Using MaxCompiler for the high level synthesis of trigger algorithms
NASA Astrophysics Data System (ADS)
Summers, S.; Rose, A.; Sanders, P.
2017-02-01
Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.
A hardware fast tracker for the ATLAS trigger
NASA Astrophysics Data System (ADS)
Asbah, Nedaa
2016-09-01
The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.
A simulation framework for the CMS Track Trigger electronics
NASA Astrophysics Data System (ADS)
Amstutz, C.; Magazzù, G.; Weber, M.; Palla, F.
2015-03-01
A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.
NASA Astrophysics Data System (ADS)
Webster, Jordan
2017-01-01
Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.
A z-Vertex Trigger for Belle II
NASA Astrophysics Data System (ADS)
Skambraks, S.; Abudinén, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Neuhaus, S.; Paul, S.; Schieck, J.
2015-08-01
The Belle II experiment will go into operation at the upgraded SuperKEKB collider in 2016. SuperKEKB is designed to deliver an instantaneous luminosity L = 8 ×1035 cm - 2 s - 1. The experiment will therefore have to cope with a much larger machine background than its predecessor Belle, in particular from events outside of the interaction region. We present the concept of a track trigger, based on a neural network approach, that is able to suppress a large fraction of this background by reconstructing the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger uses the hit information from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (“sectors”), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track. Within the sector, the z-vertex is estimated by a specialized neural network, with the drift times from the CDC as input and a continuous output corresponding to the scaled z-vertex. The neural algorithm will be implemented in programmable hardware. To this end a Virtex 7 FPGA board will be used, which provides at present the most promising solution for a fully parallelized implementation of neural networks or alternative multivariate methods. A high speed interface for external memory will be integrated into the platform, to be able to store the O(109) parameters required. The contribution presents the results of our feasibility studies and discusses the details of the envisaged hardware solution.
Online track detection in triggerless mode for INO
NASA Astrophysics Data System (ADS)
Jain, A.; Padmini, S.; Joseph, A. N.; Mahesh, P.; Preetha, N.; Behere, A.; Sikder, S. S.; Majumder, G.; Behera, S. P.
2018-03-01
The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 106 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV-10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also discusses about harnessing the computing capabilities of multi-core computing farm, thereby optimizing number of nodes required for the proposed system.
Evaluation of GPUs as a level-1 track trigger for the High-Luminosity LHC
NASA Astrophysics Data System (ADS)
Mohr, H.; Dritschler, T.; Ardila, L. E.; Balzer, M.; Caselle, M.; Chilingaryan, S.; Kopmann, A.; Rota, L.; Schuh, T.; Vogelgesang, M.; Weber, M.
2017-04-01
In this work, we investigate the use of GPUs as a way of realizing a low-latency, high-throughput track trigger, using CMS as a showcase example. The CMS detector at the Large Hadron Collider (LHC) will undergo a major upgrade after the long shutdown from 2024 to 2026 when it will enter the high luminosity era. During this upgrade, the silicon tracker will have to be completely replaced. In the High Luminosity operation mode, luminosities of 5-7 × 1034 cm-2s-1 and pileups averaging at 140 events, with a maximum of up to 200 events, will be reached. These changes will require a major update of the triggering system. The demonstrated systems rely on dedicated hardware such as associative memory ASICs and FPGAs. We investigate the use of GPUs as an alternative way of realizing the requirements of the L1 track trigger. To this end we implemeted a Hough transformation track finding step on GPUs and established a low-latency RDMA connection using the PCIe bus. To showcase the benefits of floating point operations, made possible by the use of GPUs, we present a modified algorithm. It uses hexagonal bins for the parameter space and leads to a more truthful representation of the possible track parameters of the individual hits in Hough space. This leads to fewer duplicate candidates and reduces fake track candidates compared to the regular approach. With data-transfer latencies of 2 μs and processing times for the Hough transformation as low as 3.6 μs, we can show that latencies are not as critical as expected. However, computing throughput proves to be challenging due to hardware limitations.
