Yim, Jin Hee; Kim, Kyoung W; Kim, Sang D
2006-11-02
In this study, the effect of hardness on the combined outcome of metal mixtures was investigated using Daphnia magna. The toxic unit (TU) was calculated using modified LC(50) values based on the hardness (i.e., LC(50-soft) and LC(50-hard)). From a bioassay test, the degree of sensitivity to hardness on the toxicity changes was in the order: Cd
The effect of question order on evaluations of test performance: Can the bias dissolve?
Bard, Gabriele; Weinstein, Yana
2017-10-01
Question difficulty order has been shown to affect students' global postdictions of test performance. We attempted to eliminate the bias by letting participants experience the question order manipulation multiple times. In all three experiments, participants answered general knowledge questions and self-evaluated their performance. In Experiment 1, participants studied questions and answers in easy-hard or hard-easy question order prior to taking a test in the same order. In Experiment 2, participants took the same test twice in the opposite question order (easy-hard then hard-easy, or hard-easy then easy-hard). In Experiment 3, participants took two different tests in the opposite question order (easy-hard then hard-easy, or hard-easy then easy-hard). In all three experiments, we were unable to eliminate the bias, which suggests that repeated exposure is insufficient to overcome a strong initial anchor.
Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia
Lasier, P.J.; Winger, P.V.; Hardin, I.R.
2006-01-01
Ceriodaphnia dubia were cultured in four reconstituted water formulations with hardness and alkalinity concentrations ranging from soft to the moderately hard water that is required by whole-effluent toxicity (WET) testing methods for culturing test organisms. The effects of these culture formulations alone and in combination with two levels of Cl-, SO42, and HCO3- on reproduction of C. dubia were evaluated with the standard three-brood test. Reproduction was significantly reduced when test waters had lower hardness than culture waters. However, reproduction was not significantly different when animals cultured in low-hardness waters were exposed to moderately hard waters. The hardness of the culture water did not significantly affect the sensitivity of C. dubia to the three anions. Conversely, increased hardness in test waters significantly reduced the toxicities of Cl- and SO42-, with HCO3- toxicity following the same pattern. Alkalinity exhibited no consistent effect on Cl- and SO42- toxicity. The physiological stress of placing animals cultured in moderately hard water into softer test waters might contribute to marginal failures of otherwise nontoxic effluents. The standard WET protocol should be revised to allow the culture of C. dubia under lower hardness conditions to better represent local surface water chemistries.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
[An in vitro investigation of wear resistance and hardness of three kinds of new composite resins].
Wang, Li-kai; Shi, Lian-shui; Zhu, Hong-shui
2008-02-01
To evaluate wear resistance and hardness of three kinds of new composite resins. Three kinds of new composite resins, Solidex, Spectrum, Filtek Z350, were tested. Enamel as control group. A refited MG-200 wear machine was used in this study. Scanning electron microscope (SEM) was used to observe the friction surface of each tested material. Hardness of each tested material was determined by Vickers indentation technique. The data of wear and hardness were analyzed by Mann-Whitney test and 1-way ANOVA. The relationship between the hardness of the composites and the amount of wear of them was determined by a regression analysis method. Filtek Z350 showed the lowest volumetric wear and highest Vickers hardness in the composites (P < 0.05). No significant differences in wear and hardness were observed between Solidex and Spectrum (P > 0.05). Significant relationships were observed between the hardness of the composites and the amount of wear of them (r = 0.968 6) (P < 0.05). Different wear characters of the friction surface of the tested materials were observed by SEM. Nanofilled composite was superior to the hybrid composite in wear resistance and hardness.
Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet
NASA Astrophysics Data System (ADS)
Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu
Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.
A study on hardness behavior of geopolymer paste in different condition
NASA Astrophysics Data System (ADS)
Zainal, Farah Farhana; Hussin, Kamarudin; Rahmat, Azmi; Abdullah, Mohd Mustafa Al Bakri; Shamsudin, Shaiful Rizam
2016-07-01
This study has been conducted to understand the hardness behavior of geopolymer paste in different conditions; with and without being immersed in water. Geopolymer paste has been used nowadays as an alternative way to reduce global warming pollution by carbon dioxide (CO2) released to the air caused from the production of Ordinary Portland Cement (OPC). Geopolymer has many advantages such as high compressive strength, lower water absorption and lower porosity. Geopolymer paste in this study was made from a mixture of fly ash and alkaline activators. The alkaline activators that have been used were sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) solution. Then the mixture was allowed to harden for 24hrs at ambient temperature and then placed in the oven for 24hrs with 60°C for the curing process. The hardness testing was conducted after a few months when the samples already achieved the optimum design. The samples were divided to two conditions; without immersion which was placed at ambient temperature (S1) and immersed in water for one week (S2). The samples then are divided into two at the center and testing was conducted into 4 parts which are part 1, part 2, part 3 and part 4. Various methods of non-destructively testing concrete and mortar have been in use for many years such as Vickers hardness test, Rockwell hardness test, Brinell hardness test and many more. The Rockwell hardness test method as defined in ASTM E-18 is the most commonly used hardness test method which is also used in this study. From the results, S1 has higher hardness value than S2 for all parts with the maximum value of S1 is 118.6 and the minimum value is 71.8. The maximum value of S2 is 114.4 and the minimum value is 0. The central part of the geopolymer paste also showed greater hardness values than the edge area of the samples.
ERIC Educational Resources Information Center
PEPNet-West, 2010
2010-01-01
Many children find school tests difficult, but children who are deaf or hard of hearing may find them especially so. Reports from the 2008 Test Equity Summit indicate that disproportionate numbers of students who are deaf or hard of hearing at all grade levels are failing critically important tests even though their classroom work may show that…
The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation
NASA Astrophysics Data System (ADS)
Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya
2004-07-01
We used atomic force microscopy (AFM) for the indentation test evaluating the indentation hardness of materials in the nanometer range. BK7, fused silica, and single-crystal silicon were used as test sample materials. The data analysis processes used to determine the contact area were important in evaluating the indentation hardness of the materials. The direct measurement of the size of the residual hardness impression was useful in evaluating the contact area even in the nanometer region. The results led us to conclude that AFM indentation using a sharp indenter is a powerful method for estimating the indentation hardness in the nanometer range.
Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures
NASA Astrophysics Data System (ADS)
Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro
2013-10-01
In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.
Dionysopoulos, Dimitrios; Tolidis, Kosmas; Gerasimou, Paris; Sfeikos, Thrasyvoulos
The purpose of this study was to investigate the effect of radiant heat, ultrasonic treatment, and 42.7 wt% CaCl₂ solution on fluoride release and surface hardness in three conventional glass-ionomer cements (GICs). The fluoride release patterns of each GIC were evaluated during a 28-day period using a fluoride ion-selective electrode. The surface hardness of the tested GICs was evaluated 24 hours after preparation of the specimens using Vickers hardness test. Statistical analysis of the data was made using analysis of variance and Bonferroni post hoc test (α = .05). Radiant heat, ultrasonic, and CaCl₂ solution treatments reduced fluoride release and increased the surface hardness of the tested GICs (P < .05). Among the tested GICs, differences in fluoride release and surface hardness were observed (P < .05). The clinical treatments investigated may be effective methods for improving the setting reaction of GICs and may achieve sufficient initial mechanical properties earlier. Although a reduction in fluoride release occurs after the treatments, anticariogenic properties of the GICs may not be significantly affected.
Assessment of surface hardness of acrylic resins submitted to accelerated artificial aging.
Tornavoi, D C; Agnelli, J A M; Lepri, C P; Mazzetto, M O; Botelho, A L; Soares, R G; Dos Reis, A C
2012-06-01
The aim of this study was to assess the influence of accelerated artificial aging (AAA) on the surface hardness of acrylic resins. The following three commercial brands of acrylic resins were tested: Vipi Flash (autopolymerized resin), Vipi Wave (microwave heat-polymerized resin) and Vipi Cril (conventional heat-polymerized resin). To perform the tests, 21 test specimens (65x10x3 mm) were made, 7 for each resin. Three surface hardness readings were performed for each test specimen, before and after AAA, and the means were submitted to the following tests: Kolmogorov-Smirnov (P>0.05), Levene Statistic, Two-way ANOVA, Tukey Post Hoc (P<0.05) with the SPSS Statistical Software 17.0. The analysis of the factors showed significant differences in the hardness values (P<0.05). Before aging, the autopolymerized acrylic resin Vipi Flash showed lower hardness values when compared with the heat-polymerized resin Vipi Cril (P=0.001). After aging, the 3 materials showed similar performance when compared among them. The Vipi Cril was the only one affected by AAA and showed lower hardness values after this procedure (Pp=0.003). It may be concluded that accelerated artificial aging influenced surface hardness of heat-polymerized acrylic resin Vipi Cril.
[Evaluation of mechanical properties of four kinds of composite resins for inlay].
Jiang, Ling-ling; Liu, Hong; Wang, Jin-rui
2011-04-01
To evaluate the compressive strength, wear resistance, hardness, and soaking fatigue of four composite resins for inlay, which were Ceramage, Surefil, Solitaire 2, and Filtek(TM) Z350. Scanning electron microscope (SEM) was used to analyze the microstructures of the wear surface of the samples. The samples for the compression test, hardness test and wear were prepared. The samples were respectively immersed in the artificial saliva for 2 months for immersed test. The electronic universal testing machine was used to test the compression strength. Hardness was quantified by micro-Vickers hardness test. The wear tester was used for the wear test. SEM was used to analyze the microstructures of the wear surface of samples. All the data was analyzed by using SPSS17.0 software package. The compressive strength of Surefil was the biggest which was significantly higher than the other three resins before soaking (P<0.05). After soaking, there was no significant difference between the composite resins (P>0.05). The hardness of Surefil was the best, and significant difference was found between the hardness of the materials before soaking (P<0.05). After soaking, no significant difference was obtained between the hardness of Surefil and Filtek(TM) Z350 (P>0.05).The compressive strength and hardness of 4 materials decreased after soaking in artificial saliva. But only the compressive strength of Filtek(TM) Z350 had no significant change after immersion (P>0.05). Except Filtek(TM) Z350, there was significant difference between the other three materials (P<0.05). Significant relationship was observed between wear and hardness of three materials (P<0.05). According to SEM observation, abrasive wear occurred in four materials. In addition to Ceramage, other composite resins had adhesive wear. The mechanical property of Surefil is the best, and it is suitable for fabrication of posterior inlay. Filtek(TM) Z350's ability to resist fatigue is the best.
Comparative Evaluation of Quantitative Test Methods for Gases on a Hard Surface
2017-02-01
COMPARATIVE EVALUATION OF QUANTITATIVE TEST METHODS FOR GASES ON A HARD SURFACE ECBC-TR-1426 Vipin Rastogi...1 COMPARATIVE EVALUATION OF QUANTITATIVE TEST METHODS FOR GASES ON A HARD SURFACE 1. INTRODUCTION Members of the U.S. Environmental...Generator 4 2.4 Experimental Design Each quantitative method was performed three times on three consecutive days. For the CD runs, three
Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca
Lasier, P.J.; Winger, P.V.; Bogenrieder, K.J.
2000-01-01
Manganese is a toxic element frequently overlooked when assessing toxicity of effluents, sediments and pore waters. Manganese can be present at toxic levels in anoxic solutions due to its increased solubility under chemically-reducing conditions, and it can remain at those levels for days in aerated test waters due to slow precipitation kinetics. Ceriodaphnia dubia and Hyalella azteca are freshwater organisms often used for toxicity testing and recommended for assessments of effluents and pore waters. Lethal and reproductive-inhibition concentrations of Mn were determined for C. dubia in acute 48h tests and chronic 3-brood tests using animals <24 h old and between 24 and 48 h old. Sensitivity of H. azteca was determined with 7d old animals in acute 96h tests. Tests were run at three levels of water hardness to assess the amelioratory effect, which was often significant. Manganese concentrations were measured analytically at test initiation and after 96 h for calculations of toxicity endpoints and determinations of Mn precipitation during the tests. Minimal amounts of Mn (below 3%) precipitated within 96 h. LC50s determined for H. azteca progressively increased from 3.0 to 8.6 to 13.7 mg Mn/L in soft, moderately-hard and hard waters, respectively. The tolerance of C. dubia to Mn was not significantly different between moderately-hard and hard waters, but was significantly lower in soft water. There was no significant difference in Mn sensitivity between the ages of C. dubia tested. Acute LC50 values for C. dubia averaged 6.2, 14.5 and 15.2 mg Mn/L and chronic IC50 values averaged 3.9, 8.5 and 11.5 mg Mn/L for soft, moderately-hard and hard waters, respectively. Manganese toxicity should be considered when assessing solutions with concentrations near these levels.
Comparison of time-dependent changes in the surface hardness of different composite resins
Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek
2013-01-01
Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P < 0.05). The lowest was obtained with Filtek Silorane. The hardness values of all test groups increased after 24 h (P < 0.05). Conclusion: Although silorane-based composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724
Lasier, Peter J.; Hardin, Ian R.
2010-01-01
Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
Incubating rainbow trout in soft water increased their later sensitivity to cadmium and zinc
Mebane, Christopher A.; Hennessy, Daniel P.; Dillon, Frank S.
2010-01-01
Water hardness is well known to affect the toxicity of some metals; however, reports on the influence of hardness during incubation or acclimation on later toxicity to metals have been conflicting. We incubated rainbow trout (Oncorhynchus mykiss) near the confluence of two streams, one with soft water and one with very-soft water (average incubation hardnesses of about 21 and 11 mg/L as CaCO3, respectively). After developing to the swim-up stage, the fish were exposed for 96-h to a mixture of cadmium (Cd) and zinc (Zn) in water with a hardness of 27 mg/L as CaCO3. The fish incubated in the higher hardness water were about two times more resistant than the fish incubated in the extremely soft water. This difference was similar or greater than the difference that would have been predicted by criteria hardness equations had the fish been tested in the different acclimation waters. We think it is plausible that the energy demands for fish to maintain homeostasis in the lower hardness water make the fish more sensitive to metals that inhibit ionoregulation such as Cd and Zn. We suggest that if important decisions were to be based upon test results, assumptions of adequate hardness acclimation should be carefully considered and short acclimation periods avoided. If practical, incubating rainbow trout in the control waters to be tested may reduce uncertainties in the possible influences of differing rearing water hardness on the test results.
A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter
NASA Astrophysics Data System (ADS)
Mencin, P.; van Tyne, C. J.; Levy, B. S.
2009-11-01
The properties and characteristics of the surface layer of forging dies are critical for understanding and controlling wear. However, the surface layer is very thin, and appropriate property measurements are difficult to obtain. The objective of the present study is to determine if nanoindenter testing provides a reliable method, which could be used to measure the surface hardness in forging die steels. To test the reliability of nanoindenter testing, nanoindenter values for two quenched and tempered steels (FX and H13) are compared to microhardness and macrohardness values. These steels were heat treated for various times to produce specimens with different values of hardness. The heat-treated specimens were tested using three different instruments—a Rockwell hardness tester for macrohardness, a Vickers hardness tester for microhardness, and a nanoindenter tester for fine scale evaluation of hardness. The results of this study indicate that nanoindenter values obtained using a Nanoindenter XP Machine with a Berkovich indenter reliably correlate with Rockwell C macrohardness values, and with Vickers HV microhardness values. Consequently, nanoindenter testing can provide reliable results for analyzing the surface layer of hot forging dies.
A comparison of the wear resistance and hardness of indirect composite resins.
Mandikos, M N; McGivney, G P; Davis, E; Bush, P J; Carter, J M
2001-04-01
Various new, second-generation indirect composites have been developed with claimed advantages over existing tooth-colored restorative materials. To date, little independent research has been published on these materials, and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Four second-generation indirect composites (Artglass, belleGlass, Sculpture, and Targis) were tested for wear resistance and hardness against 2 control materials with well-documented clinical application. Human enamel was also tested for comparison. Twelve specimens of each material were fabricated according to the manufacturers' directions and subjected to accelerated wear in a 3-body abrasion, toothbrushing apparatus. Vickers hardness was measured for each of the tested materials, and energy dispersive x-ray (EDX) spectroscopy was performed to determine the elemental composition of the composite fillers. The statistical tests used for wear and hardness were the Kruskal-Wallis 1-way ANOVA test with Mann-Whitney tests and 1-way ANOVA with multiple comparisons (Tukey HSD). The Pearson correlation coefficient was used to determine the existence of a relationship between the hardness of the materials and the degree to which they had worn. The level of statistical significance chosen was alpha=.05. The control material Concept was superior to the other composites in wear resistance and hardness and had the lowest surface roughness. Significant relationships were observed between depth of wear and hardness and between depth of wear and average surface roughness. Enamel specimens were harder and more wear resistant than any of the composites. EDX spectroscopy revealed that the elemental composition of the fillers of the 4 new composites was almost identical, as was the composition of the 2 control composites. The differences in wear, hardness, and average surface roughness may have been due to differences in the chemistry or method of polymerization of the composites. Further research in this area should be encouraged. It was also apparent that the filler present in the tested composites did not exactly fit the manufacturers' descriptions.
NASA Astrophysics Data System (ADS)
Chen, Hui; Cai, Li-Xun
2018-04-01
Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.
Novel platens to measure the hardness of a pentagonal shaped tablet.
Malladi, Jaya; Sidik, Kurex; Wu, Sutan; McCann, Ryan; Dougherty, Jeffrey; Parab, Prakash; Carragher, Thomas
2017-03-01
Tablet hardness, a measure of the breaking force of a tablet, is based on numerous factors. These include the shape of the tablet and the mode of the application of force. For instance, when a pentagonal-shaped tablet was tested with a traditional hardness tester with flat platens, there was a large variation in hardness measurements. This was due to the propensity of vertices of the tablet to crush, referred to as an "improper break". This article describes a novel approach to measure the hardness of pentagonal-shaped tablets using modified platens. The modified platens have more uniform loading than flat platens. This is because they reduce loading on the vertex of the pentagon and apply forces on tablet edges to generate reproducible tablet fracture. The robustness of modified platens was assessed using a series of studies, which included feasibility and Gauge Repeatability & Reproducibility (R&R) studies. A key finding was that improper breaks, generated frequently with a traditional hardness tester using flat platens, were eliminated. The Gauge R&R study revealed that the tablets tested with novel platens generated consistent values in hardness measurements, independent of batch, hardness level, and day of testing, operator and tablet dosage strength.
Traceability in hardness measurements: from the definition to industry
NASA Astrophysics Data System (ADS)
Germak, Alessandro; Herrmann, Konrad; Low, Samuel
2010-04-01
The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).
NASA Technical Reports Server (NTRS)
Mutchler, W H; Buzzard, R W
1930-01-01
The survey of the possibilities for distinguishing between plain carbon and chromium-molybdenum steel tubing included the Herbert pendulum hardness, magnetic, sparks, and chemical tests. The Herbert pendulum test has the disadvantages of all hardness tests in being limited to factory use and being applicable only to scale-free, normalized material. The small difference in the range of hardness values between plain carbon and chromium-molybdenum steels is likewise a disadvantage. The Rockwell hardness test, at present used in the industry for this purpose, is much more reliable. It may be concluded on the basis of the experiments performed that of all methods surveyed, spark testing appears to be, at present, the most suitable for factory use from the standpoint of speed, accuracy, nondestructiveness and reliability. It is also applicable for field use.
Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA
NASA Technical Reports Server (NTRS)
Johnston, A.; Barnes, C.
1995-01-01
Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.
Qi, Sen; Mitchell, Ross E
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the validity and reliability of using the Stanford for this special student population still require extensive scrutiny. Recent shifts in educational policy environment, which require that schools enable all children to achieve proficiency through accountability testing, warrants a close examination of the adequacy and relevance of the current large-scale testing of deaf and hard-of-hearing students. This study has three objectives: (a) it will summarize the historical data over the last three decades to indicate trends in academic achievement for this special population, (b) it will analyze the current federal laws and regulations related to educational testing and special education, thereby identifying gaps between policy and practice in the field, especially identifying the limitations of current testing programs in assessing what deaf and hard-of-hearing students know, and (c) it will offer some insights and suggestions for future testing programs for deaf and hard-of-hearing students.
The effect of case hardening treatment on aluminum 7075 toward its hardness and tensile strength
NASA Astrophysics Data System (ADS)
Darsono, Febri Budi; Triyono, Teguh; Surojo, Eko
2018-02-01
This research was aimed at figuring out the effect of case hardening treatment on aluminum 7075 toward its hardness and tensile strength. Pack carburizing was the method used in this process. It was conducted in 2 hours of holding time in various solution heat treatment (SHT): 350°C, 400°C, 450°C, and 500° C using smoergen oven, which was then followed by quenching. Several tests to see the effect of the treatment were done before and after the treatment, namely: Vickers hardness test using HWMMT-X7, tensile test ASTM B557-84 using SANS UTM, XRD test using Rigaku Benchtop, and SEM-EDS test using JEOL JSM-6510 LA. The result showed that the hardness and tensile of aluminum 7075 before treatment were 59.1 VHN and 235.7 Mpa. After treatment, its hardness values were 94.0, 120.7, 141.3, and 145.9 VHN and the tensile strengths were 321.7, 410.0, 480.0, and 538.3 Mpa. The result showed that SHT temperature rise in pack carburizing process increased the tensile strength, while the increase of the hardness value is due to the formation of Al4C3 phase on the aluminum surface.
Hardness of enamel exposed to Coca-Cola and artificial saliva.
Devlin, H; Bassiouny, M A; Boston, D
2006-01-01
The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.
Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho
2013-09-01
The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.
Measuring Rind Thickness on Polyurethane Foam
NASA Technical Reports Server (NTRS)
Johnson, C.; Miller, J.; Brown, H.
1985-01-01
Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.
Mechanical properties of resin cements with different activation modes.
Braga, R R; Cesar, P F; Gonzaga, C C
2002-03-01
Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.
Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V
2016-08-01
The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Utility of the ImPACT test with deaf adolescents.
Reesman, Jennifer; Pineda, Jill; Carver, Jenny; Brice, Patrick J; Zabel, T Andrew; Schatz, Philip
2016-02-01
The goals of the study included empirical examination of the utility of the Immediate and Post-Concussion Assessment and Cognitive Testing (ImPACT) test with adolescents who are deaf or hard-of-hearing and to investigate patterns of performance at baseline that may arise in the assessment of this population. Baseline assessment of student-athletes has been conducted on a widespread scale with focus on performance of typically developing student-athletes and some clinical groups, though to date no studies have examined adolescents who are deaf or hard-of-hearing. Retrospective and de-identified ImPACT baseline test used with deaf and hard-of-hearing high-school student-athletes (N = 143; 66% male, mean age = 16.11) was examined. Review indicated significant differences in some composite scores between the deaf and hard-of-hearing group and hearing normative comparisons. A possible marker of task misunderstanding was identified to occur more frequently within the deaf and hard-of-hearing sample (13% in deaf sample vs. .31% in hearing sample). Results may provide support for the consideration and use of additional measures to ensure comprehension of task demands when considering this tool for use with deaf and hard-of-hearing adolescents.
Hardness map of human meta tarsals and phalanges of toes.
Manarvi, Irfan
2016-08-01
Predicting location of fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers therefore have proposed further studies due to inaccuracies in measurement methods, testing machines and experimental errors. Advancement and availability of hardware, measuring instrumentation and testing machines can now provide remedies to these limitations. Human foot is a critical part of body exposed to various forces throughout its life. A number of products are developed for using over it for protection and care. Which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Not knowing how the hardness is spread all over the Meta tarsals and phalanges is one of major contributory factor for unsatisfactory design of foot protection products. This paper provides a complete hardness distribution map developed by experimental testing of all the Meta tarsals and Phalanges of toes for a typical human foot. The bones were taken from two left feet of a 40 and 42 year old male cadaver. These were dehydrated prior to measurements of hardness using Leeb hardness testing method. Hardness was measured around the circumference of a bone as well as along its length. Hardness values can be related to tensile strength of the bones to predict possible values of stress that could be borne by these bones. Results may also be used for design and developing various accessories for human feet health care and comfort.
The effect of thermocycling on the fracture toughness and hardness of core buildup materials.
Medina Tirado, J I; Nagy, W W; Dhuru, V B; Ziebert, A J
2001-11-01
Thermocycling has been shown to cause surface degradation of many dental materials, but its effect on the fracture toughness and hardness of direct core buildup materials is unknown. This study was designed to determine the effect of thermocycling on the fracture toughness and hardness of 5 core buildup materials. Fifteen specimens were prepared from each of the following materials: Fluorocore, VariGlass VLC, Valiant PhD, Vitremer, and Chelon-Silver. American Standard for Testing Materials guidelines for single-edge notch, bar-shaped specimens were used. Ten specimens of each material were thermocycled for 2000 cycles; the other 5 specimens were not thermocycled. All specimens were subjected to 3-point bending in a universal testing machine. The load at fracture was recorded, and the fracture toughness (K(IC)) was calculated. Barcol hardness values were also determined. Data were analyzed with 1-way analysis of variance and compared with the Tukey multiple range test (P<.05). Pearson's correlation coefficient was also calculated to measure the association between fracture toughness and hardness. Fluorocore had the highest thermocycled mean K(IC) and Valiant PhD the highest non-thermocycled K(IC). Chelon-Silver demonstrated the lowest mean K(IC) both before and after thermocycling. One-way analysis of variance demonstrated significant differences between conditions, and the Tukey test showed significant differences (P<.05) between materials for both conditions. Most specimens also showed significant hardness differences between conditions. Pearson's correlation coefficient indicated only a mild-to-moderate correlation between hardness and fracture toughness. Within the limitations of this study, the thermocycling process negatively affected the fracture toughness and hardness of the core buildup materials tested.
Shore hardness and tensile bond strength of long-term soft denture lining materials.
Kim, Bong-Jun; Yang, Hong-So; Chun, Min-Geoung; Park, Yeong-Joon
2014-11-01
Reduced softness and separation from the denture base are the most significant problems of long-term soft lining materials. The purpose of this study was to evaluate the durometer Shore A hardness and tensile bond strength of long-term soft denture lining materials and to investigate the correlation between these 2 properties. A group of 7 soft lining materials, 6 silicone based (Dentusil, GC Reline Soft, GC Reline Ultrasoft, Mucopren Soft, Mucosoft, Sofreliner Tough) and 1 acrylic resin based (Durabase), were evaluated for durometer Shore A hardness and tensile bond strength to heat-polymerized denture base resin (Lucitone 199). A specially designed split mold and loading assembly with a swivel connector were used for the durometer Shore A hardness test and tensile bond strength test to improve accuracy and facilitate measurement. Three specimens of each product were stored in a 37°C water bath, and durometer Shore A hardness tests were carried out after 24 hours and 28 days. A tensile bond strength test was carried out for 10 specimens of each product, which were stored in a 37°C water bath for 24 hours before the test. Repeated-measures ANOVA, the Kruskal-Wallis and Duncan multiple range tests, and the Spearman correlation were used for statistical analyses. The repeated-measures ANOVA found significant durometer Shore A hardness differences for the materials (P<.001) and the interaction effect (aging×materials) (P<.001). GC Reline Ultrasoft showed the lowest mean durometer Shore A hardness (21.30 ±0.29 for 24 hours, 34.73 ±0.47 for 28 days), and GC Reline Soft showed the highest mean durometer Shore A hardness (50.13 ±0.48 for 24 hours, 57.20 ±0.28 for 28 days). The Kruskal-Wallis test found a significant difference in the mean tensile bond strength values (P<.001). GC Reline Ultrasoft (0.82 ±0.32 MPa) and Mucopren Soft (0.96 ±0.46 MPa) had a significantly lower mean tensile bond strength (P<.05). GC Reline Soft had the highest mean tensile bond strength (2.99 ±0.43 MPa) (P<.05), and acrylic resin-based Durabase showed a significantly different tensile bond strength (1.32 ±0.16 MPa), except for Mucopren Soft, among the materials (P<.05). The tensile bond strength and Shore A hardness showed a statistically insignificant moderate positive correlation (r=0.571, P=.180 for Shore A hardness 24 hours versus tensile bond strength; r=0.607, P=.148 for Shore A hardness 28 days versus tensile bond strength). Within the limitations of this study, significant differences were found in durometer Shore A hardness (with aging time) and tensile bond strength among the materials. Adhesive failure was moderately correlated with durometer Shore A hardness, especially after 28 days, but was not significant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Correlation of impression removal force with elastomeric impression material rigidity and hardness.
Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob
2013-07-01
Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES. Moreover, there was no positive correlation (p > 0.05) between impression removal force and rigidity or hardness with either medium- or light-body materials. The evidence suggests that high impression material rigidity and hardness are not predictors of impression removal difficulty. © 2013 by the American College of Prosthodontists.
ERIC Educational Resources Information Center
PEPNet-West, 2010
2010-01-01
For most students, test taking is a challenge. For students who are deaf or hard of hearing, classroom quizzes, tests, and exams are even more challenging. Standardized tests--The SAT, ACT, state proficiency tests, No Child Left Behind annual tests, and psychoeducational evaluations--present additional challenges for students who are deaf or hard…
Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…
Neppelenbroek, Karin Hermana; Kurokawa, Luciana Ayumi; Procópio, Andréa Lemos Falcão; Pegoraro, Thiago Amadei; Hotta, Juliana; Mello Lima, Jozely Francisca; Urban, Vanessa Migliorini
2015-01-01
To evaluate the effect of successive cycles of disinfection in different denture cleansers on the surface roughness and the Vickers hardness of two layers of acrylic resin (base-BL and enamel-EL) of two commercial cross-linked artificial teeth. The occlusal surfaces of 60 acrylic resin denture posterior teeth (Trilux-TLX and SR Orthosit PE-SRO) embedded in autopolymerizing acrylic resin were ground fat with 1200-grit silicon carbide paper. Specimens were stored in distilled water at 37°C and then submitted to the microhardness (VHN) and roughness (μm) tests. Specimens were stored in distilled water at 37°C for 90 days and submitted to 720 disinfection cycles in sodium hypochlorite at 0.5%, 30% vinegar solution or distilled water (control). Afterward, micro-hardness and roughness tests were again performed. Data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Hypochlorite immersion decreased the hardness of BL and EL of SRO teeth, with an average reduction of 10.11% (p<0.008). TLX teeth demonstrated a hardness reduction of 28.96% of both layers for all solutions including water (p<0.0000). The roughness of both teeth was not affected by denture cleansers (p>0.37). Hypochlorite promoted deleterious effects on the hardness of both layers of the artificial teeth tested. Immersion in vinegar and water also resulted in reduction of hardness of TLX teeth. The surface hardness of the different layers of cross-linked artificial teeth can be altered by daily disinfection in denture cleansers commonly indicated for removable dentures.
Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M
2018-06-20
The current study evaluated the effects of autoclave polymerization both with and without glass fiber (GF) reinforcement on the surface roughness and hardness of acrylic denture base material. Ninety disc specimens (30×2.5 mm) were prepared from Vertex resin and divided according to polymerization techniques into a water bath, short and long autoclave polymerization groups. Tested groups were divided into three subgroups according to the GF concentration (0, 2.5, and 5 wt%). Profilometer and Vickers hardness tests were performed to measure surface roughness and hardness. ANOVA and Tukey-Kramer multiple comparison tests analyzed the results, and p≤0.05 was considered statistically significant. Autoclave polymerization significantly decreased the surface roughness and increased the hardness of acrylic resin without GF reinforcement (p<0.05). However, 5 wt% GF addition significantly increased surface roughness and decreased hardness of the autoclave polymerized denture base resin (p<0.05). Surface properties of Polymethyl methacrylate (PMMA) denture base material improved with autoclave polymerization and negatively affected with GFs addition.
Research Facilities | Wind | NREL
wearing hard hats in front of a wind turbine drivetrain inside a drivetrain test facility. Dynamometer Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being
A STUDY OF THE HARDNESS OF SEVERAL USMC INCONEL TUBE WELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owczarski, W.A.
1960-01-01
An investigation was conducted to determine if spontaneous hardening took place in a series of welded tube joints made with INCO-weld A wire causing failure in bend tests. Summaries of bend test data are given along with results of metallographic examination and hardness surveys. It was concluded that the failures of bend specimens were due to excessive fissuring not associated with hardness. (J.R.D.)
Termiticide testing in full swing USDA-FS's Mississippi site hit hard by hurricane katrina
Terry Wagner; Joe Mulrooney; Thomas Shelton
2006-01-01
The USDA-FS wrote and administered 44 termiticide testing agreements with industry; Hurricane Katrina hit hard the oldest U.S. Forest Service test sitel and the Termiticide Standards Committee of the Association of Structural PEst Control Regulatory Officials proposed a revision of the EPA's Product Performance Test Guideline, OPPTS 810.3600.
Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes
2015-12-01
The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.
Effect of post weld impact treatment (PWIT) on mechanical properties of spot-welded joint
NASA Astrophysics Data System (ADS)
Ghazali, F. A.; Salleh, Z.; Hyie, K. M.; Rozlin, N. M. Nik; Hamidi, S. H. Ahmad; Padzi, M. M.
2017-12-01
This paper focuses on the study of improvement for spot welding on the tensile shear and hardness by applying post weld impact treatment (PWIT) on the welded joint. The main objective of the research is to characterize and improve the mechanical properties of the joint. The method of PWIT used on the welded joint was Pneumatic Impact Treatment (PIT). The concept of PIT on spot welding is that it improves the mechanical properties of the welded zone. The working sample was undergoing a resistance spot welding of joining two similar in dimension and material of a steel plate before treated. The dimension of both plate are 110 mm × 45 mm × 1.2 mm and the material used were low carbon steel (LCS). All the welded samples were tested for its mechanical properties by performing the tensile-shear and hardness test. Tensile-shear test was conducted on the spot welded, both treated and as-welded samples using crosshead speed of 2 mm/min, while hardness test was performed using 1kgf load via Vickers hardness indenter. The effects of PIT on tensile-shear properties and hardness were evaluated and found that the implementation of PIT has increased tensile shear and hardness significantly.
Does hard insertion and space improve shock absorption ability of mouthguard?
Takeda, Tomotaka; Ishigami, Keiichi; Handa, Jun; Naitoh, Kaoru; Kurokawa, Katsuhide; Shibusawa, Mami; Nakajima, Kazunori; Kawamura, Shintaro
2006-04-01
Mouthguards are expected to reduce sports-related orofacial injuries. Numerous studies have been conduced to improve the shock absorption ability of mouthguards using air cells, sorbothane, metal wire, or hard material insertion. Most of these were shown to be effective; however, the result of each study has not been applied to clinical use. The aim of this study was to develop mouthguards that have sufficient prevention ability and ease of clinical application with focus on a hard insertion and space. Ethylene vinyl acetate (EVA) mouthguard blank used was Drufosoft and the acrylic resin was Biolon (Dreve-Dentamid GMBH, Unna, Germany). Three types of mouthguard samples tested were constructed by means of a Dreve Drufomat (Type SO, Dreve-Dentamid) air pressure machine: the first was a conventional laminated type of EVA mouthguard material; the second was a three layer type with acrylic resin inner layer (hard-insertion); the third was the same as the second but with space that does not come into contact with tooth surfaces (hard + space). As a control, without any mouthguard condition (NOMG) was measured. A pendulum type impact testing machine with interchangeable impact object (steel ball and baseball) and dental study model (D17FE-NC.7PS, Nissin, Tokyo, Japan) with the strain gages (KFG-1-120-D171-11N30C2: Kyowa, Tokyo, Japan) applied to teeth and the accelerometer to the dentition (AS-A YG-2768 100G, Kyowa) were used to measure transmitted forces. Statistical analysis (anova, P < 0.01) showed significant differences among four conditions of NOMG and three different mouthguards in both objects and sensor. About acceleration: in a steel ball which was a harder impact object, shock absorption ability of about 40% was shown with conventional EVA and hard-insertion and about 50% with hard + space. In a baseball that was softer compared with steel ball, a decrease rate is smaller, reduction (EVA = approximately 4%, hard-insertion = approximately 12%, hard + space = approximately 25%) was admitted in the similar order. A significant difference was found with all the combinations except for between EVA and hard-insertion with steel ball (Tukey test). About distortion: both buccal and lingual, distortions had become small in order of EVA, hard-insertion, and hard + space, too. The decrease rate is larger than acceleration, EVA = approximately 47%, hard-insertion = 80% or more, and hard +space = approximately 98%, in steel ball. EVA = approximately 30%, hard-insertion = approximately 75%, and hard + space = approximately 98% in baseball. And a significant difference was found with all the combinations (Tukey test). Especially, hard + space has decreased the distortion of teeth up to several percentages. Acceleration of the maxilla and distortions of the tooth became significantly smaller when wearing any type of mouthguard, in both impact objects. But the effect of mouthguard was clearer in the distortion of the tooth and with steel ball. Considering the differences of mouthguards, the hard-insertion and the hard + space had significantly greater buffer capacity than conventional EVA. Furthermore, hard + space shows quite high shock absorption ability in the tooth distortion. Namely, hard + space has decreased the distortion of teeth up to several percentages in both impact objects.
Microindentation hardness testing of coatings: techniques and interpretation of data
NASA Astrophysics Data System (ADS)
Blau, P. J.
1986-09-01
This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.
NASA Technical Reports Server (NTRS)
Conway, J. B.; Stentz, R. H.; Berling, J. T.
1973-01-01
Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.
