management programs must be viewed as economically essential to the financial success of the business to assure management support for clinical interventions and return-to-work strategies essential for a successful program. This paper discusses a disability management program integrating clinical and business goals and objectives in return-to-work strategies to effect positive clinical, social-cultural, and business results. Clinical, educational, social, and economic challenges in the development, implementation, and continued management of a disability program at a large corporation with multiple global work sites are defined. Continued discussion addresses the effective clinical interventions and educational strategies utilized successfully within the workplace environment in response to each defined challenge. A multiple disciplinary team approach, clinical and business outcome measures, and quality assurance indicators are discussed as major program components. This article discusses a successful program approach focusing on business process and methodology. These parameters are used to link resources to strategy, developing a product for implementing and managing a program demonstrating economic value added through effective clinical medical case management.

  16. Navigating Return to Work and Breastfeeding in a Hospital with a Comprehensive Employee Lactation Program.

    PubMed

    Froh, Elizabeth B; Spatz, Diane L

    2016-11-01

    The Surgeon General's Call to Action to Support Breastfeeding details the need for comprehensive employer lactation support programs. Our institution has an extensive employee lactation program, and our breastfeeding initiation and continuation rates are statistically significantly higher than state and national data, with more than 20% of our employees breastfeeding for more than 1 year. The objective of this research was complete secondary data analysis of qualitative data collected as part of a larger study on breastfeeding outcomes. In the larger study, 545 women who returned to work full or part time completed an online survey with the ability to provide free text qualitative data and feedback regarding their experiences with breastfeeding after return to work. Qualitative data were pulled from the online survey platform. The responses to these questions were analyzed using conventional content analysis by the research team (2 PhD-prepared nurse researchers trained and experienced in qualitative methodologies and 1 research assistant) in order to complete a thematic analysis of the survey data. Analysis of the data yielded 5 major themes: (1) positive reflections, (2) nonsupportive environment/work culture, (3) supportive environment/work culture, (4) accessibility of resources, and (5) internal barriers. The themes that emerged from this research clearly indicate that even in a hospital with an extensive employee lactation program, women have varied experiences-some more positive than others. Returning to work while breastfeeding requires time and commitment of the mother, and a supportive employee lactation program may ease that transition of return to work.

  17. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  18. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  19. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  20. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  1. Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1983-01-01

    A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.

  2. 34 CFR 685.306 - Payment of a refund or return of title IV, HEA program funds to the Secretary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Payment of a refund or return of title IV, HEA program funds to the Secretary. 685.306 Section 685.306 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION WILLIAM D. FORD...

  3. Return on Investment: A Cost-Effectiveness Measure for the Texas' Workforce System.

    ERIC Educational Resources Information Center

    Norris, Davy N.; King, Christopher T.

    Texas is developing a return-on-investment (ROI) measure to assess the cost-effectiveness of work force programs. Emphasis is on issues related to conducting cross-program ROI analysis at the level of the Local Workforce Development Board (LWDB) in career or one-stop centers. To make the most appropriate and effective use of ROI, the following…

  4. Determining the Economic Returns on Investment in Selected Occupational Education Programs: Executive Summary.

    ERIC Educational Resources Information Center

    Mills, Edward; And Others

    A study was conducted in New York State to quantify the investment made in selected occupational programs at public two-year colleges and the returns from this investment to graduates, employers, and the state government. A survey was mailed to a representative sample of New York State employers with 100 or more employees, covering areas of…

  5. Measuring Social Return on Investment for Community Schools: A Case Study

    ERIC Educational Resources Information Center

    Martinez, Laura; Hayes, Cheryl D.

    2013-01-01

    Social return on investment (SROI) offers a new strategy to measure and communicate the value of outcomes achieved by programs that provide social, health, and education services to children and their families. It can be a powerful tool for demonstrating the monetary value of programs and services and for communicating that value in a way that can…

  6. Serving Those Who Serve: Meeting the Complex Needs of Students Returning Home from War

    ERIC Educational Resources Information Center

    Veislind, Emili

    2013-01-01

    As community colleges across the country strive to improve completion rates and serve a growing number of students returned home from war, the need for programs that meet the unique needs of veterans--including job training, social acclimation, referral programs for mental health counseling, and academic tutoring, to name a few--is more pressing…

  7. Wind Factor Simulation Model: User’s Manual.

    DTIC Science & Technology

    1980-04-01

    computer program documentation; com- puterized simulation; equivalent headwind technique; great circle; great circle distance; great circle equation ; great... equation of a great circle. Program listing and flow chart are included. iv UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(WIh.n Date EnItrd) USER’S...THE EQUATOR . 336 C 337 NTRIFG = 0 338 C 339 C END OF FUNCTION ICONV I 1. RETURN TO MAIN PROGRAM . 340 C 42 341 RETURN 34? C 343 C 344 C 345 C * PART II

  8. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  9. A participatory supportive return to work program for workers without an employment contract, sick-listed due to a common mental disorder: an economic evaluation alongside a randomized controlled trial.

    PubMed

    Lammerts, Lieke; van Dongen, Johanna M; Schaafsma, Frederieke G; van Mechelen, Willem; Anema, Johannes R

    2017-02-02

    Mental disorders are associated with high costs for productivity loss, sickness absence and unemployment. A participatory supportive return to work (RTW) program was developed in order to improve RTW among workers without an employment contract, sick-listed due to a common mental disorder. The program contained a participatory approach, integrated care and direct placement in a competitive job. The aim of this study was to evaluate the cost-effectiveness and cost-utility of this new program, compared to usual care. In addition, its return on investment was evaluated. An economic evaluation was conducted alongside a 12-month randomized controlled trial. A total of 186 participants was randomly allocated to the new program (n = 94) or to usual care (n = 92). Effect measures were the duration until sustainable RTW in competitive employment and quality-adjusted life years (QALYs) gained. Costs included intervention costs, medical costs and absenteeism costs. Registered data of the Dutch Social Security Agency were used to assess the duration until sustainable RTW, intervention costs and absenteeism costs. QALYs and medical costs were assessed using three- or six-monthly questionnaires. Missing data were imputed using multiple imputations. Cost-effectiveness analysis and cost-utility analysis were conducted from the societal perspective. A return on investment analysis was conducted from the social insurer's perspective. Various sensitivity analyses were performed to assess the robustness of the results. The new program had no significant effect on the duration until sustainable RTW and QALYs gained. Intervention costs and medical costs were significantly higher in the intervention group. From the societal perspective, the maximum probability of cost-effectiveness for duration until sustainable RTW was 0.64 at a willingness to pay of about €10 000/day, and 0.27 for QALYs gained, regardless of the willingness to pay. From the social insurer's perspective, the probability of financial return was 0.18. From the societal perspective, the new program was neither cost-effective in improving sustainable RTW nor in gaining QALYs. From the social insurer's perspective, the program did not result in a positive financial return. Therefore, the present study provided no evidence to support its implementation. The trial was listed at the Dutch Trial Register (NTR) under NTR3563 on August 7, 2012.

  10. Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return Line

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Figert, J. D.; Paton, R. M.; Nguyen, S. D.; Flint, A.