2013-02-21
telescope consists of six Mimosa tracking planes, the readout data acquisition system and the trigger hardware, and provides a ≈ 3µm track point- ing...is larger than the Mimosa sensors of the telescope, separate sets of data were taken to cover the irradiated and non-irradiated regions of the sensors
ATLAS FTK a - very complex - custom super computer
NASA Astrophysics Data System (ADS)
Kimura, N.; ATLAS Collaboration
2016-10-01
In the LHC environment for high interaction pile-up, advanced techniques of analysing the data in real time are required in order to maximize the rate of physics processes of interest with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at the hardware level that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for events passing the Level-1 accept (at a maximum rate of 100 kHz). In order to achieve this performance, a highly parallel system was designed and currently it is being commissioned within in ATLAS. Starting in 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against one billion patterns stored in custom ASIC chips (Associative memory chip - AM06). In a first stage, coarse resolution hits are matched against the patterns and the accepted hits undergo track fitting implemented in FPGAs. Tracks with pT > 1GeV are delivered to the High Level Trigger within about 100 ps. Resolution of the tracks coming from FTK is close to the offline tracking and it will allow for reliable detection of primary and secondary vertexes at trigger level and improved trigger performance for b-jets and tau leptons. This contribution will give an overview of the FTK system and present the status of commissioning of the system. Additionally, the expected FTK performance will be briefly described.
The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade
NASA Astrophysics Data System (ADS)
Miller Allbrooke, Benedict Marc; ATLAS Collaboration
2017-10-01
The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.
L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs
NASA Astrophysics Data System (ADS)
Fedi, Giacomo
2017-08-01
The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS's Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition ezzanine) as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA) devices. The mezzanine uses the latest available associative memory devices (AM06) and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency and processing time needed. The pT resolution over pT of the muons measured using the reconstruction algorithm is at the order of 1% in the range 3-100 GeV/c.
A binary link tracker for the BaBar level 1 trigger system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenyi, A.; Chen, H.K.; Dao, K.
1999-08-01
The BaBar detector at PEP-II will operate in a high-luminosity e{sup +}e{sup {minus}} collider environment near the {Upsilon}(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed bymore » the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs.« less
The ATLAS Inner Detector commissioning and calibration
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-08-20
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7. 6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes,more » specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1±0.9 μm and a relative momentum resolution σ p/p=(4. 83 ± 0.16)×10 -4 GeV -1×p T have been measured for high momentum tracks.« less
Passive Coherent Detection and Target Location with Multiple Non-Cooperative Transmitters
2015-06-01
to detect, separate, classify, locate, and track sources of emissions in multi-target environments—triggered the development of passive radar...radar capitalizes on transmitters of opportunity to detect and locate sources of transmission or targets without deliberate emissions . The...equipment as all necessary hardware is currently available on most naval ships. 3 Bistatic radar geometry. Figure 1. B. HISTORY The concept of
Ethoscopes: An open platform for high-throughput ethomics.
Geissmann, Quentin; Garcia Rodriguez, Luis; Beckwith, Esteban J; French, Alice S; Jamasb, Arian R; Gilestro, Giorgio F
2017-10-01
Here, we present the use of ethoscopes, which are machines for high-throughput analysis of behavior in Drosophila and other animals. Ethoscopes provide a software and hardware solution that is reproducible and easily scalable. They perform, in real-time, tracking and profiling of behavior by using a supervised machine learning algorithm, are able to deliver behaviorally triggered stimuli to flies in a feedback-loop mode, and are highly customizable and open source. Ethoscopes can be built easily by using 3D printing technology and rely on Raspberry Pi microcomputers and Arduino boards to provide affordable and flexible hardware. All software and construction specifications are available at http://lab.gilest.ro/ethoscope.
Ethoscopes: An open platform for high-throughput ethomics
Geissmann, Quentin; Garcia Rodriguez, Luis; Beckwith, Esteban J.; French, Alice S.; Jamasb, Arian R.
2017-01-01
Here, we present the use of ethoscopes, which are machines for high-throughput analysis of behavior in Drosophila and other animals. Ethoscopes provide a software and hardware solution that is reproducible and easily scalable. They perform, in real-time, tracking and profiling of behavior by using a supervised machine learning algorithm, are able to deliver behaviorally triggered stimuli to flies in a feedback-loop mode, and are highly customizable and open source. Ethoscopes can be built easily by using 3D printing technology and rely on Raspberry Pi microcomputers and Arduino boards to provide affordable and flexible hardware. All software and construction specifications are available at http://lab.gilest.ro/ethoscope. PMID:29049280
Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades
NASA Astrophysics Data System (ADS)
Madorsky, A.
2017-07-01
To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.
Readout, first- and second-level triggers of the new Belle silicon vertex detector
NASA Astrophysics Data System (ADS)
Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.
2004-12-01
A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.
Basic concepts and architectural details of the Delphi trigger system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocci, V.; Booth, P.S.L.; Bozzo, M.