An Analysis of the Seismic Source Characteristics of Explosions in Low-Coupling Dry Porous Media
2011-09-29
Semipalatinsk Test Site (Shagan, Degelen and Konystan Testing Areas) and in Salt at the Former Soviet Azgir Test Site ...to be applicable to all underground nuclear explosions conducted in various hard rock media at the former Soviet Semipalatinsk test site , as well as...in Hard Rock at the Former Soviet Semipalatinsk Test Site (Shagan, Degelen and Konystan Testing Areas) and in Salt at the Former Soviet Azgir Test
Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong
2018-01-01
The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642
Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Mizoguchi, Itaru
2011-07-01
The purposes of this study were to obtain information about mechanical properties with the nanoindentation test for representative wire alloys and compare the results with conventional mechanical tests. Archwires having 0.016 × 0.022-in cross sections were obtained of 1 stainless steel, 1 cobalt-chromium-nickel, 1 beta-titanium alloy, and 2 nickel-titanium products. Specimens of as-received wires were subjected to nanoindentation testing along the external surfaces and over polished cross sections to obtain values of hardness and elastic modulus. Other specimens of as-received wires were subjected to Vickers hardness, 3-point bending, and tension tests. All testing was performed at 25°C. Differences were found in hardness and elastic modulus obtained with the nanoindentation test at the external and cross-sectioned surfaces and with the conventional mechanical-property tests. Mechanical properties obtained with the nanoindentation test generally varied with indentation depth. The 3 testing methods did not yield identical values of hardness and elastic modulus, although the order among the 5 wire products was the same. Variations in results for the nanoindentation and conventional mechanical property tests can be attributed to the different material volumes sampled, different work-hardening levels, and an oxide layer on the wire surface. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
ERDEMİR, Ugur; YİLDİZ, Esra; EREN, Meltem Mert; OZEL, Sevda
2013-01-01
Objectives: This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. Material and Methods: A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group). For the control groups, the specimens were stored in distilled water for 24 hours at 37º C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05). Results: Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (p<0.001) in different solutions (p<0.001). The effect of different solutions on the surface hardness values of the restorative materials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (p<0.001). The compomer was the most affected by an acidic environment, whereas the composite resin materials were the least affected materials. Conclusions: The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material. PMID:23739850
Ayaz, Elif Aydoğan; Bağış, Bora; Turgut, Sedanur
2015-10-16
The purpose of this study was to evaluate the effects of thermal cycling on the surface roughness, hardness and flexural strength of denture resins. Polyamide (PA; Deflex and Valplast) and polymethylmethacrylate (PMMA; QC-20 and Acron MC) denture materials were selected. A total of 180 specimens were fabricated and then divided into 3 groups. The first group (group 1) acted as a control and was not thermocycled. The second group (group 2) was subjected to thermocycling for 10,000 cycles in artificial saliva and 5,000 cycles in distilled water. The last group (group 3) was thermocycled for 20,000 cycles in artificial saliva and 10,000 cycles in distilled water. The surface roughness were measured with a profilometer. The hardness of the resins were measured with a Vickers Hardness Tester using a 100-gf load. The flexural strength test was performed using the universal test machine with a crosshead speed of 5 mm/min. Data were analyzed using statistical software. The results of the measurements in the 3 different tests were analyzed by Kruskal-Wallis test with Bonferroni correction. Multiple comparisons were made by Conover and Wilcoxon tests. There was a significant difference between the PMMA and PA groups in terms of surface roughness, hardness and transverse strength before and after thermal cycling (p<0.001). Thermal cycling did not change the surface roughness, hardness and flexural strength values of either the PMMA or PA group (p>0.001).
Erdemir, Ugur; Yildiz, Esra; Eren, Meltem Mert; Ozel, Sevda
2012-01-01
The purpose of this study was to evaluate the effect of sports and energy drinks on the surface hardness of different restorative materials over a 6-month period. Forty-two disk-shaped specimens were prepared for each of the four restorative materials tested: Compoglass F, Filtek Z250, Filtek Supreme, and Premise. Specimens were immersed for 2 min daily, up to 6 months, in six storage solutions (n=7 per material for each solution): distilled water, Powerade, Gatorade, X-IR, Burn, and Red Bull. Surface hardness was measured at baseline, after 1 week, 1 month, and 6 months. Data were analyzed statistically using repeated measures ANOVA followed by the Bonferroni test for multiple comparisons (α=0.05). Surface hardness of the restorative materials was significantly affected by both immersion solution and immersion period (p<0.001). All tested solutions induced significant reduction in surface hardness of the restorative materials over a 6-month immersion period.
Hardness and compression resistance of natural rubber and synthetic rubber mixtures
NASA Astrophysics Data System (ADS)
Arguello, J. M.; Santos, A.
2016-02-01
This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.
Injury risk associated with ground hardness in junior cricket.
Twomey, Dara M; White, Peta E; Finch, Caroline F
2012-03-01
To establish if there is an association between ground hardness and injury risk in junior cricket. Nested case-series of players who played matches on specific grounds with objective ground hardness measures, within a prospective cohort study of junior community club cricket players. Monitoring of injuries and playing exposure occurred during 434 matches over the 2007/2008 playing season. Objective assessment of the hardness of 38 grounds was undertaken using a Clegg hammer at 13 sites on 19 different junior cricket grounds on the match eve across the season. Hardness readings were classified from unacceptably low (<30 g) to unacceptably high (>120 g) and two independent raters assessed the likelihood of each injury being related to ground hardness. Injuries sustained on tested grounds were related to the ground hardness measures. Overall, 31 match injuries were reported; 6.5% were rated as likely to be related to ground hardness, 16.1% as possibly related and 74.2% as unlikely to be related and 3.2% unknown. The two injuries likely to be related to ground hardness were sustained whilst diving to catch a ball resulting, in a graze/laceration from contact with hard ground. Overall, 31/38 (82%) ground assessments were rated as having 'unacceptably high' hardness and all others as 'high/normal' hardness. Only one injury occurred on an objectively tested ground. It remains unclear if ground hardness is a contributing factor to the most common injury mechanism of being struck by the ball, and needs to be confirmed in future larger-scale studies. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallerman, G.; Gray, R.J.
The design and testing procedures of two elevatedtemperature hardness testers are described. One device uses a Rockwell tester with a large vertical capacity and a load range of 15 to 150 kg. The tester is equipped with a 900 deg C heating chamber which maintains an argon atmosphere over the specimen and can be laterally displaced by a cross-feed mechanism to allow repeated hardness readings to be made on the same specimen. The second instrument is a microindentation hardness tester for hardness determinations to a maximum temperature of 1000 deg C in vacuum of 10/sup -4/ to 10/sup -5/ torr.more » A deadweight loading system with a 136-deg diamond pyramid (Vickers) indenter, capable of delivering static loads between 0.150 and 3 kg, is contained within the vacuum chamber to avoid calibration problems that arise when loads are applied from outside the vacuum system. The microindentation hardness tester allows up to 100 determinations to be made on a single specimen without opening the test chamber. The applicability of the testers is illustrated by elevatedtemperature hardness measurements on several commercial alloys, a group of niobium-vanadium alloys, and by the changes in hardness occurring at the transformation temperatures of iron and steel. Hardness values of Haynes alloy No. 25 were determined at the temperatures of aging and are shown to be different from those obtained with the customary method of investigating age hardening. The testing is currently being used to aid and accelerate the development of alloys with desirable high-temperature properties. (auth)« less
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.
2015-05-01
The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian; Jolly, Brian C
2009-01-01
The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less
Bagheri, R; Palamara, Jea; Mese, A; Manton, D J
2017-03-01
The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.
A Test of Black-Hole Disk Truncation: Thermal Disk Emission in the Bright Hard State
NASA Astrophysics Data System (ADS)
Steiner, James
2017-09-01
The assumption that a black hole's accretion disk extends inwards to the ISCO is on firm footing for soft spectral states, but has been challenged for hard spectral states where it is often argued that the accretion flow is truncated far from the horizon. This is of critical importance because black-hole spin is measured on the basis of this assumption. The direct detection (or absence) of thermal disk emission associated with a disk extending to the ISCO is the smoking-gun test to rule truncation in or out for the bright hard state. Using a self-consistent spectral model on data taken in the bright hard state while taking advantage of the complementary coverage and capabilities of Chandra and NuSTAR, we will achieve a definitive test of the truncation paradigm.
High-impact strength acrylic denture base material processed by autoclave.
Abdulwahhab, Salwan Sami
2013-10-01
To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
HARD CHROME POLLUTION PREVENTION DEMONSTRATION PROJECT - INTERIM REPORT
In the project, five chromium emission prevention/control devices were tested tha cover the spectrum of prevention/control techniques currently in use in small- and large-size hard chromium electroplating job shops. The Project results show that some of the tested devices had ch...
NASA Technical Reports Server (NTRS)
Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen
2002-01-01
A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.
A hard-to-read font reduces the framing effect in a large sample.
Korn, Christoph W; Ries, Juliane; Schalk, Lennart; Oganian, Yulia; Saalbach, Henrik
2018-04-01
How can apparent decision biases, such as the framing effect, be reduced? Intriguing findings within recent years indicate that foreign language settings reduce framing effects, which has been explained in terms of deeper cognitive processing. Because hard-to-read fonts have been argued to trigger deeper cognitive processing, so-called cognitive disfluency, we tested whether hard-to-read fonts reduce framing effects. We found no reliable evidence for an effect of hard-to-read fonts on four framing scenarios in a laboratory (final N = 158) and an online study (N = 271). However, in a preregistered online study with a rather large sample (N = 732), a hard-to-read font reduced the framing effect in the classic "Asian disease" scenario (in a one-sided test). This suggests that hard-read-fonts can modulate decision biases-albeit with rather small effect sizes. Overall, our findings stress the importance of large samples for the reliability and replicability of modulations of decision biases.
Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay
2017-11-01
For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.
Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling
NASA Astrophysics Data System (ADS)
Zare, S.; Bruland, A.
2013-01-01
Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.
Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho
2010-06-01
The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.
NASA Astrophysics Data System (ADS)
Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus
2012-09-01
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
Cooke-Hubley, Sandra; Maddalena, Victor
2011-09-01
Genetic testing holds great potential for preventing morbidities and mortalities for a number of diseases through early detection and effective intervention. As the number of genetic tests expand, so will public demand for these services. Therefore, it is essential to evaluate access to genetic testing and genetic services to ensure that all Canadians, including vulnerable groups, have equitable access to all forms of health care, in keeping with the mandate of the Canadian Health Act. The purpose of this paper is to examine the literature to determine if and how the Deaf community, as a vulnerable group, is at an increased risk of inequitable access to genetic services in Canada and to discuss how those who are deaf and hard of hearing are subject to the same risks. First, we define vulnerability and describe why the Deaf community, as a social group, can be considered a vulnerable group, followed by a description of the benefits of genetic testing. Second, we describe the barriers to accessing genetic testing, and how the d/Deaf and hard of hearing population experience additional barriers. Third, we examine the difficulties incorporating genetic testing into medical practice, and how this creates additional barriers to those already at risk. Finally, we discuss the steps necessary to promote equitable access to genetic testing among the d/Deaf and hard of hearing populations within Canada, and provide recommendations for further research in this topic area. Lastly, we comment on how barriers to genetic testing vary among the d/Deaf and hard of hearing is dependent upon the type of health care system available (whether public or private).
ERIC Educational Resources Information Center
Saladin, Shawn P.; Reid, Christine; Shiels, John
2011-01-01
The Commission on Rehabilitation Counselor Certification (CRCC) has taken a proactive stance on perceived test inequities of the Certified Rehabilitation Counselor (CRC) exam as it relates to people who are prelingually deaf and hard of hearing. This article describes the process developed and implemented by the CRCC to help maximize test equity…
ERIC Educational Resources Information Center
Qi, Sen; Mitchell, Ross E.
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the…
ERIC Educational Resources Information Center
Çokluk, Ömay; Gül, Emrah; Dogan-Gül, Çilem
2016-01-01
The study aims to examine whether differential item function is displayed in three different test forms that have item orders of random and sequential versions (easy-to-hard and hard-to-easy), based on Classical Test Theory (CTT) and Item Response Theory (IRT) methods and bearing item difficulty levels in mind. In the correlational research, the…
NASA Astrophysics Data System (ADS)
Joshi, Prathmesh
To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.
40 CFR 94.509 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... all testing. Records may be retained as hard copy (i.e., on paper) or reduced to microfilm, floppy... procedure; provided, that in every case, all the information contained in the hard copy is retained. (c) The... production line testing using an EPA information format. ...
Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy
NASA Astrophysics Data System (ADS)
Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.
Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros
2014-05-01
To investigate the microstructure, hardness, and electrochemical behavior of four contemporary Ag-based soldering alloys used for manufacturing orthodontic appliances. The Ag-based alloys tested were Dentaurum Universal Silver Solder (DEN), Orthodontic Solders (LEO), Ortho Dental Universal Solder (NOB), and Silver Solder (ORT). Five disk-shaped specimens were produced for each alloy, and after metallographic preparation their microstructural features, elemental composition, and hardness were determined by scanning electron microscopy with energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, and Vickers hardness testing. The electrochemical properties were evaluated by anodic potentiodynamic scanning in 0.9% NaCl and Ringer's solutions. Hardness, corrosion current (Icorr), and corrosion potential (Ecorr) were statistically analyzed by one-way analysis of variance and Tukey test (α=.05). EDX analysis showed that all materials belong to the Ag-Zn-Cu ternary system. Three different mean atomic contrast phases were identified for LEO and ORT and two for DEN and NOB. According to XRD analysis, all materials consisted of Ag-rich and Cu-rich face-centered cubic phases. Hardness testing classified the materials in descending order as follows: DEN, 155±3; NOB, 149±3; ORT, 141±4; and LEO, 136±8. Significant differences were found for Icorr of NOB in Ringer's solution and Ecorr of DEN in 0.9% NaCl solution. Ag-based soldering alloys demonstrate great diversity in their elemental composition, phase size and distribution, hardness, and electrochemical properties. These differences may anticipate variations in their clinical performance.
2003-08-01
ESTCP FINAL REPORT For THE USE OF WETTING AGENTS/ FUME SUPPRESSANTS FOR MINIMIZING THE ATMOSPHERIC EMISSIONS FROM HARD CHROMIUM ...Introduction This project demonstrates that a “third” generation wetting agent / fume suppressant (WA/FS) chemical additive to hard chromium ...DOD operations fall in the same category.) Several papers, including Use of Fume Suppressants in Hard Chromium Baths - Quality Testing and Use
Wang, N.; Mebane, C.A.; Kunz, J.L.; Ingersoll, C.G.; May, T.W.; Arnold, W.R.; Santore, R.C.; Augspurger, T.; Dwyer, F.J.; Barniiart, M.C.
2009-01-01
The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests were conducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO3). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 ??g Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21 30 ??g Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO 3/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species. ?? 2009 SETAC.
Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato
2016-03-01
To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (p<0.05). In addition, thin-film bond strength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... testing required for the engine family in a model year. Records may be retained as hard copy (i.e., on... hard copy is retained. (c) The manufacturer must, upon request by the Administrator, submit the... testing using an EPA information format. The Administrator may exempt manufacturers from this requirement...
40 CFR 90.704 - Maintenance of records; submission of information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... testing required for the engine family in a model year. Records may be retained as hard copy (i.e., on... hard copy is retained. (c) The manufacturer must, upon request by the Administrator, submit the... production line testing using EPA's standardized format. The Administrator may exempt manufacturers from this...
Occurrence of ground waters of low hardness and of high chloride content in Lyon County, Minnesota
Rodis, Harry G.; Schneider, Robert
1960-01-01
Hardness and chloride determinations were made with field-testing kits at the time data were obtained on most of the farm wells in the county. Tests were made on wells that were reported to yield relatively soft or "salty" water.
Bendas, Ehab Rasmy; Basalious, Emad B
2016-01-01
Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.
Effect of mechanical properties of fillers on the grindability of composite resin adhesives.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru
2010-10-01
The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Mechanical properties of contemporary composite resins and their interrelations.
Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros
2013-08-01
To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
Hardness - Yield Strength Relation of Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Praveen Sekhar, Aluru; Nandy, Supriya; Ray, Kalyan Kumar; Das, Debdulal
2018-03-01
Assessing the mechanical properties of materials through indentation hardness test is an attractive method, rather than obtaining the properties through destructive approach like tensile testing. The present work emphasizes on the relation between hardness and yield strength of Al-Mg-Si alloys considering Tabor type equations. Al-0.5Mg-0.4Si alloy has been artificially aged at various temperatures (100 to 250 °C) for different time durations (0.083 to 1000 h) and the ageing response has been assessed by measuring the Vickers hardness and yield strength. Correlations of the existing data from the open literature have also been reviewed. Lastly, it has been explained that the deviation in obtained relation from Tabor’s equation is owing to the dislocation accumulation during indentation.
Lau, Mayank; Amarnath, G S; Muddugangadhar, B C; Swetha, M U; Das, Kopal Anshuraj Ashok Kumar
2014-04-01
The condition of the denture bearing tissues may be adversely affected by high stress concentration during function. Chairside Denture (Hard and Soft) reliners are used to distribute forces applied to soft tissues during function. Tensile and shear bond strength has been shown to be dependent on their chemical composition. A weak bond could harbor bacteria, promote staining and delamination of the lining material. To investigate tensile and shear bond strength of 4 different commercially available denture relining materials to conventional heat cured acrylic denture base resin. 4 mm sections in the middle of 160 Acrylic cylindrical specimens (20 mm x 8 mm) were removed, packed with test materials (Mollosil, G C Reline Soft, G C Reline Hard (Kooliner) and Ufi Gel Hard and polymerized. Specimens were divided into 8 groups of 20 each. Tensile and shear bond strength to the conventional heat cured acrylic denture base resin were examined by Instron Universal Tensile Testing Machine using the equation F=N/A (F-maximum force exerted on the specimen (Newton) and A-bonding area= 50.24 mm2). One-way ANOVA was used for multiple group comparisons followed by Bonferroni Test and Hsu's MCB for multiple pairwise comparisons to asses any significant differences between the groups. The highest mean Tensile bond strength value was obtained for Ufi Gel Hard (6.49+0.08 MPa) and lowest for G C Reline Soft (0.52+0.01 MPa). The highest mean Shear bond strength value was obtained for Ufi Gel Hard (16.19+0.1 MPa) and lowest for Mollosil (0.59+0.05 MPa). The Benferroni test showed a significant difference in the mean tensile bond strength and the mean shear bond strength when the two denture soft liners were compared as well as when the two denture hard liners were compared. Hsu's MCB implied that Ufi gel hard is better than its other closest competitors. The Tensile and Shear bond strength values of denture soft reliners were significantly lower than denture hard reliners. How to cite the article: Lau M, Amarnath GS, Muddugangadhar BC, Swetha MU, Das KA. Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study. J Int Oral Health 2014;6(2):55-61.
Theoretical model of hardness anisotropy in brittle materials
NASA Astrophysics Data System (ADS)
Gao, Faming
2012-07-01
Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahadi, Z. A.; Ishak, I. S.
2018-04-01
This paper presented the study on the effect of carbon black as filler to the mechanical properties of natural rubber for base isolation system. This study used the five formulations with the different amount of carbon black filler for every sample. The samples were tested for tensile, hardness and resilience test. The samples were cured or vulcanized at 1500C for 23 minutes for every formulation. The filler used in this study was the carbon black filler with type N660. The tensile test was done to determine the ability of the sample in term of the elongation with the load at break. The hardness test, it has been done to determine the ability of the sample to resist the load. This hardness was measured in the unit of IRHD. The resilience test was being done to determine the properties of the sample in term of rebound characteristics. The finding of this study showed that, the high the loading of carbon black filler, the high the tensile strength of the sample and the high the hardness of the sample. In term of resilience, it was inversely proportional to the loading of the carbon black filler.
Halogen and LED light curing of composite: temperature increase and Knoop hardness.
Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A
2006-03-01
This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.
Quance, S C; Shortall, A C; Harrington, E; Lumley, P J
2001-11-01
The effect of variation in post-exposure storage temperature (18 vs. 37 degrees C) and light intensity (200 vs. 500mW/cm(2)) on micro-hardness of seven light-activated resin composite materials, cured with a Prismetics Mk II (Dentsply) light activation unit, were studied. Hardness values at the upper and lower surfaces of 2mm thick disc shaped specimens of seven light-cured resin composite materials (Herculite XRV and Prodigy/Kerr, Z100 and Silux Plus/3M, TPH/Dentsply, Pertac-Hybrid/Espe, and Charisma/Kulzer), which had been stored dry, were determined 24h after irradiation with a Prismetics Mk II (Dentsply) light activation unit. Hardness values varied with product, surface, storage temperature, and curing light intensity. In no case did the hardness at the lower surface equal that of the upper surface, and the combination of 500mW/cm(2) intensity and 37 degrees C storage produced the best hardness results at the lower surface. Material composition had a significant influence on surface hardness. Only one of the seven products (TPH) produced a mean hardness values at the lower surface >80% of the maximum mean upper surface hardness obtained for the corresponding product at 500mW/cm(2) intensity/37 degrees C storage temperature when subjected to all four test regimes. Despite optimum post-cure storage conditions, 200mW/cm(2) intensity curing for 40s will not produce acceptable hardness at the lower surface of 2mm increments of the majority of products tested.
Evaluation of Open-Source Hard Real Time Software Packages
NASA Technical Reports Server (NTRS)
Mattei, Nicholas S.
2004-01-01
Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of replacing this somewhat costly implementation is the focus of one of the SA group s current research projects. The explosion of open source software in the last ten years has led to the development of a multitude of software solutions which were once only produced by major corporations. The benefits of these open projects include faster release and bug patching cycles as well as inexpensive if not free software solutions. The main packages for hard real time solutions under Linux are Real Time Application Interface (RTAI) and two varieties of Real Time Linux (RTL), RTLFree and RTLPro. During my time here at NASA I have been testing various hard real time solutions operating as layers on the Linux Operating System. All testing is being run on an Intel SBC 2590 which is a common embedded hardware platform. The test plan was provided to me by the Software Assurance group at the start of my internship and my job has been to test the systems by developing and executing the test cases on the hardware. These tests are constructed so that the Software Assurance group can get hard test data for a comparison between the open source and proprietary implementations of hard real time solutions.
Yang, T.S.; Yao, S.H.; Chang, Y.Y.; Deng, J.H.
2018-01-01
Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating. PMID:29316687
Yang, T S; Yao, S H; Chang, Y Y; Deng, J H
2018-01-08
Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.
Microhardness Testing of Aluminum Alloy Welds
NASA Technical Reports Server (NTRS)
Bohanon, Catherine
2009-01-01
A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.
Amemiya, Yosuke; Hatakeyama, Akiko; Shimamoto, Nobuo
2009-01-06
Diamond could be an excellent support for nanodevices utilizing biomolecules if it is covered with a polymer layer immobilizing a variety of biomolecules. We report a wet method to form a 3-aminopropyltriethoxysilane (APTES) multilayer with a controlled hardness, roughness, and capacity for immobilizing protein. The method is feasible in typical biochemical laboratories where biomolecules are prepared. Atomic force microscopy (AFM) revealed that the surface geometries and nanoscopic hardness of the multilayers on an oxygen-terminated single-crystalline diamond surface depended on the dielectric constant of the solvent; the smaller the constant, the harder the layer. The hard multilayers had holes and APTES aggregates on the surfaces, while less hard ones had homogeneous surfaces with rare holes and little aggregates. The secondary deposition of APTES in a solvent with a large dielectric constant on a hard multilayer removed the holes, and further treatment of the multilayer in acidic ethanol solution diminished the aggregates. Such a surface can immobilize streptavidin with enough specificity against nonspecific adsorption using a combination of polyethylene glycol reagents. The results of a scratching test and nanoindentation test with AFM provided consistent results, suggesting some universality of the scratching test independent of the tip structure of the cantilever. The mechanism of formation of multilayers on the diamond surface and their binding to it is discussed.
The production and tribology of hard facing coatings for agricultural applications
NASA Astrophysics Data System (ADS)
Roffey, Paul
Abrasive wear is a significant issue in many industries but is of particular significance in agriculture. This research is being carried out due to the demand for a hard wearing, economical coating for use in the agricultural industry.A primary objective has been to review and develop an in depth understanding of the type of wear suffered by metal shares in agricultural soils. The affect of soil properties and abrasive wear environments on the amount of wear that occurs, and the way in which material properties can be used to reduce or prevent this has also been investigated. A review of the diverse range of soil properties, such as the mineral content, moisture content, soils strengths has been carried out in order to create an appropriate wear test procedure.The coatings developed for testing were modifications to an existing powder metallurgy coating. The modifications were made by the addition of selected hard phases to the powder prior to sintering. The resulting materials were characterised in terms of sinterability, hardness and abrasive wear resistance. Prior to commencing this work little or no data existed on the wear performance of the pre-existing coating. Wear resistance has been measured using a fixed ball micro-scale abrasive wear test (also known as the ball-cratering wear test) with SiC and SiO2 abrasives and also using a modified version of the ASTM G65 abrasive wear test which allowed testing in dry and wet modes. Limited field trials were performed to determine the abrasive wear resistance in real soil. Results from wear testing have determined that the optimum modification to the coating can improve performance compared to the unmodified coating.Detailed scanning electron microscopy (SEM) has been performed on the wear scars and has revealed the resultant wear mechanisms and role that the hard phase additions play in improving the wear resistance. The influence of the hard phase addition on the microstructure has also been studied.The wear volume and corresponding wear coefficient from laboratory studies have been used to determine the optimum level of addition that can be added to produce an improved wear resistance. The results show the optimum hard phase addition to be 100mum WC/W[2]C particles at around 10wt.% with 15 mum WC at 5wt.% also providing improved wear resistance.
Penumatsa, Narendra Varma; Kaminedi, Raja Rajeswari; Baroudi, Kusai; Barakath, Ola
2015-01-01
Objective: The aim of this study was to evaluate the potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in remineralizing the bleached enamel surface using micro-hardness. Materials and Methods: Thirty human enamel slabs were randomly divided into three groups (n = 10). Groups A and B were exposed to 20% carbamide peroxide and 35% carbamide peroxide gel, respectively. After the exposure to the bleaching agent, the slabs were kept in artificial saliva for 1-week. Group C (control group) were kept in artificial saliva for 1-week. Vickers micro-hardness test was performed by Leica VMHT-Mot micro-hardness tester. CPP-ACP (Gc Tooth Mousse, Melbourne, Australia) was then applied to specimens of Groups A and B for 3 min for 2 weeks. Micro-hardness values of postbleach Group A (Ar) and Group B (Br) were recorded and statistically analyzed by paired t-test and one-way analysis of variance at the significance level of α =0.05. Results: There was a significant decrease in micro-hardness of enamel in carbamide peroxide bleached groups. However, there was a significant increase in micro-hardness after the remineralization by CPP-ACP and the extent of remineralization is more for the Group B. Conclusions: That bleaching agents reduced enamel micro-hardness and the use of CPP-ACP after bleaching can significantly enhance the micro-hardness of bleached enamel. PMID:26538923
Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)
McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.
1997-01-01
Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.
An in vitro investigation of wear resistance and hardness of composite resins.
Cao, Liqun; Zhao, Xinyi; Gong, Xu; Zhao, Shouliang
2013-01-01
The aim of the present study was to investigate the wear resistance and hardness of five kinds of composite resins. Sixty-five specimens were fabricated with one nano-hybrid (Charisma Diamond), two micro-hybrid (3MZ250, Clearfil AP-X) and two packable (3MP60, Surefil) composite resins, according to a randomized complete block design (n=13, 8 for wear test; 5 for hardness test). The composites were filled in a rectangular mold, and light polymerization. After storage in 37°C deionized water for 24h, all specimens were tested with a custom-made toothbrush machine with a stainless-steel ball as antagonist (3N loads, 1Hz, 6×10(5) cycles) immersed in calcium fluoride slurry. Wear volume, hardness and surface structure of each tested material was examined by a three-dimensional non-contact optical profilometer, Vickers indentation technique and scanning electron microscope. The volume loss ranked from least to most as follows: Charisma Diamond, P60, Z250, Clearfil AP-X and Surefil. Regarding hardness, the rank from highest to lowest as follows: Clearfil AP-X, P60, Surefil, Z250, Charisma Diamond. The interactions between wear resistance and microhardness were not significant. The custom-made machine is considered suitable to simulate sliding of an antagonist cusp on an opposing occlusal composite restoration. Nanofilled composite may have superior wear compared to other composite resins.
Effect of G-Coat Plus on the mechanical properties of glass-ionomer cements.
Bagheri, R; Taha, N A; Azar, M R; Burrow, M F
2013-12-01
Although various mechanical properties of tooth-coloured materials have been described, little data have been published on the effect of ageing and G-Coat Plus on the hardness and strength of the glass-ionomer cements (GICs). Specimens were prepared from one polyacid-modified resin composite (PAMRC; Freedom, SDI), one resin-modified glass-ionomer cement; (RM-GIC; Fuji II LC, GC), and one conventional glass-ionomer cement; (GIC; Fuji IX, GC). GIC and RM-GIC were tested both with and without applying G-Coat Plus (GC). Specimens were conditioned in 37 °C distilled water for either 24 hours, four and eight weeks. Half the specimens were subjected to a shear punch test using a universal testing machine; the remaining half was subjected to Vickers Hardness test. Data analysis showed that the hardness and shear punch values were material dependent. The hardness and shear punch of the PAMRC was the highest and GIC the lowest. Applying the G-Coat Plus was associated with a significant decrease in the hardness of the materials but increase in the shear punch strength after four and eight weeks. The mechanical properties of the restorative materials were affected by applying G-Coat Plus and distilled water immersion over time. The PAMRC was significantly stronger and harder than the RM-GIC or GIC. © 2013 Australian Dental Association.
Design and implementation of reliability evaluation of SAS hard disk based on RAID card
NASA Astrophysics Data System (ADS)
Ren, Shaohua; Han, Sen
2015-10-01
Because of the huge advantage of RAID technology in storage, it has been widely used. However, the question associated with this technology is that the hard disk based on the RAID card can not be queried by Operating System. Therefore how to read the self-information and log data of hard disk has been a problem, while this data is necessary for reliability test of hard disk. In traditional way, this information can be read just suitable for SATA hard disk, but not for SAS hard disk. In this paper, we provide a method by using LSI RAID card's Application Program Interface, communicating with RAID card and analyzing the feedback data to solve the problem. Then we will get the necessary information to assess the SAS hard disk.
Hardness characteristic of dental porcelain synthesized from Indonesian natural sand
NASA Astrophysics Data System (ADS)
Gunawan, J.; Taufik, D.; Takarini, V.; Hasratiningsih, Z.; Ramelan, A.
2018-02-01
Porcelain has been one of dental biomaterials which can be used to restore tooth structure. Veneer and jacket crown were the examples of dental porcelain restoration. Since wear resistance is related to the strength on its surface, then Vickers Hardness Test of the synthesized porcelain was applied subsequently. If the porcelain hardness number is too high, it should be considered that an abrasion of the opposing teeth could occur. On previous research, dental porcelain had been successfully synthesized from Indonesian natural sand. In this experiment, 5 samples were prepared from a mixture of 65w/o Pangaribuan feldspar, 25w/o Belitung silica, 5w/o Sukabumi kaolinite, and 5w/o potassium salt. This synthesized porcelain samples were invested on 5 cm diameter resin each. A kilogram of load was placed on top of each sample for 10 seconds on 7 different indented areas using ZwickRoell Indentec ZHVμ Micro Vickers. The average hardness number of synthesized dental porcelain made from Indonesian natural sand was 936.06 VHN which was higher than the average hardness number of porcelain restoration. In conclusion of the hardness test, synthesized dental porcelain made from Indonesian natural sand can potentially be used as a core, which shall support hardness and strength of the crown restoration.
Development and Testing of an Antitobacco School-Based Curriculum for Deaf and Hard of Hearing Youth
ERIC Educational Resources Information Center
Berman, Barbara A.; Guthmann, Debra S.; Crespi, Catherine M.; Liu, Weiqing
2011-01-01
A tobacco use prevention curriculum tailored for deaf/hard of hearing youth was tested using a quasi-experimental design. Two schools for the deaf received the curriculum; two served as noncurriculum controls. Surveys assessed changes in tobacco use, tobacco education exposure, and tobacco-related attitudes and knowledge among students in grades…
Titlestad, John; Fairlie-Clarke, Tony; Whittaker, Arthur; Davie, Mark; Watt, Ian; Grant, Stanley
2006-02-01
The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19-27 years, body mass 65-82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22-31 years, body mass 74-94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21-30 years, body mass 64-80 kg). Heart rate, oxygen consumption (VO(2)), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml . kg(-1) . min(-1), 32.1 (s = 12.1) beats . min(-1) and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in VO(2), which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml . kg(-1) . min(-1). The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.
Reducing duplicate testing: a comparison of two clinical decision support tools.
Procop, Gary W; Keating, Catherine; Stagno, Paul; Kottke-Marchant, Kandice; Partin, Mary; Tuttle, Robert; Wyllie, Robert
2015-05-01
Unnecessary duplicate laboratory testing is common and costly. Systems-based means to avert unnecessary testing should be investigated and employed. We compared the effectiveness and cost savings associated with two clinical decision support tools to stop duplicate testing. The Hard Stop required telephone contact with the laboratory and justification to have the duplicate test performed, whereas the Smart Alert allowed the provider to bypass the alert at the point of order entry without justification. The Hard Stop alert was significantly more effective than the Smart Alert (92.3% vs 42.6%, respectively; P < .0001). The cost savings realized per alert activation was $16.08/alert for the Hard Stop alert vs $3.52/alert for the Smart Alert. Structural and process changes that require laboratory contact and justification for duplicate testing are more effective than interventions that allow providers to bypass alerts without justification at point of computerized physician order entry. Copyright© by the American Society for Clinical Pathology.
Hardness behavior of binary and ternary niobium alloys at 77 and 300 K
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1974-01-01
The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.
Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya
2012-01-01
Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.
2008-08-15
This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). Thesemore » techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications.« less
A Novel Approach to Hardness Testing
NASA Technical Reports Server (NTRS)
Spiegel, F. Xavier; West, Harvey A.
1996-01-01
This paper gives a description of the application of a simple rebound time measuring device and relates the determination of relative hardness of a variety of common engineering metals. A relation between rebound time and hardness will be sought. The effect of geometry and surface condition will also be discussed in order to acquaint the student with the problems associated with this type of method.
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.
NASA Astrophysics Data System (ADS)
Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman
2018-04-01
One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.
Methodological problems with gamma-ray burst hardness/intensity correlations
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.
1993-01-01
The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.
NASA Astrophysics Data System (ADS)
Wang, G. D.; Chan, L. C.
2009-11-01
In order to find a feasible method to evaluate the deformation of tubes during the Tube Hydroforming (THF) process, the hardness and the strain in two selected deformation areas of hydro formed copper tubes (C11000) were measured and tested, and an instinct relationship was found between the hardness and the principal strains of the tubes. The major strain of the surface of tubes had the strongest linear relationship with hardness. A regression formula was used to describe the relationship between hardness and the sensitive strain which is defined in the present work as a dependent variable of major strain and thickness strain.
Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory
NASA Astrophysics Data System (ADS)
Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut
2017-10-01
A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.
Effect of storage in artificial saliva and thermal cycling on Knoop hardness of resin denture teeth.
Assunção, Wirley Gonçalves; Gomes, Erica Alves; Barão, Valentim Adelino Ricardo; Barbosa, Débora Barros; Delben, Juliana Aparecida; Tabata, Lucas Fernando
2010-07-01
This study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth. Eigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37+/-2 degrees C for 48+/-2h (control); (2) storage in artificial saliva at 37+/-2 degrees C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 degrees C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (alpha=.05). In general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P<.05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34+/-4.45 KHN) were statistically higher than those reached after thermal cycling (19.77+/-4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva. Storage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested. Copyright 2010 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Cawthon, Stephanie W
2008-01-01
The Second Annual National Survey on Assessments and Accommodations for Students who are Deaf or Hard of Hearing investigated the types of testing accommodations used on 2004-2005 statewide standardized assessments as well as recommendations for best practices. A total of 444 participants who served over 9,000 students as teachers, administrators, or other educational professionals responded to the survey. The most widely used accommodations were small-group testing, interpreting test directions, and extended time. With the exception of interpreting or reading test items aloud, accommodations were largely used for both reading and math assessments. Participants perceived all listed accommodations as both valid and easy to use. Participants recommended that student academic level, communication mode, and additional disabilities be taken into account when choosing accommodations for students who are deaf or hard of hearing.
Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume
NASA Astrophysics Data System (ADS)
Maier-Kiener, Verena; Durst, Karsten
2017-11-01
Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.
NASA Astrophysics Data System (ADS)
Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.
2018-05-01
High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.
Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation
NASA Astrophysics Data System (ADS)
Paulson, Kristin R.
Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.
Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed
2018-01-01
The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.
The effect of disinfectant solutions on the hardness of acrylic resin denture teeth.
Pavarina, A C; Vergani, C E; Machado, A L; Giampaolo, E T; Teraoka, M T
2003-07-01
This investigation studied the effects of disinfectant solutions on the hardness of acrylic resin denture teeth. The occlusal surfaces of 64 resin denture teeth were ground flat with abrasives up to 400-grit silicon carbide paper. Measurements were made after polishing and after the specimens were stored in water at 37 degrees C for 48 h. The specimens were then divided into four groups and immersed in chemical disinfectants (4% chlorhexidine; 1% sodium hypochlorite and sodium perborate) for 10 min. The disinfection methods were performed twice to simulate clinical conditions and hardness measurements were made. Specimens tested as controls were immersed in water during the same disinfection time. Eight specimens were produced for each group. After desinfection procedures, testing of hardness was also performed after the samples were stored at 37 degrees C for 7, 30, 60, 90 and 120 days. Data were analysed using two-way analysis of variance (anova) and Tukey's test at 95% confidence level. According to the results, no significant differences were found between materials and immersion solutions (P > 0.05). However, a continuous decrease in hardness was noticed after ageing (P < 0.05). It was conclude that the surfaces of both acrylic resin denture teeth softened upon immersion in water regardless the disinfecting solution.
PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAYMOND,DAVID W.
1999-10-14
Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratorymore » testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.« less
The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes
NASA Astrophysics Data System (ADS)
Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano
2005-12-01
We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.