    2012-01-01

    During maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures (Fig 6). Section wall reduction in the burst region. Plastic deformation and thinning of the out-of-specification tube wall likely happened during the initial proof testing years ago. Metallography of tubing away from rupture site confirmed tubing was seamless. Based on the tube microstructure, it is likely that the initial wall thickness was about 30 % thinner than the requirement of 0.049 inches. Fracture initiated on the ID and progressed to the OD (shear lip). The tube is made of the correct material of 5052-0 aluminum as verified using Optical Emission Spectroscopy (Table 2). The tubing hardness tested 77 HV100 (77 HRE). This hardness is slightly above the requirement for 70 HRE maximum for aluminum 5052-0 in AMS 2658C [3].

  11. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  12. Portfolio theory and cost-effectiveness analysis: a further discussion.

    PubMed

    Sendi, Pedram; Al, Maiwenn J; Rutten, Frans F H

    2004-01-01

    Portfolio theory has been suggested as a means to improve the risk-return characteristics of investments in health-care programs through diversification when costs and effects are uncertain. This approach is based on the assumption that the investment proportions are not subject to uncertainty and that the budget can be invested in toto in health-care programs. In the present paper we develop an algorithm that accounts for the fact that investment proportions in health-care programs may be uncertain (due to the uncertainty associated with costs) and limited (due to the size of the programs). The initial budget allocation across programs may therefore be revised at the end of the investment period to cover the extra costs of some programs with the leftover budget of other programs in the portfolio. Once the total budget is equivalent to or exceeds the expected costs of the programs in the portfolio, the initial budget allocation policy does not impact the risk-return characteristics of the combined portfolio, i.e., there is no benefit from diversification anymore. The applicability of portfolio methods to improve the risk-return characteristics of investments in health care is limited to situations where the available budget is much smaller than the expected costs of the programs to be funded.

  13. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  14. Quality control of concrete at the stage of designing its composition and technology

    NASA Astrophysics Data System (ADS)

    Kudyakov, A.; Prischepa, I.; Kiselev, D.; Prischepa, B.

    2016-01-01

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology - hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives - hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.

  15. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  16. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  17. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  18. Role of copper in precipitation hardening of high-alloy Cr-Ni cast steels

    NASA Astrophysics Data System (ADS)

    Gajewski, Mirosław

    2006-02-01

    The mechanism of strengthening with second-phase particles that results from heat treatment, i.e., precipitate hardening, plays an important role in modern alloys. The strengthening effect of such particles can result from their coherence with the matrix, inhibition of dislocation slip, inhibition of grain boundary slip, as well as hampering recovery processes due to dislocation network pinning. The results of investigations into high-alloy Cr-Ni-Cu cast steels precipitate hardened with highly dispersed ɛ phase particles are presented within. The influence of heat treatment on changes in microstructure, mechanical properties, and morphology of fracture surfaces obtained under loading have been analyzed. It has been demonstrated that, with the appropriate selection of heat treatment parameters, it is possible to control the precipitation of the hardening ɛ phase and, thus, to change the final mechanical and functional properties.

  19. Study on stress-strain response of multi-phase TRIP steel under cyclic loading

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.

    2013-12-01

    The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.

  20. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  1. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  2. The cyclic stress-strain behavior of a nickel-base superalloy at 650 C

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G. E.

    1986-01-01

    It is pointed out that examinations of the monotonic tensile and fatigue behaviors of single crystal nickel-base superalloys have disclosed orientation-dependent tension-compression anisotropies and significant differences in the mechanical response of octahedral and cube slip at intermediate temperatures. An examination is conducted of the cyclic hardening response of the single crystal superalloy PWA 1480 at 650 C. In the considered case, tension-compression anisotropy is present, taking into account primarily conditions under which a single slip system is operative. Aspects of a deformation by single slip are considered along with cyclic hardening anisotropy in tension and compression. It is found that specimens deforming by octahedral slip on a single slip system have similar hardening responses in tensile and low cycle fatigue loading. Cyclic strain hardening is very low for specimens displaying single slip.

  3. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    PubMed Central

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-01-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000

  4. Features of surface phase formation during case-hardening of iron- and titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.

    2017-11-01

    The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.

  5. Geology of Potential Landing Sites for Martian Sample Returns

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2003-01-01

    This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.

  6. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Lee, E. H.; Mansur, L. K.; Maloy, S. A.; James, M. R.; Johnson, W. R.

    2002-05-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 °C. Tensile testing was performed at room temperature (20 °C) and 164 °C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 °C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability.

  7. Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander

    2016-08-01

    This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.

  8. Developing and Implementing a Social Media Program While Optimizing Return on Investment--An MBA Program Case Study

    ERIC Educational Resources Information Center

    Gilfoil, David M.; Aukers, Steven M.; Jobs, Charles G.

    2015-01-01

    Over the past decade, Web 2.0 has brought a wealth of opportunities for improving marketing effectiveness; social media platforms, in particular, have proven to be exceptional tools for realizing growth potential. The big question for businesses used to be how to measure and report financial return on investment (ROI) for social media ad spend to…

  9. Effect of High School Completion of the Agricultural Education Program on the Rate of Return on Investment for the Commonwealth of Virginia

    ERIC Educational Resources Information Center

    Bevins, Phillip Scott

    2010-01-01

    This research study sought to determine the effect high school completion of the agricultural career and technical education program has on the rate of return on investment by public schools in Virginia. The research questions guiding this study included: (1) Were students able to find employment related to the agricultural career and technical…

  10. Development of Ballistic Protection Based on Precipitation-Hardened Composite Material

    NASA Astrophysics Data System (ADS)

    Chernyshov, E. A.; Romanov, A. D.; Romanova, E. A.; Myl'nikov, V. V.

    2018-03-01

    The possibility of application of an aluminum-based precipitation-hardened composite material for purposes of ballistic protection is considered. Experimental data on A6 aluminum-based alloy reinforced with alumina particles are presented.

  11. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  12. Return and profitability of space programs. Information - the main product of flights in space

    NASA Astrophysics Data System (ADS)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  13. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  14. Radiation hardening of components and systems for nuclear rocket vehicle applications

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Cheever, P. R.

    1972-01-01

    The results of the analysis of the S-2 and S-4B components, although incomplete, indicate that many Saturn 5 components and subsystems, e.g., pumps, valves, etc., can be radiation hardened to meet NRV requirements by material substitution and minor design modifications. Results of these analyses include (1) recommended radiation tolerance limits for over 100 material applications; (2) design data which describes the components of each system; (3) presentation of radiation hardening examples of systems; and (4) designing radiation effects tests to supply data for selecting materials.

  15. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    NASA Technical Reports Server (NTRS)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  16. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  17. Limitation of Current Hardening Models in Predicting Anisotropy by Twinning in HCP Metals: Application to a Rod-Textured AM30 Magnesium Alloy

    DTIC Science & Technology

    2011-03-01

    model and a phenomenological Voce hard- ening model. The HCP material is exemplified by an extruded AM30 magnesium alloy with a 〈101̄0〉-fiber...effect accounted for by a sort of slip-twin latent hardening in the Voce type hardening model was not able to inflect the simulated curves with loading... Voce model is unable to cap- ture this effect, but the dislocation model [2] is. A pragmatic factor distinctly increasing the stored dis- locations in

  18. Development of Carbon Nanotube-Based Sensor to Monitor Crack Growth in Cracked Aluminum Structures Underneath Composite Patching

    DTIC Science & Technology

    2014-06-01

    layer of epoxy and ensure crack is filled in. Let sit for at least 1 hour, but no longer than 3 hours. (Do not allow base layer to harden before...10 mmHg and hold for 8 hours. • Once hardened remove excess epoxy and test sample. C. TENSILE TESTING For the purpose of this study, total fracture...hardened remove excess epoxy and test sample. 2. Final Changes Changes were made from this initial sample preparation to the final one shown in the

  19. Conducting Return on Investment Analyses for Secondary and Postsecondary CTE: A Framework

    ERIC Educational Resources Information Center

    Hollenbeck, Kevin M.

    2011-01-01

    In recent work, the author has estimated the rate of return for several workforce development programs in the State of Washington, including secondary and postsecondary career and technical education (CTE; Hollenbeck, 2008). The returns are based on estimates of the net impact of CTE on individuals' labor market experiences and government income…

  20. Efficient machining of ultra precise steel moulds with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.

    2013-09-01

    Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.

  1. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  2. Groundbreaking Mars Sample Return for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  3. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    NASA Astrophysics Data System (ADS)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  4. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach.

    PubMed

    Shi, Hongli; Yang, Zhi; Luo, Shuqian

    2017-01-01

    The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.

  5. Effect of analysis parameters on non-linear implicit finite element analysis of marine corroded steel plate

    NASA Astrophysics Data System (ADS)

    Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir

    2017-12-01

    FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.

  6. Assessing non-metro recovery across two continents: issues and limitations.

    PubMed

    Blakely, Edward J; Fisher, Peter M J

    2017-07-01

    Rural and remote areas of countries such as Australia and the United States are less well-resourced and often poorer than their city counterparts. When a disaster strikes, therefore, their long-term recovery can be impeded by being situated 'over the horizon'. Nonetheless, they are likely to enjoy higher social capital, with 'locals' banding together to help restore economic and social life in the wake of a calamitous incident. At the same time, a repeat of extreme events, springing in part from alteration to the landscape through intense human occupation, threatens to derail sustainable recovery processes everywhere, suggesting that renewed emphasis needs to be placed on preparedness. Improved metrics are also required, spanning both pre- and post-disaster phases, to determine effectiveness. Moreover, a focus on the 'hardening' of towns offers a better return in limiting damage and potentially hastens the speed of recovery should these places later fall victim to extreme events. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  7. Assessment of Lightning Transients on a De-Iced Rotor Blade with Predictive Tools and Coaxial Return Measurements

    NASA Astrophysics Data System (ADS)

    Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.

    2012-05-01

    The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.

  8. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less

  9. Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219

    NASA Astrophysics Data System (ADS)

    Thomas, Shijo; Umasankar, V.

    2018-01-01

    Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improvement of 82% in hardness by solutionizing and aging compared to that achieved by sintering.

  10. Non-linear acceleration at supernova remnant shocks and the hardening in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Gabici, S.

    2018-02-01

    In the last few years, several experiments have shown that the cosmic ray spectrum below the knee is not a perfect power law. In particular, the proton and helium spectra show a spectral hardening by ˜0.1-0.2 in spectral index at particle energies of ˜ 200-300 GeV nucleon-1. Moreover, the helium spectrum is found to be harder than that of protons by ˜0.1 and some evidence for a similar hardening was also found in the spectra of heavier elements. Here, we consider the possibility that the hardening may be the result of a dispersion in the slope of the spectrum of cosmic rays accelerated at supernova remnant shocks. Such a dispersion is indeed expected within the framework of non-linear theories of diffusive shock acceleration, which predict steeper (harder) particle spectra for larger (smaller) cosmic ray acceleration efficiencies.

  11. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-04-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  12. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  13. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  14. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  15. High-velocity deformation of Al 0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    DOE PAGES

    Li, Z.; Zhao, S.; Diao, H.; ...

    2017-02-17

    Here, the mechanical behavior of a single phase (fcc) Al 0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives risemore » to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.« less

  16. Quality control of concrete at the stage of designing its composition and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudyakov, A., E-mail: kudyakow@mail.tomsknet.ru; Prischepa, I., E-mail: ingaprishepa@mail.ru; Kiselev, D.

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology – hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation ofmore » foam concrete mix technological regulations are worked out, in which it is recommended to use additives – hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.« less

  17. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  18. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  19. Design of a study evaluating the effects, health economics, and stakeholder perspectives of a multi-component occupational rehabilitation program with an added workplace intervention - a  study protocol.

    PubMed

    Rise, Marit B; Skagseth, Martin; Klevanger, Nina E; Aasdahl, Lene; Borchgrevink, Petter; Jensen, Chris; Tenggren, Hanne; Halsteinli, Vidar; Jacobsen, Trym N; Løland, Svein B; Johnsen, Roar; Fimland, Marius S

    2018-02-05

    Recent research has suggested that interventions at the workplace might be the most potent ingredient in return to work interventions, but few studies have investigated the different effects of workplace interventions as part of occupational rehabilitation programs. The comprehensive design described in this article includes effect (on return to work and health outcomes), and health economic evaluations of a workplace intervention added to a multicomponent rehabilitation program. Qualitative and mixed method studies will investigate sick-listed persons', rehabilitation therapists' and employers' perspectives on the usability and outcomes of the rehabilitation program and the workplace intervention. The program and intervention are provided to patients with musculoskeletal, psychological or general and unspecified diagnoses. The program is multi-component and includes Acceptance and Commitment Therapy, physical exercise, patient education and creating a plan for increased work participation. Persons who are employed, aged from 18 to 60 years, with a current sick leave status of 50% or more and a diagnosis within the musculoskeletal, psychological or general and unspecified chapters of International Classification of Primary Care-2 (ICPC-2) will be recruited to a researcher-blinded parallel-group randomized controlled trial. All participants take part in an in-patient occupational rehabilitation program, while the intervention group also takes part in an intervention at the workplace. The effect and economic evaluation will investigate the effect of the added workplace intervention. The primary outcome measures will be time until full sustainable return to work and total number of sickness absence days in the 12 months after inclusion. Health economic evaluations will investigate the cost-effectiveness and cost-utility. Qualitative studies will investigate rehabilitation therapists' experiences with working towards return to work within an ACT-approach and stakeholders' experiences with the workplace intervention. A mixed methods study will combine quantitative and qualitative findings on the participants' expectations and motivation for return to work. The outline of this comprehensive study could represent an important addition to the standard designs of return to work evaluation. The mixed methods design, with qualitative approaches as well as a rigorous randomized controlled trial, might prove useful to shed light on contextual factors. ClinicalTrials.gov : NCT02541890 . September 4, 2015.

  20. Aerodynamic design guidelines and computer program for estimation of subsonic wind tunnel performance

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Mort, K. W.; Jope, J.

    1976-01-01

    General guidelines are given for the design of diffusers, contractions, corners, and the inlets and exits of non-return tunnels. A system of equations, reflecting the current technology, has been compiled and assembled into a computer program (a user's manual for this program is included) for determining the total pressure losses. The formulation presented is applicable to compressible flow through most closed- or open-throat, single-, double-, or non-return wind tunnels. A comparison of estimated performance with that actually achieved by several existing facilities produced generally good agreement.