Lombardini, Marco; Chiesa, Marco; Scribante, Andrea; Colombo, Marco; Poggio, Claudio
2012-11-01
Adequate polymerization of resin composites could be considered as a crucial factor in obtaining good clinical performance, particularly in stress-bearing areas. An insufficient curing degree affects the resin composite's chemical properties The current in vitro study evaluated the influence of polymerization time and depth of cure of six commercial resin composites by Vickers microhardness (VK). SIX RESIN COMPOSITES WERE SELECTED: Three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono), and one nanofilled (Filtek Supreme XT). The VK of the surface was determined by a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 s. The bottom to top mean VK ratio was calculated using the formula: Hardness ratio = VK of bottom surface/VK of top surface. Vickers hardness values of test materials during exposure time of 20 and 40 s and depths of cure of 2 and 3 mm were determined and compared. Data were analyzed using analysis of variance (ANOVA) test. For all the tested materials and with all the exposure time periods, hardness ratio was higher than the minimum value indicated in literature (0.8). Exposure time and depth of cure did not affect hardness ratio values for Filtek Silorane, Grandio, and Filtek Supreme XT. Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.
Mayworm, Camila D; Camargo, Sérgio S; Bastian, Fernando L
2008-09-01
The aim of this study is to compare the wear resistance and hardness of two dental nanohybrid composites and to evaluate the influence of artificial saliva storage on those properties. Specimens were made from two commercial nanohybrid dental composites (Esthet-X-Dentsply and Filtek Supreme-3M). Abrasion tests were carried out in a ball-cratering machine (three body abrasion) and microscopic analysis of the wear surfaces was made using optical and scanning electron microscopy; hardness was quantified by Vickers hardness test. Those tests were repeated on specimens stored in artificial saliva. Results show that the wear rate of the studied materials is within 10(-7)mm(3)/Nmm range, one of the composites presenting wear rate twice as large as the other. After storage in artificial saliva, the wear resistance increases for both materials. Microhardness of the composites is around 52 and 64HV, Esthet-X presents higher hardness values than Filtek Supreme. After storage in artificial saliva, the microhardness of both materials decreases. Data were analyzed using ANOVA test, p < or = 0.05. Artificial saliva storage increases the materials' wear resistance, suggesting that in both materials bulk post-cure takes place and saliva absorption occurs only on the surface of the composites. This effect was confirmed by comparing the Vickers hardness before and after artificial saliva treatment and FTIR analyses. Surface microhardness of the composites decreases after storage in artificial saliva whereas bulk microhardness of the materials increases.
An in vitro investigation of wear resistance and hardness of composite resins
Cao, Liqun; Zhao, Xinyi; Gong, Xu; Zhao, Shouliang
2013-01-01
Purpose: The aim of the present study was to investigate the wear resistance and hardness of five kinds of composite resins. Materials and Methods: Sixty-five specimens were fabricated with one nano-hybrid (Charisma Diamond), two micro-hybrid (3MZ250, Clearfil AP-X) and two packable (3MP60, Surefil) composite resins, according to a randomized complete block design (n=13, 8 for wear test; 5 for hardness test). The composites were filled in a rectangular mold, and light polymerization. After storage in 37°C deionized water for 24h, all specimens were tested with a custom-made toothbrush machine with a stainless-steel ball as antagonist (3N loads, 1Hz, 6×105 cycles) immersed in calcium fluoride slurry. Wear volume, hardness and surface structure of each tested material was examined by a three-dimensional non-contact optical profilometer, Vickers indentation technique and scanning electron microscope. Results: The volume loss ranked from least to most as follows: Charisma Diamond, P60, Z250, Clearfil AP-X and Surefil. Regarding hardness, the rank from highest to lowest as follows: Clearfil AP-X, P60, Surefil, Z250, Charisma Diamond. The interactions between wear resistance and microhardness were not significant. Conclusions: The custom-made machine is considered suitable to simulate sliding of an antagonist cusp on an opposing occlusal composite restoration. Nanofilled composite may have superior wear compared to other composite resins. PMID:23844265
The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation
NASA Astrophysics Data System (ADS)
Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.
2018-03-01
The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .
Review of intellectual assessment measures for children who are deaf or hard of hearing.
Reesman, Jennifer H; Day, Lori A; Szymanski, Christen A; Hughes-Wheatland, Roxanne; Witkin, Gregory A; Kalback, Shawn R; Brice, Patrick J
2014-02-01
Intellectual assessment of children who are deaf or hard of hearing presents unique challenges to the clinician charged with attempting to obtain an accurate representation of the child's skills. Selection of appropriate intellectual assessment instruments requires a working knowledge of the strengths and weaknesses of the measure and what changes in standardized administration might be necessary to accommodate for the needs of children who are deaf or hard of hearing. In the case of some available instruments, there is limited guidance and objective research available examining the performance of children who are deaf or hard of hearing. This review summarizes available information on widely used and most recent editions of intellectual assessment measures with special attention to guidance on accommodations, score interpretation, subtest selection and other test-specific considerations when assessing children who are deaf or hard of hearing. There is much opportunity for further inquiry in the field of intellectual assessment as it applies to children who are deaf or hard of hearing, as many measures have not been closely scrutinized for their appropriate use with this population. Clinicians must recognize inherent difficulties with intellectual assessment measures with children who are deaf or hard of hearing and issues in providing for an accessible and accurate administration of test items. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Luo, Si; Wu, Benli; Xiong, Xiaoqin; Wang, Jianwei
2016-01-01
The ionic composition of water is important for all fish. In the present study, the effects of total hardness and Ca(2+):Mg(2+) ratio on early life stages of rare minnows (Gobiocypris rarus), a promising laboratory fish in China, were evaluated. Paired parent fish were transferred to spawning aquaria (16 L) containing water at different total hardness and Ca:Mg ratios, and their offspring were further cultured at 25 ± 1 °C and 12:12-h light:dark photoperiod. Fertilization rates were not affected by total hardness to 480 mg L(-1) CaCO3, but egg size decreased with increasing total hardness. Ca:Mg ratios less than 1:20 or greater than 8:1 had adverse influences on hatching, feeding, development, larval growth, and survival. Embryos and larvae incubated in Mg(2+)- and Ca(2+)-deficient waters exhibited high malformation rates and high mortality. Our results demonstrate that rare minnows can adapt to a wide range of total hardness and Ca:Mg ratios, although an imbalance between Ca(2+) and Mg(2+) in water is toxic to this species. To increase the comparability and usefulness of test results, we recommend the use of reconstituted or drinking water of defined total hardness and Ca:Mg ratio for the culture and toxicity testing of rare minnows.
Effect of mechanical properties on erosion resistance of ductile materials
NASA Astrophysics Data System (ADS)
Levin, Boris Feliksovih
Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.
Wang, Yu; Mei, Li; Gong, Lin; Li, Jialing; He, Shaowei; Ji, Yan; Sun, Weibin
2016-09-14
Demineralization can be arrested or reversed when remineralization agents are applied to incipient carious or non-cavitated carious lesions. A large number of therapeutic agents including non-fluoridated products have been developed to promote enamel remineralization. This study aims to evaluate the efficacy of different bioactive elements containing toothpastes in remineralization of artificial enamel lesions. Artificial carious lesions were created on 40 human enamel slabs, and were randomly divided into four groups: (1) control group (no treatment), (2) casein phosphopeptide-amorphous calcium phosphate group (CPP-ACP, GC Tooth Mousse), (3) 8% arginine and calcium carbonate group (ACC, Colgate Sensitive Pro-Relief), (4) calcium sodium phosphosilicate group (CSP, NovaMin®). All samples were subjected to 15 days of pH-cycling. Subsequently, a one-hour acid resistance test was carried out. Surface hardness of the samples was assessed using the Knoop hardness test, and surface morphology and roughness were assessed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Data were analyzed using one-way ANOVA, Tukey's test and paired t test. The three tested toothpastes exhibited a significantly higher remineralization efficacy compared with the control group (P< 0.05 for all). After pH-cycling, the specimens treated with Colgate Sensitive Pro-Relief and NovaMin® showed a significant higher surface hardness (P< 0.001 and P= 0.03, respectively) and lower surface roughness (P< 0.05 for both) compared those treated with GC Tooth Mousse. While after the acid resistance test, all groups showed a significant loss of surface hardness (P< 0.001 for all) and significant increase of surface roughness (P< 0.05). The specimens treated with Colgate Sensitive Pro-Relief and NovaMin® still showed a significant higher surface hardness and lower surface roughness in comparison with those treated with GC Tooth Mousse (P< 0.05 for all). No significant difference was found in surface hardness and roughness between Colgate Sensitive Pro-Relief and NovaMin® during the pH-cycling test and acid resistance test (P= 0.45 and P= 0.83, respectively). Colgate Sensitive Pro-Relief and NovaMin® present an advantage in enhancing remineralization and inhibiting demineralization for early enamel carious lesions in comparison with GC Tooth Mousse.
Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.
2015-01-01
Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074
HARD PAN I Test Series Test and Instrumentation Plans. Volume I. Test Plan
1975-12-01
t.jw .y..,,^.,^,. Ä!»,,«-* :,,; .trwev* ’ UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGt ’Wh&n Data Entered) J?)REPORT DOCUMENTATION PAGE...to facility-l—> DO ,: FORM A’J 73 1473 EDITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED fNW SECURITY CLASSIFICATION OF THIS PAGE (Wfien Data Entered...y^o ... — ppiiw’.^y.-.j-w... v»t \\ UNCLASSIFIED iCURITY CLASSIFICATION CF THIS PAGEfWlon Data Entered) design, modification, and hardness
ERIC Educational Resources Information Center
Cawthon, Stephanie W.; Winton, Samantha M.; Garberoglio, Carrie Lou; Gobble, Mark E.
2011-01-01
Students who are deaf or hard of hearing (SDHH) often need accommodations to participate in large-scale standardized assessments. One way to bridge the gap between the language of the test (English) and a student's linguistic background (often including American Sign Language [ASL]) is to present test items in ASL. The specific aim of this project…
ERIC Educational Resources Information Center
Cannon, Joanna E.; Hubley, Anita M.; Millhoff, Courtney; Mazlouman, Shahla
2016-01-01
The aim of the current study was to gather validation evidence for the "Comprehension of Written Grammar" (CWG; Easterbrooks, 2010) receptive test of 26 grammatical structures of English print for use with children who are deaf and hard of hearing (DHH). Reliability and validity data were collected for 98 participants (49 DHH and 49…
Metallurgical characterization of experimental Ag-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros
2014-10-01
To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.
Metallurgical characterization of experimental Ag-based soldering alloys
Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros
2014-01-01
Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945
Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.
Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera
2015-10-02
One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (p<0.001). Both bleaching techniques reduced enamel micro-hardness, although the reduction is much less significant with the GaAlAs laser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.
Effect of beverages and mouthwashes on the hardness of polymers used in intraoral prostheses.
Goiato, Marcelo Coelho; Dos Santos, Daniela Micheline; Andreotti, Agda Marobo; Nobrega, Adhara Smith; Moreno, Amalia; Haddad, Marcela Filié; Pesqueira, Aldiéris Alves
2014-10-01
The mechanical properties of acrylic resins used in intraoral prostheses may be altered by frequent exposure to liquids such as beverages and mouthwashes. This study aimed to evaluate the effect of thermocycling and liquid immersion on the hardness of four brands of acrylic resins commonly used in removable prostheses (Onda Cryl, QC-20, Clássico, Lucitone). For each brand of resin, seven specimens were immersed in each of six solutions (coffee, cola, red wine, Plax-Colgate, Listerine [LI], Oral B), and seven more were placed in artificial saliva (control). The hardness was tested using a microhardness tester before and after 5000 thermocycles and after 1, 3, 24, 48, and 96 hours of immersion. The results were analyzed using three-way repeated-measures ANOVA and Tukey's test (p < 0.05). The hardness of the resins decreased following thermocycling and immersion in the solutions. Specimens immersed in cola and wine exhibited significant decreases in hardness after immersion for 96 hours, although the greatest significant decrease in hardness occurred in specimens immersed in LI. However, according to American Dental Association specification 12, the Knoop hardness of acrylic resins for intraoral prostheses should not be below 15. Thus, the median values of superficial hardness observed in most of the acrylic resins in this study are considered clinically acceptable. The microhardness of polymers used for intraoral prostheses decreases following thermocycling. Among specimens immersed in beverages, those immersed in cola or wine experienced the greatest decrease in microhardness. Immersion of acrylic resins in LI significantly decreased the microhardness in relation to the initial value. Among the resins assessed, QC-20 exhibited the lowest initial hardness. © 2014 by the American College of Prosthodontists.
Fatemi, Farzaneh Sadat; Vojdani, Mahroo; Khaledi, Amir Ali Reza
2018-06-08
To investigate the influence of food-simulating agents on the shear bond strength between direct hard liners and denture base acrylic resin. In addition, mode of failure was evaluated. One hundred fifty cylindrical columns of denture base resin were fabricated and bonded to three types of hard reline materials (Hard GC Reline, Tokuyama Rebase II Fast, TDV Cold Liner Rebase). Specimens of each reline material were divided into five groups (n = 10) to undergo 12-day immersion in distilled water, 0.02 N citric acid aqueous solution, heptane, and 40% ethanol/water solution at 37°C. The control group was not immersed in any solution. The shear bond strength test was performed, and the failure mode was determined. Statistics were analyzed with two-way ANOVA and chi-square test (α = 0.05). Significant interaction was found between the hard liners and food simulating agents (p < 0.001). The shear bond strength of Tokuyama in 40% ethanol and TDV in heptane decreased significantly (p = 0.001, p < 0.001 respectively); however, none of the solutions could significantly affect the shear bond strength of Hard GC Reline (p = 0.208). The mixed failure mode occurred more frequently in Hard GC Reline compared with the other liners (p < 0.001) and was predominant in specimens with higher bond strength values (p = 0.012). Food simulating agents did not adversely affect the shear bond strength of Hard GC Reline; however, ethanol and heptane decreased the bond strength of Tokuyama and TDV, respectively. These findings may provide support to dentists to recommend restricted consumption of some foods and beverages for patients who have to use dentures relined with certain hard liners. © 2018 by the American College of Prosthodontists.
Effects of water hardness on size and hatching success of silver carp eggs
Rach, Jeff J.; Sass, Greg G.; Luoma, James A.; Gaikowski, Mark P.
2010-01-01
Eggs of silver carp Hypophthalmichthys molitrix absorb water after release from the female, causing them to become turgid and to increase substantially in size. The volume of water that diffuses within an egg is most likely determined by (1) the difference in ionic concentration between the egg and the water that surrounds it and (2) the elasticity of the egg membrane. Prior observations suggest that silver carp eggs may swell and burst in soft waters. If water hardness affects silver carp reproductive success in nonnative ecosystems, this abiotic factor could limit silver carp distribution or abundance. In this study, we tested the effect of water hardness on silver carp egg enlargement and hatching success. Groups of newly fertilized silver carp eggs were placed in water at one of five nominal water hardness levels (50, 100, 150, 200, or 250 mg/L as CaCO3) for 1 h to harden (absorb water after fertilization). Egg groups were then placed in separate incubation vessels housed in two recirculation systems that were supplied with either soft (50 mg/L as CaCO3) or hard (250 mg/L as CaCO3) water to evaluate hatching success. Tests were terminated within 24 h after viable eggs had hatched. Eggs that were initially placed in 50-mg/L water to harden were larger (i.e., swelled more) and had a greater probability of hatch than eggs hardened in other water hardness levels. Unlike the effect of water hardness during egg hardening, the water hardness during incubation appeared to have no effect on egg hatching success. Our research suggests that water hardness may not be a limiting factor in the reproduction, recruitment, and range expansion of silver carp in North America.
Edwards, Lindsey; Figueras, Berta; Mellanby, Jane; Langdon, Dawn
2011-01-01
The extent to which cognitive development and abilities are dependent on language remains controversial. In this study, the analogical reasoning skills of deaf and hard of hearing children are explored. Two groups of children (deaf and hard of hearing children with either cochlear implants or hearing aids and hearing children) completed tests of verbal and spatial analogical reasoning. Their vocabulary and grammar skills were also assessed to provide a measure of language attainment. Results indicated significant differences between the deaf and hard of hearing children (regardless of type of hearing device) and their hearing peers on vocabulary, grammar, and verbal reasoning tests. Regression analyses revealed that in the group of deaf and hard of hearing children, but not in the hearing group, the language measures were significant predictors of verbal analogical reasoning, when age and spatial analogical reasoning ability were controlled for. The implications of these findings are discussed.
Radiation Hard 0.13 Micron CMOS Library at IHP
NASA Astrophysics Data System (ADS)
Jagdhold, U.
2013-08-01
To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].
Effect of heat treatment On Microstructure of steel AISI 01 Tools
NASA Astrophysics Data System (ADS)
Dyanasari Sebayang, Melya; Yudo, Sesmaro Max; Silitonga, Charlie
2018-03-01
This study discusses the influence of quenching, normalizing, and annealing to changes in hardness, tensile, and microstructure of materials tool steel AISI 01 after the material undergo heat treatment process. This heat treatment process includes an initial warming of 600° C and a 5-minute detention time, followed by heating to an austenisation temperature of 850°C. After that a different cooling process, including annealing process, normalizing and quenching oil SAE 40. Tests performed include tensile, hard, and microstructure with shooting using SEM (Scanning Electron Microscope). This is done to see the effect of different heat treatment and cooling process. The result of this research is difference of tensile test value, hard, and micro structure from influence of difference of each process. The quenching process obtains the highest tensile and hard values followed by the normalizing process, annealing, and the lowest is in the starting material, this is because the initial material does not undergo heat treatment process. The resulting microstructure is pearlit and cementite, the difference seen from the shape and size of the grains. The larger the grain size, the greater the hardness.
Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg
2015-08-20
The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L.
THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, F.R.
1958-07-01
The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less
Robust hard-solder packaging of conduction cooled laser diode bars
NASA Astrophysics Data System (ADS)
Schleuning, David; Griffin, Mike; James, Phillip; McNulty, John; Mendoza, Dan; Morales, John; Nabors, David; Peters, Mike; Zhou, Hailong; Reed, Murray
2007-02-01
We present the reliability of high-power laser diodes utilizing hard solder (AuSn) on a conduction-cooled package (HCCP). We present results of 50 W hard-pulse operation at 8xx nm and demonstrate a reliability of MTTF > 27 khrs (90% CL), which is an order of magnitude improvement over traditional packaging. We also present results at 9xx nm with a reliability of MTTF >17 khrs (90% CL) at 75 W. We discuss finite element analysis (FEA) modeling and time dependent temperature measurements combined with experimental life-test data to quantify true hard-pulse operation. We also discuss FEA and measured stress profiles across laser bars comparing soft and hard solder packaging.
Cevik, Pinar; Yildirim-Bicer, Arzu Z
2017-11-09
Understanding the effect of aging and different disinfecting agents on the physical properties of pigmented maxillofacial silicones may help eliminate the current uncertainty as to the best follow-up suggestions for the patients treated with silicone prostheses. One hundred fifty specimens (14 × 2 mm) were evaluated for colour and 75 specimens (30 × 10 mm) for hardness (total, 225 specimens). Five specimens were used for hardness testing in each disinfecting solution while 10 silicone specimens were used for colour evaluation. The samples were separated into 5 groups and the initial hardness and colour evaluations were performed and placed in disinfectant solution (neutral soap, effervescent tablet, 0.2% chlorhexidine, 4% chlorhexidine, sodium hypochlorite). A second set of colour and hardness measurements was taken after 48 hours of disinfection and 1,008 hours of artificial aging in a QUV-accelerated weathering tester. Two-way and 1-way analysis of variance with Tukey tests and paired t-test were used for statistical analysis (α = 0.05). Before artificial aging, the hardness value of the red pigment group was found to be significantly lower than that of the brown pigment group. After aging, the lowest Shore A value was seen in the neutral soap group, while the highest was seen in the effervescent tablet. Based on the results of this study, chlorohexidine 0.2% was found to be most suitable agent for disinfection of the prostheses. Washing with neutral soap caused loss of pigment from the surface of the silicones. Sodium hypochlorite was found to have a colour-fading effect on silicone specimens.
Long-term hot-hardness characteristics of five through-hardened bearing steels
NASA Technical Reports Server (NTRS)
Anderson, N. E.
1978-01-01
Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.
ERIC Educational Resources Information Center
Cawthon, Stephanie W.
2009-01-01
Students who are deaf or hard of hearing (SDHH) often use test accommodations when they participate in large-scale, standardized assessments. The purpose of this article is to present findings from the "Third Annual Survey of Assessment and Accommodations for Students who are Deaf or Hard of Hearing". The "big five" accommodations were reported by…
Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi
2013-01-01
The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm(-1)) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi
2013-01-01
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness. PMID:23407620
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566
The Effect of Global and Local Damping on the Perception of Hardness.
van Beek, Femke Elise; Heck, Dennis J F; Nijmeijer, Henk; Bergmann Tiest, Wouter M; Kappers, Astrid M L
2016-01-01
In tele-operation systems, damping is often injected to guarantee system stability during contact with hard objects. In this study, we used psychophysical experiments to assess the effect of adding damping on the user's perception of object hardness. In Experiments 1 and 2, combinations of stiffness and damping were tested to assess their effect on perceived hardness. In both experiments, two tasks were used: an in-contact task, starting at the object's surface, and a contact-transition task, including a free-air movement. In Experiment 3, the difference between inserting damping globally (equally throughout the workspace) and locally (inside the object only) was tested. In all experiments, the correlation between the participant's perceptual decision and force and position data was also investigated. Experiments 1 and 2 show that when injecting damping globally, perceived hardness slightly increased for an in-contact task, while it decreased considerably for a contact-transition task. Experiment 3 shows that this effect was mainly due to inserting damping globally, since there was a large perceptual difference between inserting damping globally and locally. The force and position parameters suggest that participants used the same force profile during the two movements of one trial and assessed the system's reaction to this force to perceive hardness.
The Fabrication of Replicated Optics for Hard X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Speegle, C. O.; Ramsey, B. D.; Engelhaupt, D.
2000-01-01
We describe the fabrication process for producing shallow-graze-angle mirrors for hard x-ray astronomy. This presentation includes the generation of the necessary super-polished mandrels, their metrology, and the subsequent mirror shell electroforming and testing.
3 CFR 8479 - Proclamation 8479 of March 1, 2010. Irish-American Heritage Month, 2010
Code of Federal Regulations, 2011 CFR
2011-01-01
... challenges with resolve and determination. In the face of violence perpetuated by some—testing a hard-earned... communities, Irish Americans are a people whose hard work and resilience have brought them great opportunity...
1974-10-28
spheres. In another test, specimens of EN-8 ( SAE 1040) steel heat treated to a hard- ness of 36 R.C. were run under the same conditions as reported...pits evident in the test of the Armco 17-4 steel were found on these samples, This test indicated that the SAE -1040 steel is more pro.e to fatigue...MMHI .^MMMaate mm^^^t^ma^mm ■’-■■■-- ■■■ ■---’---■■ -■ fl g Q Ü :; i i A repeat of this test with SAE -1040 steel heat treated to a hardness of
ERIC Educational Resources Information Center
Van Horne, Amanda Jean Owen; Fey, Marc; Curran, Maura
2017-01-01
Purpose: Complexity-based approaches to treatment have been gaining popularity in domains such as phonology and aphasia but have not yet been tested in child morphological acquisition. In this study, we examined whether beginning treatment with easier-to-inflect (easy first) or harder-to-inflect (hard first) verbs led to greater progress in the…
A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions
NASA Astrophysics Data System (ADS)
Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang
2018-01-01
Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples (single crystal and polycrystalline).
Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.
2009-01-01
The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.
Design and Tests of the Hard X-Ray Polarimeter X-Calibur
NASA Technical Reports Server (NTRS)
Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.;
2011-01-01
X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.
Design and Tests of the Hard X-Ray Polarimeter X-Calibur
NASA Technical Reports Server (NTRS)
Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.;
2012-01-01
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.
Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning
NASA Astrophysics Data System (ADS)
Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong
2013-10-01
An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.
Gensemer, Robert W; Naddy, Rami B; Stubblefield, William A; Hockett, J Russell; Santore, Robert; Paquin, Paul
2002-09-01
The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States over the range of 25-400 mgl(-1) (as CaCO(3)). However, waters in the arid west of the US frequently exceed 400 mgl(-1) hardness, and the applicability of hardness-toxicity relationships in these waters is unknown. Acute toxicity tests with Ceriodaphnia dubia were conducted at hardness levels ranging from approximately 300 to 1,200 mgl(-1) using reconstituted waters that mimic two natural waters with elevated hardness: (1) alkaline desert southwest streams (Las Vegas Wash, NV), and (2) low alkalinity waters from a CaSO(4)-treated mining effluent in Colorado. The moderately-alkaline EPA synthetic hard water was also included for comparison. Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g., alkalinity or other correlated factors). The hardness equations used in regulatory criteria, therefore, may not provide an accurate level of protection against copper toxicity in all types of very hard waters. However, the mechanistic Biotic ligand model generally predicted copper toxicity within +/-2X of observed EC(50) values, and thus may be more useful than hardness for modifying water quality criteria.
da Silva, Lucas H; Feitosa, Sabrina A; Valera, Marcia C; de Araujo, Maria A M; Tango, Rubens N
2012-06-01
The purpose of this study was to evaluate the flexural strength and Vickers hardness of a microwave energy heat-cured acrylic resin by adding different concentrations of silane surface-treated nanoparticle silica. Acrylic resin specimens with dimensions of 65 × 10 × 2.5 mm were formed and divided into five experimental groups (n = 10) according to the silica concentration added to the acrylic resin mass (weight %) prior to polymerisation : G1, without silica; G2, 0.1% silica; G3, 0.5% silica; G4, 1.0% silica; and G5, 5.0% silica. The specimens were submitted to a three-point flexural strength test and to the Vickers hardness test (HVN). The data obtained were statistically analysed by anova and the Tukey test (α = 0.05). Regarding flexural strength, G5 differed from the other experimental groups (G1, G2, G3 and G4) presenting the lowest mean, while G4 presented a significantly higher mean, with the exception of group G3. Regarding Vickers hardness, a decrease in values was observed, in which G1 presented the highest hardness compared with the other experimental groups. Incorporating surface-treated silica resulted in direct benefits in the flexural strength of the acrylic resin activated by microwave energy; however, similar results were not achieved for hardness. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Prince, J.M.; Dodson, M.G.; Lechelt, W.M.
1989-07-18
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.
Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.
1989-01-01
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.
Effects of shoe cushioning upon ground reaction forces in running.
Clarke, T E; Frederick, E C; Cooper, L B
1983-11-01
To determine the effects of widely varying amounts of cushioning upon vertical force (VF) parameters, ten male subjects, (mean weight = 68.0 kg) ran at a speed of 4.5 m . s-1 (6 min/mile pace) and contacted a Kistler force platform. Two shoes were tested: a hard one and a softer shoe that had 50% more cushioning as measured by an instrumented impact tester. Five right footfalls were collected for each shoe on each subject during which the ground reaction forces were sampled at 500 HZ using a PDP 11/34 minicomputer. Eight parameters from the VF data obtained for each trial were selected for analysis and compared statistically using a paired difference t test. It was found [force magnitudes expressed in multiples of body weight (BW)] that the time to the vertical force impact peak (VFIP) was significantly longer (hard = 22.5 ms, soft = 26.6 ms) in the soft shoe; however, no differences were seen in the magnitudes (hard = 2.30 BW, soft = 2.34 BW). The minimum after the VFIP was also significantly delayed in the soft shoe (hard = 33.8 ms, soft = 37.9 ms) and was significantly greater in the soft shoe (hard = 1.46 BW, soft = 1.90 BW). The peak VF propulsive force occurred statistically at the same time in both shoes (hard = 85.7 ms, soft = 84.0 ms), but was significantly greater in the soft shoe (hard = 2.73 BW, soft = 2.83 BW).(ABSTRACT TRUNCATED AT 250 WORDS)
McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.
1996-01-01
Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.
Oliveira, Pedro César Garcia; Adabo, Gelson Luis; Ribeiro, Ricardo Faria; da Rocha, Sicknan Soares; Ávila, Fabiano Araújo; do Valle, Accácio Lins
2007-01-01
The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430°C (control group), 480°C and 530°C. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430°C, 480 and 530: CP Ti (486.1 – 501.16 – 498.14 –mean 495.30 MPa) and Ti-6Al-4V alloy (961.33 – 958.26 – 1005.80 – mean 975.13 MPa) while for the Vickers hardness the values were (198.06, 197.85, 202.58 – mean 199.50) and (352.95, 339.36, 344.76 – mean 345.69), respectively. The values were submitted to Analysis of Variance (ANOVA) and Tukey,s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy. PMID:19089099
NASA Astrophysics Data System (ADS)
Janka, Styková; Miloš, Müller; Jan, Hujer
This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.
Novel hard compositions and methods of preparation
Sheinberg, H.
1981-02-03
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.
Measurement and analysis of chatter in a compliant model of a drillstring equipped with a PDC bit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.A.; Raymond, D.W.
1999-11-09
Typical laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, the authors show that introducing compliance in testing setups provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.
Collaborative Study of Daphnia magna Static Renewal Assays.
1986-01-01
established that for acceptable results and practicality, the standardized medium would be a modification of Marking’s and Dawson’s formulation for hard ...by SBI personnel included the results of physical - - 12 measurements (pH, dissolved oxygen, temperature, lighting regime, hardness and alkalinity...oxygen (D.O.), temperature, hardness and alkalinity (Tables 3-6). For all four tests at each laboratory and among all laboratories, pH’s ranged from 7.3
ERIC Educational Resources Information Center
Cawthon, Stephanie W.; Wurtz, Keith A.
2009-01-01
The purpose of this paper is to present findings on alternate assessments for students who are deaf or hard of hearing (SDHH). Drawn from the results of the "Second National Survey of Assessments and Accommodations for Students Who Are Deaf or Hard of Hearing," this study investigated three alternate assessment formats: portfolio, checklists, and…
High-Temperature Microindentation Tests on Olivine and Clinopyroxene
NASA Astrophysics Data System (ADS)
Dorner, D.; Schellewald, M.; Stöckhert, B.
2001-12-01
The perspectives of microindentation techniques for the investigation of the mechanical behaviour of minerals at high temperatures are explored. The technique offers the following advantages: (1) natural specimens with small grain size can be used, (2) preparation is simple, (3) a reasonable number of experiments can be performed within a short period of time. The strength of single crystals as a function of orientation and the activated glide systems are studied using scanning electron microscopy (SEM) combined with electron backscatter diffraction (EBSD) facilities. Furthermore, the effects of compositional variations on the flow strength of solid solutions are explored. The indentation hardness tests are performed on selected grains within natural polycrystalline aggregates. The surface of the specimen is polished mechanically and chemically. The orientation of the crystals is determined using EBSD. The indentation tests are performed with a diamond pyramid (Vickers indenter) at temperatures of 25 ° C to 900 ° C. Loading is done with a constant displacement rate up to a force of 0.5 N, followed by a creep period of 10 s at constant load. SEM is used to measure the size of the indents and to examine their morphology in detail. The microhardness obtained for olivine depends on crystal and indenter orientation and decreases slightly with temperature. Slip steps are observed on the surface around the indents. Their orientation with respect to the crystal orientation indicates that the predominant glide system activated in the indentation process is \\{110\\}[001]. The Schmid factors for this glide system correlate with the observed orientation dependence of the hardness. Indentation hardness of clinopyroxene solid solutions depends on composition with jadeite being stronger than diopside. This is inverse to what is expected for dislocation creep. The high yield stresses inferred from the hardness data and the weak dependence of hardness on temperature are consistent with plasticity being the deformation regime explored in indentation hardness tests.
Zinelis, Spiros; Eliades, Theodore; Pandis, Nikolaos; Eliades, George; Bourauel, Christoph
2007-07-01
The aim of this study was to characterize intraorally fractured nickel-titanium (Ni-Ti) archwires, determine the type of fracture, assess changes in the alloy's hardness and structure, and propose a mechanism of failure. Eleven Ni-Ti SE 200 and 19 copper-Ni-Ti (both, Ormco, Glendora, Calif) intraorally fractured archwires were collected. The location of fracture (anterior or posterior), wire type, cross section, and period of service before fracture were recorded. The retrieved wires and brand-, type-, and size-matched specimens of unused wires were subjected to scanning electron microscopy to assess the fracture type and morphological variation of fracture site of retrieved specimens, and to Vickers hardness (HV200) testing to investigate the hardness of as-received and in-vivo fractured specimens. Fracture site distribution was statistically analyzed with the chi-square test (alpha = 0.05), whereas the results of the hardness testing were analyzed with 2-way ANOVA with state (control vs in-vivo fractured) and composition (Ni-Ti SE vs copper-Ni-Ti) serving as discriminating variables and the Student-Newman-Keuls test at the 95% confidence level. The fracture site distribution showed a preferential location at the midspan between the premolar and the molar, suggesting that masticatory forces and complex loading during engagement of the wire to the bracket slot and potential intraoral aging might account for fracture incidence. All retrieved wires had the distinct features of brittle fracture without plastic deformation or crack propagation, whereas no increase in hardness was observed for the retrieved specimens. Most fractures sites were in the posterior region of the arch, probably because of the high-magnitude masticatory forces. Brittle fracture without plastic deformation was observed in most Ni-Ti wires regardless of archwire composition. There was no increase in the hardness of the intraorally exposed specimens regardless of wire type. This contradicts previous in-vitro studies and rules out hydrogen embrittlement as the cause of fracture.
NASA Astrophysics Data System (ADS)
Macias, F. J.; Dahl, F.; Bruland, A.
2016-05-01
The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.
NASA Technical Reports Server (NTRS)
Ray, Asit K.
1992-01-01
Eight urethane compounds were evaluated as possible replacement for the existing encapsulating compoounds for electrical cables for the Launch Support System at Kennedy Space Center (KSC). The existing encapsulating compound, PR-1535, contains the curative MOCA 4-4'-Methylene-BIS (2-chloroaniline), which is a suspect carcinogen and hence may be the subject of further restrictions of its use by the Occupational Safety and Health Administration (OSHA). The samples made in the configuration of cable joints and in the form of disks were evaluated for flammability and hypergolic compatibility. These also underwent accelerated weatherability tests that measured the residual hardness of the exposed samples. Three candidates and the existing compound passed the hardness test. Of these, only one candidate and the existing compound passed the flammability test. The thermal and hydrolytic stability (weatherability) of these samples was studied using thermogravimetric analysis (DSC) techniques. The TMA and DSC data correlated with the residual hardness data; whereas, the TGA data showed no correlation. A hypergolic compatibility test will be conducted on the compound V-356-HE80, which passed both the flammability and accelerated weatherability tests.
ERIC Educational Resources Information Center
Gkouvatzi, Anastasia N.; Mantis, Konstantinos; Kambas, Antonis
2010-01-01
Using the Bruininks-Oseretsky Test the motor performance of 34 deaf--hard-of-hearing pupils, 6-14 year, was evaluated in reaction time, visual-motor control and upper limb speed and dexterity. The two-way ANOVA variance analysis for two independent variables, group, age, and the Post Hoc (Scheffe test) for multiple comparisons were used. The…
Al-Hilawani, Y A
2000-09-01
The purpose of this study was to examine the influence of using the Cognitive Behaviour Modification (CBM) technique on the subtraction skills of third grade hearing and deaf/hard-of-hearing students. The results indicated that the CBM deaf/hard-of-hearing students and the CBM and non-CBM hearing students made more progress in solving the subtraction problems than the non-CBM deaf/hard-of-hearing students. The results also showed that there were no significant differences between the CBM deaf/hard-of-hearing and the non-CBM hearing students; and there were no significant differences between the CBM and non-CBM hearing students. The results revealed that the CBM hearing students achieved significantly higher post-test scores than the CBM deaf/hard-of-hearing students. However, the CBM deaf/hard-of-hearing students obtained a significantly higher gain score compared to the CBM and non-CBM hearing students. Implications for teachers and suggestions for future research are discussed in this paper.
Short-term hot-hardness characteristics of five case hardened steels
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Zaretsky, E. V.
1975-01-01
Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2007-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2004-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
Mousavinasab, Sayed Mostafa; Meyers, Ian
2011-07-01
To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time.
Cirrus Dopant Nano-Composite Coatings
2014-11-01
100 200 300 400 500 600 HARDNESS (HV) MICROHARDNESS - ELECTROPLATED NICKEL STANDARD DC PLATED DOPED DC PLATED DOPED PULSE PLATED ↑48% 10...STANDARD COATING HARDNESS (HV) DOPED COATING MICROHARDNESS - ELECTROPLATED ZN NI ↑32% DC ZnNi Cirrus ZnNi Current Test Applications cirrus nano
USE OF FUME SUPPRESSANTS IN HARD CHROMIUM BATHS - EMISSION TESTING
The EPA Common Sense Initiative (CSI) is a cooperative effort of government, industry, environmental, and other stakeholder groups to find "cleaner, cheaper, smarter" approaches to environmental management in industrial sectors. The purpose of the project is to assist hard chrome...
USE OF FUME SUPPRESSANTS IN HARD CHROMIUM BATHS - QUALITY TESTING
The EPA Common Sense Initiative (CSI) is a cooperative effort of government, industry, environmental and other stakeholder groups to find "cleaner, cheaper, smarter" approaches to environmental management in industrial sectors. The purpose of the project is to help hard chromium ...
Grain characterization and milling behaviour of near-isogenic lines differing by hardness.
Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V
2006-12-01
Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.
de Moraes, Rafael Ratto; Marimon, José Laurindo Machado; Schneider, Luis Felipe; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço; Bueno, Márcia
2008-06-01
This study assessed the effect of 6 months of aging in water on surface roughness and surface/subsurface hardness of two microhybrid resin composites. Filtek Z250 and Charisma were tested. Cylindrical specimens were obtained and stored in distilled water for 24 hours or 6 months, at 37 degrees C. For Knoop hardness evaluation, the specimens were transversely wet-flattened, and indentations were made on surface and subsurface layers. Data were submitted to three-way ANOVA and Tukey's test (alpha < or = 0.05). Surface roughness baseline measurements were made at 24 hours and repeated after 6 months of storage. Data were submitted to repeated measures ANOVA and Tukey's test (alpha < or = 0.05). Surface hardness (KHN, kg/mm(2)) means (+/- standard deviation) ranged from 55 +/- 1 to 49 +/- 4 for Z250 and from 50 +/- 2 to 41 +/- 3 for Charisma, at 24 hours and 6 months, respectively. Subsurface means ranged from 58 +/- 2 to 61 +/- 3 for Z250 and from 50 +/- 1 to 54 +/- 2 for Charisma, at 24 hours and 6 months. For both composites, the aged specimens presented significantly softer surfaces (p < 0.01). For the subsurface hardness, alteration after storage was detected only for Charisma, which presented a significant rise in hardness (p < 0.01). Z250 presented significantly harder surface and subsurface layers in comparison with Charisma. Surface roughness (Ra, mum) means ranged from 0.07 +/- 0.00 to 0.07 +/- 0.01 for Z250 and from 0.06 +/- 0.01 to 0.07 +/- 0.01 for Charisma, at 24 hours and 6 months, respectively. For both composites, no significant roughness alteration was detected during the study (p= 0.386). The 6-month period of storage in water presented a significant softening effect on the surfaces of the composites, although no significant deleterious alteration was detected for the subsurface hardness. In addition, the storage period had no significant effect on the surface roughness of the materials.
Jyothi, KN; Crasta, Shanol; Venugopal, P
2012-01-01
Aim and Objectives: This in vitro study was designed to comparatively evaluate the effect of five commercial mouth rinses on the micro hardness of a nanofilled resin based restorative material. Materials and Methods: Fifty specimens of resin composite material (Filtek Z350XT, 3M ESPE, St.Paul, MN USA) were prepared and immersed in artificial saliva for 24 h. The base line micro hardness of specimens was recorded using Vicker's micro hardness tester (MMT – X7 Matsuzawa, Japan). The specimens were randomly distributed into five groups, each containing 10 specimens (n=10) as follows – Group I Listerine (alcohol based), Group II Periogard (alcohol based), Group III Colgate plax (alcohol based), Group IV C- prev (alcohol free), Group V Hiora(alcohol free). The specimens were immersed in 20 ml of mouth rinses and incubated for 24 h at 37°C. The post immersion micro hardness values of the specimens were recorded and the data was tabulated for statistical analysis. Kruskal–Wallis test was used for inter group comparison followed by pair wise comparison of groups using Mann–Whitney U test. The level of significance was set at P=0.05. Results: Significant reduction in the mean VHN (Vicker's micro hardness number) was observed in all the groups after exposure to the tested mouth rinses (P<0.01) and the reduction in mean VHN values were as follows: Group I 12.09, Group II 3.42, Group II 1.51, Group IV 1.03, Group V 0.57. Inter group comparison showed statistically significant reduction in micro hardness in Groups I and II compared to all other groups with P<0.001. There was no significant difference between Groups III, IV and V. Conclusion: All the mouth rinses showed a reduction in the microhardness of nanofilled resin composite material with listerine (Group I) containing maximum amount of alcohol, showing highest reduction in micro hardness value. PMID:22876004
Evaluation of hardness and colour change of soft liners after accelerated ageing.
Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline
2009-07-01
Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.
Surface Hardness of Dental Composite Resin Restorations in Response to Preventive Agents.
Al-Samadani, Khalid H
2016-12-01
To assess the impact of using preventive mouthwash agents on the surface hardness of various resins composites. Hundred specimens were prepared from five types of composite resin material in a Teflon mold. Five specimens from each type of restorative materials (Herculite XRV Ultra, Estelite Σ Quick, Z Hermack, Versa Comp Sultan, and Empress Direct IPS) were evaluated posttreatment with immersion in four types of preventive mouthwashes gels and rinses - group 1: Flocare gel (0.4% stannous fluoride), group 2: Pascal gel (topical APF fluoride), group 3: Pro-relief mouthwash (Na fluoride), and group 4: Plax Soin mouthwash (Na fluoride) - at 37°C in a dark glass container at 24, 48, and 72 hours. Surface hardness measurement was made for each tested material. Statistically, we analyzed the mean values with one-way analysis of variance (ANOVA) and Tukey's test, with significance level of p < 0.05. All composite resin materials showed decrease in their surface hardness with the time elapsed (24, 48, and 72 hours) postimmersion in the preventive mouthwashes and gels except the Herculite XRV Ultra and Versa Comp Sultan materials. Flocare gel group showed increase in the surface hardness after 48 hours of immersion than the other periods and in Estelite Σ Quick after 72 hours. There was significant differences in all materials tested with the immersion in the preventive mouthwashes and gels, such as Flocare gel (0.4% stannous fluoride), Pro-relief mouthwash (Na fluoride), and Plax Soin mouthwash (Na fluoride) except Pascal gel (topical APF fluoride) (p > 0.05), at time intervals mentioned earlier (p < 0.05). The effect of preventive mouthwashes and gels on resin composite materials was decreased surface hardness with the time elapse of immersion for all materials except the Flocare gel group, which contains 0.4% stannous fluoride as a preventive ingredient increases the surface hardness after 48 h for Herculite XRV Ultra and Versa Comp Sultan and Estelite Σ Quick after 72 hours. The preventive agents in the form of mouthwash and gel are used to prevent oral diseases that affect the surface hardness of composite resin, and this leads to occlusion, color stability, and surface roughness.
Quench hardening of Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3 single crystals
NASA Astrophysics Data System (ADS)
Soni, P. H.
2018-02-01
The V2-VI3 intermetallics are narrow band gap semiconductors and well known for their thermoelectric properties. They therefore offer a convenient route to tune band gap for manipulating thermoelectric parameters. The V group element Sb can be fruitfully used to substitute Bi in various proportions thus forming a psuedobinary solid solution. The electronic in general and the thermoelectric properties in particular of this psuedobinary have been amply reported. However there are no reports found on mechanical properties. I have used Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3single crystals grown using Bridgman technique for the quenching treatment followed by hardness testing. Vickers hardness tests were conducted on the cleavage planes of the crystals quenched from various high temperatures and the quench hardenening coefficient values have been determined. The hardness tests were carried out at various applied loads also to explore load dependence of the measured hardness. The results are reported in the paper.
A new, bright and hard aluminum surface produced by anodization
NASA Astrophysics Data System (ADS)
Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei
2017-07-01
Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.
Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy
NASA Astrophysics Data System (ADS)
Maryam, Siddra; Bashir, Farooq
2018-04-01
Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.
Hansen-Goos, Hendrik; Mortazavifar, Mostafa; Oettel, Martin; Roth, Roland
2015-05-01
Based on Santos' general solution for the scaled-particle differential equation [Phys. Rev. E 86, 040102(R) (2012)], we construct a free-energy functional for the hard-sphere system. The functional is obtained by a suitable generalization and extension of the set of scaled-particle variables using the weighted densities from Rosenfeld's fundamental measure theory for the hard-sphere mixture [Phys. Rev. Lett. 63, 980 (1989)]. While our general result applies to the hard-sphere mixture, we specify remaining degrees of freedom by requiring the functional to comply with known properties of the pure hard-sphere system. Both for mixtures and pure systems, the functional can be systematically extended following the lines of our derivation. We test the resulting functionals regarding their behavior upon dimensional reduction of the fluid as well as their ability to accurately describe the hard-sphere crystal and the liquid-solid transition.
NEPPELENBROEK, Karin Hermana; KUROISHI, Eduardo; HOTTA, Juliana; MARQUES, Vinicius Rizzo; MOFFA, Eduardo Buozi; SOARES, Simone; URBAN, Vanessa Migliorini
2015-01-01
Objective To evaluate the effect of staining beverages (coffee, orange juice, and red wine) on the Vickers hardness and surface roughness of the base (BL) and enamel (EL) layers of improved artificial teeth (Vivodent and Trilux). Material and Methods Specimens (n=8) were stored in distilled water at 37°C for 24 h and then submitted to the tests. Afterwards, specimens were immersed in one of the staining solutions or distilled water (control) at 37°C, and the tests were also performed after 15 and 30 days of immersion. Data were analyzed using 3-way ANOVA and Tukey’s test (α=0.05). Results Vivodent teeth exhibited a continuous decrease (p<0.0005) in hardness of both layers for up to 30 days of immersion in all solutions. For Trilux teeth, similar results were found for the EL (p<0.004), and the BL showed a decrease in hardness after 15 days of immersion (p<0.01). At the end of 30 days, this reduction was not observed for coffee and water (p>0.15), but red wine and orange juice continuously reduced hardness values (p<0.0004). Red wine caused the most significant hardness changes, followed by orange juice, coffee, and water (p<0.006). No significant differences in roughness were observed for both layers of the teeth during the immersion period, despite the beverage (p>0.06). Conclusions Hardness of the two brands of acrylic teeth was reduced by all staining beverages, mainly for red wine. Roughness of both layers of the teeth was not affected by long-term immersion in the beverages. PMID:26398509
Testing Solar Flare Models with BATSE
NASA Astrophysics Data System (ADS)
Zarro, Dominic M.
1995-07-01
We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.
NASA Astrophysics Data System (ADS)
García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.
2008-08-01
Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.
Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters
NASA Astrophysics Data System (ADS)
Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong
2018-05-01
This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.
Madzima, Tina R; Vahabi, Mandana; Lofters, Aisha
2017-08-01
To provide a focused critical review of the literature on the acceptability, feasibility, and uptake of human papillomavirus (HPV) self-sampling among hard-to-reach women. A focused search to obtain relevant literature published in English between 1997 and 2015 was done using PubMed and EMBASE using search terms including HPV self-test or HPV self-sample or HPV kit in combination with acceptability or feasibility . Only studies that focused on never-screened or underscreened populations were included in this review. Human papillomavirus self-sampling was found to be highly acceptable and feasible among these hard-to-reach women across most studies. Mailing of self-sampling kits has been shown to increase participation among hard-to reach women. Some concerns remain regarding adherence to further follow-up among high-risk women with positive test results for HPV after screening. There is a strong body of evidence to support the usefulness of HPV self-sampling in increasing participation of hard-to-reach women in screening programs (level I evidence). Convenience, privacy, ease of use, and, likely, cost-effectiveness of HPV self-sampling are driving forces in its emerging role in cervical cancer screening among hard-to-reach women. Key barriers to participation could be addressed by overcoming disparities in HPV-related knowledge and perceptions about cervical cancer screening. Copyright© the College of Family Physicians of Canada.
Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface
NASA Astrophysics Data System (ADS)
Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.
2018-03-01
This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.
Ayers, Paul W; Parr, Robert G
2008-08-07
Higher-order global softnesses, local softnesses, and softness kernels are defined along with their hardness inverses. The local hardness equalization principle recently derived by the authors is extended to arbitrary order. The resulting hierarchy of equalization principles indicates that the electronegativity/chemical potential, local hardness, and local hyperhardnesses all are constant when evaluated for the ground-state electron density. The new equalization principles can be used to test whether a trial electron density is an accurate approximation to the true ground-state density and to discover molecules with desired reactive properties, as encapsulated by their chemical reactivity indicators.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1999-01-01
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.
NASA Astrophysics Data System (ADS)
Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan
2018-04-01
Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.
Mechanical properties of commercial high strength ceramic core materials.
Rizkalla, A S; Jones, D W
2004-02-01
The objective of the present study is to evaluate and compare the flexural strength, dynamic elastic moduli and true hardness (H(o)) values of commercial Vita In-Ceram alumina core and Vita In-Ceram matrix glass with the standard aluminous porcelain (Hi-Ceram and Vitadur), Vitadur N and Dicor glass and glass-ceramic. The flexural strength was evaluated (n=5) using 3-point loading and a servo hydraulic Instron testing machine at a cross head speed of 0.5 mm/min. The density of the specimens (n=3) was measured by means of the water displacement technique. Dynamic Young's shear and bulk moduli and Poisson's ratio (n=3) were measured using a non-destructive ultrasonic technique using 10 MHz lithium niobate crystals. The true hardness (n=3) was measured using a Knoop indenter and the fracture toughness (n=3) was determined using a Vickers indenter and a Tukon hardness tester. Statistical analysis of the data was conducted using ANOVA and a Student-Newman-Keuls (SNK) rank order multiple comparative test. The SNK rank order test analysis of the mean flexural strength was able to separate five commercial core materials into three significant groups at p=0.05. Vita In-Ceram alumina and IPS Empress 2 exhibited significantly higher flexural strength than aluminous porcelains and IPS Empress at p=0.05. The dynamic elastic moduli and true hardness of Vita In-Ceram alumina core were significantly higher than the rest of the commercial ceramic core materials at p=0.05. The ultrasonic test method is a valuable mechanical characterization tool and was able to statistically discriminate between the chemical and structural differences within dental ceramic materials. Significant correlation was obtained between the dynamic Young's modulus and true hardness, p=0.05.
Filali, Samira; Bergamelli, Charlotte; Lamine Tall, Mamadou; Salmon, Damien; Laleye, Diane; Dhelens, Carole; Diouf, Elhadji; Pivot, Christine; Pirot, Fabrice
2017-08-01
A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens (0.5 mg, 2 mg, and 6 mg daily) for one month. The objectives of present study were to (i) prepare low-dose melatonin hard capsules for pediatric use controlled by two complementary methods and (ii) carry out a stability study in order to determine a use-by-date. Validation of preparation process was claimed as ascertained by mass uniformity of hard capsules. Multicomponent analysis by attenuated total reflectance Fourier transformed infrared (ATR-FTIR) of melatonin/microcrystalline cellulose mixture allowed to identify and quantify relative content of active pharmaceutical ingredients and excipients. Absolute melatonin content analysis by high performance liquid chromatography in 0.5 mg and 6 mg melatonin capsules was 93.6%±4.1% and 98.7%±6.9% of theoretical value, respectively. Forced degradation study showed a good separation of melatonin and its degradation products. The capability of the method was 15, confirming a risk of false negative <0.01%. Stability test and dissolution test were compliant over 18 months of storage with European Pharmacopoeia. Preparation of melatonin hard capsules was completed manually and melatonin in hard capsules was stable for 18 months, in spite of low doses of active ingredient. ATR-FTIR offers a real alternative to HPLC for quality control of high-dose melatonin hard capsules before the release of clinical batches.
Munitions Test Area and Incendiary Drop Site, Site 36-2, Data Addendum, Phase 2.
1988-09-01
MUNITIONS TEST AREA AND INCENDIARY DROP SITE (NI September 1988 Contract Number DAAK11-84-D-0016 | • (Version 3.1) Environmental Science And Engineering, Inc...SITE, September 1988 Contract Number DAAK11-84-D-0016 (Version 3.1)I PREPARED BY ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. Harding Lawson Associates I...the Program Managers Office (PMO). Environmental Science and Engineering (ESE), Morrison-Knudsen Engineers (MKE), and Harding Lawson Associates (HLA
Abbasi, Masoumeh; Eslami, Saeid; Mohammadi, Mahdi; Khajouei, Reza
2017-09-01
Deaf or hard-of-hearing children experience difficulties in learning health principles. But technology has significantly improved their ability to learn. The challenge in e-learning is to design attractive applications while having an educational aspect. The aims of this study were to determine the pedagogical effectiveness of a health education application for deaf and hard of hearing students in elementary schools, and to investigate the student's perceptions in different educational grades about the educational effectiveness of the text, graphics, video clips, and animation in the application. The study design was quasi experimental and was conducted in Mashhad in 2016. Study population were deaf or hard-of-hearing students in elementary schools. The intervention included health application training to deaf and hard-of-hearing students in Mashhad. A questionnaire was used for data gathering. The pedagogical effectiveness was determined by measuring the modified Adapted Pedagogical Index. This index was created based on the characteristics of the application and study population. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney tests with Bonferroni adjustment by SPSS 22. Eighty-two students participated in the intervention. The value of modified Adapted Pedagogical Index was 0.669, indicating that the application was effective. The results of Kruskal-Wallis H and Mann-Whitney U test showed significant differences in different educational grades. (p<0.008). Using information technology can improve the education of deaf and hard-of-hearing students. Modified Adapted Pedagogical Index can be used for evaluation of non-interactive applications for elementary school children who are deaf or hard of hearing.
Wear behavior of austenite containing plate steels
NASA Astrophysics Data System (ADS)
Hensley, Christina E.
As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing and DSRW samples were observed. Different microstructures exhibited different scratching behaviors. Martensitic microstructures exhibited chipping and cracking, whereas Q&P microstructures exhibited limited or no chipping. The Q&P samples exhibited more deformation at greater loads and hardness levels than the martensitic microstructures. Austenitic microstructures exhibited significant deformation adjacent to the scratches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Hard seeds. 201.57 Section 201.57 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administratio...
Hardness of pulsed electric current sintered and hot isostatically pressed Mo(Si,Al)2
NASA Astrophysics Data System (ADS)
Tanabe, Jun
2005-05-01
We improved the reactivity and mechanical characteristics of Mo(Si,Al)2 by pulsed electric current sintering (PECS) and hot isostatic pressing (HIP), and evaluated its reaction state and mechanical characteristics using energy dispersive spectroscopy (EDS), X-ray diffraction, and a hardness test. Mo(Si,Al)2 was generated by pretreatment using a furnace, and the application of the PECS and HIP treatments further densified the sintered body, resulting in an increase in the hardness.
Validation Testing and Numerical Modeling of Advanced Armor Materials
2012-11-01
Rigid Anvil A ground steel high-hard plate was placed in front of a massive block of steel that was anchored to the gun table. After every shot, the...photovoltaic sensors • 15.24-cm RHA steel block with a 1.27-cm thick high hard steel anvil plate The following instruments/equipment was used to perform...Range 167 was prepared using the 2.77-cm bore gas operated gun, an RHA anvil block with a high hard steel faceplate that was surface polished, and a
This document provides an update to the Agency’s interim guidance for the efficacy evaluation of antimicrobial pesticides that are labeled for treating hard non-porous surfaces in healthcare settings contaminated with spores of Clostridium difficile.
SIGHT - A balloon borne hard X-ray telescope
NASA Technical Reports Server (NTRS)
Wilkerson, J.; Edberg, T. K.; Hurley, K.; Lin, R. P.; Parsons, A.
1991-01-01
The authors report on progress toward developing a large-area, high-pressure xenon gas scintillator for use in hard X-ray astrophysics. Proof test results for a low-mass pressure vessel are presented. The design of a high-voltage multiplier board operating inside the scintillation chamber is discussed. The development of tetrakis-dimethylamine-thylene (TMAE)-based proportional tubes for detecting primary scintillation in the xenon is described. Finally, Monte Carlo tests of a scheme to use conventional photomultiplier tubes are discussed.
Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions
NASA Astrophysics Data System (ADS)
Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin
2018-05-01
Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.
Collision safety of a hard-shell low-mass vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaeser, R.; Walz, F.H.; Brunner, A.
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural designmore » with a `hard-shell` car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSIDI-dummy well below current injury tolerance criteria.« less
Collision safety of a hard-shell low-mass vehicle.
Kaeser, R; Walz, F H; Brunner, A
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural design with a "hard-shell" car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSID1-dummy well below current injury tolerance criteria.
Yang, Ni; Hort, Joanne; Linforth, Robert; Brown, Keith; Walsh, Stuart; Fisk, Ian D
2013-11-15
The influence of choice of flavour solvent, propylene glycol (PG) or triacetin (TA), was investigated during accelerated shelf life (ASL) testing of shortcake biscuits. Specifically, the differential effect on the stability of added vanillin, the natural baked marker compound 5-(hydroxymethyl)furfural (HMF), specific markers of oxidative rancidity (2,4-decadienal, 2,4-heptadienal), and the structural parameters of hardness and fracturability. Significantly more HMF was formed during baking of biscuits prepared with TA; these biscuits were also more stable to oxidative degradation and loss of vanillin during ageing than biscuits prepared with PG. Fresh TA biscuits were significantly more brittle than fresh PG biscuits. There was no impact of solvent choice on hardness. Sensory evaluation of hardness, vanilla flavour and oily off-note was tested during ASL testing. There was no significant impact of storage on sensory ratings for either the PG or TA biscuits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microhardness and morphological changes induced by Nd:Yag laser on dental enamel: an in vitro study.
Bedini, Rossella; Manzon, Licia; Fratto, Giovanni; Pecci, Raffaella
2010-01-01
The aim of this work was a scanning electron microscopy (SEM) evaluation of the hardness and morphological changes of enamel irradiated by neodymium: yttrium aluminium garnet (Nd:YAG) laser with different energy levels. Twenty-eight human teeth samples were divided into 4 groups: control, where enamel surface was not lased, and 3 test treated with 3 different levels of energy power 0.6, 1.2 and 2.4 Watt, respectively. In each group, 5 samples underwent Vickers micro-hardness test and 2 samples were processed for SEM. No significant differences between treated and non treated samples were found by micro-hardness test. However, by SEM, test samples showed a rougher enamel surface than control. Specifically, the 0.6 Watt treated samples showed vertical scratches and glass-like areas, while in the other 2 groups enamel surface was covered by craters and cracks. These findings suggest that enamel should be lased at a low energy level to preserve its integrity and reduce demineralization, and thus for dental caries prevention purposes; while high energy level creates a retentive surface suitable for sealant or composite anchorage.
A study of sound balances for the hard of hearing
NASA Astrophysics Data System (ADS)
Mathers, C. D.
Over a period of years, complaints have been received from television viewers, especially those who are hard of hearing, that background sound (e.g., audience laughter, crowd noise, mood music) is often transmitted at too high a level with respect to speech, so that information essential to the understanding of the program is lost. To consider possible solutions to the problem, a working party was set up representing both broadcasters and organizations for the hard of hearing. At early meetings, it was resolved that a series of subjective tests should be carried out to determine what reduction of background levels would be needed to provide a significant improvement in the intelligibility of television speech for viewers with hearing difficulties. The preparation of test tapes and the analysis of results are given.
Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP
NASA Astrophysics Data System (ADS)
Jagdhold, U.
2010-08-01
To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].
A fiber-coupled 9xx module with tap water cooling
NASA Astrophysics Data System (ADS)
Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.
2016-03-01
A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing
Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel
NASA Astrophysics Data System (ADS)
Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang
Multi-pass deformation simulation tests were performed on V-N microalloyed steels with different nitrogen addition by using a Gleeble-3800 thermo-mechanical simulator and the corresponding continuous cooling transformation (CCT) diagrams were determined by thermal dilation method and metallographic method. The deformed austenite transformation behavior and resultant microstructure of the tested steels were studied. Furthermore, the effect of nitrogen addition on the transformation behavior and microstructure evolution was analyzed. The results show that the transformed microstructures in the three tested steels are ferrite, pearlite and bainite respectively while the transformation temperatures are not the same. For the two tested steel with higher nitrogen additions, higher ferrite start temperature and critical cooling rates are observed. Furthermore, an increase in nitrogen addition leads to increasing quantities of ferrite and the transformed ferrite is smaller in size. The hardness test results reveal that the hardness number increases with increasing nitrogen addition at low cooling rate while the value tends to be smaller due to increasing nitrogen addition at high cooling rate. Therefore, the hardness number of the steel with high nitrogen addition is not so sensitive to cooling rate as that of the steel with low nitrogen addition.
da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira
2015-09-01
To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.
Surface property modification of silicon
NASA Technical Reports Server (NTRS)
Danyluk, S.
1984-01-01
The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.
Brix, Kevin V; DeForest, David K; Tear, Lucinda; Grosell, Martin; Adams, William J
2017-05-02
Biotic Ligand Models (BLMs) for metals are widely applied in ecological risk assessments and in the development of regulatory water quality guidelines in Europe, and in 2007 the United States Environmental Protection Agency (USEPA) recommended BLM-based water quality criteria (WQC) for Cu in freshwater. However, to-date, few states have adopted BLM-based Cu criteria into their water quality standards on a state-wide basis, which appears to be due to the perception that the BLM is too complicated or requires too many input variables. Using the mechanistic BLM framework to first identify key water chemistry parameters that influence Cu bioavailability, namely dissolved organic carbon (DOC), pH, and hardness, we developed Cu criteria using the same basic methodology used by the USEPA to derive hardness-based criteria but with the addition of DOC and pH. As an initial proof of concept, we developed stepwise multiple linear regression (MLR) models for species that have been tested over wide ranges of DOC, pH, and hardness conditions. These models predicted acute Cu toxicity values that were within a factor of ±2 in 77% to 97% of tests (5 species had adequate data) and chronic Cu toxicity values that were within a factor of ±2 in 92% of tests (1 species had adequate data). This level of accuracy is comparable to the BLM. Following USEPA guidelines for WQC development, the species data were then combined to develop a linear model with pooled slopes for each independent parameter (i.e., DOC, pH, and hardness) and species-specific intercepts using Analysis of Covariance. The pooled MLR and BLM models predicted species-specific toxicity with similar precision; adjusted R 2 and R 2 values ranged from 0.56 to 0.86 and 0.66-0.85, respectively. Graphical exploration of relationships between predicted and observed toxicity, residuals and observed toxicity, and residuals and concentrations of key input parameters revealed many similarities and a few key distinctions between the performances of the two models. The pooled MLR model was then applied to the species sensitivity distribution to derive acute and chronic criteria equations similar in form to the USEPA's current hardness-based criteria equations but with DOC, pH, and hardness as the independent variables. Overall, the MLR is less responsive to DOC than the BLM across a range of hardness and pH conditions but more responsive to hardness than the BLM. Additionally, at low and intermediate hardness, the MLR model is less responsive than the BLM to pH, but the two models respond comparably at high hardness. The net effect of these different response profiles is that under many typical water quality conditions, MLR- and BLM-based criteria are quite comparable. Indeed, conditions where the two models differ most (high pH/low hardness and low pH/high hardness) are relatively rare in natural aquatic systems. We suggest that this MLR-based approach, which includes the mechanistic foundation of the BLM but is also consistent with widely accepted hardness-dependent WQC in terms of development and form, may facilitate adoption of updated state-wide Cu criteria that more accurately account for the parameters influencing Cu bioavailability than current hardness-based criteria.
NASA Astrophysics Data System (ADS)
Goktan, R. M.; Gunes Yılmaz, N.
2017-09-01
The present study was undertaken to investigate the potential usability of Knoop micro-hardness, both as a single parameter and in combination with operational parameters, for sawblade specific wear rate (SWR) assessment in the machining of ornamental granites. The sawing tests were performed on different commercially available granite varieties by using a fully instrumented side-cutting machine. During the sawing tests, two fundamental productivity parameters, namely the workpiece feed rate and cutting depth, were varied at different levels. The good correspondence observed between the measured Knoop hardness and SWR values for different operational conditions indicates that it has the potential to be used as a rock material property that can be employed in preliminary wear estimations of diamond sawblades. Also, a multiple regression model directed to SWR prediction was developed which takes into account the Knoop hardness, cutting depth and workpiece feed rate. The relative contribution of each independent variable in the prediction of SWR was determined by using test statistics. The prediction accuracy of the established model was checked against new observations. The strong prediction performance of the model suggests that its framework may be applied to other granites and operational conditions for quantifying or differentiating the relative wear performance of diamond sawblades.
NASA Astrophysics Data System (ADS)
Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini
2018-04-01
Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.
Sandhu, Ramandeep; Kheur, Mohit; Kheur, Supriya
2017-01-01
The aim of the present study was to assess the change in physical properties (surface roughness, surface hardness and phase transformation) after surface grinding of zirconia by using three commercially available abrasives. Thirty sintered zirconia specimens were prepared and divided into three groups namely Group M (grinded using Mani Dia diamond bur standard grit), Group T (grinded using Tri Hawk diamond bur coarse grit) and Group P (grinded using Predator carbide bur). A customised assembly was used to follow a standardised protocol for surface grinding. The surface roughness, surface hardness and phase transformation was recorded before and after the grinding procedure. ANOVA and Bonferroni post hoc test were used to assess the values obtained after the testing the surface roughness and surface hardness. The results of the present study revealed the average values of change in surface roughness as Group M (0.44 μ m) and Group T (1.235 μ m) and Group P (-0.88 μ m). The average values of change in surface hardness were Group T (19.578 HV), Group M (46.722 HV) and Group P (36.429 HV). The change in surface hardness was not statistically significant. There was no phase transformation seen after the grinding procedure. Carbide burs along with copious water irrigation when used to grind zirconia intra-orally produces has a polishing effect, minimal change in hardness & no phase transformation. The present study advocates the use of carbides for chair-side grinding of zirconia.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
Optical properties and indentation hardness of thin-film acrylated epoxidized oil
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza
2012-02-01
Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.
Wear and microhardness of different resin composite materials.
Say, Esra Can; Civelek, Arzu; Nobecourt, Alain; Ersoy, Mustafa; Guleryuz, Canan
2003-01-01
This study determined the three-body abrasive wear resistance of two packable composites (P-60; Solitaire 2), an ion-releasing composite (Ariston AT), a hybrid composite (Tetric Ceram) and an ormocer (Admira). The study also looked at the correlation between wear resistance and hardness of the composites. Three-body wear testing was performed using an ACTA wear machine with 15 N contact force using millet seed as the third body. Wear depth (microm) was measured by profilometry after 200,000 cycles. The hardness test was performed using a digital microhardness tester (load: 500 g; dwell time: 15 seconds). The data were analyzed by using Kruskal Wallis (p < 0.05). There were statistically significant differences among the three body abrasive wear of the composites. The ranking from least to most were as follows: Filtek P-60 < Solitaire 2 < Ariston AT < Tetric Ceram < Admira. Filtek P-60 showed the highest microhardness value. No other significant differences in hardness were observed among the different resin composites (P-60 > AristonAT = Tetric Ceram = Solitaire 2 = Admira). The results of this study indicate that there are significant differences in the wear resistance of the resin composites. The correlation between hardness and wear was significant with a correlation coefficient of r:-0.91. A significant negative correlation exists between hardness and three-body wear of resin composites.
Improving flexible thinking in deaf and hard of hearing children with virtual reality technology.
Passig, D; Eden, S
2000-07-01
The study investigated whether rotating three-dimensional (3-D) objects using virtual reality (VR) will affect flexible thinking in deaf and hard of hearing children. Deaf and hard of hearing subjects were distributed into experimental and control groups. The experimental group played virtual 3-D Tetris (a game using VR technology) individually, 15 minutes once weekly over 3 months. The control group played conventional two-dimensional (2-D) Tetris over the same period. Children with normal hearing participated as a second control group in order to establish whether deaf and hard of hearing children really are disadvantaged in flexible thinking. Before-and-after testing showed significantly improved flexible thinking in the experimental group; the deaf and hard of hearing control group showed no significant improvement. Also, before the experiment, the deaf and hard of hearing children scored lower in flexible thinking than the children with normal hearing. After the experiment, the difference between the experimental group and the control group of children with normal hearing was smaller.
Palmer, Christina G.S.; Martinez, Ariadna; Fox, Michelle; Zhou, Jin; Shapiro, Nina; Sininger, Yvonne; Grody, Wayne W.; Schimmenti, Lisa A.
2010-01-01
There are limited data on the impact of incorporating genetic counseling and testing into the newborn hearing screening process. We report on results from a prospective, longitudinal study to determine the impact of genetic counseling and GJB2/GJB6 genetic testing on parental knowledge, attitudes, and beliefs about genetic testing. One hundred thirty culturally hearing parents of 93 deaf or hard-of-hearing children ages 0 – 3 years primarily identified through newborn hearing screening received pre- and post-test genetic counseling for GJB2 and GJB6. Parents completed questionnaires following pre-test counseling, and 1- and 6-months post-test result disclosure. Results indicate that following pre-test counseling all parents perceived benefits to genetic testing. While parents who received positive results continued to perceive benefits from testing, perceived benefit declined among parents who received inconclusive or negative results. Parents did not perceive genetic testing as harmful following pre-test counseling or receipt of test results. Parents who received positive test results performed better in understanding recurrence and causation of their child’s deafness and indicated greater interest in prenatal genetic testing than those who received inconclusive or negative test results. Parents felt that pediatricians and audiologists should inform parents of genetic testing availability; however, there was no consensus on timing of this discussion. Thus culturally hearing parents do not perceive genetic testing of their deaf or hard-of-hearing infants/toddlers as harmful; they feel that primary care providers should discuss genetic testing with them; and positive genetic test results with genetic counseling give rise to better understanding and perceived benefit than negative or inconclusive results. PMID:19449415
Palmer, Christina G S; Martinez, Ariadna; Fox, Michelle; Zhou, Jin; Shapiro, Nina; Sininger, Yvonne; Grody, Wayne W; Schimmenti, Lisa A
2009-06-01
There are limited data on the impact of incorporating genetic counseling and testing into the newborn hearing screening process. We report on results from a prospective, longitudinal study to determine the impact of genetic counseling and GJB2/GJB6 genetic testing on parental knowledge, attitudes, and beliefs about genetic testing. One hundred thirty culturally hearing parents of 93 deaf or hard-of-hearing children ages 0-3 years primarily identified through newborn hearing screening received pre- and post-test genetic counseling for GJB2 and GJB6. Parents completed questionnaires following pre-test counseling, and 1- and 6-month post-test result disclosure. Results indicate that following pre-test counseling all parents perceived benefits to genetic testing. While parents who received positive results continued to perceive benefits from testing, perceived benefit declined among parents who received inconclusive or negative results. Parents did not perceive genetic testing as harmful following pre-test counseling or receipt of test results. Parents who received positive test results performed better in understanding recurrence and causation of their child's deafness and indicated greater interest in prenatal genetic testing than those who received inconclusive or negative test results. Parents felt that pediatricians and audiologists should inform parents of genetic testing availability; however, there was no consensus on timing of this discussion. Thus culturally hearing parents do not perceive genetic testing of their deaf or hard-of-hearing infants/toddlers as harmful; they feel that primary care providers should discuss genetic testing with them; and positive genetic test results with genetic counseling give rise to better understanding and perceived benefit than negative or inconclusive results. (c) 2009 Wiley-Liss, Inc.
Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy
NASA Astrophysics Data System (ADS)
Wang, Zhang; Cai, Zhen-bing; Chen, Zhi-qiang; Sun, Yang; Zhu, Min-hao
2017-11-01
The impact tests were conducted on metallic materials with different bulk hardness and Young's moduli. Analysis of the dynamics response during the tribological process showed that the tested materials had similar energy absorption, where the peak contact force increased as the tests continued. Moreover, wear volume decreased with the increase in Young's modulus of metals, except for Cr with a relatively low hardness. Wear rate was gradually reduced to a steady stage with increasing cycles, which was attributed to the decrease in contact stress and work-hardening effect. The main wear mechanism of impact was characterized by delamination, and the specific surface degradation mechanisms were depending on the mechanical properties of materials. The absorbed energy was used to the propagation of micro-cracks in the subsurface instead of plastic deformation, when resistance of friction wear and plastic behavior was improved. Hence, both the hardness and Young's modulus played important roles in the impact wear of metallic materials.
Can joint sound assess soft and hard endpoints of the Lachman test?: A preliminary study.
Hattori, Koji; Ogawa, Munehiro; Tanaka, Kazunori; Matsuya, Ayako; Uematsu, Kota; Tanaka, Yasuhito
2016-05-12
The Lachman test is considered to be a reliable physical examination for anterior cruciate ligament (ACL) injury. Patients with a damaged ACL demonstrate a soft endpoint feeling. However, examiners judge the soft and hard endpoints subjectively. The purpose of our study was to confirm objective performance of the Lachman test using joint auscultation. Human and porcine knee joints were examined. Knee joint sound during the Lachman test (Lachman sound) was analyzed by fast Fourier transformation. As quantitative indices of Lachman sound, the peak sound as the maximum relative amplitude (acoustic pressure) and its frequency were used. The mean Lachman peak sound for healthy volunteer knees was 86.9 ± 12.9 Hz in frequency and -40 ± 2.5 dB in acoustic pressure. The mean Lachman peak sound for intact porcine knees was 84.1 ± 9.4 Hz and -40.5 ± 1.7 dB. Porcine knees with ACL deficiency had a soft endpoint feeling during the Lachman test. The Lachman peak sounds of porcine knees with ACL deficiency were dispersed into four distinct groups, with center frequencies of around 40, 160, 450, and 1600. The Lachman peak sound was capable of assessing soft and hard endpoints of the Lachman test objectively.
Alavi, Shiva; Kachuie, Marzie
2017-01-01
Background: This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. Materials and Methods: A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance. Results: The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. Conclusion: MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness. PMID:28928783
Bolay, Sukran; Cakir, Filiz Yalcin; Gurgan, Sevil
2012-09-01
The aim of this in vitro study was to evaluate the surface roughness and hardness of both unbleached and bleached (opalescence; 10% carbamide peroxide) human enamel brushed with water (without dentifrice), fluoride abrasive dentifrice (Colgate Total) and whitening dentifrice (Natural White). Human enamel samples were obtained from third molars and randomly divided into five groups (n = 8): G1 - Control (brushed with water without dentifrice), G2 - Colgate Total (fluoride abrasive dentifrice), G3 - Natural White (whitening dentifrice), G4 - Opalescence (10% carbamide peroxide) and then brushed with Colgate Total, G5 - Opalescence (10% carbamide peroxide) and then brushed with Natural White. Bleaching regimen was applied according to manufacturers' instructions. The brushing process was performed with a modified Nyffenegger's brushing machine. Surface roughness was analyzed with a profilometer. Microhardness testing was performed with a Brinell hardness tester. Results were statistically analyzed by Kruskal-Wallis, one-way ANOVA analysis and Mann-Whitney U, Wilcoxon matched-pairs signed-ranks tests. There were significant differences in surface roughness values for all groups, which showed an increase in roughness (p < 0.05). When the bleaching treatment combined with brushing with whitening dentifrice was performed (G5), there was a significant decrease in hardness values (p < 0.05). The other groups (G1, G2, G3, G4) showed no significant hardness differences (p > 0.05). It was concluded that toothbrushing procedures increased the enamel surface roughness, and that bleaching regimen performed with cleaning treatment, through brushing with whitening dentifrice decreased hardness values. When applied together, bleaching and cleaning treatments may alter the enamel surface roughness and hardness values.
Alavi, Shiva; Kachuie, Marzie
2017-01-01
This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.
NASA Astrophysics Data System (ADS)
Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.
2015-06-01
In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.
Mali, Gaurao Vasant; Dodamani, Arun Suresh; Karibasappa, Gundabaktha Nagappa; Kumar, Prashanth Vishwakarma; Jain, Vardhaman Mulchand
2015-01-01
To assess and compare the effect of conventional and sugar free pediatric syrup formulations on primary tooth enamel hardness over a period of 14 days. An in vitro study was done on 40 noncarious deciduous teeth. 10 teeth in each group were dipped in 4 pediatric medicinal syrups (1 sugarfree and 3 conventional) for 1 min thrice daily for 14 days and the enamel surface micro hardness was checked at baseline, 7 th day and 14 th day by Vickers hardness testing machine. The pH, titratable acidity and buffering capacity of the syrups were assessed. The pH of syrups were above critical pH for demineralization of the tooth but tiratable acidity and buffering capacity differed. ANOVA test indicated that the reduction in mean micro hardness was maximum in Group D (Conventional Analgesic syrup) and least in Group A (Sugarfree cough syrup) on 7 th and 14 th day. On intergroup comparison there was no difference (P > 0.05) in micro hardness between Group B (Conventional Cough syrup) and Group C (Conventional Antibiotic). However, highly significant (P < 0.01) difference between the either pair of Group B with Group D, and Group C with Group D on 14 th day. The percentage reduction in micro hardness on 14 th day was maximum for Group D (24.4 ± 2.2) and minimum for Group A (14.0 ± 1.3) which was statistically significant (P < 0.01). Sugar free pediatric medicines can be effective in reducing dental erosion and efforts should be made to incorporate sugar substitutes in formulation of pediatric medicines.
Abbasi, Masoumeh; Eslami, Saeid; Mohammadi, Mahdi; khajouei, Reza
2017-01-01
Background Deaf or hard-of-hearing children experience difficulties in learning health principles. But technology has significantly improved their ability to learn. The challenge in e-learning is to design attractive applications while having an educational aspect. Objective The aims of this study were to determine the pedagogical effectiveness of a health education application for deaf and hard of hearing students in elementary schools, and to investigate the student’s perceptions in different educational grades about the educational effectiveness of the text, graphics, video clips, and animation in the application. Methods The study design was quasi experimental and was conducted in Mashhad in 2016. Study population were deaf or hard-of-hearing students in elementary schools. The intervention included health application training to deaf and hard-of-hearing students in Mashhad. A questionnaire was used for data gathering. The pedagogical effectiveness was determined by measuring the modified Adapted Pedagogical Index. This index was created based on the characteristics of the application and study population. Statistical analysis was performed using the Kruskal-Wallis and Mann–Whitney tests with Bonferroni adjustment by SPSS 22. Results Eighty-two students participated in the intervention. The value of modified Adapted Pedagogical Index was 0.669, indicating that the application was effective. The results of Kruskal-Wallis H and Mann–Whitney U test showed significant differences in different educational grades. (p<0.008) Conclusion Using information technology can improve the education of deaf and hard-of-hearing students. Modified Adapted Pedagogical Index can be used for evaluation of non-interactive applications for elementary school children who are deaf or hard of hearing. PMID:29038697
Impact of needle insertion depth on the removal of hard-tissue debris.
Perez, R; Neves, A A; Belladonna, F G; Silva, E J N L; Souza, E M; Fidel, S; Versiani, M A; Lima, I; Carvalho, C; De-Deus, G
2017-06-01
To evaluate the effect of depth of insertion of an irrigation needle tip on the removal of hard-tissue debris using micro-computed tomographic (micro-CT) imaging. Twenty isthmus-containing mesial roots of mandibular molars were anatomically matched based on similar morphological dimensions using micro-CT evaluation and assigned to two groups (n = 10), according to the depth of the irrigation needle tip during biomechanical preparation: 1 or 5 mm short of the working length (WL). The preparation was performed with Reciproc R25 file (tip size 25, .08 taper) and 5.25% NaOCl as irrigant. The final rinse was 17% EDTA followed by bidistilled water. Then, specimens were scanned again, and the matched images of the canals, before and after preparation, were examined to quantify the amount of hard-tissue debris, expressed as the percentage volume of the initial root canal volume. Data were compared statistically using the Mann-Whitney U-test. None of the tested needle insertion depths yielded root canals completely free from hard-tissue debris. The insertion depth exerted a significant influence on debris removal, with a significant reduction in the percentage volume of hard-tissue debris when the needle was inserted 1 mm short of the WL (P < 0.05). The insertion depth of irrigation needles significantly influenced the removal of hard-tissue debris. A needle tip positioned 1 mm short of the WL resulted in percentage levels of hard-tissue debris removal almost three times higher than when positioned 5 mm from the WL. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Antimicrobial Testing Methods & Procedures Developed by EPA's Microbiology Laboratory
We develop antimicrobial testing methods and standard operating procedures to measure the effectiveness of hard surface disinfectants against a variety of microorganisms. Find methods and procedures for antimicrobial testing.
Antimicrobial Testing Methods & Procedures: MB-31
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-Final
Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC
NASA Astrophysics Data System (ADS)
Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak
2018-02-01
In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.
Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness.
Ayyıldız, Simel; Soylu, Elif Hilal; Ide, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat
2013-11-01
The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments.
Antimicrobial Testing Methods & Procedures: MB-31-03
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-03
THE HARD OF HEARING. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.
ERIC Educational Resources Information Center
O'NEILL, JOHN J.
BASIC INFORMATION ABOUT TESTING, DIAGNOSING, AND REHABILITATING THE HARD OF HEARING IS OFFERED IN THIS INTRODUCTORY TEXT. THE PHYSICS OF SOUND, AUDITORY THEORY, ANATOMY AND PATHOLOGY OF THE EAR, AND DIAGNOSTIC ROUTINES ARE DISCUSSED. A CHAPTER ON AURAL REHABILITATION INCLUDES AN OVERVIEW OF LIPREADING AND AUDITORY TRAINING TECHNIQUES FOR ADULTS…
Release of ‘UI Platinum’ hard white spring wheat
USDA-ARS?s Scientific Manuscript database
‘UI Platinum’ (Reg. No. CV------, PI 672533) hard white spring wheat (Triticum aestivum L.) was developed by the Idaho Agricultural Experiment Station and released in 2014. UI Platinum was derived from the cross ‘Blanca Grande’ x ‘Jerome’ and tested under experimental numbers A01178S, IDO694, and I...
Ototraumatic Effects of Hard Rock Music
Reddell, Rayford C.; Lebo, Charles P.
1972-01-01
Temporary and permanent shifts in auditory thresholds were found in 43 hard rock musicians and temporary shifts were also observed in some listeners. The threshold shifts involved all of the conventional puretone test frequencies. Custom-fitted polyvinyl chloride ear protectors were found to be effective in prevention of these noise-induced hearing losses. PMID:5008499
The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...
Monitoring Progress of Students Who Are Deaf or Hard of Hearing
ERIC Educational Resources Information Center
Rose, Susan
2007-01-01
Federal and state legislation has placed a renewed emphasis on accountability and academic outcomes among students who are deaf or hard of hearing. While much attention is given to norm-referenced standardized testing accommodations, there is a need for functional formative assessments for the purpose of monitoring students' academic progress.…
Environment Sentinel Biomonitor Technology Assessment
2013-09-01
turbidity, humic /fulvic acids , geosmin/MIB, hard water) with minimal effect on test outcome. It is better to be able to operate under a wide range...inhibition between 20–80%. c. Susceptibility to source water conditions: very low i. No response for pH (4.5–9), geosmin, MIB, humic /fulvic acids , or hard
CMOS gate array characterization procedures
NASA Astrophysics Data System (ADS)
Spratt, James P.
1993-09-01
Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.
NASA Astrophysics Data System (ADS)
Vimalan, G.; Muthupandi, V.; Ravichandran, G.
2018-05-01
A continuous cooling transformation diagram is constructed for simulated coarse grain heat affected zone (CGHAZ) of SA106 grade B carbon steel. Samples are heated to a peak temperature of 1200°C in the Gleeble thermo mechanical simulator and then cooled at different cooling rates varying from 0.1°C/s to 100°C/s. Microstructure of the specimens simulated at different cooling rates were characterised by optical microscopy and hardness was assessed by Vicker's hardness test and micro-hardness test. Transformation temperatures and the corresponding phase fields were identified from dilatometric curves and the same could be confirmed by correlating with the microstructures at room temperature. These data were used to construct the CCT diagram. Phase fields were found to have ferrite, pearlite, bainite and martensite or their combinations. With the help of this CCT diagram it is possible to predict the microstructure and hardness of coarse grain HAZ experiencing different cooling rates. The constructed CCT diagram becomes an important tool in evaluating the weldability of SA106 grade B carbon steel.
Evaluation of Vickers hardness of bulk-fill composites cured by different light sources
NASA Astrophysics Data System (ADS)
Bakhsh, Turki A.; Yagmoor, Mohammed A.; Alsadi, Fahad M.; Jamleh, Ahmad
2016-02-01
[Objective] The current in vitro study was performed to evaluate Vickers hardness (VHN) of two different composite resins that were cured by using two different light curing units. [Materials and Methods] Porcelain tube samplers were used to fabricate composite cylinders from either Tetric Evoceram BulkFill (BF; Ivoclar/Vivadent, USA) or SonicFill composite (SF; Kerr, USA). Each composite type had 12 cylindrical specimens, and each specimen was cured with either Blue-phase N light-cure (Bp; Polywave, Ivoclar/Vivadent, USA) or Elipar S10 (El; Monowave, 3M ESPE, Germany). The VHN data were analyzed and tested by using Mann-Whitney U test at a significance level of 5%. [Results] Statistical analyses demonstrated an interaction between the type of composite and the type of light curing source. Significant differences (P<0.05) were recorded for all groups with higher VHN hardness of SF-El and lowest for BF-El. [Conclusions] It can be concluded that the surface hardness of bulk-fill composite is not dependent on the type of light-cure. This research was supported by King Abdulaziz University.
Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.
Nilsson, Daniel; Uhlén, Fredrik; Holmberg, Anders; Hertz, Hans M; Schropp, Andreas; Patommel, Jens; Hoppe, Robert; Seiboth, Frank; Meier, Vivienne; Schroer, Christian G; Galtier, Eric; Nagler, Bob; Lee, Hae Ja; Vogt, Ulrich
2012-12-15
We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes. The method is simple to implement and can provide single-shot information about the focusing quality. We used the Ronchi test to measure the aberrations in a nanofocusing Fresnel zone plate at the Linac Coherent Light Source at 8.194 keV.
Recent results on CVD diamond radiation sensors
NASA Astrophysics Data System (ADS)
Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration
1998-02-01
CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.
Summary of Proton Test on the Quick Logic QL3025 at Indiana University
NASA Technical Reports Server (NTRS)
Katz, Richard
1998-01-01
This issue of the Programmable Logic Application Notes is a compilation of topics: (1) Proton irradiation tests were performed on the Quick Logic QL3025 at the Indian University Cyclotron facility. The devices, tests, and results are discussed; (2) The functional failure of EEPROM's in heavy ion environment is presented; (3) the Act 1 architecture is summarized; (4) Antifuse hardness and hardness testing is updated; the single even upset (SEU) response of hardwired flip-flops is also presented; (4) Total dose results of the ACT 2 and ACT 3 circuits is presented in a chart; (5) Recent sub-micron devices testing of total dose is presented in a chart along with brief discussion; and (6) a reference to the WWW site for more articles of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, W.J.; Horton, K.K.; Eubank, B.F.
1984-01-31
This report is a personnel oriented history of DOD participation in underground nuclear weapons testing during Operations NOUGAT and WHETSTONE, test events HARD HAT, DANNY BOY, MARSHMALLOW, MUDPACK, WISHBONE, GUMDROP, DILUTED WATERS, and TINY TOT. It is the first in a series of historical reports which will include all DOD underground nuclear weapons tests and DOE underground nuclear weapons tests with significant DOD participation from 1962 forward. In addition to these volumes presenting a history of the underground nuclear test program, a later restricted volume will identify all DOD participants, (military, civilian, and their contractors) and will list their dosimetrymore » data.« less
[Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].
Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng
2016-03-01
Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.
The Variable Crab Nebula: Evidence for a Connection between GeV flares and Hard X-ray Variations
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Kust Harding, Alice; Hays, Elizabeth A.; Cherry, Michael L.; Case, Gary L.; Finger, Mark H.; Jenke, Peter; Zhang, Xiao-Ling
2016-04-01
In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.
The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.
2016-01-01
In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.
Macroindentation hardness measurement-Modernization and applications.
Patel, Sarsvat; Sun, Changquan Calvin
2016-06-15
In this study, we first developed a modernized indentation technique for measuring tablet hardness. This technique is featured by rapid digital image capture, using a calibrated light microscope, and precise area-determination. We then systematically studied effects of key experimental parameters, including indentation force, speed, and holding time, on measured hardness of a very soft material, hydroxypropyl cellulose, and a very hard material, dibasic calcium phosphate, to cover a wide range of material properties. Based on the results, a holding period of 3min at the peak indentation load is recommended to minimize the effect of testing speed on H. Using this method, we show that an exponential decay function well describes the relationship between tablet hardness and porosity for seven commonly used pharmaceutical powders investigated in this work. We propose that H and H at zero porosity may be used to quantify the tablet deformability and powder plasticity, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick
2015-02-01
To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distributed data fusion across multiple hard and soft mobile sensor platforms
NASA Astrophysics Data System (ADS)
Sinsley, Gregory
One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in order to track a car that could be driving normally or erratically. The second simulation adds the extra complication of classifying the type of target to the simulation. The third simulation uses multiple hard and soft sensors, with a limited field of view, to track a moving target and classify it as a friend, foe, or neutral. The final chapter builds on the work done in previous chapters by performing a field test of the algorithms for hard and soft sensor data fusion. The test utilizes an unmanned aerial vehicle, an unmanned ground vehicle, and a human observer with a laptop. The test is designed to mimic a collaborative human and robot search and rescue problem. This test makes some of the most important practical contributions of the thesis by showing that the algorithms that have been developed for hard and soft sensor data fusion are capable of running in real time on relatively simple hardware.
Stress Tests for Chest Pain: When You Need an Imaging Test -- and When You Don't
... Resources Adult , Geriatric Stress Tests for Chest Pain Stress Tests for Chest Pain When you need an ... pain isn’t from heart disease. A cardiac stress test makes the heart work hard so your ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming
2015-07-01
Customized flexure mechanisms and precision thermal expansion compensation are needed for the development of nanopositioning stages for hard x-ray nanofocusing and coherence preservation optics at the APS. Recent progress of such stage development is summarized in this paper, which includes: stages designed for alignment apparatus for K-B mirrors with 20 - 50 nm focal spot; alignment apparatus for six Fresnel zone plates stacking with 20 nm focal spot; stages for switchable multiple nanofocusing system; UHV hard x-ray monochromators for coherence related applications; and four-crystal hard x-ray split-and-delay line with coherence preservation. Preliminary test results for mechanical performance of these nanopositioningmore » stages are also discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, K.; Raju, Ch.; Suresh, Ch.
2017-08-01
The present study aims to compare the conventional cutting inserts with wiper cutting inserts during the hard turning of AISI 4340 steel at different workpiece hardness. Type of insert, hardness, cutting speed, feed, and depth of cut are taken as process parameters. Taguchi’s L18 orthogonal array was used to conduct the experimental tests. Parametric analysis carried in order to know the influence of each process parameter on the three important Surface Roughness Characteristics (Ra, Rz, and Rt) and Material Removal Rate. Taguchi based Grey Relational Analysis (GRA) used to optimize the process parameters for individual response and multi-response outputs. Additionally, the analysis of variance (ANOVA) is also applied to identify the most significant factor.
Poggio, C; Lombardini, M; Gaviati, S; Chiesa, M
2012-07-01
The current in vitro study evaluated Vickers hardness (VK) and depth of cure (hardness ratio) of six resin composites, polymerized with a light-emitting diode (LED) curing unit by different polymerization modes: Standard 20 s, Standard 40 s, Soft-start 40 s. SIX RESIN COMPOSITES WERE SELECTED FOR THE PRESENT STUDY: three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono) and one nanofilled (Filtek Supreme XT). The VK of the surface was determined with a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 seconds. The mean VK and hardness ratio of the specimens were calculated using the formula: hardness ratio = VK of bottom surface / VK of top surface. For all the materials tested and with all the polymerization modes, hardness ratio was higher than the minimum value indicated in literature in order to consider the bottom surface as adequately cured (0.80). Curing time did not affect hardness ratio values for Filtek Silorane, Grandio and Filtek Supreme XT. The effectiveness of cure at the top and bottom surface was not affected by Soft-start polymerization mode.
Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y
2014-02-15
This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
30 CFR 15.20 - Technical requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature is between 68 and 86 °F. (f) Pendulum-friction test. The explosive shall show no perceptible reaction in the pendulum-friction test with the hard fiber-faced shoe. Ten trials of the test are conducted...
30 CFR 15.20 - Technical requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature is between 68 and 86 °F. (f) Pendulum-friction test. The explosive shall show no perceptible reaction in the pendulum-friction test with the hard fiber-faced shoe. Ten trials of the test are conducted...
30 CFR 15.20 - Technical requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature is between 68 and 86 °F. (f) Pendulum-friction test. The explosive shall show no perceptible reaction in the pendulum-friction test with the hard fiber-faced shoe. Ten trials of the test are conducted...
30 CFR 15.20 - Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature is between 68 and 86 °F. (f) Pendulum-friction test. The explosive shall show no perceptible reaction in the pendulum-friction test with the hard fiber-faced shoe. Ten trials of the test are conducted...
30 CFR 15.20 - Technical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature is between 68 and 86 °F. (f) Pendulum-friction test. The explosive shall show no perceptible reaction in the pendulum-friction test with the hard fiber-faced shoe. Ten trials of the test are conducted...
Sandhu, Ramandeep; Kheur, Mohit; Kheur, Supriya
2017-01-01
Aim: The aim of the present study was to assess the change in physical properties (surface roughness, surface hardness and phase transformation) after surface grinding of zirconia by using three commercially available abrasives. Materials and Methods: Thirty sintered zirconia specimens were prepared and divided into three groups namely Group M (grinded using Mani Dia diamond bur standard grit), Group T (grinded using Tri Hawk diamond bur coarse grit) and Group P (grinded using Predator carbide bur). A customised assembly was used to follow a standardised protocol for surface grinding. The surface roughness, surface hardness and phase transformation was recorded before and after the grinding procedure. Statistical Analysis Used: ANOVA and Bonferroni post hoc test were used to assess the values obtained after the testing the surface roughness and surface hardness. Results: The results of the present study revealed the average values of change in surface roughness as Group M (0.44 μm) and Group T (1.235 μm) and Group P (-0.88 μm). The average values of change in surface hardness were Group T (19.578 HV), Group M (46.722 HV) and Group P (36.429 HV). The change in surface hardness was not statistically significant. There was no phase transformation seen after the grinding procedure. Clinical Significance: Carbide burs along with copious water irrigation when used to grind zirconia intra-orally produces has a polishing effect, minimal change in hardness & no phase transformation. The present study advocates the use of carbides for chair-side grinding of zirconia. PMID:28216841
[Domestic water hardness and prevalence of atopic eczema in Castellon (Spain) school children].
Arnedo-Pena, Alberto; Bellido-Blasco, Juan; Puig-Barbera, Joan; Artero-Civera, Adrián; Campos-Cruañes, Joan Baptista; Pac-Sa, M Rosario; Villamarín-Vázquez, Jose Luis; Felis-Dauder, Carlos
2007-01-01
Water hardness has been associated with atopic eczema (AE) prevalence in two epidemiologic studies carried out on schoolchildren in England and Japan. To estimate the association between the prevalence of AE and domestic water hardness. The prevalence of AE was obtained from The International Study of Asthma and Allergies in Childhood, carried out in six towns in the province of Castellón on schoolchildren 6-7 and 13-14 years of age, using a standard questionnaire in 2002. Three zones were defined according to domestic water hardness of the six study localities: <200 mg/l, 200-250 mg/l, and >300 mg/l. A logistic regression analysis was performed. The lifetime prevalence of AE in schoolchildren 6-7 years of age was higher with the increment of water hardness, 28.6, 30.5 and 36.5% respectively for each zone; between zone 1 and zone 3, the adjusted odds ratios (ORa) were 1.58 (95% Confidence Intervals [CI] 1.04-2.39) (adjusted tendency test p=0.034). Prevalence of symptoms of AE within the past year were 4.7, 4.5, and 10.4%, respectively by zone; between zone 1 and zone 3, the ORa was 2.29 (95% CI 1.19-4.42) (adjusted tendency test p=0,163). For 13-14 year-old schoolchildren, tendencies to lifetime prevalence of AE at any time or in the past year were not significant. This study suggests that in 6-7 year-old schoolchildren, water hardness in the area where they live has some relevance to the development of the disease.
Ease of imagination, message framing, and physical activity messages.
Berry, Tanya R; Carson, Valerie
2010-02-01
The purpose of this research was to replicate a study that examined how message framing and ease of imagination interact to influence attitudes towards the prevention of heart disease through physical activity and a healthy diet. Changes were made such that only physical activity behaviour was profiled and assessed as a moderating variable. It was hypothesized that gain-framed messages would positively influence attitudes with hard to imagine symptoms, that loss-framed messages would positively influence attitudes with easy to imagine symptoms and exercise frequency would moderate the findings. This study employed a 2 (easy or hard to imagine symptoms) by 2 (gain- or loss-framed) Solomon square design whereby participants, half of whom completed a pre-test, were randomly assigned to one of four conditions: easy to imagine/gain-framed, hard to imagine/gain-framed, easy to imagine/loss-framed, or hard to imagine/loss-framed. Participants included adults over the age of 55 years (N=57) and undergraduate students (18-22 years; N=118). They were described either hard to imagine or easy to imagine symptoms of heart disease and diabetes and asked to imagine them. Participants then read either a gain- or loss-framed physical activity message followed by post-test questionnaires that assessed attitudes, exercise frequency, and demographics. Regression analyses showed no significant framing effects but significant effects for ease of imagination and exercise frequency as a moderating variable. This study failed to replicate the original research findings but showed that participants who exercised the least and were in the hard to imagine condition had the worst attitudes towards physical activity.
Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M
2017-05-22
Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p < 0.05). The elastic modulus showed a significant increase in the major base resin, while a significant decrease was seen for Vertex Implacryl in all groups (p < 0.05); however, there was no significant difference in surface roughness between autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.
Measuring Phonological Awareness in Deaf and Hard-of-Hearing Children
ERIC Educational Resources Information Center
Webb, Mi-young L.; Lederberg, Amy R.
2014-01-01
Purpose: This study evaluated psychometric properties of 2 phonological awareness (PA) tests normed for hearing children when used with deaf and hard-of-hearing (DHH) children with functional hearing. It also provides an in-depth description of these children's PA. Method: One hundred and eight DHH children (mean age = 63.3 months) with cochlear…
USDA-ARS?s Scientific Manuscript database
In order to investigate suitability of solvent retention capacity (SRC) test for quality assessment of hard red spring (HRS) wheat flour, ten HRS genotypes from six locations in North Dakota State were analyzed for SRC and flour and breadmaking quality characteristics. The SRC values were significa...
Measuring Up: Online Technology Assessment Tools Ease the Teacher's Burden and Help Students Learn
ERIC Educational Resources Information Center
Roland, Jennifer
2006-01-01
Standards are a reality in all academic disciplines, and they can be hard to measure using conventional methods. Technology skills in particular are hard to assess using multiple-choice, paper-based tests. A new generation of online assessments of student technology skills allows students to prove proficiency by completing tasks in their natural…
Electrodeposited Nano Co-P: Coating Development and Technology Insertion at NADEP-JAX
2008-02-27
Properties nCoP Hard Chrome Hardness 530-580 VHN 800-1200 VHN Ductility Elongation 2-7% < 1% Abrasive Wear (Taber) CS-17 wheels 17-20 mg/1000 cycles 3 mg...gage) - Due to high stress concentration (no runout ) Prior fatigue data invalid – testing to be repeated Gage Failure Transition region failure SERDP
The effect of hard water scale buildup and water treatment on residential water heater performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talbert, S.G.; Stickford, G.H.; Newman, D.C.
Conventional gas and electric storage-type residential water heaters were operated at four different U.S. cities under accelerated test conditions to measure the effect of scale buildup on efficiency and to assess the benefits and limitations of common water treatment methods. The four selected test sites had hard water supplied with expected scale-forming tendencies and were located in Columbus, OH; Lisle, IL; Roswell, NM; and Marshall, MN. The main conclusions are as follows. After 60 lbs (27 kg) of scale buildup at two of the test sites (representing an estimated 20 years of equivalent scale buildup), the efficiency of the gasmore » water heaters gradually declined about 5%, while that of the electric water heaters remained constant. However, the buildup of scale in the electric heaters caused the electric heating element to fail periodically, and in the gas-fired heaters, it caused the tank metal temperatures near the burner to operate hotter. Treated water (either softened, softened plus polyphosphate, or hard plus polyphosphate) effectively reduced scale buildup and tended to reduce the corrosion rates of the metal test coupons in hot water.« less
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
Evaluation of a scale-model experiment to investigate long-range acoustic propagation
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.
1987-01-01
Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.
Kostoulas, Ioannis; Polyzois, Gregory; Mitsoudis, Anastasios; Kavoura, Victoria; Frangou, Maria
2012-06-01
The purpose of this study was to assess the colour stability of seven visible light-cured (VLC) hard and soft denture liners by an in vitro accelerated ageing test and compare them with two autopolymerised hard and soft liners. Ten specimens of each material were fabricated. The initial colour was measured with a tri-stimulus colorimeter. One set of five specimens was placed in distilled water at 37°C in the dark for 15 days, while the remaining were subjected to UV/visible light-accelerated ageing initially for 24 h and then for 144 h. Colour change (ΔΕ) was calculated. Data were statistically analysed by anova, Tukey and t-tests at α = 0.05. All the liners showed clinically acceptable colour change (ΔΕ ≤ 6.8) in distilled water. The colour changes after ageing for Triad DuaLine, Lightdon U, Ufi Gel H and Light Liner Hard were clinically unacceptable (ΔΕ ≥ 6.8), whereas LightLiner Soft, Astron LC Soft, Triad Resiline and Flexacryl Soft presented slighter and clinically acceptable colour change (ΔΕ ≤ 6.8). Accelerated ageing affected significantly the colour stability of all denture liners tested except Astron LC Soft. Soft VLC denture liners were more colour-stable than hard VLC liners. © 2011 The Gerodontology Society and John Wiley & Sons A/S.
Rizkalla, Amin S; Jones, Derek W
2004-02-01
The purpose of this study was to evaluate and compare the indentation fracture toughness, true hardness and dynamic elastic moduli for 14 commercial dental porcelain materials. The specimens were fired according to manufacturer instructions. The density of the specimens (n=3) was measured by means of the water displacement technique. Dynamic Young's shear and bulk moduli and Poisson's ratio (n=3) were measured using a non-destructive ultrasonic technique using 10 MHz lithium niobate crystals. The true hardness (n=3) was measured using a Knoop indenter and the fracture toughness (n=3) was determined using a Vickers indenter and a Tukon hardness tester. Statistical analysis of the data was conducted using ANOVA and a Student-Newman-Keuls (SNK) rank order multiple comparative test. The SNK rank test analysis for the mean dynamic Young's modulus and fracture toughness was able to separate 14 dental porcelain materials into seven and nine groups, respectively, at p=0.05. The elastic moduli, true hardness and indentation fracture toughness for opaque porcelains were significantly higher than incisal; and body materials at p=0.05. The indentation fracture toughness and the ultrasonic test methods exhibit lower coefficient of variation compared to conventional methods and have considerable advantage for ceramic dental materials in that only small specimens are required to produce an acceptable number of data for statistical analysis.
Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.
Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer
2008-01-01
To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P < .05. The mean Vickers hardness of Transbond Lingual Retainer was 62.8 +/- 3.5 and 79.6 +/- 4.9 before and after aging, respectively. The mean Vickers hardness of Light Cure Retainer was 40.3 +/- 2.6 and 58.3 +/- 4.3 before and after aging, respectively. Differences in both groups were statistically significant (P < .001). Following aging, mean surface roughness was changed from 0.039 microm to 0.121 microm and from 0.021 microm to 0.031 microm for Transbond Lingual Retainer and Light Cure Retainer, respectively. The roughening of Transbond Lingual Retainer with aging was statistically significant (P < .05), while the change in the surface roughness of Light Cure Retainer was not (P > .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.
Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A
2018-03-01
The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.
Galo, Rodrigo; Contente, Marta Maria Martins Giamatei; Galafassi, Daniel; Borsatto, Maria Cristina
2015-01-01
Objectives: The purpose of this study was to determine the Young's modulus and the hardness of deciduous and permanent teeth following wear challenges using different dental materials. Materials and Methods: Wear challenges were performed against four dental materials: A resin-based fissure sealant (Fluoroshield®), a glass ionomer based fissure sealant (Vitremer®), and two microhybrid composite resins (Filtek Z250 and P90®). Using the pin-on-plate design, a deciduous or a permanent tooth was made into a pin (4 mm × 4 mm × 2 mm) working at a 3 N vertical load, 1 Hz frequency, and 900 cycles (15 min) with Fusayama artificial saliva as a lubricant. Before and after the tribological tests, the hardness and elasticity modulus of the tooth samples were measured by creating a nanoindentation at load forces up to 50 mN and 150 mN. All of the results were statistically analyzed using ANOVA and post-hoc Duncan's tests (P < 0.05). Results: No difference in hardness was encountered between deciduous and permanent teeth (P < 0.05) or modulus of elasticity (P < 0.05) before or after the wear challenges for all of the dental materials tested. Conclusions: Wear challenges against the studied dental materials did not alter the properties of permanent or deciduous teeth after the application of a 3 N load. PMID:26929700
Kalman, Dennis P; Merrill, Richard L; Wagner, Norman J; Wetzel, Eric D
2009-11-01
The penetration behavior of Kevlar fabric intercalated with dry particles and shear thickening fluids (STF), highly concentrated fluid-particle suspensions, is presented. In particular, the role of particle hardness is explored by comparing fabric treatments containing SiO(2) particles, which are significantly harder than Kevlar, to treatments containing softer poly(methyl methacrylate) (PMMA) particles. The fabric testing includes yarn pull-out, quasi-static spike puncture, and ballistic penetration resistance, performed on single fabric layers. It was found that both dry particle and STF treatments resulted in improvements in fabric properties relative to neat or poly(ethylene glycol) (PEG) treated fabrics. On comparison of treatments with different particle hardness, the SiO(2) materials performed better in all tests than comparable PMMA materials, although the SiO(2) treatments caused yarn failure in pull-out testing, reducing the total pull-out energy. In addition, resistance to yarn pull-out was found to be substantially higher for STF-treated fabrics than for dry particle treated fabrics. However, both dry particle addition and STF treatments exhibited comparable enhancements in puncture and ballistic resistance. These observations suggest that viscous stress transfer, friction, and physical entrainment of hard particles into filaments contribute to the demonstrated improvements in the properties of protective fabrics treated with shear thickening fluids.
Mohammed, Hilal S.; Singh, Sumeet; Hari, Prasad A.; Amarnath, G. S.; Kundapur, Vinaya; Pasha, Naveed; Anand, M.
2016-01-01
Background and objective: Chemical cleansing by denture cleansers is first choice for denture plaque control. The most common problems while using denture cleansers are hardening, porosity, odor sorption, water sorption, solubility, and colour change, bacterial and fungal growth. Chemical cleansing procedures have been found to have an effect on the physical and mechanical properties of denture liners. Thus, this study was conducted to evaluate the effect of commercially available denture cleansers on surface hardness and roughness of acrylic and silicon based denture liners at various time interval. Method: Two autopolymerising denture liners Kooliner (acrylic) and GC reline soft (silicon) were tested with two commercially available denture cleansers, polident and efferdent plus. Total of 120 specimens were prepared and all the specimens were divided into six groups based on the relining materials and denture cleansers used. Surface hardness and surface roughness was tested using Shore A durometer and profilometer respectively at the end of day 1, day 7, day 30 and day 90. All the specimens were stored in artificial saliva throughout the study. Cleanser solution was prepared daily by adding Polident and Efferdent plus denture cleanser tablet into 250ml of enough very warm (not hot) water. Acrylic and silicon liner groups were cleansed in a solution of denture cleanser and water for 15 minutes daily, rinsed with water and stored in artificial saliva at room temperature. The data was analyzed with one way ANOVA and independent t-test. Result: The acrylic soft lining showed gradual hardening and increase in surface roughness after immersion in denture cleanser and also with time. Acrylic liner material showed maximum hardness and roughness with Polident followed by Efferdent plus and water (control group). Silicone lining material showed a slight difference in hardness and roughness between the test group and control group. There was a slight increase in hardness in all the groups with time. Very slight increase in mean surface roughness of all the silicon liner groups from day 1 to day 90 was observed. A statistically significant change was noted between and within the all silicon liner groups on day 7, day 30 and day 90. Conclusion: The average surface hardness and surface roughness were lower in silicon liner material than acrylic liner material. Maximum surface roughness was noted by Polident followed by Efferdent Plus and Water for both acrylic liner group and silicon liner group. PMID:28190983
NASA Astrophysics Data System (ADS)
Ihsani, V.; Nursasongko, B.; Djauharie, N.
2017-08-01
The concept of conserving healthy tooth structures during cavity preparation has gained popularity with chemo-mechanical caries removal. This study compared three methods of caries removal using: a chemo-mechanical caries removal papain gel; Papacarie® (these contain natural ingredients, mainly papain enzyme); and mechanical preparation with a bur rotary instrument. The purpose of this study was to compare affected dentin micro-hardness after removal of infected dentin with mechanical and chemo-mechanical techniques. Twenty-seven permanent molar teeth were randomly divided into three groups receiving removal of infected dentin. These were: Group 1: chemo-mechanical technique using papain gel; Group 2: chemo-mechanical technique using Papacarie® Group 3: mechanical technique using a bur rotary instrument. Each group was tested using Knoop Micro-hardness tester, and the data were submitted to one way ANOVA and Post-hoc Tukey test. There is a significant difference between Groups 1 and 3, and Groups 2 and 3, p = 0.000. However, there is no significant difference between Groups 1 and 2, p = 1.000. Affected dentin micro-hardness after removal of infected dentin with a bur rotary tool is higher than after use of the papain gel or Papacarie®. Affected dentin micro-hardness after removal of infected dentin with Papacarie® and papain gel give almost the same result.
Khan, Aftab Ahmed; Siddiqui, Adel Zia; Al-Kheraif, Abdulaziz A; Zahid, Ambreen; Divakar, Darshan Devang
2015-01-01
Objective: Erosion of tooth surface is attributed to recent shift in diet pattern and frequent use of beverages. The aim of this research was to evaluate the effects of different beverages on surface topography and hardness of nano-filled composite material. Methods: Sixty flat disc shaped resin composite samples were fabricated and placed in distilled water for 24 hours. After 24 hours test samples were dried and divided into 4 groups. Group A (n=15) specimens were placed in tight amber bottle comprising 25 ml of artificial saliva. Similarly Group B, C and D were stored in equal amounts of orange juice, milk and coca cola drink respectively. Samples were checked for hardness and surface changes were evaluated with scanning electron microscopy. Results: There were strong significant difference observed in samples immersed in orange juice and artificial saliva. A strong significant difference was seen between Group D and Group A. Group A and Group C showed no significant difference. The micro-hardness test showed reduced values among all samples. Conclusion: Beverages consumed daily have a negative influence on hardness and surface degradation of nano-filled dental composite. Comparatively, nano-filled composites possess higher surface area to volume ratio of their fillers particle size may lead to higher surface roughness than other resin based dental biomaterials. PMID:26430417
Urban, Vanessa M; Lima, Thiago F; Bueno, Mirian G; Giannini, Marcelo; Arioli Filho, João N; de Almeida, Ana Lúcia P F; Neppelenbroek, Karin H
2015-04-01
While the incorporation of antimicrobial agents into soft denture liners has been suggested as a reliable alternative treatment for denture stomatitis, it may affect the liner's properties. The effect of addition of antimicrobial agents for the treatment of denture stomatitis on the surface roughness and Shore A hardness of soft lining materials was evaluated. The test groups comprised specimens (36 × 7 × 6 mm(3) ) of soft materials (Softone and Trusoft) without (control) or with incorporation of drugs (nystatin, miconazole, ketoconazole, chlorhexidine diacetate, and itraconazole). Hardness (Shore A) and roughness (Ra) were evaluated after immersion of specimens (n = 10) in distilled water at 37°C for 24 hours, 7 and 14 days. Data were analyzed by 3-way ANOVA/Tukey's test (α = 0.05). After 14 days, an increase (p < 0.05) was observed in the hardness of soft materials with time for the modified specimens, except for itraconazole. Addition of drugs increased the Softone roughness only for the addition of miconazole and chlorhexidine (p < 0.05), and did not increase the roughness of Trusoft with time. Only chlorhexidine and itraconazole altered the roughness compared to the control for each material (p < 0.05). The smallest changes of hardness and roughness with time in the modified groups compared to controls were observed for itraconazole groups for both materials. © 2014 by the American College of Prosthodontists.
Metallographic structure and hardness of titanium orthodontic brackets.
Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita
2003-11-01
To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.
Novel hard compositions and methods of preparation
Sheinberg, Haskell
1983-08-23
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.
Novel hard compositions and methods of preparation
Sheinberg, H.
1983-08-23
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.
Hill, Nicole A; Simpson, Stuart L; Johnston, Emma L
2013-02-01
Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Improvement of Quench Factor Analysis in Phase and Hardness Prediction of a Quenched Steel
NASA Astrophysics Data System (ADS)
Kianezhad, M.; Sajjadi, S. A.
2013-05-01
The accurate prediction of alloys' properties introduced by heat treatment has been considered by many researchers. The advantages of such predictions are reduction of test trails and materials' consumption as well as time and energy saving. One of the most important methods to predict hardness in quenched steel parts is Quench Factor Analysis (QFA). Classical QFA is based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. In this study, a modified form of the QFA based on the work by Rometsch et al. is compared with the classical QFA, and they are applied to prediction of hardness of steels. For this purpose, samples of CK60 steel were utilized as raw material. They were austenitized at 1103 K (830 °C). After quenching in different environments, they were cut and their hardness was determined. In addition, the hardness values of the samples were fitted using the classical and modified equations for the quench factor analysis and the results were compared. Results showed a significant improvement in fitted values of the hardness and proved the higher efficiency of the new method.
Modeling of Micro Deval abrasion loss based on some rock properties
NASA Astrophysics Data System (ADS)
Capik, Mehmet; Yilmaz, Ali Osman
2017-10-01
Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.
Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin
HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang
2012-01-01
Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746
Too hard to swallow: a secret secondary defence of an aposematic insect.
Wang, Lu-Yi; Huang, Wen-San; Tang, Hsin-Chieh; Huang, Lung-Chun; Lin, Chung-Ping
2018-01-25
Anti-predator strategies are significant components of adaptation in prey species. Aposematic prey are expected to possess effective defences that have evolved simultaneously with their warning colours. This study tested the hypothesis of the defensive function and ecological significance of the hard body in aposematic Pachyrhynchus weevils pioneered by Alfred Russel Wallace nearly 150 years ago. We used predation trials with Japalura tree lizards to assess the survivorship of 'hard' (mature) versus 'soft' (teneral) and 'clawed' (intact) versus 'clawless' (surgically removed) weevils. The ecological significance of the weevil's hard body was evaluated by assessing the hardness of the weevils, the local prey insects, and the bite forces of the lizard populations. The existence of toxins or deterrents in the weevil was examined by gas chromatography-mass spectrometry (GC-MS). All 'hard' weevils were instantly spat out after being bitten once and survived attacks by the lizards. In contrast, the 'soft' weevils were chewed and subsequently swallowed. The results were the same regardless of the presence or absence of the weevil's tarsal claws. The hardness of 'hard' Pachyrhynchus weevils was significantly higher than the average hardness of other prey insects in the same habitat and the mean bite forces of the local lizards. The four candidate compounds of the weevil identified by GC-MS had no known toxic or repellent functions against vertebrates. These results reveal that the hardness of aposematic prey functions as an effective secondary defence, and they provide a framework for understanding the spatio-temporal interactions between vertebrate predators and aposematic insect prey. © 2018. Published by The Company of Biologists Ltd.
Assessing degradation of composite resin cements during artificial aging by Martens hardness.
Bürgin, Stefan; Rohr, Nadja; Fischer, Jens
2017-05-19
Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.
Tribological performance of Zinc soft metal coatings in solid lubrication
NASA Astrophysics Data System (ADS)
Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar
2018-04-01
Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.
NASA Astrophysics Data System (ADS)
Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.
2018-01-01
Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.
IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2002-10-15
The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P.more » fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.« less
Research on mechanical properties of silver-bearing antibacterial duplex stainless steel
NASA Astrophysics Data System (ADS)
Liu, Dong; Xiang, Hongliang
2017-04-01
In this paper, silver-bearing antibacterial duplex stainless steels were prepared by adding Ag or Cu-Ag alloy particles. The microstructure, mechanical properties and fracture morphology were investigated in detail by OM, ESEM and tensile testing machine. Tensile tests indicate that the tensile fractures of Ag-bearing antibacterial duplex stainless steel and CD4MCu have the typical ductile character and toughening nests are isometric. After the solution treatment at 1050 ℃, for the material prepared by adding 150-300 µm Cu-Ag master alloy after the solution treatment at 1050 ℃, its plasticity is superior to that of CD4MCu, the strength and hardness are equivalent. But for the material prepared by adding pure Ag alloy particles, its plasticity, strength and hardness are less than that of CD4MCu. When the solution temperature rises, the plastic, strength and hardness of the material prepared by adding 150-300 µm Cu-Ag decrease.
Development of Water Softening Method of Intake in Magnitogorsk
NASA Astrophysics Data System (ADS)
Meshcherova, E. A.; Novoselova, J. N.; Moreva, J. A.
2017-11-01
This article contains an appraisal of the drinking water quality of Magnitogorsk intake. A water analysis was made which led to the conclusion that the standard for general water hardness was exceeded. As a result, it became necessary to develop a number of measures to reduce water hardness. To solve this problem all the necessary studies of the factors affecting the value of increased water hardness were carried out and the water softening method by using an ion exchange filter was proposed. The calculation of the cation-exchanger filling volume of the proposed filter is given in the article, its overall dimensions are chosen. The obtained calculations were confirmed by the results of laboratory studies by using the test installation. The research and laboratory tests results make the authors conclude that the proposed method should be used to obtain softened water for the requirements of SanPin.
NASA Astrophysics Data System (ADS)
Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.
2010-05-01
Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.
Hard water softening effect of a baby cleanser
Walters, Russel M; Anim-Danso, Emmanuel; Amato, Stephanie M; Capone, Kimberly A; Mack, M Catherine; Telofski, Lorena S; Mays, David A
2016-01-01
Background Hard water is associated with atopic dermatitis (eczema). We wanted to determine if a baby cleanser and its individual components altered free ionized calcium (Ca2+) in a simulated hard water baby bath. For these studies, an in vitro determination of free Ca2+ in a simulated hard water baby bath, and an in vivo exploratory study of free Ca2+ absorption into skin from hard water were performed. Methods Free Ca2+ was measured with an ion-sensitive electrode in vitro in hard water (100–500 ppm, Ca2+) before and after addition of the cleanser and/or its components. In an exploratory study, absorption of Ca2+ into skin from hard water was determined in three female participants (aged 21–29 years). Results At an in-use dilution of 1%, the test cleanser reduced free Ca2+ from ~500 ppm to <200 ppm; a 10% in-use dilution bound virtually all free Ca2+. The anionic surfactant component contributed the most to this effect. In the exploratory in vivo study, we measured a reduction of ~15% in free Ca2+ from simulated hard water over 10 minutes. Conclusion Baby cleansers can bind free Ca2+ and reduce the effective water hardness of bath water. Reducing the amount of free Ca2+ in the water will reduce the availability of the ion for binding to the skin. Altering or reducing free Ca2+ concentrations in bath water may be an important parameter in creating the ideal baby bath. PMID:27789967
Relative hardness measurement of soft objects by a new fiber optic sensor
NASA Astrophysics Data System (ADS)
Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran
2010-06-01
The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.
On the origins of hardness of Cu–TiN nanolayered composites
Pathak, S.; Li, N.; Maeder, X.; ...
2015-07-18
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Özel, Cihan; Gürgenç, Turan
2018-01-01
In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.
Influence of extrusion-cooking parameters on some quality aspects of precooked pasta-like products.
Wójtowicz, A; Mościcki, L
2009-06-01
The present article aims to evaluate some quality parameters and texture characteristics of precooked wheat pasta-like products. Using the methods for pasta and instant noodles the tested parameters were water absorption, starch gelatinization degree, cooking losses, and hardness. The texture profile was characterized using Zwick apparatus by cutting test with the head speed of 10 mm/min and expressed as hardness and firmness of hydrated products. SEM pictures were used to illustrate the internal structure of dry and cooked pasta-like products. Dough moisture content and process conditions influenced all tested quality parameters of the pasta-like products processed on a modified single screw extrusion-cooker TS-45 with L: D = 16: 1. Good organoleptical quality (notes higher than 4 in a 5-point scale) and firm texture were observed for common wheat flour pasta processed at 30% m.c. Hardness and firmness of hydrated products lowered with a longer hydration time in hot water. The firmest texture and low stickiness was observed for products with a highest starch gelatinization degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumpala, Ravikumar; Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Kumar, N.
Tribo-layer formation and frictional characteristics of the SiC ball were studied with the sliding test against nanocrystalline diamond coating under atmospheric test conditions. Unsteady friction coefficients in the range of 0.04 to 0.1 were observed during the tribo-test. Friction and wear characteristics were found to be influenced by the formation of cohesive tribo-layer (thickness ∼ 1.3 μm) in the wear track of nanocrystalline diamond coating. Hardness of the tribo-layer was measured using nanoindentation technique and low hardness of ∼ 1.2 GPa was observed. The presence of silicon and oxygen in the tribo-layer was noticed by the energy dispersive spectroscopy mappingmore » and the chemical states of the silicon were analyzed using X-ray photoelectron spectroscopy. Large amount of oxygen content in the tribo-layer indicated tribo-oxidation wear mechanism. - Highlights: • Sliding wear and friction characteristics of SiC were studied against NCD coating. • Silicon oxide tribo-layer formation was observed in the NCD coating wear track. • Low hardness 1.2 GPa of tribo-layer was measured using nanoindentation technique. • Chemical states of silicon were analyzed using X-ray photoelectron spectroscopy.« less
Gürgenç, Turan
2018-01-01
In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input. PMID:29324875
Tribological Behaviour of Ti:Ta-DLC Films Under Different Tribo-Test Conditions
NASA Astrophysics Data System (ADS)
Efeoglu, İhsan; Keleş, Ayşenur; Totik, Yaşar; Çiçek, Hikmet; Emine Süküroglu, Ebru
2018-01-01
Diamond-like carbon (DLC) films are suitable applicants for cutting tools due to their high hardness, low friction coefficient and wear rate. Doping metals in DLC films have been improved its tribological properties. In this study, titanium and tantalum doped hydrogenated DLC films were deposited by closed-field unbalanced magnetron sputtering system onto M2 high speed steels in Ar/N2/C2H2 atmosphere. The friction and wear properties of Ti:Ta-DLC film were investigated under different tribo-test conditions including in atmospheric pressure, distilled water, commercial oil and Ar atmosphere. The coated specimens were characterized by SEM and X-ray diffraction techniques. The bonding state of C-C (sp3) and C=C (sp2) were obtained with XPS. The tribological properties of Ti:Ta-DLC were investigated with pin-on-disc wear test. Hardness measurements performed by micro-indentation. Our results suggest that Ti:Ta-doped DLC film shows very dense columnar microstructure, high hardness (38.2 GPa) with low CoF (µ≈0.02) and high wear resistance (0.5E-6 mm3/Nm).
NASA Astrophysics Data System (ADS)
Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.
2017-09-01
Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.
Makuch, Anna M; Skalski, Konstanty R; Pawlikowski, Marek
2017-01-01
The goal of the study was to determine the influence of DSI test conditions, i.e., loading/unloading rates, hold time, and the value of the maximum loading force on selected mechanical properties of trabecular bone tissue. The test samples were resected from a femoral head of a patient qualified for a hip replacement surgery. During the DSI tests hardness (HV, HM, HIT) and elastic modulus (EIT) of trabecular bone tissue were measured using the Micro Hardness Tester (MHT, CSEM). The analysis of the results of measurements and the calculations of total energy, i.e., elastic and inelastic (Wtotal, Welastic, Winelastic) and those of hardness and elasticity made it possible to assess the impact of the process parameters (loading velocity, force and hold time) on mechanical properties of bone structures at a microscopic level. The coefficient k dependent on the EIT/HIT ratio and on the stored energy (ΔW = Wtotal - Welastic) is a measure of the material reaction to the loading and the deformation of tissue.
The Effect of Prism Orientation in the Indentation Testing of Human Molar Enamel
Braly, A.; Darnell, L.A.; Mann, A.B.; Teaford, M.F.; Weihs, T.P.
2007-01-01
Recent nanoindentation studies have demonstrated that the hardness and Young's modulus of human molar enamel decreases by more than 50% on moving from the occlusal surface to the dentin-enamel junction on cross-sectional samples. Possible sources of these variations are changes in local chemistry, microstructure, and prism orientation. This study investigates the latter source by performing nanoindentation tests at two different orientations relative to the hydroxyapatite prisms: parallel and perpendicular. A single sample volume was tested in order to maintain a constant chemistry and microstructure. The resulting data show very small differences between the two orientations for both hardness and Young's modulus. The 1.5 to 3.0% difference is significantly less than the standard deviations found within the data set. Thus, the variations in hardness and Young's modulus on cross-sectional samples of human molar are attributed to changes in local chemistry (varying levels of mineralization, organic matter, and water content) and changes in microstructure (varying volume fractions of inorganic crystals and organic matrix). The impact of prism orientation on mechanical properties measured by nanoindentation appears to be minimal. PMID:17449008
Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi
2015-06-01
This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.
Characterization of the Interface of an Alloy 625 Overlay on Steels Using Nanoindentation
NASA Astrophysics Data System (ADS)
Dai, Tao; Lippold, John
2018-06-01
Industry standards require postweld heat treatment (PWHT) to reduce the heat-affected zone hardness of steels such as F22 (2.25Cr-1Mo) and AISI 8630 overlaid (clad) with Alloy 625 weld metal. PWHT results in carbon diffusion and accumulation at the interface between the steel and overlay. The accumulation of carbon in a planar solidification growth zone adjacent to the fusion boundary results in high hardness and the potential for hydrogen-assisted cracking. The planar growth zone (PGZ) is so narrow that normal Vickers hardness testing cannot fully reveal the hardness distribution in this zone. This study focused on the application of nanoindentation to characterize the hardness in the narrow microstructural regions adjacent to the fusion boundary. The development of nanohardness maps revealed that the PGZ is not necessarily the region that exhibits peak hardness after PWHT. The highest hardness values were associated with clusters of M7C3 carbides in specific subregions in the PGZ and also in the partially-mixed zone adjacent to the fusion boundary or in steel "swirl" structures. It was also confirmed in this study that nanohardness has a linear correlation with Vickers hardness values. The results presented here provide new insight into the role of carbon diffusion during PWHT and its effect on interface embrittlement associated with Alloy 625 overlays on steel.
Hardness and microstructure analysis of damaged gear caused by adhesive wear
NASA Astrophysics Data System (ADS)
Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky
2018-03-01
This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.
Comparison of hardness of three temporary filling materials cured by two light-curing devices.
Bodrumlu, E; Koçak, M M; Hazar Bodrumlu, E; Ozcan, S; Koçak, S
2014-01-01
Polymerization ability of light-curing devices can affect the light-cured material hardness. The purpose of the present study was to evaluate and compare the hardness of three temporary filling materials that had been light-cured by either a light emitting diode (LED) or a halogen light-curing unit. The temporary filling materials, First Fill, Voco Clip and Bioplic, were placed in wells in a Teflon plate. The 24 specimens of each material were divided into two groups (N.=12/group) for photo-activation by either of the two light-curing units. The LED or halogen device was applied for 40s to the top surface of each specimen. A Knoop hardness test was performed on the top and bottom surface of each specimen, with five measurements per specimen. The highest hardness values for both the LED and halogen treated groups were observed for First Fill and the lowest values were for Voco Clip in top and bottom surfaces. The hardness obtained for the three materials with the halogen unit were significantly higher than the values obtained with the LED unit in both surfaces (P<0.05). First Fill light-cured temporary material exhibited the highest hardness values on the top and bottom surfaces than Voco Clip and Bioplic temporary materials. The hardness of light-cured temporary filling materials can be affected by the type of light-curing unit.
Hardness Assurance Techniques for New Generation COTS Devices
NASA Technical Reports Server (NTRS)
Lee, C. I.; Rax, B. G.; Johnston, A. H.
1996-01-01
Hardness Assurance (HA) techniques and total dose radiation characterization data for new generation linear and COTS devices from various manufacturers are presented. A bipolar op amp showed significant degradation at HDR, not at low dose rate environment. New generation low-power op amps showed more degradation at low voltage applications. HA test techniques for COTS devices are presented in this paper.
ERIC Educational Resources Information Center
Cawthon, Stephanie
2015-01-01
Designing assessments and tests is one of the more challenging aspects of creating an accessible learning environment for students who are deaf or hard of hearing (DHH), particularly for deaf students with a disability (DWD). Standardized assessments are a key mechanism by which the educational system in the United States measures student…
States' Reading Outcomes of Students Who Are d/Deaf or Hard of Hearing
ERIC Educational Resources Information Center
Easterbrooks, Susan R.; Beal-Alvarez, Jennifer S.
2012-01-01
Historically, researchers have identified that reading outcomes for students in upper grades who are d/Deaf and hard of hearing (d/Dhh) have typically rested around the late 3rd to early 4th grade. In recent years, wide-scale state-level testing has called into question these prognostications. The authors conducted a descriptive, multiunit,…
ERIC Educational Resources Information Center
Edwards, Lindsey; Figueras, Berta; Mellanby, Jane; Langdon, Dawn
2011-01-01
The extent to which cognitive development and abilities are dependent on language remains controversial. In this study, the analogical reasoning skills of deaf and hard of hearing children are explored. Two groups of children (deaf and hard of hearing children with either cochlear implants or hearing aids and hearing children) completed tests of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
Blair, Shamus A; Thakkar, Ajit J
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
Aslani, Abolfazl; Fattahi, Fatemeh
2013-01-01
The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.
Aslani, Abolfazl; Fattahi, Fatemeh
2013-01-01
Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates. PMID:24312839
Chladek, Grzegorz; Kasperski, Jacek; Barszczewska-Rybarek, Izabela; Żmudzki, Jarosław
2013-01-01
The colonization of denture soft lining material by oral fungi can result in infections and stomatitis of oral tissues. In this study, 0 ppm to 200 ppm of silver nanoparticles was incorporated as an antimicrobial agent into composites to reduce the microbial colonization of lining materials. The effect of silver nanoparticle incorporation into a soft lining material on the sorption, solubility, hardness (on the Shore A scale) and tensile bond strength of the composites was investigated. The data were statistically analyzed using two-way ANOVA and Newman-Keuls post hoc tests or the chi-square Pearson test at the p < 0.05 level. An increase in the nanosilver concentration resulted in a decrease in hardness, an increase in sorption and solubility, a decrease in bond strength and a change in the failure type of the samples. The best combination of bond strength, sorption, solubility and hardness with antifungal efficacy was achieved for silver nanoparticle concentrations ranging from 20 ppm to 40 ppm. These composites did not show properties worse than those of the material without silver nanoparticles and exhibited enhanced in vitro antifungal efficiency. PMID:23271371
A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel.
Elfallah, Hunida M; Swain, Michael V
2013-09-01
Tooth whitening is considered the easiest and most cost-effective procedure for treating tooth discoloration. Contemporary bleaching agents contain hydrogen peroxide as the active ingredient. It is either applied directly or produced from its precursor, carbamide peroxide. A review of the published literature was undertaken to investigate the potential adverse effects of whitening products on dental enamel, with a focus on its mechanical properties and the influence of various parameters on study outcomes. There appear to be considerable differences in opinion as to whether changes in mechanical properties occur as a result of tooth whitening. However, the mechanical property findings of those studies appear to be related to the load applied during the indentation tests. Most studies which used loads higher than 500mN to determine enamel hardness showed no effect of bleaching, whereas those using lower loads were able to detect hardness reduction in the surface layer of enamel. In conclusion, bleaching reduces the hardness of the enamel surface of enamel, and that is more readily detected with instrumented low load testing systems. This hardness reduction may arise due to degradation or denaturation of enamel matrix proteins by the peroxide oxidation.
Surface martensitization of Carbon steel using Arc Plasma Sintering
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin
2018-03-01
In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
Testing the Impulsiveness of Solar Flare Heating through Analysis of Dynamic Atmospheric Response
NASA Astrophysics Data System (ADS)
Newton, E. K.; Emslie, A. G.; Mariska, J. T.
1996-03-01
One crucial test of a solar flare energy transport model is its ability to reproduce the characteristics of the atmospheric motions inferred from soft X-ray line spectra. Using a recently developed diagnostic, the velocity differential emission measure (VDEM), we can obtain from observations a physical measure of the amount of soft X-ray mitting plasma flowing at each velocity, v, and hence the total momentum of the upflowing plasma, without approximation or parametric fitting. We have correlated solar hard X-ray emission profiles by the Yohkoh Hard X-ray telescope with the mass and momentum histories inferred from soft X-ray line profiles observed by the Yohkoh Bragg crystal spectrometers. For suitably impulsive hard X-ray emission, an analysis of the hydrodynamic equations predicts a proportionality between the hard X-ray intensity and the second time derivative of the soft X-ray mitting plasma's momentum. This relationship is borne out by an analysis of 18 disk-center impulsive flares of varying durations, thereby lending support to the hypothesis that a prompt energy deposition mechanism, such as an energetic electron flux, is indeed responsible for the soft X-ray response observed in the rise phase of sufficiently impulsive solar flares.
Effects of cryogenic treatment on the wear properties of brake discs
NASA Astrophysics Data System (ADS)
Nadig, D. S.; Shivakumar, P.; Anoop, S.; Chinmay, Kulkarni; Divine, P. V.; Harsha, H. P.
2017-02-01
Disc brakes are invariably used in all the automobiles either to reduce the rotational speed of the wheel or to hold the vehicle stationary. During the braking action, the kinetic energy is converted into heat which can result in high temperatures resulting in fading of brake effects. Brake discs produced out of martensite stainless steel (SS410) are expected to exhibit high wear resistance properties with low value of coefficient of friction. These factors increase the useful life of the brake discs with minimal possibilities of brake fade. To study the effects of cryogenic treatment on the wear behaviour, two types of brake discs were cryotreated at 98K for 8 and 24 hours in a specially developed cryotreatment system using liquid nitrogen. Wear properties of the untreated and cryotreated test specimens were experimentally determined using the pin on disc type tribometer (ASTM G99-95). Similarly, the Rockwell hardness (HRC) of the specimens were tested in a hardness tester in accordance with ASTM E18. In this paper, the effects of cryotreatment on the wear and hardness properties of untreated and cryotreated brake discs are presented. Results indicate enhancement of wear properties and hardness after cryogenic treatment compared with the normal brakes discs.
The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.
NASA Astrophysics Data System (ADS)
Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.
2010-05-01
The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p < 0.01). Testing the effects of water content, there were no statistically significant differences between water saturated and dry samples. The influence of rock surface roughness was evaluated applying the durometer in ancient rock carvings in medium to coarse grain granites. We compared the values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p < 0.01) between lower rebound values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and in uniform rock surfaces the device gave very good results. The data obtained in glacial, nival and rock coastal environments showed the potential of the device in the identification of changes in rock hardness. We were able to asses the changes in the weathering degree of glacial striations and marked differences in the rock surfaces subjected or not to abrasion. A. Feal-Pérez is supported by the grant AP2006-03854 (Spanish Ministry of Education)
Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N
2015-09-01
Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (P<.001) was found among groups, with IPS e.max CAD (341.88 ±40.25 MPa)>Vita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (P<.001) was found with IPS e.max CAD (731.63 ±30.64 H(V))>Vitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II. The FGC's Weibull modulus was the highest, while its Vickers hardness was the lowest among the materials tested. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Solid particle erosion mechanisms of protective coatings for aerospace applications
NASA Astrophysics Data System (ADS)
Bousser, Etienne
The main objective of this PhD project is to investigate the material loss mechanisms during Solid Particle Erosion (SPE) of hard protective coatings, including nanocomposite and nanostructured systems. In addition, because of the complex nature of SPE mechanisms, rigorous testing methodologies need to be employed and the effects of all testing parameters need to be fully understood. In this PhD project, the importance of testing methodology is addressed throughout in order to effectively study the SPE mechanisms of brittle materials and coatings. In the initial stage of this thesis, we studied the effect of the addition of silicon (Si) on the microstructure, mechanical properties and, more specifically, on the SPE resistance of thick CrN-based coatings. It was found that the addition of Si significantly improved the erosion resistance and that SPE correlated with the microhardness values, i.e. the coating with the highest microhardness also had the lowest erosion rate (ER). In fact, the ERs showed a much higher dependence on the surface hardness than what has been proposed for brittle erosion mechanisms. In the first article, we study the effects of the particle properties on the SPE behavior of six brittle bulk materials using glass and alumina powders. First, we apply a robust methodology to accurately characterize the elasto-plastic and fracture properties of the studied materials. We then correlate the measured ER to materials' parameters with the help of a morphological study and an analysis of the quasi-static elasto-plastic erosion models. Finally, in order to understand the effects of impact on the particles themselves and to support the energy dissipation-based model proposed here, we study the particle size distributions of the powders before and after erosion testing. It is shown that tests using both powders lead to a material loss mechanism related to lateral fracture, that the higher than predicted velocity exponents point towards a velocity-dependent damage accumulation mechanism correlated to target yield pressure, and that damage accumulation effects are more pronounced for the softer glass powder because of kinetic energy dissipation through different means. In the second article, we study the erosion mechanisms for several hard coatings deposited by pulsed DC magnetron sputtering. We first validate a new methodology for the accurate measurement of volume loss, and we show the importance of optimizing the testing parameters in order to obtain results free from experimental artefacts. We then correlate the measured ERs to the material parameters measured by depth-sensing indentation. In order to understand the material loss mechanisms, we study three of the coating systems in greater detail with the help of fracture characterization and a morphological study of the eroded surfaces. Finally, we study the particle size distributions of the powders before and after erosion testing in an effort to understand the role of particle fracture. We demonstrate that the measured ERs of the coatings are strongly dependent on the target hardness and do not correlate with coating toughness. In fact, the material removal mechanism is found to occur through repeated ductile indentation and cutting of the surface by the impacting particles and that particle breakup is not sufficiently large to influence the results significantly. Studying SPE mechanisms of hard protective coating systems in detail has proven to be quite challenging in the past, given that conventional SPE testing is notoriously inaccurate due to its aggressive nature and its many methodological uncertainties. In the third article, we present a novel in situ real-time erosion testing methodology using a quartz crystal microbalance, developed in order to study the SPE process of hard protective coating systems. Using conventional mass loss SPE testing, we validate and discuss the advantages and challenges related to such a method. In addition, this time-resolved technique enables us to discuss some transient events present during SPE testing of hard coating systems leading to new insights into the erosion process. (Abstract shortened by UMI.)
Antimicrobial Testing Methods & Procedures: MB-11-05
Describes the methodology for determining the effectiveness of a neutralizer used when testing the tuberculocidal activity of disinfectants against Mycobacterium bovis (BCG) on hard surfaces using liquid, sprays, or towelettes.
Test and study on mirror quality of ultra-precision diamond turning
NASA Astrophysics Data System (ADS)
Chang, Yanyan; Sun, Tao; Li, Zengqiang; Wu, Baosen
2014-09-01
Using the diamond turning lathe and mono crystalline diamond tool, the aluminum alloy of 2A12 was cut under different cutting parameters including cutting speed, feed rate and depth of cut and the mirror surfaces were made. The surface roughness, micro hardness and residual stress of the mirror surface were tested by the surface profiler, the universal hardness tester and X-stress Robot. The influences of the cutting parameters on the mirror quality were studied. The research results have theoretical and practical significance to the selection of the optimal cutting parameters in ultraprecision diamond turning.
Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.
Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G
2016-07-15
There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Guiotti, Aimée Maria; Goiato, Marcelo Coelho; Dos Santos, Daniela Micheline; Vechiato-Filho, Aljomar José; Cunha, Bruno Guandalini; Paulini, Marcela Borghi; Moreno, Amália; de Almeida, Margarete Teresa Gottardo
2016-04-01
Silicone elastomers undergo physical and chemical degradation with disinfecting solutions. Phytotherapy may be a suitable solution for disinfection. However, its effect on the properties of the silicone material is unknown. The purpose of this in vitro study was to evaluate the effect of disinfection with conventional and plant-extract solutions and of artificial aging on the hardness and color stability of a facial silicone associated with pigments and an opacifier. Four hundred specimens of silicone (MDX4-4210) were fabricated (5×6 mm). Two pigment shades and 1 dry opacifier were combined in the tested material, and 4 groups (n=10) were obtained: colorless (GI), colorless with opacifier (GII), medium pigment with opacifier (GIII), and black pigment with opacifier (GIV). Specimens were subjected to disinfection (30 days) using saline solution, water, and neutral soap (digital friction, 30 seconds), chlorhexidine 4%, Hydrastis canadensis, and Cymbopogon nardus extracts (immersion, 10 minutes). Shore A hardness (ASTM D2240) and color analyses were performed before and after disinfection. Specimens were then exposed to 1008 hours of artificial aging (ASTM 53) and subjected to final hardness and color readings. The results were analyzed with ANOVA and the Tukey significant difference test (α=.05). The opacifier increased the hardness (GII). For GII, the H. canadensis solution and the friction with water and soap promoted significantly reduced hardness; the friction also promoted a reduction in this property for GIV. The GIII was not affected after disinfection. A significant difference was found between the ΔE values of the specimens disinfected with H. canadensis, C. nardus, and chlorhexidine, and specimens subjected to saline solution and neutral soap. The hardness of MDX4-4210 after the experimental procedure was considered clinically acceptable for facial prostheses. All groups showed clinically unacceptable color alterations regardless of the disinfecting solution. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah
An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positivemore » relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.« less
Tsai, Yi-Ju; Powers, Christopher M
2013-01-01
Theoretically, a shoe that provides less friction could result in a greater slip distance and foot slipping velocity, thereby increasing the likelihood of falling. The purpose of this study was to investigate the effects of sole hardness on the probability of slip-induced falls. Forty young adults were randomized into a hard or a soft sole shoe group, and tested under both nonslippery and slippery floor conditions using a motion analysis system. The proportions of fall events in the hard- and soft-soled shoe groups were not statistically different. No differences were observed between shoe groups for average slip distance, peak and average heel velocity, and center of mass slipping velocity. A strong association was found between slip distance and the fall probability. Our results demonstrate that the probability of a slip-induced fall was not influenced by shoe hardness. Once a slip is induced, slip distance was the primary predictor of a slip-induced fall. © 2012 American Academy of Forensic Sciences.
Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K
2016-11-05
The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.
Hundt, Matthias; Schreiber, Benjamin; Eckmann, Reiner; Lunestad, Bjørn Tore; Wünneman, Hannah; Schulz, Ralf
2016-02-01
Marking of fish otoliths with oxytetracycline and tetracycline is a widely used method to evaluate the effectiveness of stocking operations. Available protocols for the labeling of fish specify a number of factors influencing mark quality and potential risk for fish during marking. This study investigates the influence of water hardness on mortality of freshwater fish during marking with OTC. In order to pursue this question complexation of OTC with Mg(2+) and Ca(2+) cations was measured spectrophotometrically. Furthermore, zebrafish (Danio rerio) were immersed in OTC solutions (1200 mg/L; 48 h immersion) combined with varying levels of water hardness (5.5, 15.5, 25.5, 32.5°dH). The amount of OTC-Mg-Ca-complexes was positively correlated to water hardness. Moreover, it could be demonstrated that mortality of zebrafish during marking varied as a factor of water hardness. Highest mortalities occurred at the lowest (5.5°dH) and the highest (32.5°dH) tested levels during marking with OTC.
NASA Astrophysics Data System (ADS)
Dong, Meiling; Cui, Xiufang; Jin, Guo; Wang, Haidou; Cai, Zhaobing; Song, Shengqiang
2018-05-01
The carburized 12Cr2Ni4A alloy steel was implanted by Ti + N double elements implantation. The microstructure, nano-hardness and corrosion properties were investigated by EPMA, TEM, XPS, nano-hardness and electrochemistry tests in detail. The results showed that the Ti + N co-implanted layer is composed of FCC TiN and TiC phases with BCC martensite. Compared with the un-implanted layer, the Ti + N implanted layer has higher nano-hardness and better corrosion resistance. In addition, the higher nano-hardness was presented below the surface of 1800 nm compared with un-implanted layer, which is far beyond the thickness of the implanted layer. The results also indicated that the generation of nanoscale ceramic phase and structures are not the only factor to impose the influence on the nano-hardness and corrosion resistance, but the radiation damage and lattice distortion will play an important role.
Fekrazad, Reza; Najafi, Ahmad; Mahfar, Ramona; Namdari, Mahshid
2017-01-01
Background and Aims The aim was comparison of enamel remineralization after application of APF, TiF4 and CO2 laser alone or in combination. Materials and Methods Enamel blocks were prepared from human third molars. The initial surface hardness was determined by Vicker's hardness tester. The samples underwent a demineralization regimen for 7 days to produce artificial initial caries. The hardness of enamel blocks with white spot lesions was measured, and the samples which had the mean hardness change of 65–90%, were selected, and randomly divided into 5 groups (N=15): G1: control; G2: APF 1.23%; G3: TiF4 4%; G4: TiF4 4% followed by CO2 laser (10.6 µm wavelength, 1 W peak power, 10 ms pulse duration, 500 ms repeat time, 0.2 mm beam spot size, 2 cm distance); G5: CO2 laser (same parameters) followed by TiF4 4%. Surface hardness recovery was measured after the treatments. Three samples in each group were observed under scanning electron microscope at ×1,000 magnification. Data were analyzed by repeated measure ANOVA and Bonferrouni tests. Significance level was set at 0.05. Results G2, G3, G4 indicated significant differences with control and G5 (p<0.05). Surface hardness in G5 was not significantly different from control (p=0.7) in enamel hardness test. There was not a significant difference between G2 & G3, G2 & G4, and G3 & G4 (p=1). The SEM results indicated globules of calcium fluoride on the surface in G2, and a smooth glaze-like surface layer in G3 and G4. In G5, some micro-cracks without any glaze-like layer were observed. Conclusions APF, TiF4 and TiF4 before CO2 laser irradiation significantly increased the micro-hardness of initially demineralized enamel surfaces. CO2 laser irradiation before TiF4 application could not remineralize the white-spot lesions. PMID:28785131
Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness
Soylu, Elif Hilal; İde, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat
2013-01-01
PURPOSE The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). CONCLUSION After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments. PMID:24353888
Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER
NASA Astrophysics Data System (ADS)
Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele
2004-02-01
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.
Nanoindentation on SnAgCu lead-free solder joints and analysis
NASA Astrophysics Data System (ADS)
Xu, Luhua; Pang, John H. L.
2006-12-01
The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.
40 CFR 204.54 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... noise compliance testing must consist of an open site above a hard reflecting plane. The reflecting... information. All information required by this section may be recorded using the format recommended on the...
Antimicrobial Testing Methods & Procedures: MB-09-06
Describes the methodology used to determine the efficacy of towelette-based disinfectants against microbes on hard surfaces. The test is based on AOAC Method 961.02 (Germicidal Spray Products as Disinfectants).
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
Rolling contact fatigue of low hardness steel for slewing ring application
NASA Astrophysics Data System (ADS)
Knuth, Jason A.
This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium carbon alloy. The work hardening of the high carbon steel increased the surface hardness that exceeded the medium carbon alloy steel surface hardness.
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis.
Dall'Ara, Enrico; Ohman, Caroline; Baleani, Massimiliano; Viceconti, Marco
2011-05-17
This study investigated whether changes in hardness of human trabecular bone are associated with osteoarthritis. Twenty femoral heads extracted from subjects without musculoskeletal diseases (subject age: 49-83 years) and twenty femoral heads extracted from osteoarthritic subjects (subject age: 42-85 years) were tested. Sixty indentations were performed along the main trabecular direction of each sample at a fixed relative distance. Two microstructures were found on the indenting locations: packs of parallel-lamellae (PL) and secondary osteons (SO). A 25gf load was applied for 15s and the Vickers Hardness (HV) was assessed. Trabecular tissue extracted from osteoarthritic subjects was found to be about 13% less hard compared to tissue extracted from non-pathologic subjects. However, tissue hardness was not significantly affected by gender or age. The SO was 10% less hard than the PL for both pathologic and non-pathologic tissues. A hardness of 34.1HV for PL and 30.8HV for SO was found for the non-pathologic tissue. For osteoarthritic tissue, the hardness was 30.2HV for PL and 27.1HV for SO. In the bone tissue extracted from osteoarthritic subjects the occurrence of indenting a SO (28%) was higher than that observed in the non-pathological tissue (15%). Osteoarthritis is associated with reduced tissue hardness and alterations in microstructure of the trabecular bone tissue. Gender does not significantly affect trabecular bone hardness either in non-pathological or osteoarthritic subjects. A similar conclusion can be drawn for age, although a larger donor sample size would be necessary to definitively exclude the existence of a slight effect. Copyright © 2011. Published by Elsevier Ltd.
Tetteh, Sophia; Bibb, Richard J; Martin, Simon J
2018-05-30
The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the staphylococcus epidermidis bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.