  1. The Involvement of Hemocyte Prophenoloxidase in the Shell-Hardening Process of the Blue Crab, Callinectes sapidus

    PubMed Central

    Alvarez, Javier V.; Chung, J. Sook

    2015-01-01

    Cuticular structures of arthropods undergo dramatic molt-related changes from being soft to becoming hard. The shell-hardening process of decapod crustaceans includes sclerotization and mineralization. Hemocyte PPO plays a central role in melanization and sclerotization particularly in wound healing in crustaceans. However, little is known about its role in the crustacean initial shell-hardening process. The earlier findings of the aggregation of heavily granulated hemocytes beneath the hypodermis during ecdysis imply that the hemocytes may be involved in the shell-hardening process. In order to determine if hemocytes and hemocyte PPO have a role in the shell-hardening of crustaceans, a knockdown study using specific CasPPO-hemo-dsRNA was carried out with juvenile blue crabs, Callinectes sapidus. Multiple injections of CasPPO-hemo-dsRNA reduce specifically the levels of CasPPO-hemo expression by 57% and PO activity by 54% in hemocyte lysate at the postmolt, while they have no effect on the total hemocyte numbers. Immunocytochemistry and flow cytometry analysis using a specific antiserum generated against CasPPO show granulocytes, semigranulocytes and hyaline cells as the cellular sources for PPO at the postmolt. Interestingly, the type of hemocytes, as the cellular sources of PPO, varies by molt stage. The granulocytes always contain PPO throughout the molt cycle. However, semigranulocytes and hyaline cells become CasPPO immune-positive only at early premolt and postmolt, indicating that PPO expression in these cells may be involved in the shell-hardening process of C. sapidus. PMID:26393802

  2. Press-hardening of zinc coated steel - characterization of a new material for a new process

    NASA Astrophysics Data System (ADS)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  3. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  4. An evaluation of the Well at Dell health management program: health risk change and financial return on investment.

    PubMed

    Musich, Shirley; McCalister, Tre'; Wang, Sara; Hawkins, Kevin

    2015-01-01

    To investigate the effectiveness of the Well at Dell comprehensive health management program in delivering health care and productivity cost savings relative to program investment (i.e., return on investment). A quasi-experimental design was used to quantify the financial impact of the program and nonexperimental pre-post design to evaluate change in health risks. Ongoing worksite health management program implemented across multiple U.S. locations. Subjects were 24,651 employees with continuous medical enrollment in 2010-2011 who were eligible for 2011 health management programming. Incentive-driven, outcomes-based multicomponent corporate health management program including health risk appraisal (HRA)/wellness, lifestyle management, and disease management coaching programs. Medical, pharmacy, and short-term disability pre/post expenditure trends adjusted for demographics, health status, and baseline costs. Self-reported health risks from repeat HRA completers. Analysis: Propensity score-weighted and multivariate regression-adjusted comparison of baseline to post trends in health care expenditures and productivity costs for program participants and nonparticipants (i.e., difference in difference) relative to programmatic investment. The Well at Dell program achieved an overall return on investment of 2.48 in 2011. Most of the savings were realized from the HRA/wellness component of the program. Cost savings were supported with high participation and significant health risk improvement. An incentive-driven, well-managed comprehensive corporate health management program can continue to achieve significant health improvement while promoting health care and productivity cost savings in an employee population.

  5. Evaluating an employee wellness program.

    PubMed

    Mukhopadhyay, Sankar; Wendel, Jeanne

    2013-12-01

    What criteria should be used to evaluate the impact of a new employee wellness program when the initial vendor contract expires? Published academic literature focuses on return-on-investment as the gold standard for wellness program evaluation, and a recent meta-analysis concludes that wellness programs can generate net savings after one or two years. In contrast, surveys indicate that fewer than half of these programs report net savings, and actuarial analysts argue that return-on-investment is an unrealistic metric for evaluating new programs. These analysts argue that evaluation of new programs should focus on contract management issues, such as the vendor's ability to: (i) recruit employees to participate and (ii) induce behavior change. We compute difference-in-difference propensity score matching estimates of the impact of a wellness program implemented by a mid-sized employer. The analysis includes one year of pre-implementation data and three years of post-implementation data. We find that the program successfully recruited a broad spectrum of employees to participate, and it successfully induced short-term behavior change, as manifested by increased preventive screening. However, the effects on health care expenditures are positive (but insignificant). If it is unrealistic to expect new programs to significantly reduce healthcare costs in a few years, then focusing on return-on-investment as the gold standard metric may lead to early termination of potentially useful wellness programs. Focusing short-term analysis of new programs on short-term measures may provide a more realistic evaluation strategy.

  6. The Development of a Model Design to Assess Instruction in Farm Management in Terms of Economic Returns and the Understanding of Economic Principles.

    ERIC Educational Resources Information Center

    Rolloff, John August

    The records of 27 farm operators participating in farm business analysis programs in 5 Ohio schools were studied to develop and test a model for determining the influence of the farm business analysis phase of vocational agriculture instruction in farm management. Economic returns were measured as ratios between 1965 program inputs and outputs…

  7. Experiences and expectations of return-to-work programs for nurses and midwives who have acquired a musculoskeletal disorder in the workplace: a qualitative systemic review protocol.

    PubMed

    Weckert, Christine; Stern, Cindy; Porritt, Kylie

    2017-05-01

    The objective of this systematic review is to identify and synthesize the best available evidence on the experiences and expectations of being involved in a program that aims to return nurses and midwives, who have acquired a musculoskeletal disorder (MSD) in the workplace, to work.The specific review questions are.

  8. Comparative study of procedures for the analysis of chloride in hardened concrete.

    DOT National Transportation Integrated Search

    1976-01-01

    In the widely used potentiometric titration procedure for the analysis of chloride in powdered hardened concrete samples, difficulties have often been encountered when determining the endpoint. These difficulties have been eliminated through the use ...

  9. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  10. Clinical and Morphological Changes Following 2 Rehabilitation Programs for Acute Hamstring Strain Injuries: A Randomized Clinical Trial

    PubMed Central

    SILDER, AMY; SHERRY, MARC A.; SANFILIPPO, JENNIFER; TUITE, MICHAEL J.; HETZEL, SCOTT J.; HEIDERSCHEIT, BRYAN C.

    2013-01-01

    STUDY DESIGN Randomized, double-blind, parallel-group clinical trial. OBJECTIVES To assess differences between a progressive agility and trunk stabilization rehabilitation program and a progressive running and eccentric strengthening rehabilitation program in recovery characteristics following an acute hamstring injury, as measured via physical examination and magnetic resonance imaging (MRI). BACKGROUND Determining the type of rehabilitation program that most effectively promotes muscle and functional recovery is essential to minimize reinjury risk and to optimize athlete performance. METHODS Individuals who sustained a recent hamstring strain injury were randomly assigned to 1 of 2 rehabilitation programs: (1) progressive agility and trunk stabilization or (2) progressive running and eccentric strengthening. MRI and physical examinations were conducted before and after completion of rehabilitation. RESULTS Thirty-one subjects were enrolled, 29 began rehabilitation, and 25 completed rehabilitation. There were few differences in clinical or morphological outcome measures between rehabilitation groups across time, and reinjury rates were low for both rehabilitation groups after return to sport (4 of 29 subjects had reinjuries). Greater craniocaudal length of injury, as measured on MRI before the start of rehabilitation, was positively correlated with longer return-to-sport time. At the time of return to sport, although all subjects showed a near-complete resolution of pain and return of muscle strength, no subject showed complete resolution of injury as assessed on MRI. CONCLUSION The 2 rehabilitation programs employed in this study yielded similar results with respect to hamstring muscle recovery and function at the time of return to sport. Evidence of continuing muscular healing is present after completion of rehabilitation, despite the appearance of normal physical strength and function on clinical examination. LEVEL OF EVIDENCE Therapy, level 1b–. J Orthop Sports Phys Ther 2013;43(5):284-299. Epub 13 March 2013. doi:10.2519/jospt.2013.4452 PMID:23485730