In vitro assessment of fragmentation and repulsion of handheld lithotripsie devices
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Pongratz, Thomas; Crameri, Giovanni; Haseke, Nicolas; Bader, Markus; Khoder, Wael
2013-03-01
Introduction: Different laser-systems are currently used for stone fragmentation in the upper urinary tract. The aim of our study was to evaluate probe velocity and displacement, retropulsion and fragmentation characteristics two novel devices the electromechanically driven EMS LithoBreaker® (EMS Medical), and of the CO2 cartridge driven LMA StoneBreaker® (Cook Urological) in vitro test models.Testing of the LithoBreaker® included additionally two different cushion guides (harder, softer) to assess the effect of the damper properties on the impulse characteristics. Patients and methods: Maximum probe velocities and displacements were measured using high-speed photography at a resolution of 100.000 frames per second. Repulsion testing was conducted through a 7.5 Fr ureteroscope in an underwater set-up. The probes were projected against a non-frangible led mass placed in a 15 Fr horizontally mounted silicone tube as an in-vitro model of the ureter. Repulsion was determined by measuring the distance the lead mass (0.98g) was displaced. Fragmentation efficiency was assessed by measuring the number of single shots required to break Bego Stone phantoms hard (15:3) and soft (15:6) with an average size of 7.5 mm x 5.5 mm placed on a metal mesh (edge length 3.15mm) into < 3 mm fragments. Mean and standard deviation were computed for all groups and statistical analysis was performed (student's t-test). Results: The StoneBreaker® yielded the highest velocity of 22.0 +/- 1.9 m/sec. followed by the LithoBreaker® assembled with the hard cushion guide of 14.2 +/- 0.5 m/sec and the soft probe guide of 11.5 +/-0.5 m/sec. accordingly. The maximum probe displacement for the StoneBreaker® was 1.04 mm and for the LithoBreaker® 0.9 mm and 1.1 mm (hard versus soft cushion guide). Repulsion produced using the 1mm probes showed no statistical differences between the devices. Using the 2mm probes, the hardness of the damper used significantly changed the repulsion behaviour of the LithoBreaker®. Using the 1mm probe, the amount of single shots for fragmentation of soft Bego Stones was significantly higher for the LithoBreaker® with soft cushion guide: mean 31.5 +/- 11.31 and hard cushion guide: mean 21.5 +/- 5.29 compared to the StoneBreaker®: mean 11.2 +/- 2.65. Fragmentation efficiency for the hard Bego Stones showed similar statistically significant results. Conclusion: The electromechanic LithoBreaker® and the pneumatic Stonebreaker® were shown to be effective in cracking stone phantoms with relatively low number of pulses. Fragmentation characteristics improved substantially with the higher hardness of the cushion support higher velocity equals higher fragmentation performance of the LithoBreaker®. Repulsion produced were at comparable levels. More testing is required to more detailed information on impulse frequency and capacity for stone clearance time to be used in clinical practice.
Investigation into reversion of polyurethane encapsulants
NASA Technical Reports Server (NTRS)
Lynch, C. R.
1973-01-01
The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Clemons, A.; Stimpert, D. L.
1979-01-01
Tests were run both in forward and in reverse thrust modes with a bellmouth inlet, five accelerating inlets (one hard wall and four treated) with a design throat Mach number of 0.79 at the takeoff condition, and four low Mach inlets (one hard wall and three treated) with a design throat Mach number of 0.6 at the takeoff condition. Unsuppressed and suppressed inlet radiated noise levels were measured at conditions representative of QCSEE takeoff, approach, and reverse thrust operations. Measured aerodynamic performance of the accelerating inlet is also included. The test objectives, facility, configurations, are described as well as the data analysis, results, and comparisons.
NASA Astrophysics Data System (ADS)
Sayre, W. G.; Sayre, Nancy E.
1999-05-01
The first-period activity in the classroom is critical for success in the general chemistry course. Past first-day activities at Slippery Rock University have included administering the Toledo test or an in-house mathematics readiness test to help the students understand their degree of readiness for the course. In the past students with poor preparation were shunted into a prep chem course. If no tests were administered then the students received the "this is a university-level course-you must work hard, etc." lecture. This fall the first-period activity was shifted from the intellectual readiness or hard work focus to a behavioral/attitude activity. This resulted in the best performance on the first hour exam in ten years, 2.1 times better than the previous best performance.
Rat animal model for preclinical testing of microparticle urethral bulking agents.
Mann-Gow, Travis K; Blaivas, Jerry G; King, Benjamin J; El-Ghannam, Ahmed; Knabe, Christine; Lam, Michael K; Kida, Masatoshi; Sikavi, Cameron S; Plante, Mark K; Krhut, Jan; Zvara, Peter
2015-04-01
To develop an economic, practical and readily available animal model for preclinical testing of urethral bulking therapies, as well as to establish feasible experimental methods that allow for complete analysis of hard microparticle bulking agents. Alumina ceramic beads suspended in hyaluronic acid were injected into the proximal urethra of 15 female rats under an operating microscope. We assessed overall lower urinary tract function, bulking material intraurethral integrity and local host tissue response over time. Microphotographs were taken during injection and again 6 months postoperatively, before urethral harvest. Urinary flow rate and voiding frequency were assessed before and after injection. At 6 months, the urethra was removed and embedded in resin. Hard tissue sections were cut using a sawing microtome, and processed for histological analysis using scanning electron microscopy, light microscopy and immunohistochemistry. Microphotographs of the urethra showed complete volume retention of the bulking agent at 6 months. There was no significant difference between average urinary frequency and mean urinary flow rate at 1 and 3 months postinjection as compared with baseline. Scanning electron microscopy proved suitable for evaluation of microparticle size and integrity, as well as local tissue remodeling. Light microscopy and immunohistochemistry allowed for evaluation of an inflammatory host tissue reaction to the bulking agent. The microsurgical injection technique, in vivo physiology and novel hard tissue processing for histology, described in the present study, will allow for future comprehensive preclinical testing of urethral bulking therapy agents containing microparticles made of a hard material. © 2015 The Japanese Urological Association.
Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk
2009-10-07
A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 +/- 0.02 to 0.520 +/- 0.06 dB mm(-1) MHz(-1) corresponding to an increase in Young's modulus from 6 +/- 0.4 to 96 +/- 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.
Protective effect of zinc-hydroxyapatite toothpastes on enamel erosion: An in vitro study.
Poggio, Claudio; Gulino, Chiara; Mirando, Maria; Colombo, Marco; Pietrocola, Giampiero
2017-01-01
The aim of the present study was to test the impact of different toothpastes with Zinc-Hydroxyapatite (Zn-HAP) on preventing and repairing enamel erosion compared to toothpastes with and without fluoride. The following four toothpastes were tested: two toothpastes with Zn-HAP, one toothpaste with fluoride and one toothpaste without fluoride. An additional control group was used in which enamel specimens were not treated with toothpaste. Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. Enamel hardness, after the erosive challenge and toothpaste treatment was monitored using surface micro-hardness measurements. As expected, repeated erosive challenge by a soft drink for total of 8 min significantly reduced enamel surface hardness (ANOVA, p < 0.05). No re-hardening of the surface softened enamel was observed in the group treated with fluoride-free toothpaste. Surface hardness of the softened enamel increased when the specimens were treated with the fluoride toothpaste and the two toothpastes with Zn-HAP ( p < 0.05). Toothpaste with Zn-HAP resulted in significant enamel remineralisation of erosively challenged enamel, indicating that these toothpastes could provide enamel health benefits relevant to enamel erosion. Key words: Enamel, erosion, remineralization, surface hardness, toothpastes.
Palatability and Preference of Gummi Formulations with Various Pharmaceutical Characteristics.
Nakagaki, Fumiaki; Uchida, Shinya; Tanaka, Shimako; Namiki, Noriyuki
2018-01-01
This study aimed to elucidate the appropriate physical characteristics that are clinically acceptable for gummi formulations. We prepared 11 placebo gummi formulations containing different amounts of gelatin and water and evaluated their penetration and restitution using a penetrometer and rheometer, respectively. Clinical sensory tests in 16 healthy volunteers (age, 23.4±0.9 years, mean±standard deviation) were conducted on the placebo gummi formulations using the visual analog scale (VAS) score to evaluate elasticity, hardness, and overall palatability, with a 5-point rating scale of preference. The penetration increased with decreasing amounts of gelatin or increasing amounts of water in the gummi formulations. Similarly, the VAS score of elasticity and hardness from the clinical sensory tests increased with increasing amounts of gelatin but decreased with increasing amounts of water. The relationship between the penetration and VAS scores of elasticity and hardness revealed good linear correlations. This suggests that the penetration was well reflected by the hardness results of the clinical VAS scores. The overall palatability evaluated using the VAS score increased until the penetration was 10 mm and then plateaued at >10 mm penetration. The 5-point rating score for preference revealed that >50% of volunteers "prefer" the gummi formulations with penetration values of 9.8 to 13.5 mm. These results suggest that gummi formulations likely have an appropriate window of hardness. Furthermore, appropriate gummi formulations with clinically preferred physical characteristics could be prepared by adjusting the amount of gelatin and water and measuring their penetration.
ERIC Educational Resources Information Center
Cawthon, Stephanie; Leppo, Rachel
2013-01-01
The authors conducted a qualitative meta-analysis of the research on assessment accommodations for students who are deaf or hard of hearing. There were 16 identified studies that analyzed the impact of factors related to student performance on academic assessments across different educational settings, content areas, and types of assessment…
NASA Astrophysics Data System (ADS)
Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.
2017-10-01
The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.
ERIC Educational Resources Information Center
Schneider, W. Joel; Kaufman, Alan S.
2016-01-01
As documented in this special issue, all over the world hard choices must be made in education, government, business, and medicine. Intelligence tests, used intelligently and with appropriate ethical safeguards, are one tool of many that help make hard choices work out well, or at least better than the next-best alternative (Kaufman, Raiford,…
Tribology Based Research and Training for Underrepresented Minorities
2017-11-30
images of surfaces after scratch hardness testing on NiTi with and without UNSM (left) and average scratch hardness measurements (right...the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation...Minority Serving Institution, and its undergraduate students, as well as the predominantly Hispanic pre -college students from the Merced area, face many
NASA Astrophysics Data System (ADS)
Kwak, Eung-Bum; Choi, Nak-Sam
The degradation behaviors of EPDM (ethylene-propylene diene monomer) rubbers used for automotive radiator hoses subjected to thermo-oxidative and electrochemical stresses were studied. As a result of the thermo-oxidative aging tests, the IRHD (international rubber hardness degrees) hardness of the rubber specimens increased, while their elongation at break decreased much. A slight increase in crosslink density indicated that changes in the properties were caused by the concentration of carbonyl groups in the skin layer. For the electrochemical degradation (ECD), the weight of rubber specimens increased whereas their elongation and hardness much decreased because water solution penetrated into the skin part. There was little change in crosslink density. Formation of many chain scissions and thus microvoid networks in the skin layer induced the swelling behavior leading to a linear reduction of hardness versus the weight increase.
Charpy Impact Energy and Microindentation Hardness of 60-NITINOL
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.
2012-01-01
60-NITINOL (60 wt.% Ni 40 wt.% Ti) is being studied as a material for advanced aerospace components. The Charpy impact energy and microindentation hardness has been studied for this material, fabricated by vacuum induction skull melting (casting) and by hot isostatic pressing. Test specimens were prepared in various hardened and annealed heat treatment conditions. The average impact energy ranged from 0.33 to 0.49J for the hardened specimens while the annealed specimens had impact energies ranging from 0.89 to 1.18J. The average hardness values of the hardened specimens ranged from 590 to 676 HV while that of the annealed specimens ranged from 298 to 366 HV, suggesting an inverse relationship between impact energy and hardness. These results are expected to provide guidance in the selection of heat treatment processes for the design of mechanical components.
Safari, A; Vojdani, M; Mogharrabi, S; Iraji Nasrabadi, N; Derafshi, R
2013-12-01
Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials. The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin. For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm) were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers' instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm) were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10) and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37(o)C for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA. There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748) and bond strength (p= 0.902). There were statistically significant differences between all drinks for both hardness (p< 0.001) and bond strength (p< 0.05). Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary acrylic soft liners.
Yang, Yanjie; Chen, Lu; Qiu, Xiaohui; Qiao, Zhengxue; Zhou, Jiawei; Pan, Hui; Ban, Bo; Zhu, Xiongzhao; He, Jincai; Ding, Yongqing; Bai, Bing
2015-01-01
Objective To explore the relationship between family environment and depressive symptoms and to evaluate the influence of hard and soft family environmental factors on depression levels in a large sample of university students in China. Methods A multi-stage stratified sampling procedure was used to select 6,000 participants. The response rate was 88.8%, with 5,329 students completing the Beck Depression Inventory (BDI) and the Family Environment Scale Chinese Version (FES-CV), which was adapted for the Chinese population. Differences between the groups were tested for significance by the Student’s t-test; ANOVA was used to test continuous variables. The relationship between soft family environmental factors and BDI were tested by Pearson correlation analysis. Hierarchical linear regression analysis was conducted to model the effects of hard environmental factors and soft environmental factors on depression in university students. Results A total of 11.8% of students scored above the threshold of moderate depression(BDI≧14). Hard family environmental factors such as parent relationship, family economic status, level of parental literacy and non-intact family structure were associated with depressive symptoms. The soft family environmental factors—conflict and control—were positively associated with depression, while cohesion was negatively related to depressive symptom after controlling for other important associates of depression. Hierarchical regression analysis indicated that the soft family environment correlates more strongly with depression than the hard family environment. Conclusions Soft family environmental factors—especially cohesion, conflict and control—appeared to play an important role in the occurrence of depressive symptoms. These findings underline the significance of the family environment as a source of risk factors for depression among university students in China and suggest that family-based interventions and improvement are very important to reduce depression among university students. PMID:26629694
Yu, Yunmiao; Yang, Xiuxian; Yang, Yanjie; Chen, Lu; Qiu, Xiaohui; Qiao, Zhengxue; Zhou, Jiawei; Pan, Hui; Ban, Bo; Zhu, Xiongzhao; He, Jincai; Ding, Yongqing; Bai, Bing
2015-01-01
To explore the relationship between family environment and depressive symptoms and to evaluate the influence of hard and soft family environmental factors on depression levels in a large sample of university students in China. A multi-stage stratified sampling procedure was used to select 6,000 participants. The response rate was 88.8%, with 5,329 students completing the Beck Depression Inventory (BDI) and the Family Environment Scale Chinese Version (FES-CV), which was adapted for the Chinese population. Differences between the groups were tested for significance by the Student's t-test; ANOVA was used to test continuous variables. The relationship between soft family environmental factors and BDI were tested by Pearson correlation analysis. Hierarchical linear regression analysis was conducted to model the effects of hard environmental factors and soft environmental factors on depression in university students. A total of 11.8% of students scored above the threshold of moderate depression (BDI≧14). Hard family environmental factors such as parent relationship, family economic status, level of parental literacy and non-intact family structure were associated with depressive symptoms. The soft family environmental factors--conflict and control--were positively associated with depression, while cohesion was negatively related to depressive symptom after controlling for other important associates of depression. Hierarchical regression analysis indicated that the soft family environment correlates more strongly with depression than the hard family environment. Soft family environmental factors--especially cohesion, conflict and control--appeared to play an important role in the occurrence of depressive symptoms. These findings underline the significance of the family environment as a source of risk factors for depression among university students in China and suggest that family-based interventions and improvement are very important to reduce depression among university students.
Nanoindentation of Electropolished FeCrAl Alloy Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan
The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less
NASA Astrophysics Data System (ADS)
Galkina, N. V.; Nosova, Y. A.; Balyakin, A. V.
2018-03-01
This research is relevant as it tries to improve the mechanical and service performance of the Ti–6Al–4V titanium alloy obtained by selective laser sintering. For that purpose, sintered samples were annealed at 750 and 850°C for an hour. Sintered and annealed samples were tested for hardness, workability and microstructure. It was found that incomplete annealing of selectively laser-sintered Ti–6Al–4V samples results in an insignificant reduction in hardness and ductility. Sintered and incompletely annealed samples had a hardness of 32..33 HRC, which is lower than the value of annealed parts specified in standards. Complete annealing at temperature 850°C reduces the hardness to 25 HRC and ductility by 15...20%. Incomplete annealing lowers the ductility factor from 0.08 to 0.06. Complete annealing lowers that value to 0.025. Complete annealing probably results in the embrittlement of sintered samples, perhaps due to their oxidation and hydrogenation in the air. Optical metallography showed lateral fractures in both sintered and annealed samples, which might be the reason why they had lower hardness and ductility.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... and provide an emissions inventory, submit cost data, provide copies of recent emissions test reports... the requirement to test that source in accordance with an EPA-approved testing protocol. By conducting... postage for mailing hard copy test reports and confidential survey responses to EPA. The data collected...
Guo, Jiang-li; Zhang, Yan; Zhen, Lei
2015-08-01
To develope the influence of different ultrasonic irrigations after root canal preparation with nickel titanium ProTaper on micro-hardness of root canal dentin. Sixty of maxillary anterior teeth with single-canal were collected and randomly divided into 6 groups. Group A was control group, group B was prepared to F3 with nickel titanium ProTaper by machine, group C was ultrasonic irrigated with 3% hydrogen peroxide solution for 1 minute after preparation, group D was ultrasonic irrigated with koutai mouthwash for 1 minute after preparation, group E was ultrasonic irrigated with 17% EDTA solution for 1 minute after preparation, group F was ultrasonic irrigated with distilled water for 1 minute after preparation. The roots were then sectioned horizontally into 3 parts, split longitudinally into halves and examined under a micro Vickers hardness test machine. The data was analyzed by one-way ANOVA and t test with SPSS 17.0 software package. The micro-hardness of group A was (52.66 ± 1.64) HV,(52.08 ± 1.53) HV and (51.47 ± 2.53) HV. There was no significant difference in all parts of the root canal in group A (P>0.05). The micro-hardness of the apical third of root canal was lower than that of the cervical and middle of root canal in the other groups (P<0.05). In the cervical and middle third of the root canals, the micro-hardness of group E was (44.65 ± 1.33) HV and(42.55 ± 1.12) HV, and there were statistical significances between group E and the other groups (P<0.05). In the apical third of root canal,the micro-hardness of group E was (37.82 ± 1.60) HV, and group C was (44.14±1.73) HV, both of the comparative differences with other groups were statistically significant (P<0.05). There was no significant difference among group B, group D and group F (P>0.05). Root canal preparation to F3 with nickel titanium ProTaper by machine can make the micro-hardness of the apical third of root canal decrease. Ultrasonic irrigation with 17% EDTA solution for 1 minute can make the micro-hardness of the root canal decrease ultrasonic irrigation with. Ultrasonic irrigation with 3% hydrogen peroxide can make the micro-hardness of the apical third of root canal decrease. Ultrasonic irrigation with Koutai mouthwash and distilled water for 1 minute have no influence on the micro-hardness of root canal.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-01-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484
McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia
2015-01-01
Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use, and better language abilities generally had higher parent ratings of auditory skills and better speech-recognition abilities in quiet and in noise than peers with less audibility, more limited HA use, or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Children who are hard of hearing continue to experience delays in auditory skill development and speech-recognition abilities compared with peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported before the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech-recognition abilities and also may enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children's speech recognition.
Travel Time Data Collection Field Tests - Lessons Learned
DOT National Transportation Integrated Search
1999-06-28
The Los Angeles Spread Spectrum Radio (SSR) Traffic Signal Interconnect Field Operational Test (FOT) investigated the feasibility of using wireless communications as an alternative to traditional hard-wire interconnection, to extend the coverage of c...
40 CFR 136.5 - Approval of alternate test procedures for limited use.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS... may be made by letter, email or by hard copy. The application shall include the following: (1) Provide...
40 CFR 136.5 - Approval of alternate test procedures for limited use.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS... may be made by letter, email or by hard copy. The application shall include the following: (1) Provide...
40 CFR 136.5 - Approval of alternate test procedures for limited use.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS... may be made by letter, email or by hard copy. The application shall include the following: (1) Provide...
Cawthon, Stephanie; Leppo, Rachel
2013-01-01
The authors conducted a qualitative meta-analysis of the research on assessment accommodations for students who are deaf or hard of hearing. There were 16 identified studies that analyzed the impact of factors related to student performance on academic assessments across different educational settings, content areas, and types of assessment accommodations. The meta-analysis found that the results of analyses of group effects of accommodated versus unaccommodated test formats are often not significant, test-level factors exist that can affect how students perceive the assessments, and differences exist in how test items function across different conditions. Student-level factors, including educational context and academic proficiency, influence accommodations' role in assessment processes. The results of this analysis highlight the complexity of and intersections between student-level factors, test-level factors, and larger policy contexts. Findings are discussed within the context of larger changes in academic assessment, including computer-based administration and high-stakes testing.
Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA
NASA Astrophysics Data System (ADS)
Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.
2016-03-01
A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.
NASA Astrophysics Data System (ADS)
Pakkratoke, M.; Sanponpute, T.
2017-09-01
The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.
Exercise Testing Reveals Everyday Physical Challenges of Bariatric Surgery Candidates.
Creel, David B; Schuh, Leslie M; Newton, Robert L; Stote, Joseph J; Cacucci, Brenda M
2017-12-01
Few studies have quantified cardiorespiratory fitness among individuals seeking bariatric surgery. Treadmill testing allows researchers to determine exercise capacity through metabolic equivalents. These findings can assist clinicians in understanding patients' capabilities to carry out various activities of daily living. The purpose of this study was to determine exercise tolerance and the variables associated with fitness, among individuals seeking bariatric surgery. Bariatric surgery candidates completed submaximal treadmill testing and provided ratings of perceived exertion. Each participant also completed questionnaires related to history of exercise, mood, and perceived barriers/benefits of exercise. Over half of participants reported that exercise was "hard to very hard" before reaching 70% of heart rate reserve, and one-third of participants reported that exercise was "moderately hard" at less than 3 metabolic equivalents (light activity). Body mass index and age accounted for the majority of the variance in exercise tolerance, but athletic history, employment status, and perceived health benefits also contributed. Perceived benefit scores were higher than barrier scores. Categories commonly used to describe moderate-intensity exercise (3-6 metabolic equivalents) do not coincide with perceptions of intensity among many bariatric surgery candidates, especially those with a body mass index of 50 or more.
NASA Astrophysics Data System (ADS)
Koin, Sudibtia Titio; Triyono, Teguh; Surojo, Eko
2018-02-01
The 7075 series alloys are heat treatable wrought aluminum alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effect of flame hardening process to aluminum 7075 series on the increasing hardness, tensile strength, and evolution of microstructure. A test specimen had made by machining process and flame heating. Temperature of solution heat treatment is varied on 350 °C, 400 °C, 450 °C and 500 °C. After that process a test specimen would be quenched at nitrate-nitrite liquid during 45 minutes and artificial aging at 120°C until two days. The testing specimen consist of hardness and tensile strength according to ASTM. The result showed that specimen had precipitation on microstructure lead to an increase in aluminum properties. On the temperature 450°C solution heat treatment, the aluminum properties reached the highest value, namely, hardness of 129 HVN and tensile strength 570 MPa.
Analysis of sitting forces on stationary chairs for daily activities.
Hu, Lingling; Tackett, Bob; Tor, Onder; Zhang, Jilei
2016-04-01
No literature related to the study of sitting forces on chairs sat on by people who weighed over 136 kg was found. The Business Institutional Furniture Manufactures Association needs force data for development of performance test standards to test chairs for users who weigh up to 181 kg. 20 participants who weighed from 136 to 186 kg completed 6 tasks on an instrumented chair in the sequence of sitting down, remaining seated and rising. Effects of sitting motion, armrest use and seat cushion thickness on vertical sitting forces and centre-of-force were investigated. Results indicated hard sitting down yielded the highest sitting force of 213% in terms of participants' body weights. Armrest use affected sitting forces of normal sitting down, but not of rising and hard sitting down. Cushion thickness affected sitting forces of normal and hard sitting down and shifting, but not of rising, static seating or stretching backward situations. Practitioner Summary: Results of the sitting force and centre-of-force data obtained for this research can help furniture manufacturers develop new product performance test standards for creating reliable engineering design and manufacturing quality and durable products to meet a niche market need.
NASA Astrophysics Data System (ADS)
Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi
2016-06-01
Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.
Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness
NASA Astrophysics Data System (ADS)
Tumac, Deniz
2014-03-01
Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.
Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness.
Willett, Emily S; Beatty, Mark W
2015-03-01
Facial prosthetic elastomers with wide ranges in hardness are available, yet material weatherability is unknown. The purpose of this study was to assess color, Durometer hardness, and tensile property changes after 3000 hours of outdoor weathering. Unpigmented elastomers with Durometer hardness 5, 30, 50, 70, and A-2186 were polymerized into dumbbells (ASTM D412) and disks, 34 mm in diameter by 6 mm thick. Materials were subjected to outdoor or time passage environments for 3000 hours. CIELab color (n=5), Durometer hardness (n=5), and tensile mechanical properties (n=10) were measured at 0 and 3000 hours, and group differences were assessed by material and weathering condition (ANOVA/Tukey, α=.05). Except for A-2186, the mean Durometer changes for all materials were 1 unit or less, with no significant differences observed between time passage and weathered groups (P≥.05). Three-thousand-hour tensile mechanical property results demonstrated nonsignificant differences between time passage and weathered materials but significantly changed properties from immediately tested materials (P<.001). Outdoor weathering induced perceptible but acceptable color changes (1.7≤ΔE*≤2.6) for elastomers with Durometer hardness 5 and 30 and A-2186. With a few exceptions, outdoor weathering produced relatively small changes in color, Durometer hardness, or tensile properties compared with time passage. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Geng, J.; Tan, W. S.; Ren, X. D.; Lu, J. Z.; Huang, Shu
2018-07-01
The Ti6Al4V micro-dimple surfaces fabricated by a masked laser surface texturing (MLST) technique within water were subjected to soft contact laser shock peening (SCLSP) and hard contact laser shock peening (HCLSP). The effects of these two LSP methods on topography, micro-hardness and residual stress distribution were studied. The friction and wear performance under dry friction and oil lubrication were also studied. The enclosure of micro cracks in the micro-dimple bottom was observed when treated by SCLSP and HCLSP. The dry friction and wear test showed that the MLST+HCLSP surfaces had the best wear resistance performance. In the oil lubricated friction test, the occurrence of the hydrodynamic lubrication effect occurred on the micro-dimple surfaces. The MLST+HCLSP exhibited the best friction and wear resistance performance. These were due to the micro-hardness increase, the producing of compressive residual stress and the surface roughness reduction of as treated surfaces.
Zen, Nur Izzati Mohamad; Abd Gani, Siti Salwa; Shamsudin, Rosnah; Masoumi, Hamid Reza Fard
2015-01-01
The usage of soy is increasing year by year. It increases the problem of financial crisis due to the limited sources of soybeans. Therefore, production of oral tablets containing the nutritious leftover of soymilk production, called okara, as the main ingredient was investigated. The okara tablets were produced using the direct compression method. The percentage of okara, guar gum, microcrystalline cellulose (Avicel PH-101), and maltodextrin influenced tablets' hardness and friability which are analyzed using a D-optimal mixture design. Composition of Avicel PH-101 had positive effects for both hardness and friability tests of the tablets. Maltodextrin and okara composition had a significant positive effect on tablets' hardness, but not on percentage of friability of tablets. However, guar gum had a negative effect on both physical tests. The optimum tablet formulation was obtained: 47.0% of okara, 2.0% of guar gum, 35.0% of Avicel PH-101, and 14.0% of maltodextrin.
Mohamad Zen, Nur Izzati; Shamsudin, Rosnah
2015-01-01
The usage of soy is increasing year by year. It increases the problem of financial crisis due to the limited sources of soybeans. Therefore, production of oral tablets containing the nutritious leftover of soymilk production, called okara, as the main ingredient was investigated. The okara tablets were produced using the direct compression method. The percentage of okara, guar gum, microcrystalline cellulose (Avicel PH-101), and maltodextrin influenced tablets' hardness and friability which are analyzed using a D-optimal mixture design. Composition of Avicel PH-101 had positive effects for both hardness and friability tests of the tablets. Maltodextrin and okara composition had a significant positive effect on tablets' hardness, but not on percentage of friability of tablets. However, guar gum had a negative effect on both physical tests. The optimum tablet formulation was obtained: 47.0% of okara, 2.0% of guar gum, 35.0% of Avicel PH-101, and 14.0% of maltodextrin. PMID:26171418
Evaluation of mechanical and thermal properties of commonly used denture base resins.
Phoenix, Rodney D; Mansueto, Michael A; Ackerman, Neal A; Jones, Robert E
2004-03-01
The purpose of this investigation was to evaluate and compare the mechanical and thermal properties of 6 commonly used polymethyl methacrylate denture base resins. Sorption, solubility, color stability, adaptation, flexural stiffness, and hardness were assessed to determine compliance with ADA Specification No. 12. Thermal assessments were performed using differential scanning calorimetry and dynamic mechanical analysis. Results were assessed using statistical and observational analyses. All materials satisfied ADA requirements for sorption, solubility, and color stability. Adaptation testing indicated that microwave-activated systems provided better adaptation to associated casts than conventional heat-activated resins. According to flexural testing results, microwaveable resins were relatively stiff, while rubber-modified resins were more flexible. Differential scanning calorimetry indicated that microwave-activated systems were more completely polymerized than conventional heat-activated materials. The microwaveable resins displayed better adaptation, greater stiffness, and greater surface hardness than other denture base resins included in this investigation. Elastomeric toughening agents yielded decreased stiffness, decreased surface hardness, and decreased glass transition temperatures.
Fine-pore aeration diffusers: accelerated membrane ageing studies.
Kaliman, An; Rosso, Diego; Leu, Shao-Yuan; Stenstrom, Michael K
2008-01-01
Polymeric membranes are widely used in aeration systems for biological treatment. These membranes may degrade over time and are sensitive to fouling and scaling. Membrane degradation is reflected in a decline in operating performance and higher headloss, resulting in increased energy costs. Mechanical property parameters, such as membrane hardness, Young's modulus, and orifice creep, were used to characterize the performance of membranes over time in operation and to predict their failure. Used diffusers from municipal wastewater treatment plants were collected and tested for efficiency and headloss, and then dissected to facilitate measurements of Young's modulus, hardness, and orifice creep. Higher degree of membrane fouling corresponded consistently with larger orifice creep. A lab-scale membrane ageing simulation was performed with polyurethane and four different ethylene-propylene-diene (EPDM) membrane diffusers by subjecting them to chemical ageing cycles and periodic testing. The results confirmed full-scale plant results and showed the superiority of orifice creep over Young's modulus and hardness in predicting diffuser deterioration.
ERIC Educational Resources Information Center
STEPP, ROBERT E.
TEN CHILDREN AGED 5-8 WERE SELECTED TO TEST A SELF-INSTRUCTIONAL, SELF-OPERATING SYSTEM TO DEVELOP LIPREADING SKILLS. THEIR HEARING DEFICIENCY RANGED FROM HARD OF HEARING TO PROFOUNDLY DEAF. THE SYSTEM CONSISTED OF THREE STUDY CARRELS, AN 8-MM CARTRIDGE-LOADING SOUND MOTION PICTURE PROJECTOR, AND AN OBSERVATION BOOTH UTILIZING A ONE-WAY MIRROR.…
NASA Astrophysics Data System (ADS)
Mahendiran, M.; Kavitha, M.
2018-02-01
Robotic and automotive gears are generally very high precision components with limitations in tolerances. Bevel gears are more widely used and dimensionally very close tolerance components that need stability without any backlash or distortion for smooth and trouble free functions. Nitriding is carried out to enhance wear resistance of the surface. The aim of this paper is to reduce the distortion in liquid nitriding process, though plasma nitriding is preferred for high precision components. Various trials were conducted to optimize the process parameters, considering pre dimensional setting for nominal nitriding layer growth. Surface cleaning, suitable fixtures and stress relieving operations were also done to optimize the process. Micro structural analysis and Vickers hardness testing were carried out for analyzing the phase changes, variation in surface hardness and case depth. CNC gear testing machine was used for determining the distortion level. The presence of white layer was found for about 10-15μm in the case depth of 250± 3.5μm showing an average surface hardness of 670 HV. Hence the economical liquid nitriding process was successfully used for producing high hardness and wear resistant coating over 20MnCr5 material with less distortion and reduced secondary grinding process for dimensional control.
Readout and Data Acquisition for a Liquid Radiator Radiation Exposure Test
NASA Astrophysics Data System (ADS)
Lantz, Chad
2017-09-01
The ATLAS Zero Degree Calorimeter (ZDC) prototype is a tungsten-sampling, oil/quartz radiating calorimeter placed on each side of the interaction point. The ZDC is used in heavy ion runs for centrality measurements. The UIUC group develops a ZDC that is significantly more radiation hard than the currently employed detector. The current ZDC uses scintillating quartz rods placed directly in the beamline whose optical transmission is known to degrade as a function of radiation dosage. Our prototype uses organic wavelength shifters (WLS) dissolved in oil in two stages to take Cherenkov light produced in the oil by the particle shower and guide it to a photodetector. This design allows the quartz rods be located away from the beam center to experience a lower radiation dose, and the oil containing WLS can be replaced periodically to negate radiation damage. Quantum dots are studied as a more radiation hard alternative to WLS. This increase in radiation hardness will allow ATLAS to operate the ZDC after the luminosity upgrades planned for the LHC. A test setup has been developed for the study of radiation hardness of liquid Cherenkov radiators and wavelength shifters. The setup will be described in this presentation with a focus on the readout electronics and data acquisition.
Microstructure and Dry Sliding Wear Resistance of Laser Cladding Ti-Al-Si Composite Coating
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.; Dai, J. J.
In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si12 and the matrix of Ti3Al, TiAl, TiAl3 and α-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV0.2 to 1130 HV0.2, which was approximately 3-4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023cm3ṡmin-1, which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.
Test Equity for Individuals Who Are Deaf or Hard of Hearing. PEPNet Test Equity Summit
ERIC Educational Resources Information Center
PEPNet-West, 2010
2010-01-01
This paper presents the highlights of the 2008 Test Equity Summit held in Bloomfield, Colorado last August 6-8, 2008. The 2008 Test Equity Summit convened by the Postsecondary Education Programs Network (PEPNet) identified and examined problems, challenges, and issues that academic and psychoeducational tests pose for individuals who are deaf or…
Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank
2013-11-01
Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.
Hard X-ray tests of the unified model for an ultraviolet-detected sample of Seyfert 2 galaxies
NASA Technical Reports Server (NTRS)
Mulchaey, John S.; Myshotzky, Richard F.; Weaver, Kimberly A.
1992-01-01
An ultraviolet-detected sample of Seyfert 2 galaxies shows heavy photoelectric absorption in the hard X-ray band. The presence of UV emission combined with hard X-ray absorption argues strongly for a special geometry which must have the general properties of the Antonucci and Miller unified model. The observations of this sample are consistent with the picture in which the hard X-ray photons are viewed directly through the obscuring matter (molecular torus?) and the optical, UV, and soft X-ray continuum are seen in scattered light. The large range in X-ray column densities implies that there must be a large variation in intrinsic thicknesses of molecular tori, an assumption not found in the simplest of unified models. Furthermore, constraints based on the cosmic X-ray background suggest that some of the underlying assumptions of the unified model are wrong.
Influence on grip of knife handle surface characteristics and wearing protective gloves.
Claudon, Laurent
2006-11-01
Ten subjects were asked to apply maximum torques on knife handles with either their bare hand or their hand wearing a Kevlar fibre protective glove. Four knife handles (2 roughnesses, 2 hardnesses) were tested. Surface electromyograms of 6 upper limb and shoulder muscles were recorded and subject opinions on both knife handle hardness and friction in the hand were also assessed. The results revealed the significant influence of wearing gloves (p<0.0001), knife type (p<0.0005) and handle hardness (p<0.005) on the applied torque. Wearing Kevlar fibre gloves greatly increased the torque independently of the other two parameters. Under the bare hand condition, a 90 degrees ShA slightly rough handle provided the greatest torque. Subject opinion agreed with the observed effects on recorded torque values except for the hardness factor, for which a preference for the 70 degrees ShA value over the 90 degrees ShA value emerged.
Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro
2013-01-01
The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.
Radiation Effects and Hardening Techniques for Spacecraft Microelectronics
NASA Astrophysics Data System (ADS)
Gambles, J. W.; Maki, G. K.
2002-01-01
The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.
Kuwahara, Y; Shima, Y; Shirayama, D; Kawai, M; Hagihara, K; Hirano, T; Arimitsu, J; Ogata, A; Tanaka, T; Kawase, I
2008-07-01
No objective method to measure skin involvement in SSc has been established. We developed a novel method using a computer-linked device to simultaneously quantify physical properties of the skin such as hardness, elasticity and viscosity. Skin hardness was calculated by measuring the depth of an indenter pressed onto the skin. The Voigt model was used to calculate skin elasticity, viscosity, visco-elastic ratio and relaxation time by analysing the waveform of skin surface behaviour. The results were compared with the modified Rodnan skin score (mRSS) obtained at 17 sites on the bodies of 20 SSc patients and 20 healthy controls. A functional assessment questionnaire was administered to determine how skin hardness represents a patient's disability. We also examined intra- and inter-observer variability to determine the reliability of this method. The crude hardness obtained with this device correlated well with the standard hardness specified by the American Society for Testing and Materials (ASTM, r = 0.957). A close relationship between hardness and total mRSS was also observed (r = 0.832). Skin elasticity correlated positively, and relaxation time negatively with mRSS. Functional disability correlated more closely with skin hardness (r = 0.643) than with mRSS (r = 0.517). Intra- and inter-observer variabilities were 7.63 and 19.76%, respectively, which were lower than those reported for mRSS. Increases in hardness and elasticity as well as shortening of relaxation time constitute objective characteristics of skin involvement in SSc. The system devised by us proved to be able to assess skin abnormalities of SSc with high reliability.
Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P
2017-04-01
Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.