  11. Nonvolatile Memory Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  12. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1984-05-01

    PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS Robert 0. Ritchie, Department of Materials Science and Mineral Engineering, University of 2306/ Al ...Chemical Compositions in wt% of Alloys Si Fe Cu Mn Mg Cr Zn Ti Zr Al 2024 0.50 0.50 4.50 0.50 1.50 0.10 0.25 0.15 -- balance 2124 0.20 0.30 4.50 0.50 1.50...been applied by Suresh et al .41 to rationalize the microstructural effects of precipitation hardening on fatigue crack growth in 7075 alloys. The

  13. Mars Rover Sample Return mission study

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1989-01-01

    The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.

  14. Parents Returning to Work: Evaluation of Grant Recipient Outcomes 2004-05, 2005-06

    ERIC Educational Resources Information Center

    Ferrier, Fran; Kellock, Peter; Burke, Gerald

    2007-01-01

    The Parents Returning to Work Program (PRTW) is a Victorian government initiative which commenced in 2003. It provides grants to assist eligible parents who wish to return to paid employment after a period of caring for children to participate in training that will increase their work skills and job prospects. This evaluation aimed to review the…

  15. X-38 Program Status/Overview

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    2001-01-01

    The X-38 Project consists of a series of experimental vehicles designed to provide the technical "blueprint" for the International Space Station's (ISS) Crew Return Vehicle (CRV). There are three atmospheric vehicles and one space flight vehicle in the program. Each vehicle is designed as a technical stepping stone for the next vehicle, with each new vehicle being more complex and advanced than it's predecessor. The X-38 project began in 1995 at the Johnson Space Center (JSC) in Houston, Texas at the direction of the NASA administrator. From the beginning, the project has had the CRY design validation as its ultimate goal. The CRY has three basic missions that drive the design that must be proven during the course of the X-38 Project: a) Emergency return of an ill or injured crew member. b) Emergency return of an entire ISS crew due to the inability of ISS to sustain life c) Planned return of an entire ISS crew due to the inability to re-supply the ISS or return the crew. The X-38 project must provide the blueprint for a vehicle that provides the capability for human return from space for all three of these design missions.

  16. A Proposed Return-to-Sport Program for Patients With Midportion Achilles Tendinopathy: Rationale and Implementation.

    PubMed

    Silbernagel, Karin Grävare; Crossley, Kay M

    2015-11-01

    Synopsis Achilles tendinopathy is a common overuse injury in athletes involved in running and jumping activities and sports. The intervention with the highest level of evidence is exercise therapy, and it is recommended that all patients initially be treated with exercise for at least 3 months prior to considering other treatment options. Recovery from Achilles tendinopathy can take up to a year, and there is a high propensity for recurrence, especially during the return-to-sport phase. The extent of the tendon injury, the age and sex of the athlete, the magnitude of pain/symptoms, the extent of impairments, and the demands of the sport all need to be considered when planning for return to sport. This clinical commentary describes an approach to return to sport for patients with midportion Achilles tendinopathy. The aim of the return-to-sport program is to facilitate the decision-making process in returning an athlete with midportion Achilles tendinopathy back to full sport participation and to minimize the chances for recurrence of the injury. J Orthop Sports Phys Ther 2015;45(11):876-886. Epub 21 Sep 2015. doi:10.2519/jospt.2015.5885.

  17. Temperature influence on water transport in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouet, Emeline; Poyet, Stéphane, E-mail: stephane.poyet@cea.fr; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  18. Surface hardening of steels with a strip-shaped beam of a high-power CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovskii, P.E.; Kovsh, I.B.; Strekalova, M.S.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO{sub 2} laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section. 6 refs., 5 figs.

  19. Nonlinear behavior of shells of revolution under cyclic loading.

    NASA Technical Reports Server (NTRS)

    Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.

    1973-01-01

    A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.

  20. A tale of two mechanisms. Strain-softening versus strain-hardening in single crystals under small stressed volumes

    DOE PAGES

    Bei, Hongbin; Xia, Yuzhi; Barabash, Rozaliya; ...

    2015-08-10

    Pre-straining defect-free single crystals will introduce heterogeneous dislocation nucleation sources that reduce the measured strength from the theoretical value, while pre-straining bulk samples will lead to strain hardening. Their competition is investigated by nanoindentation pop-in tests on variously pre-strained Mo single crystals with several indenter radii (~micrometer). Pre-straining primarily shifts deformation mechanism from homogeneous dislocation nucleation to a stochastic behavior, while strain hardening plays a secondary role, as summarized in a master plot of pop-in strength versus normalized indenter radius.

  1. Analysis of the Effect of Cooling Intensity Under Volume-Surface Hardening on Formation of Hardened Structures in Steel 20GL

    NASA Astrophysics Data System (ADS)

    Evseev, D. G.; Savrukhin, A. V.; Neklyudov, A. N.

    2018-01-01

    Computer simulation of the kinetics of thermal processes and structural and phase transformations in the wall of a bogie side frame produced from steel 20GL is performed with allowance for the differences in the cooling intensity under volume-surface hardening. The simulation is based on the developed method employing the diagram of decomposition of austenite at different cooling rates. The data obtained are used to make conclusion on the effect of the cooling intensity on propagation of martensite structure over the wall section.

  2. Mössbauer study on the deformed surface of high-manganese steel

    NASA Astrophysics Data System (ADS)

    Nasu, S.; Tanimoto, H.; Fujita, F. E.

    1990-07-01

    Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.

  3. Laser hardening techniques on steam turbine blade and application

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Qunli; Kong, Fanzhi; Ding, Qingming

    Different laser surface hardening techniques, such as laser alloying and laser solution strengthening were adopted to perform modification treatment on the local region of inset edge for 2Cr13 and 17-4PH steam turbine blades to prolong the life of the blades. The microstructures, microhardness and anti-cavitation properties were investigated on the blades after laser treatment. The hardening mechanism and technique adaptability were researched. Large scale installation practices confirmed that the laser surface modification techniques are safe and reliable, which can improve the properties of blades greatly with advantages of high automation, high quality, little distortion and simple procedure.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Surface hardening of steels with a strip-shaped beam of a high-power CO2 laser

    NASA Astrophysics Data System (ADS)

    Dubovskii, P. E.; Kovsh, Ivan B.; Strekalova, M. S.; Sisakyan, I. N.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO2 laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section.

  5. Brownfields opportunity -- A product of a probusiness USEPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.E.

    Brownfields are former industrial facilities, office buildings or other properties that have been abandoned or are no longer in use. They may be returned as a beneficial asset of a company with prudent planning and by completing selected activities. The tangible economic impacts of a Brownfield property often result in lost taxes and lost jobs. In order to return a Brownfield property to beneficial use various activities are involved, which may include the services provided by many or all of the following: attorneys, financiers, insurance firms, business planners and operators, and environmental consultants. The melding of these diverse resources formore » a specific project must be determined on a case-by-case basis in a flexible manner. Consistent with the desire of much of the populace to return Brownfields to meaningful assets, the US Environmental Protection Agency (USEPA) has now adopted a practical, profitable and reasonably low-risk program termed the Brownfields Incentive. Included in the Brownfields Incentive program are more reasonable, yet safe, cleanup levels. Additionally, this program provides specific protection for Brownfields participants from fines, sanctions and legal actions. Consistent with the USEPA`s program, approximately 40 states have also initiated or are planning to initiate Brownfields programs. It is obvious that programs exist at the Federal and State levels to enable the reasonable redevelopment of existing abandoned or vacant properties. The ability to form a team of professionals to redevelop a Brownfield property is required. A proper team of professionals, each performing activities required to return the property to a functioning status, will assure the success of a Brownfield project.« less

  6. What will it take for disease management to demonstrate a return on investment? New perspectives on an old theme.

    PubMed

    Linden, Ariel Linden

    2006-04-01

    Disease management programs are expected (and usually contractually required) to reduce total costs in the diseases they manage. To discuss the appropriateness of using utilization indexes in lieu of cost and the importance of reviewing utilization trends to determine whether sufficient opportunity exists for a program to be financially effective; and to conduct an analysis to determine the number of admissions that must be reduced for a program to achieve various levels of return on investment. Descriptive. Historical inpatient cost trends, discharges per 10,000 population, the mean length of stay, and emergency department visits per 10,000 population for acute myocardial infarction, congestive heart failure, asthma, and diabetes mellitus are presented. A "number-needed-to-decrease" analysis is performed to determine the number of admissions or emergency department visits that must be reduced to meet varying levels of return on investment. (1) Hospital days per 10,000 population for these conditions trended downward, while costs during the same period escalated. (2) Discharge and emergency department visit rates per 10,000 population were flat and low during the observation period, while the mean length of stay declined. Results of the number-needed-to-decrease analysis suggest that disease management programs will have to decrease admissions 10% to 30% to cover program fees alone. A review of historical utilization trends and a number-needed-to-decrease analysis should be conducted before disease management program implementation to determine whether sufficient opportunity exists to reduce utilization to levels that will ensure a positive return on investment.

  7. Multi-species beam hardening calibration device for x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  9. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening)more » under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.« less

  10. DYCAST: A finite element program for the crash analysis of structures

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Winter, R.; Ogilvie, P.

    1987-01-01

    DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.

  11. Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.

  12. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  13. Uncertain programming models for portfolio selection with uncertain returns

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Peng, Jin; Li, Shengguo

    2015-10-01

    In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.

  14. Impact of a comprehensive population health management program on health care costs.

    PubMed

    Grossmeier, Jessica; Seaverson, Erin L D; Mangen, David J; Wright, Steven; Dalal, Karl; Phalen, Chris; Gold, Daniel B

    2013-06-01

    Assess the influence of participation in a population health management (PHM) program on health care costs. A quasi-experimental study relied on logistic and ordinary least squares regression models to compare the costs of program participants with those of nonparticipants, while controlling for differences in health care costs and utilization, demographics, and health status. Propensity score models were developed and analyses were weighted by inverse propensity scores to control for selection bias. Study models yielded an estimated savings of $60.65 per wellness participant per month and $214.66 per disease management participant per month. Program savings were combined to yield an integrated return-on-investment of $3 in savings for every dollar invested. A PHM program yielded a positive return on investment after 2 years of wellness program and 1 year of integrated disease management program launch.

  15. Formation of the portfolio of high-rise construction projects on the basis of optimization of «risk-return» rate

    NASA Astrophysics Data System (ADS)

    Uvarova, Svetlana; Kutsygina, Olga; Smorodina, Elena; Gumba, Khuta

    2018-03-01

    The effectiveness and sustainability of an enterprise are based on the effectiveness and sustainability of its portfolio of projects. When creating a production program for a construction company based on a portfolio of projects and related to the planning and implementation of initiated organizational and economic changes, the problem of finding the optimal "risk-return" ratio of the program (portfolio of projects) is solved. The article proposes and approves the methodology of forming a portfolio of enterprise projects on the basis of the correspondence principle. Optimization of the portfolio of projects on the criterion of "risk-return" also contributes to the company's sustainability.

  16. Navigation Concepts for NASA's Constellation Program and Human Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.

    2008-01-01

    This viewgraph presentation provides an overview of the Constellation Program, and its goal of returning human presence to the moon. Particular attention is given to the navigation concepts, in terms of the flight to the Moon, the landing on the moon, travel on the surface and the return flight to Earth. Finally the development of new navigation, and communication techniques that will enable the exploration beyond the Moon are reviewed.

  17. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  18. Consumer Law Guide

    DTIC Science & Technology

    1994-06-01

    Consumer Finance Act by making short-term advances to customers who write personal checks in return for substantially smaller amounts of on-the-spot case...practices lawsuit with H&R Block, Inc. forcing tax return company to advertise its "Rapid Refund" program is actually a loan program charging customers ...home equity loans/lines of credit/home improvement loans, etc.) 2. A consumer can have only 9M principal dwelling at a time (includes mobile homes

  19. Estimating Return on Investment in Translational Research: Methods and Protocols

    PubMed Central

    Trochim, William; Dilts, David M.; Kirk, Rosalind

    2014-01-01

    Assessing the value of clinical and translational research funding on accelerating the translation of scientific knowledge is a fundamental issue faced by the National Institutes of Health and its Clinical and Translational Awards (CTSA). To address this issue, the authors propose a model for measuring the return on investment (ROI) of one key CTSA program, the clinical research unit (CRU). By estimating the economic and social inputs and outputs of this program, this model produces multiple levels of ROI: investigator, program and institutional estimates. A methodology, or evaluation protocol, is proposed to assess the value of this CTSA function, with specific objectives, methods, descriptions of the data to be collected, and how data are to be filtered, analyzed, and evaluated. This paper provides an approach CTSAs could use to assess the economic and social returns on NIH and institutional investments in these critical activities. PMID:23925706

  20. Social Return on Investment: A New Approach to Understanding and Advocating for Value in Healthcare.

    PubMed

    Laing, Catherine M; Moules, Nancy J

    2017-12-01

    To determine whether the methodology of social return on investment (SROI) could be a way in which the value of a healthcare-related program (children's cancer camp) could be captured, evaluated, and communicated. The value of healthcare goes beyond what can be captured in financial terms; however, this is the most common type of value that is measured. The SROI methodology accounts for a broader concept of value by measuring social, environmental, and economic outcomes and uses monetary values to represent them. The steps/stages of an SROI analysis were applied to the context of a children's camp for this article. Applying the SROI methodology to this healthcare-related program was feasible and provided insight and understanding related to the impacts of this program. Because of SROI's flexibility, it is a tool that has great potential in a healthcare environment and for leaders to evaluate programmatic return on investment.