Malentacca, Augusto; Lajolo, Carlo
2015-01-01
Diaphanisation and other in vitro endodontic models (i.e., plastic blocks, micro-CT reconstruction, computerised models) do not recreate real root canal working conditions: a more realistic endodontic model is essential for testing endodontic devices and teaching purposes. The aim of this study was to describe a new technique to construct transparent teeth without decalcifying and evaluate the micro-hardness of so treated teeth. Thirty freshly extracted teeth were randomly divided into three groups as follows: 10 non-treated teeth (4 molars, 3 premolars, 3 incisors; control group - G1), 10 teeth were diaphanised (4 molars, 4 premolars, 2 incisors - G2) and 10 teeth were treated with the new proposed technique (2 molars, 6 premolars, 2 incisors - G3). Vickers hardness tester (MHT-4 and AxioVision microscope, Carl Zeiss, 37030 Gottingen, Germany - load=50 g, dwell time=20s, slope=5, 50× magnification) was used to determine microhardness (Vickers Hardness Number - VHN). Statistical analysis was performed using the Intercooled Stata 8.0 software (Stata Corporation, College Station, TX, USA). Only groups 1 and 3 could be tested for hardness because diaphanised teeth were too tender and elastic. Differences in enamel VHN were observed between G1 (mean 304.29; DS=10.44; range 283-321) and G3 (mean 318.51; DS=14.36; range 295.5-339.2) - (p<0.05); differences in dentine VHN were observed between G1 (mean 74.73; DS=6.62; range 63.9-88.1) and G3 (mean 64.54; DS=5.55; range 51.2-72.3) - (p<0.05). G3 teeth presented a slightly lower VHN compared to G1, probably due to some little structural differences among groups, and were dramatically harder than the diaphanised teeth. The described technique, thus, can be considered ideal for testing endodontic instruments and for teaching purposes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Comparisons of modified Vasco X-2 and AISI 9310 gear steels
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1980-01-01
Endurance tests were conducted with four groups of spur gears manufactured from three heats of consumable electrode vacuum melted (CVM) modified Vasco X-2. Endurance tests were also conducted with gears manufactured from CVM AISI 9310. Bench type rolling element fatigue tests were conducted with both materials. Hardness measurements were made to 811 K. There was no statistically significant life difference between the two materials. Life differences between the different heats of modified Vasco X-2 can be attributed to heat treat variation and resultant hardness. Carburization of gear flanks only can eliminate tooth fracture as a primary failure mode for modified Vasco X-2. However, a tooth surface fatigue spall can act as a nucleus of a tooth fracture failure for the modified Vasco X-2.
Mechanical properties of 8Cr-2WVTa steel aged for 30 000 h
NASA Astrophysics Data System (ADS)
Tamura, M.; Shinozuka, K.; Esaka, H.; Sugimoto, S.; Ishizawa, K.; Masamura, K.
2000-12-01
A mill production plate of a reduced activation ferritic steel was thermally aged for up to 30 000 h at 400-650°C. Charpy impact tests, creep rupture tests and hardness tests were conducted. Both Vickers hardness number and creep strength decrease with aging at 650°C. The ductile-brittle transition temperature (DBTT) increases with both aging time and aging temperature. However, the DBTT does not exceed +20°C even after aging at 650°C for 30 000 h. Extracted residues and extraction replicas were analyzed metallurgically. The increase in DBTT is related mainly to the precipitation of Laves phase on the prior austenite grain boundaries. The rather low DBTT after aging is caused by the fine prior austenitic grain size.
Studying radiation hardness of a cadmium tungstate crystal based radiation detector
NASA Astrophysics Data System (ADS)
Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu
2016-06-01
The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.
Curing efficacy of a new generation high-power LED lamp.
Yap, Adrian U J; Soh, M S
2005-01-01
This study investigated the curing efficacy of a new generation high-power LED lamp (Elipar Freelight 2 [N] 3M-ESPE). The effectiveness of composite cure with this new lamp was compared to conventional LED/halogen (Elipar Freelight [F], 3M-ESPE; Max [M], Dentsply-Caulk) and high-power halogen (Elipar Trilight [T], 3M-ESPE; Astralis 10 [A], Ivoclar Vivadent) lamps. Standard continuous (NS, FS, TS; MS), turbo (AT) and exponential (NE, FE, TE) curing modes of the various lights were examined. Curing efficacy of the various lights and modes were determined by measuring the top and bottom surface hardness of 2-mm thick composite specimens (Z100, 3M-ESPE) using a digital microhardness tester (n=5; load=500 g; dwell time=15 seconds) one hour after light polymerization. The hardness ratio was computed by dividing HK (Knoops Hardness) of the bottom surface by HK of the top surface. The data was analyzed using one-way ANOVA/Scheffe's test and Independent Samples t-test at significance level 0.05. Results of the statistical analysis were as follows: HK top--E, FE, NE > NS and NE > AT, TS, FS; HK bottom--TE, NE > NS; Hardness ratio--NS > FE and FS, TS > NE. No significant difference in HK bottom and hardness ratio was observed between the two modes of Freelight 2 and Max. Freelight 2 cured composites as effectively as conventional LED/halogen and high-power halogen lamps, even with a 50% reduction in cure time. The exponential modes of Freelight 2, Freelight and Trilight appear to be more effective than their respective standard modes.
Mechanical and microwave absorbing properties of carbon-filled polyurethane.
Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J
2009-01-01
Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.
Dual morphology (fibres and particles) cellulosic filler for WPC materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it
Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered bymore » the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.« less
Dual morphology (fibres and particles) cellulosic filler for WPC materials
NASA Astrophysics Data System (ADS)
Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo
2016-05-01
Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.
NASA Astrophysics Data System (ADS)
Felicia, Dian M.; Rochiem, R.; Laia, Standley M.
2018-04-01
Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.
Guo, Xiamei; Slesnick, Natasha
2017-06-07
The current study sought to test hard drug use outcomes for youth receiving a strengths-based outreach and advocacy intervention that linked youth to either a shelter or a drop-in center. Homeless youth (14-24 years old) were engaged by research assistants (RAs) at soup kitchens, parks, libraries, and other locations that homeless youth were known to frequent. Youth were randomly assigned to receive six months of advocacy that focused on linking youth to a drop-in center (n = 40) or to a crisis shelter (n = 39). Follow-up assessments were conducted at 3, 6, and 9 months post-baseline. Hard drug use over time was the main outcome. Intervention condition and service connection were used as predictors for the baseline level and the slope of change in hard drug use over time. Data analysis was conducted with Bernoulli Hierarchical Generalized Linear Modeling in HLM7. The current study found that those who were in the drop-in linkage condition exhibited a greater reduction in their odds of using hard drugs during the follow-up points than their counterparts in the shelter linkage condition. And finally, those who utilized services more often during the follow-ups were those who exhibited less hard drug use at baseline and less reduction in their odds of using hard drugs. This study suggests that drop-in centers, which are often characterized by low-demand programming and few behavioral restrictions, are effective for addressing hard drug use among homeless youth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Wilfred; Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor; Rahman, Irman Abdul
Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the incrementmore » of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.« less
The effect of three whitening oral rinses on enamel micro-hardness.
Potgieter, E; Osman, Y; Grobler, S R
2014-05-01
The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.
NASA Technical Reports Server (NTRS)
Newton, Elizabeth
1996-01-01
This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.
Panariello, Beatriz Helena Dias; Izumida, Fernanda Emiko; Moffa, Eduardo Buozi; Pavarina, Ana Claudia; Jorge, Janaina Habib; Giampaolo, Eunice Teresinha
2015-06-01
To investigate the cumulative effects of brushing (B) or immersion (I), using different cleansing agents, on the surface roughness, hardness and color stability of a heat-polymerized denture resin, Lucitone 550 (L), and a hard chairside reline resin, Tokuyama Rebase Fast II (T). A total of 316 specimens (10 x 2 mm) were fabricated. The specimens (n = 9) were divided into brushing or immersion groups according to the following agents: dentifrice/distilled water (D), 1% sodium hypochlorite (NaOCl), Corega Tabs (Pb), 1% chlorhexidine gluconate (Chx), and 0.2% peracetic acid (Ac). Brushing and immersion were tested independently. Assays were performed after 1, 3, 21, 45 and 90 brushing cycles or immersion of 10 seconds each. Data were evaluated statistically by repeated measures ANOVA. Tukey's honestly significant difference (HSD) post-hoc test was used to determine differences between means (α = 0.05). For L there was no statistically significant difference in roughness, except a significant decrease in roughness by brushing with D. T showed a significant effect on the roughness after 90 immersions with Ac. Hardness values decreased for L when specimens were immersed or brushed in NaOCl and Pb. The hardness of T decreased with increases in the repetitions (immersion or brushing), regardless of the cleaning method. Values of color stability for L resin showed significant color change after brushing with and immersion in Ac and Pb. Brushing with D exhibited a higher incidence of color change. For T there were no significant differences between cleaning agents and repetitions in immersion. A color change was noted after three brushings with the Ac, Chx, and D. Brushing with dentifrice decreased roughness of L. Immersion in or brushing with NaOCl and Pb decreased the hardness of L. For T, hardness decreased with increases in immersions or brushing. Color changes after the immersion in or brushing with cleaning agents were clinically acceptable according to National Bureau of Standards parameters for both resins.
Ni-Ti Next Generation Bearings for Space Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2018-01-01
NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.
Enamel microhardness and bond strengths of self-etching primer adhesives.
Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L
2010-04-01
The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.
Evaluation of the Various Drying Methods on Surface Hardness of Type IV Dental Stone
Sudhakar, A; Srivatsa, G; Shetty, Rohit; Rajeswari, C L; Manvi, Supriya
2015-01-01
Background: Studies regarding the effect of various methods to increase the surface hardness of Type IV dental stone are not conclusive. Therefore, this study was carried out to evaluate the effect of air drying, micro oven drying and die hardener on surface hardness of Type IV dental stone. Materials and Methods: A standard metal die was fabricated; polyvinyl siloxane impression material was used to make the molds of metal die. A total of 120 specimens were obtained from two different die stones and were grouped as Group A (kalrock) and Group B (pearl stone), and were subjected to air drying for 24 h, micro oven drying and application of die hardener. These models were then subjected to surface hardness testing using the knoop hardness instrument. The obtained data were subjected to statistical analysis. Results: The hardness of Group A specimens was 64 ± 0.54 Knoop hardness number (KHN) after application of die hardener, 60.47 ± 0.41 KHN after 24 h air drying, 58.2 ± 0.88 after microwave oven drying and 24.6 ± 0.4 after 1 h air drying. The hardness of Group B specimens was 45.59 ± 0.63 KHN after application of die hardener, 40.2 ± 0.63 KHN after 24 h air drying, 38.28 ± 0.55 KHN after microwave oven drying and 19.91 ± 0.64 KHN after 1 h air drying. Conclusion: Group A showed better results than Group B at all times. Application of the die hardener showed highest hardness values followed in the order by 24 h air drying, microwave oven drying and 1 h air drying in both groups. The study showed that air drying the dies for 24 h followed by application of a single layer of the die hardener produced the best surface hardness and is recommended to be followed in practice. PMID:26124610
Belluau, Michaël; Shipley, Bill
2018-01-01
Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.
EPA is announcing the availability of two test methods (MB-19 and MB-20) for evaluating the efficacy of antimicrobial pesticides against two biofilm bacteria, Pseudomonas aeruginosa and Staphylococcus aureus.
GO1 Inert Test Article Captive Carry
2018-01-10
Generation Orbit Launch Services, Inc. (GO) completed the GO1 Inert Test Article captive carry flight test at NASA’s Armstrong Flight Research Center in December. Under a public-private partnership with NASA, GO developed the GO1-ITA, a mass properties and outer mold line simulator for the GO1 hypersonic flight testbed and earned NASA airworthiness approval for flight on NASA’s C-20a. NASA’s C-20a was originally modified to add a centerline hard point to carry the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) pod. Together with the NASA Armstrong team, a campaign of three flight tests was conducted, successfully completing all test objectives including clearing the operational flight envelope of the C-20a with the GO1-ITA mounted to the centerline hard point, and demonstrated the unique launch maneuver designed for air launch of the GO1 on operational flights starting in 2019. Data collected during the campaign will be used to validate models and inform the ongoing design and development of GO1.
Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren
2010-01-01
The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.
Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings
NASA Astrophysics Data System (ADS)
Biswas, A.; Das, S. K.; Sahoo, P.
2016-09-01
Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with heat treatment.
Singh, Abhishek; Nagpal, Abhishek; Pawah, Salil; Pathak, Chetan; Issar, Gaurav; Sharma, Pankaj
2016-09-01
In an attempt to minimize wear damage to the enamel of antagonist teeth, new low and medium fusing ceramic materials have been developed. Manufacturers usually claim that these ceramics are wear-friendly because of their lower hardness, lower concentrations of crystal phase, and smaller crystal sizes. This study aimed to quantitatively analyze the wear strength of various commercially available dental porcelain with tooth enamel as well as the surface hardness of these dental porcelain. The basic model was designed as a pin on plate arrangement. The tooth specimens were mounted on the stylus which was centered on the ceramic specimen in a wear testing machine. The dental ceramic specimen was centered in the metal die. A load of 40 N was applied at a rate of 80 cycles/minute for 15 minutes. In the current study, mean wear depth (Ra) value, volumetric loss, and surface hardness were obtained by standard quantification method and were statistically evaluated. Ceramco-3 was reported to be most abrasive for enamel; however, Duceram love significantly more abraded itself than the other two, Ceramco-3 and Vita Alpha, and generated the lowest loss of enamel. Also, same abrasive type of wear was revealed for all three variants of tested ceramics. Ceramco-3 was the most abrasive for enamel, while surface roughness (mean wear depth) of Duceram love was maximum and for Ceramco-3 it was minimum. The value of surface roughness for Vita Alpha was in between Duceram love and Ceramco-3. Nonetheless, the mean surface hardness of Duceram love was found to be least and maximum for Vita Alpha. In situations of dental wear and wasting tooth disease (Attrition/Abrasion), Duceram can be applied in lieu of Ceramco-3 so as to prevent worsening of existing dentition. However, in younger patients Vita Alpha would offer maximum durability due to its greater surface hardness.
A synthetic dataset for evaluating soft and hard fusion algorithms
NASA Astrophysics Data System (ADS)
Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey
2011-06-01
There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.
Mebane, Christopher A.
2006-01-01
In 2001, the U.S. Environmental Protection Agency (EPA) released updated aquatic life criteria for cadmium. Since then, additional data on the effects of cadmium to aquatic life have become available from studies supported by the EPA, Idaho Department of Environmental Quality (IDEQ), and the U.S. Geological Survey, among other sources. Updated data on the effects of cadmium to aquatic life were compiled and reviewed and low-effect concentrations were estimated. Low-effect values were calculated using EPA's guidelines for deriving numerical national water-quality criteria for the protection of aquatic organisms and their uses. Data on the short-term (acute) effects of cadmium on North American freshwater species that were suitable for criteria derivation were located for 69 species representing 57 genera and 33 families. For longer-term (chronic) effects of cadmium on North American freshwater species, suitable data were located for 28 species representing 21 genera and 17 families. Both the acute and chronic toxicity of cadmium were dependent on the hardness of the test water. Hardness-toxicity regressions were developed for both acute and chronic datasets so that effects data from different tests could be adjusted to a common water hardness. Hardness-adjusted effects values were pooled to obtain species and genus mean acute and chronic values, which then were ranked by their sensitivity to cadmium. The four most sensitive genera to acute exposures were, in order of increasing cadmium resistance, Oncorhynchus (Pacific trout and salmon), Salvelinus ('char' trout), Salmo (Atlantic trout and salmon), and Cottus (sculpin). The four most sensitive genera to chronic exposures were Hyalella (amphipod), Cottus, Gammarus (amphipod), and Salvelinus. Using the updated datasets, hardness dependent criteria equations were calculated for acute and chronic exposures to cadmium. At a hardness of 50 mg/L as calcium carbonate, the criterion maximum concentration (CMC, or 'acute' criterion) was calculated as 0.75 mug/L cadmium using the hardness-dependent equation CMC = e(0.8403 ? ln(hardness)-3.572) where the 'ln hardness' is the natural logarithm of the water hardness. Likewise, the criterion continuous concentration (CCC, or 'chronic' criterion) was calculated as 0.37 mug/L cadmium using the hardness-dependent equation CCC = (e(0.6247 ? ln(hardness)-3.384)) ? (1.101672 - ((ln hardness) ? 0.041838))). Using data that were independent of those used to derive the criteria, the criteria concentrations were evaluated to estimate whether adverse effects were expected to the biological integrity of natural waters or to selected species listed as threatened or endangered. One species was identified that would not be fully protected by the derived CCC, the amphipod Hyalella azteca. Exposure to CCC conditions likely would lead to population decreases in Hyalella azteca, the food web consequences of which probably would be slight if macroinvertebrate communities were otherwise diverse. Some data also suggested adverse behavioral changes are possible in fish following long-term exposures to low levels of cadmium, particularly in char (genus Salvelinus). Although ambiguous, these data indicate a need to periodically review the literature on behavioral changes in fish following metals exposure as more information becomes available. Most data reviewed indicated that criteria conditions were unlikely to contribute to overt adverse effects to either biological integrity or listed species. If elevated cadmium concentrations that approach the chronic criterion values occur in ambient waters, careful biological monitoring of invertebrate and fish assemblages would be prudent to validate the prediction that the assemblages would not be adversely affected by cadmium at criterion concentrations.
Gallbladder Cancer Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version
Gallbladder cancer is rare. There are no signs or symptoms of gallbladder cancer in the early stages which makes it hard to diagnose. Learn more about possible symptoms, tests to diagnose, prognosis, and staging for gallbladder cancer.
NASA Astrophysics Data System (ADS)
Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.
2017-12-01
It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.
Explosibility and Ignitability of Plastic Abrasive Media.
1987-06-01
Polyplus Is an alpha cellulose filled urea formaldehyde with a hardness or 3.5. Type III is a urea melamine formaldehyde with a hardness of 4. A fourth...is a thermoplastic acrylic media and the Kopper’s media are thermoset formaldehydes . o The greatest potential for dust explosions is in the baghouss...type or plastio media trom E. I. Du Pont de Nemours and Company was also tested. This Type L Solidstrip plastic stripping abrasive is an acrylic resin
Fey, Marc; Curran, Maura
2017-01-01
Purpose Complexity-based approaches to treatment have been gaining popularity in domains such as phonology and aphasia but have not yet been tested in child morphological acquisition. In this study, we examined whether beginning treatment with easier-to-inflect (easy first) or harder-to-inflect (hard first) verbs led to greater progress in the production of regular past-tense –ed by children with developmental language disorder. Method Eighteen children with developmental language disorder (ages 4–10) participated in a randomized controlled trial (easy first, N = 10, hard first, N = 8). Verbs were selected on the basis of frequency, phonological complexity, and telicity (i.e., the completedness of the event). Progress was measured by the duration of therapy, number of verb lists trained to criterion, and pre/post gains in accuracy for trained and untrained verbs on structured probes. Results The hard-first group made greater gains in accuracy on both trained and untrained verbs but did not have fewer therapy visits or train to criterion on more verb lists than the easy-first group. Treatment fidelity, average recasts per session, and verbs learned did not differ across conditions. Conclusion When targeting grammatical morphemes, it may be most efficient for clinicians to select harder rather than easier exemplars of the target. PMID:28796874
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-01-01
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708
NASA Astrophysics Data System (ADS)
Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan
2017-10-01
In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.
de Menezes, Fernando Carlos Hueb; Junior, Geraldo Thedei; de Oliveira, Wildomar Jose; Paulino, Tony de Paiva; de Moura, Marcelo Boaventura; da Silva, Igor Lima; de Moura, Marcos Boaventura
2011-09-01
Indirect restorations are increasingly used in dentistry, and the cementation interface is possibly the most critical region of the work. The objective of the present work was to evaluate the influence of exposure to a culture medium containing S. mutans on the hardness and solubility of four different cementing agents (zinc phosphate, glass ionomer, glass ionomer modified with resin and resin cement). Test specimens composed of these cements were exposed for 30 days in a culture medium containing S. mutans. After leaching, the test materials were assessed in terms of their solubility (loss of mass) and Knoop (KHN) microhardness. Changes in surface morphology were identified using scanning electron microscopy (SEM). The resin cement showed no significant solubility and its hardness increased following exposure and leaching, while the zinc phosphate cement was the most soluble and its hardness decreased after exposure to the culture medium. SEM analyses identified morphological alterations on the surfaces of the test materials that were compatible with the solubility results. It is concluded that resinous cements perform better than water-based cements when exposed to acidic conditions. The effects of acids from Streptococcus mutans can interfere with the efficiency and properties of some cements used for fixation of indirect restorations, exposed to the buccal environment.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-12-02
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.
Mechanical properties of nanocrystalline cobalt
NASA Astrophysics Data System (ADS)
Karimpoor, Amir A.; Erb, Uwe
2006-05-01
Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.
Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jianhua; Yi Danqing; Su Xuping
2008-07-15
The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-03-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.
NASA Astrophysics Data System (ADS)
Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar
2018-05-01
One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(< 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ∼ 30 keV and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. >2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.
HPC Software Stack Testing Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Cormac
The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).
Computer-Based Signing Accommodations: Comparing a Recorded Human with an Avatar
ERIC Educational Resources Information Center
Russell, Michael; Kavanaugh, Maureen; Masters, Jessica; Higgins, Jennifer; Hoffmann, Thomas
2009-01-01
Many students who are deaf or hard-of-hearing are eligible for a signing accommodation for state and other standardized tests. The signing accommodation, however, presents several challenges for testing programs that attempt to administer tests under standardized conditions. One potential solution for many of these challenges is the use of…
Engineering Techniques for Electromagnetic Pulse-Hardness Testing.
electromagnetic pulse (EMP). The text describes energy sources, simulation techniques, test instrumentation, and testing techniques. Emphasis is on testing that can be accomplished by engineers with knowledge of electromagnetics and circuits. Complicated systems that require special expertise are described only to acquaint the reader with their characteristics. This text is intended to supplement the testing portion of DNA 2772T ’DNA EMP Awareness Course Notes.’
Eddy-Current Detection of Weak Bolt Heads
NASA Technical Reports Server (NTRS)
Messina, C. P.
1987-01-01
Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.
Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R
2015-01-01
This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.
Xu, Jiageng; Chen, Yu; Tan, Zhi; Nie, Rui; Wang, Qingyuan; Zhu, Jianguo
2018-01-01
A sort of tungsten/chromium(W/Cr) co-doped bismuth titanate (BIT) ceramics (Bi4Ti2.95W0.05O12.05 + 0.2 wt % Cr2O3, abbreviate to BTWC) are ordinarily sintered between 1050 and 1150 °C, and the indentation behavior and mechanical properties of ceramics sintered at different temperatures have been investigated by both nanoindentation and microindentation technology. Firstly, more or less Bi2Ti2O7 grains as the second phase were found in BTWC ceramics, and the grain size of ceramics increased with increase of sintering temperatures. A nanoindentation test for BTWC ceramics reveals that the testing hardness of ceramics decreased with increase of sintering temperatures, which could be explained by the Hall–Petch equation, and the true hardness could be calculated according to the pressure-state-response (PSR) model considering the indentation size effect, where the value of hardness depends on the magnitude of load. While, under the application of microsized Vickers, the sample sintered at a lower temperature (1050 °C) gained four linearly propagating cracks, however, they were observed to shorten in the sample sintered at a higher temperature (1125 °C). Moreover, both the crack deflection and the crack branching existed in the latter. The hardness and the fracture toughness of BTWC ceramics presented a contrary variational tendency with increase of sintering temperatures. A high sintering tends to get a lower hardness and a higher fracture toughness, which could be attributed to the easier plastic deformation and the stronger crack inhibition of coarse grains, respectively, as well as the toughening effect coming from the second phase. PMID:29584677
Hardness Evaluation of Composite Resins Cured with QTH and LED
Esmaeili, Behnaz; Safarcherati, Hengameh; Vaezi, Assila
2014-01-01
Background and aims. Today light cured composites are widely used. Physical and mechanical properties of composites are related to the degree of conversion. Light curing unit (LCU) is an important factor for composite polymerization. Aim of this study is evaluation of composite resins hardness using halogen and LED light curing units. Materials and methods. In this study, 30 samples of Filtek Z250 and C-Fill composite resins were provided. Samples were light cured with Ultralume2, Valo and Astralis7. Vickers hardness number (VHN) was measured in 0, 1, 2 mm depth. Statistical analysis used: Data were analysed by SPSS software and compared with each other by T-test, one-way and two-way ANOVA and Post-hoc Tukey test. Results. In Filtek Z250, at top surface, VHN of Ultralume2 was higher than VHN of Valo (P = 0.02) and Astralis7 (P =0.04), but in depth of 1, 2 mm, VHN of Ultralume2 and Astralis7 were almost the same and both LCUs were more than Valo which the difference between Ultralume2 and Valo was significant in depth of 1mm (0.05) and 2mm (0.02). In C-Fill composite, at top surface, Astralis7 showed higher VHN, but in depth of 2 mm, performance of all devices were rather simi-lar. Conclusion. In Z250, which contains camphorquinone initiator, light cure LED Ultra-lume2 with narrow wavelength showed higher hardness number than Valo. In C-fill, in top surface, Astralis7 with more exposure time, resulted higher VHN. But In depth of 2 mm, various light curing devices had rather similar hardness number. PMID:25024838
RAMOS, Marcelo Barbosa; PEGORARO, Thiago Amadei; PEGORARO, Luiz Fernando; CARVALHO, Ricardo Marins
2012-01-01
Objectives To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-ESPE and Panavia F 2.0®, Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor® - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent. PMID:23138743
NASA Astrophysics Data System (ADS)
Boy, M.; Yaşar, N.; Çiftçi, İ.
2016-11-01
In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.
Physical properties and comparative strength of a bioactive luting cement.
Jefferies, Steven; Lööf, Jesper; Pameijer, Cornelis H; Boston, Daniel; Galbraith, Colin; Hermansson, Leif
2013-01-01
New dental cement formulations require testing to determine physical and mechanical laboratory properties. To test an experimental calcium aluminate/glass-ionomer cement, Ceramir C and B (CC and B), regarding compressive strength (CS), film thickness (FT), net setting time (ST) and Vickers hardness. An additional test to evaluate potential dimensional change/expansion properties of this cement was also conducted. CS was measured according to a slightly modified ISO 9917:2003 for the CC and B specimens. The samples were not clamped while being exposed to relative humidity of great than 90 percent at 37 degrees C for 10 minutes before being stored in phosphate-buffered saline at 37 degrees C. For the CS, four groups were tested: Group 1-CC and B; Group 2-RelyX Luting Cement; Group 3-Fuji Plus; and Group 4-RelyX Unicem. Samples from all groups were stored for 24 hours before testing. Only CCandB was tested for ST and FT according to ISO 9917:2003. The FT was tested 2 minutes after mixing. Vickers hardness was evaluated using the CSM Microhardness Indentation Tester using zinc phosphate cement as a comparison material. Expansion testing included evaluating potential cracks in feldspathic porcelain jacket crowns (PJCs). The mean and standard deviation after 24 hours were expressed in MPa: Group 1 equals 160 plus or equal to 27; Group 2 equals 96 plus or equal to 10; Group 3 equals 138 plus or equal to 15; Group 4 equals 157 plus or equal to 10. A single-factor ANOVA demonstrated statistically significant differences between the groups (P less than 0.001). Pair-wise statistical comparison demonstrated a statistically significant difference between Groups 1 and 2. No statistically significant differences were found between other groups. The FT was 16.8 plus or equal to 0.9 and the ST was 4.8 plus or equal to 0.1 min. Vickers hardness for Ceramir C and B was 68.3 plus or equal to 17.2 and was statistically significantly higher (P less than 0.05) than Fleck's Zinc Phosphate cement at Vickers hardness of 51.4 plus or equal to 10. There was no evidence of cracks due to radial expansion in PJCs by the Ceramir C and B cement. All luting cements tested demonstrated compressive strengths well in excess of the ISO requirement for water-based cements of no less than 50 MPa. Ceramir C and B showed significantly higher CS than RelyX Luting Cement after 24 hours, but was not significantly higher than either Fuji Plus or RelyX Unicem. The ST and FT values of CC and B conform to and are within the boundaries of the requirements of the standard. Surface hardness was statistically higher than and comparable to zinc phosphate cement. There was no evidence of potentially clinically significant and deleterious expansion behavior by this cement. All cements tested demonstrated acceptable strength properties. Within the limits of this study, Ceramir C and B is deemed to possess physical properties suitable for a dental luting cement.
NASA Astrophysics Data System (ADS)
Herisa, H. M.; Noerdin, A.; Eriwati, Y. K.
2017-08-01
Theobromine can be used to prevent the demineralization of enamel and can stimulate the growth of new enamels. This study analyzes the effect of theobromine’s gel duration exposure on enamel hardness resistance from 1% citric acid. Twenty-eight specimens were divided into three experimental groups; were exposed to theobromine gel 200 mg/l for 16, 48, and 96 minutes; and were then immersed in 1% citric acid. The control group was only immersed in 1% citric acid. Results: A Wilcoxon test showed a significant increase and decrease in enamel microhardness after exposure to theobromine gel and citric acid (p < 0.05). A Mann-Whitney test showed a significant increase and decrease in enamel microhardness between different durations of exposure to theobromine gel and immersion in citric acid (p < 0.05). The application of theobromine gel 200mg/L increased enamel microhardness but did not contribute to the enamel’s hardness resistance after immersion in 1% citric acid. The duration of theobromine gel application affected enamel microhardness and acid resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.
High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinationsmore » were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates« less
Application of machine vision to pup loaf bread evaluation
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Chung, O. K.
1996-12-01
Intrinsic end-use quality of hard winter wheat breeding lines is routinely evaluated at the USDA, ARS, USGMRL, Hard Winter Wheat Quality Laboratory. Experimental baking test of pup loaves is the ultimate test for evaluating hard wheat quality. Computer vision was applied to developing an objective methodology for bread quality evaluation for the 1994 and 1995 crop wheat breeding line samples. Computer extracted features for bread crumb grain were studied, using subimages (32 by 32 pixel) and features computed for the slices with different threshold settings. A subsampling grid was located with respect to the axis of symmetry of a slice to provide identical topological subimage information. Different ranking techniques were applied to the databases. Statistical analysis was run on the database with digital image and breadmaking features. Several ranking algorithms and data visualization techniques were employed to create a sensitive scale for porosity patterns of bread crumb. There were significant linear correlations between machine vision extracted features and breadmaking parameters. Crumb grain scores by human experts were correlated more highly with some image features than with breadmaking parameters.
The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.
2018-06-01
Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.
Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus
This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).
Brix, Kevin V; Gerdes, Robert; Grosell, Martin
2010-10-01
A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.
Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process
NASA Astrophysics Data System (ADS)
Li, Hui; Liu, Wenqing
2017-04-01
The different nanoprecipitates formed in a 6061 aluminum alloy during aging at 453 K (180 °C), with or without 168 hours of pre-natural aging (NA), and the age-hardening response of the alloy were investigated by atom probe tomography (APT) and hardness testing. A hardness plateau developed between 2 and 8 hours in both the artificial aging (AA) and artificial aging with pre-natural aging (NAAA) samples. The hardness of NAAA samples was lower than that of AA samples when artificially aged for the same time. A 168-hour NA led to the formation of solute atom clusters in the matrix. The NA accelerated the precipitation kinetics of the following AA. The solute atom clusters gave the highest hardness increment per unit volume fraction. The β″ precipitates were dominant in the samples at the hardness plateau. The average normalized Mg:Si ratios of the solute atom clusters and GP zones were near 1. The average Mg:Si ratio of β″ precipitates increased from 1.3 to 1.5 upon aging for 2 hours. The microstructural evolution of samples with or without NA and its influence on the strengthening effects are discussed based on the experimental results.
Seismic signals hard clipping overcoming
NASA Astrophysics Data System (ADS)
Olszowa, Paula; Sokolowski, Jakub
2018-01-01
In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.
In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels
NASA Astrophysics Data System (ADS)
Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan
2018-03-01
This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.
The Activity Profile of Young Tennis Athletes Playing on Clay and Hard Courts: Preliminary Data.
Adriano Pereira, Lucas; Freitas, Victor; Arruda Moura, Felipe; Saldanha Aoki, Marcelo; Loturco, Irineu; Yuzo Nakamura, Fábio
2016-04-01
The aim of this study was to compare the kinematic characteristics of tennis matches between red clay and hard courts in young tennis players. Eight young tennis players performed two tennis matches on different court surfaces. The match activities were monitored using GPS units. The distance covered in different velocity ranges and the number of accelerations were analyzed. The paired t test and inference based on magnitudes were used to compare the match physical performance between groups. The total distance (24% of difference), high-intensity running distance (15 - 18 km/h) (30% of difference), the number of high-intensity activities (44% of difference), the body load (1% of difference), and accelerations >1.5 g (1.5-2 g and >2 g 7.8 and 8.1 % of difference, respectively) were significantly greater in clay court than hard court matches ( p < 0.05). Matches played on the red clay court required players to cover more total and high-intensity running distances and engage in more high-intensity activities than the matches played on the hard court. Finally, on the clay court the body load and the number of accelerations performed (>1.5 g) were possibly higher than on the hard court.
Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475
NASA Astrophysics Data System (ADS)
Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa
2018-05-01
High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.
Application of hard coatings to substrates at low temperatures
NASA Technical Reports Server (NTRS)
Sproul, William D.
1993-01-01
BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.
Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert
NASA Astrophysics Data System (ADS)
Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.
2018-02-01
Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.
[Analysis of 2 patients with occupational hard mental lung disease].
Ding, Bangmei; Ding, Lu; Yu, Bin; Fan, Cunhua; Han, Lei; Hu, Jinmei; Zhu, Baoli
2015-01-01
We sought to master the clinical characteristics and prognosis of hard mental lung disease, improving this disease's diagnosis and treatment quality. We recruited two suspected patients with hard mental lung disease and collected their occupational history, examination results of occupational health, and past medical records. By virtue of laboratory tests, high Kv chest radiography, CT and HRCT of chest, fiberoptic bronchoscopy and ECG examination, diagnostic report was synthesized respectively by respiratory physicians and pathologist from three different agencies. Then the report was submitted to diagnosis organizations of occupational disease, and diagnostic conclusion of occupational disease was drawn after discussion by at least three diagnosticians of occupational disease. We found that both of the two suspected patients were exposed to dusts of hard metal, and length of exposure service ranged from 8 to 9 years. Clinical manifestations were dominated by dry cough, wheezing after activities, and pathological manifestation was characteristic giant cell interstitial pneumonia. The prognosis and outcome of the disease were different. According to exact occupational exposure history, clinical manifestations, combined with the results of high Kv chest radiography, CT of chest and pathological manifestation, it can be diagnosed with hard mental lung disease.
The damage equivalence of electrons, protons, alphas and gamma rays in rad-hard MOS devices
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Van Gunten, O.; Brucker, G. J.; Knudson, A. R.; Jordan, T. M.
1983-01-01
This paper reports on a study of damage equivalence in rad-hard MOS devices with 100,000 rads (SiO2) capability. Damage sensitivities for electrons of 1, 2, 3, 5, and 7 MeV, protons of 1, 3, 7, 22, and 40 MeV, 3.4-MeV alphas, and Co-60 gammas were measured and compared. Results indicated that qualitatively the same charge recombination effects occurred in hard oxide devices for doses of 100,000 rads (SiO2) as in soft oxide parts for doses of 1 to 4 krads (SiO2). Consequently, damage equivalency or non-equivalency depended on radiation type and energy. However, recovery effects, both during and after irradiation, controlled relative damage sensitivity and its dependency on total dose, dose rate, supply bias, gate bias, radiation type, and energy. Correction factors can be derived from these data or from similar tests of other hard oxide type, so as to properly evaluate the combined effects of the total space environment.
Lam, Wing-Kai; Ng, Wei Xuan; Kong, Pui Wah
2017-01-01
This study examined how shoe midsole hardness influenced plantar pressure in basketball-related movements. Twenty male university basketball players wore customized shoes with hard and soft midsoles (60 and 50 Shore C) to perform four movements: running, maximal forward sprinting, maximal 45° cutting and lay-up. Plantar loading was recorded using an in-shoe pressure measuring system, with peak pressure (PP) and pressure time integral (PTI) extracted from 10 plantar regions. Compared with hard shoes, subjects exhibited lower PP in one or more plantar regions when wearing the soft shoes across all tested movements (Ps < 0.05). Lower PTI was also observed in the hallux for 45° cutting, and the toes and forefoot regions during the first step of lay-up in the soft shoe condition (Ps < 0.05). In conclusion, using a softer midsole in the forefoot region may be a plausible remedy to reduce the high plantar loading experienced by basketball players.
NASA Astrophysics Data System (ADS)
Ogawa, Yurie; Matsuda, Kenji; Kawabata, Tokimasa; Uetani, Yasuhiro; Ikeno, Susumu
It has been known that transition metals improve the mechanical property of Al-Mg-Si alloy. The thermo-mechanical treatment is also effective to improve the strength of Al-Mg-Si alloy. In this work, the aging behavior of deformed excess Mg-type Al-Mg-Si alloy including Ag,Cu,Pt was investigated by hardness test and TEM observation. The value of the maximum hardness increased and the aging time to the maximum hardness became shorter by increasing the amount of the deformation. The age-hardening ability (ΔHV) was decreased with increasing amount of the deformation. The effect of additional element on AHV was also similar to the result of the deformation described above. Comparing the value of the maximum hardness for the alloys aged at 423-523 K, the ex. Mg-Cu alloy was the highest, the ex. Mg-Ag alloy was middle, and the ex. Mg and ex. Mg-Pt alloys were the lowest because of total amounts of added elements.
NASA Astrophysics Data System (ADS)
Adi Atmika, I. K.; Ary Subagia, IDG.; Surata, I. W.; Sutantra, I. N.
2017-05-01
Brake lining pad as one of the active safety components in motor vehicles has been studied thoroughly. Asbestos is the main material forming the brake in addition to other alloy materials that have a negative impact on health and the environment. This paper explain the behavior of hybrid composites phenolic resin with basalt/alumina/clamshell powder reinforced on brake lining pad. This materials has been manufactured use compaction and sintering process through any steps, that an emphasis of 2,000 kg for 30 minutes at a constant temperature of 150° C. The research aims to investigate hardness characteristic of hybrid composite that test using the vickers according to standard ASTM E-384. The reinforced materials and phenolic resin composition is 60%: 40%. The results show for the average hardness VHN to 24.18, 25.11, 26.34, 27.21 and 28.83. The average hardness hybrid composite shows the hardness harder than asbestos materials.