  1. Estimating return on investment in translational research: methods and protocols.

    PubMed

    Grazier, Kyle L; Trochim, William M; Dilts, David M; Kirk, Rosalind

    2013-12-01

    Assessing the value of clinical and translational research funding on accelerating the translation of scientific knowledge is a fundamental issue faced by the National Institutes of Health (NIH) and its Clinical and Translational Awards (CTSAs). To address this issue, the authors propose a model for measuring the return on investment (ROI) of one key CTSA program, the clinical research unit (CRU). By estimating the economic and social inputs and outputs of this program, this model produces multiple levels of ROI: investigator, program, and institutional estimates. A methodology, or evaluation protocol, is proposed to assess the value of this CTSA function, with specific objectives, methods, descriptions of the data to be collected, and how data are to be filtered, analyzed, and evaluated. This article provides an approach CTSAs could use to assess the economic and social returns on NIH and institutional investments in these critical activities.

  2. Cardiovascular adaptations in weightlessness: The influence of in-flight exercise programs on the cardiovascular adjustments during weightlessness and upon returning to Earth

    NASA Technical Reports Server (NTRS)

    Bennett, C. H.

    1981-01-01

    The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.

  3. Sample Return Propulsion Technology Development Under NASA's ISPT Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.

    2011-01-01

    Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12

  4. Comparison of properties of fresh and hardened concrete in bridge decks.

    DOT National Transportation Integrated Search

    1971-01-01

    A study was made on 17 bridge decks constructed in 1963 under regular construction procedures. The purpose was (1) to compare important properties of concrete as freshly placed in randomly selected bridge decks with those after hardening of the concr...

  5. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  6. Private Returns to Vocational Education and Training Qualifications. A National Vocational Education and Training Research and Evaluation Program Report

    ERIC Educational Resources Information Center

    Long, Michael; Shah, Chandra

    2008-01-01

    This report presents estimates of the private rates of return for students studying for vocational education and training (VET) qualifications in Australia. Estimates of rates of return are commonly used by governments, businesses and others to compare the merits of different forms of investment where costs or benefits or both are distributed over…

  7. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-09

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.

  8. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  9. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.

  10. Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Bradford, Vann; Russell, Carolyn

    2011-01-01

    Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.

  11. Rapid surface hardening and enhanced tribological performance of 4140 steel by friction stir processing

    DOE PAGES

    Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.

    2015-06-06

    Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less

  12. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  13. Internal contamination of an irradiator discovered during security enhancement.

    PubMed

    Harvey, R P

    2014-08-01

    High-risk radioactive sources regulated under Increased Controls Regulations have been protected by licensed facilities, but the federal government has placed significant emphasis on these sources and has developed initiatives to assist radioactive material licensees. The Department of Energy's Global Threat Reduction Initiative (GTRI) Domestic Threat Reduction Program is a voluntary federally funded program for security enhancements of high-risk radiological material. During the hardening or security enhancement process by the United States Department of Energy (U.S. DOE) contractors, a small amount of radioactive contamination was discovered in a Cesium irradiator. Ultimately, it was decided to pursue disposal with U.S. DOE's Off-Site Recovery Program (OSRP). Radiological devices may have a leaking source or known internal contamination that may cause difficulty during security enhancement. If the licensee understands this, it may provide facilities the opportunity to plan and prepare for unusual circumstances.

  14. Analysis of System-Wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example

    NASA Technical Reports Server (NTRS)

    Bhadra, Dipasis; Morser, Frederick R.

    2006-01-01

    In this paper, the authors review the FAA s current program investments and lay out a preliminary analytical framework to undertake projects that may address some of the noted deficiencies. By drawing upon the well developed theories from corporate finance, an analytical framework is offered that can be used for choosing FAA s investments taking into account risk, expected returns and inherent dependencies across NAS programs. The framework can be expanded into taking multiple assets and realistic values for parameters in drawing an efficient risk-return frontier for the entire FAA investment programs.

  15. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial displacement). Thus SCC reaches higher average bond strength. Although the variation in bond strength at different elevations, due to top-bar effect, is also observed in SCC the extent is less significant than that of TC. Finally, tests show that water depth penetration under pressure is much lower for SCC than for TC.

  16. Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.

    DOT National Transportation Integrated Search

    2007-02-01

    The objective of this project was to evaluate the performance of currently specified epoxy adhesive anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of dowel bonding materials for use in hardened...

  17. Surface hardening of Al alloys through controlled ball-milling and sintering.

    PubMed

    Kim, Seek Hyeoun; Kim, Yong Jin; Ahn, Jung-Ho

    2012-07-01

    One of the drawbacks of aluminum and its alloys is the lack of proper heat-treatment for surface-hardening. In the present work, a new and simple method of hardening the surface of aluminum and its alloys was developed. Low-energy ball-milling using specific process control agents (PCAs) was employed, using subsequent sintering in a controlled atmosphere. The PCAs in the present work were very effective both for milling and the formation of hard nanocrystalline dispersoids during sintering. The residual oxygen in a sintering atmosphere also played an important role in the formation of AIN or Al-O-N dispersoids. Through the proper control of the processing atmosphere and PCAs, the hardness and thickness of the hardened layers could be adjusted. The results of the wear test showed that the present aluminum alloys can be effectively utilized as light-weight components with a good wear resistance. Furthermore, the present method involves a simple forming process of die-compaction and sintering.

  18. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  19. Feasibility of new ladle-treated Hadfield steel for mining purposes

    NASA Astrophysics Data System (ADS)

    El Fawkhry, M. K.

    2018-03-01

    A debate has arisen over the possibility of using a new ladle-treated Hadfield steel instead of conventional heat-treated Hadfield steel in mining applications. This debate might be solved by identifying the differences between the mechanical properties and strain-hardening properties of conventional heat-treated Hadfield steel and its counterpart ladle-treated Hadfield steel. Tensile and compression tests demonstrated that the ductility of ladle-treated Hadfield steel is similar to that of conventional heat-treated steel. However, the strain-hardening property of the ladle-treated Hadfield steel is almost two times higher than that of the heat-treated Hadfield steel. The results of this study demonstrate that the improvement of the strain-hardening behavior is attributable to the low stacking-fault energy of the main austenite matrix, which results from the high segregation coefficient of carbon and manganese solutes of the main austenite matrix into the new eutectic phase. Superior wear abrasion resistance is a potential consequence of different strain-hardening properties under low and high loads.

  20. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  1. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  2. ‘Fire hardening’ spear wood does slightly harden it, but makes it much weaker and more brittle

    PubMed Central

    Chan, Tak Lok

    2016-01-01

    It is usually assumed that ‘fire hardening’ the tips of spears, as practised by hunter–gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  3. Wind Tunnel Experiments: Influence of Erosion and Deposition on Wind-Packing of New Snow

    NASA Astrophysics Data System (ADS)

    Sommer, C.; Fierz, C. G.; Lehning, M.

    2017-12-01

    We observed the formation of wind crusts in wind tunnel experiments. A SnowMicroPen was used to measure the hardness profile of the snow and a Microsoft Kinect provided distributed snow depth data. Earlier experiments showed that no crust forms without saltation and that the dynamics of erosion and deposition may be a key factor to explain wind-packing. The Kinect data could be used to quantify spatial erosion and deposition patterns and the combination with the SnowMicroPen data allowed to study the effect of erosion and deposition on wind-hardening. We found that erosion had no hardening effect on fresh snow and that deposition is a necessary but not sufficient condition for wind crust formation. Deposited snow was only hardened in wind-exposed areas. The Kinect data was used to calculate the wind-exposure parameter Sx. We observed no significant hardening for Sx>0.25. The variability of resulting wind crust hardnesses at Sx<0.25 was still large, however.

  4. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    PubMed Central

    Mohamed, Walid; Miller, Brandon; Porter, Douglas; Murty, Korukonda

    2016-01-01

    The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc) and micrograined (MG) copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper. PMID:28773270

  5. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    NASA Astrophysics Data System (ADS)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  6. Comparative toxicity of two Iodophors to rainbow trout eggs

    USGS Publications Warehouse

    Amend, Donald F.

    1974-01-01

    Toxicity of Wescodyne(R) and Betadine(R) to eyed eggs was not adversely affected by water hardness (as calcium and magnesium) or by exposure periods up to 60 min. Both iodophors were much more toxic below pH 6.0 than at pH 8.0. In general Wescodyne was slightly more toxic than Betadine. Significant egg loss occurred if freshly fertilized eggs were water-hardened in either iodophor at 100 ppm of iodine, but egg loss at 25 ppm of iodine or at 100 ppm if the eggs were disinfected 30 min after water hardening was comparable to the control. Also, there was no effect on the egg mortality or fry development following single or multiple exposures after eggs were water hardened. At pH 6.0 and above, Wescodyne and Betadine at 100 ppm iodine in a 15-min dip would be safe to use on rainbow trout eggs at any stage of development after water hardening. Recommendations and precautions for hatchery use are given.

  7. Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX

    NASA Astrophysics Data System (ADS)

    Rajendran, K.; Walsh, M. F.; de Ruiter, N. J. A.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.; Bell, S. T.; Anderson, N. G.; Woodfield, T. B. F.; Tredinnick, S. J.; Healy, J. L.; Bateman, C. J.; Aamir, R.; Doesburg, R. M. N.; Renaud, P. F.; Gieseg, S. P.; Smithies, D. J.; Mohr, J. L.; Mandalika, V. B. H.; Opie, A. M. T.; Cook, N. J.; Ronaldson, J. P.; Nik, S. J.; Atharifard, A.; Clyne, M.; Bones, P. J.; Bartneck, C.; Grasset, R.; Schleich, N.; Billinghurst, M.

    2014-03-01

    This paper discusses methods for reducing beam hardening effects and metal artefacts using spectral x-ray information in biomaterial samples. A small-animal spectral scanner was operated in the 15 to 80 keV x-ray energy range for this study. We use the photon-processing features of a CdTe-Medipix3RX ASIC in charge summing mode to reduce beam hardening and associated artefacts. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. The cupping effect and streak artefacts are quantified in the spectral datasets. The results show reduction in beam hardening effects and metal artefacts in the narrow high energy range acquired using the spectroscopic detector. A post-reconstruction comparison between CdTe-Medipix3RX and Si-Medipix3.1 is discussed. The raw data and processed data are made available (http://hdl.handle.net/10092/8851) for testing with other software routines.

  8. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  9. Financing commercial RLVs: Considering government incentives

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1997-01-01

    There appears to be a national goal to achieve a commercial space transportation industry that provides launch services utilizing a fleet of reusable launch vehicles (RLVs). Because of the combination of large required investment, inadequate rate of return, and perceived high risk, industry has indicated that this goal may not be achievable without government support. What form of government support will likely be necessary? Government programs and policies can effect private sector investment decisions by reducing risk perceptions, reducing capital requirements, and increasing expected rates of return. Different programs and policies will have different impacts. For example, tax policies will affect expected return on investment but are likely to have little or no effect on risk perceptions and magnitude of required investment, whereas anchor tenancy is likely to alter risk perceptions and may increase expected rates of return. This paper is concerned with the development of an approach that may be used to identify packages of government incentives that may be required to influence private sector investment decisions so as to achieve the desired goal of a commercial space transportation industry that provides launch services utilizing a fleet of RLVs. The paper discusses the relationship of government incentive programs and policies to the RLV investment decision.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J.W.

    An aircraft battle-damage repair (BDR) program is described that provides for the assessment and repair of battle damage and the return of badly damaged aircraft to their home bases. The program methodology is based on the use of time-saving temporary repairs and associated training and materials provision. BDR is shown to require knowledge of damage mechanisms and specifications for the minimum effective requirements for BDR support, and the method can facilitate the return of 50 percent of damaged aircraft within 24 hours.

  11. 2005 Earth-Mars Round Trip

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  12. Estimating the Return of Persons Living With HIV/AIDS to New Orleans: Methods for Conducting Disease Surveillance in the Wake of a Natural Disaster

    PubMed Central

    Robinson, William T.; Wendell, Debbie; Gruber, DeAnn; Foxhood, Joseph; Scalco, M. Beth; Zapata, Amy

    2008-01-01

    Hurricane Katrina disrupted HIV/AIDS surveillance by invalidating the New Orleans, La, surveillance and population data on persons living with HIV/AIDS. We describes 2 methods—population return and HIV surveillance data—to estimate the return of the infected population to New Orleans. It is estimated that 58% to 64% of 7068 persons living with HIV/AIDS returned by summer 2006. Although developed for HIV planning, these methods could be used with other disease surveillance programs. PMID:18309138

  13. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  14. Effect of Alloying on the Strength Properties and the Hardening Mechanisms of Nitrogen-Bearing Austenitic Steels after Hot Deformation and Annealing

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2017-11-01

    The main mechanisms of hardening nitrogen-bearing austenitic steels that operate under various thermomechanical treatment conditions at various steel compositions are considered. The strength properties of the steels are shown to depend on the content of interstitial elements, namely, carbon and nitrogen, and the influence of these elements on the stacking fault energy is estimated. The ratios of the main alloying elements that favor an increase or a decrease in the stacking fault energy are found to achieve the desirable level of strain hardening provided that an austenitic structure of steel is retained.

  15. Influence of ultrasonic sound on physico-mechanical characteristics of titanium alloys

    NASA Astrophysics Data System (ADS)

    Akushskaya, O. M.; Papsheva, N. D.

    2018-03-01

    The paper presents data on the influence of ultrasonic vibrations on the main physico-mechanical characteristics in the hardening of titanium alloys. Hardening was carried out during rolling and using free balls in a special working chamber with the imposition of ultrasonic vibrations. The studies have shown that ultrasonic hardening of titanium alloys promotes crushing blocks of mosaic and the formation of a fine-grain structure with a high density of dislocations, changes the phase composition of the surface layer and causes the formation of compressive residual stresses. At the same time, technological heredity is practically not manifested. The endurance range of titanium alloys increases.

  16. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  17. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  18. Nonlinear behavior of shells of revolution under cyclic loading

    NASA Technical Reports Server (NTRS)

    Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.

    1972-01-01

    A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions.

  19. Fractography of induction-hardened steel fractured in fatigue and overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, C.G.; Laird, C.

    1997-07-01

    The fracture surfaces of induction-hardened steel specimens obtained from an auto axle were characterized, macroscopically and microscopically, after being fractured in fatigue and monotonic overload. Specimens were tested in cyclic three-point bending under load control, and the S-N curve was established for specimens that had been notched by spark machining to facilitate fractography. Scanning electron microscopy of the fractured surfaces obtained for lives spanning the range 17,000 to 418,000 cycles revealed diverse fracture morphologies, including intergranular fracture and transgranular fatigue fracture. The results are being offered to assist in the analysis of complex field failures in strongly hardened steel.

  20. The effect of some heat treatment parameters on the dimensional stability of AISI D2

    NASA Astrophysics Data System (ADS)

    Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus

    2008-01-01

    The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.

Top