1995-08-01
Delphi (DEtector with Lepton, Photon and Hadron Identification) is one of the four experiments of the LEP (Large Electron Positron) collider at CERN. The detector is laid out to provide a nearly 4 {pi} coverage for charged particle tracking, electromagnetic, hadronic calorimetry and extended particle identification. The trigger system consists of four levels. The first two are synchronous with the BCO (Beam Cross Over) and rely on hardwired control units, while the last two are performed asynchronously with respect to the BCO and are driven by the Delphi host computers. The aim of this paper is to give a comprehensivemore » global view of the trigger system architecture, presenting in detail the first two levels, their various hardware components and the latest modifications introduced in order to improve their performance and make more user friendly the whole software user interface.« less
GPU/MIC Acceleration of the LHC High Level Trigger to Extend the Physics Reach at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halyo, Valerie; Tully, Christopher
The quest for rare new physics phenomena leads the PI [3] to propose evaluation of coprocessors based on Graphics Processing Units (GPUs) and the Intel Many Integrated Core (MIC) architecture for integration into the trigger system at LHC. This will require development of a new massively parallel implementation of the well known Combinatorial Track Finder which uses the Kalman Filter to accelerate processing of data from the silicon pixel and microstrip detectors and reconstruct the trajectory of all charged particles down to momentums of 100 MeV. It is expected to run at least one order of magnitude faster than anmore » equivalent algorithm on a quad core CPU for extreme pileup scenarios of 100 interactions per bunch crossing. The new tracking algorithms will be developed and optimized separately on the GPU and Intel MIC and then evaluated against each other for performance and power efficiency. The results will be used to project the cost of the proposed hardware architectures for the HLT server farm, taking into account the long term projections of the main vendors in the market (AMD, Intel, and NVIDIA) over the next 10 years. Extensive experience and familiarity of the PI with the LHC tracker and trigger requirements led to the development of a complementary tracking algorithm that is described in [arxiv: 1305.4855], [arxiv: 1309.6275] and preliminary results accepted to JINST.« less
Traditional Tracking with Kalman Filter on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-05-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.
Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger
NASA Astrophysics Data System (ADS)
Conde Muíño, P.; ATLAS Collaboration
2017-10-01
General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.
LHCb Kalman Filter cross architecture studies
NASA Astrophysics Data System (ADS)
Cámpora Pérez, Daniel Hugo
2017-10-01
The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions the Online system needs to process in software, in order to filter events in real time. 30 million collisions per second will pass through a selection chain, where each step is executed conditional to its prior acceptance. The Kalman Filter is a fit applied to all reconstructed tracks which, due to its time characteristics and early execution in the selection chain, consumes 40% of the whole reconstruction time in the current trigger software. This makes the Kalman Filter a time-critical component as the LHCb trigger evolves into a full software trigger in the Upgrade. I present a new Kalman Filter algorithm for LHCb that can efficiently make use of any kind of SIMD processor, and its design is explained in depth. Performance benchmarks are compared between a variety of hardware architectures, including x86_64 and Power8, and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently perform the LHCb Reconstruction process is determined.
SOLARTRAK. Solar Array Tracking Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manish, A.B.; Dudley, J.
1995-06-01
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maish, Alexander
1995-06-22
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
NASA Technical Reports Server (NTRS)
Keltner, D. J.
1975-01-01
This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.
Design and performance of a respiratory amplitude gating device for PET/CT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Guoping; Chang Tingting; Clark, John W. Jr.
2010-04-15
Purpose: Recently, the authors proposed a free-breathing amplitude gating (FBAG) technique for PET/CT scanners. The implementation of this technique required specialized hardware and software components that were specifically designed to interface with commercial respiratory gating devices to generate the necessary triggers required for the FBAG technique. The objective of this technical note is to introduce an in-house device that integrates all the necessary hardware and software components as well as tracks the patient's respiratory motion to realize amplitude gating on PET/CT scanners. Methods: The in-house device is composed of a piezoelectric transducer coupled to a data-acquisition system in order tomore » monitor the respiratory waveform. A LABVIEW program was designed to control the data-acquisition device and inject triggers into the PET list stream whenever the detected respiratory amplitude crossed a predetermined amplitude range. A timer was also programmed to stop the scan when the accumulated time within the selected amplitude range reached a user-set interval. This device was tested using a volunteer and a phantom study. Results: The results from the volunteer and phantom studies showed that the in-house device can detect similar respiratory signals as commercially available respiratory gating systems and is able to generate the necessary triggers to suppress respiratory motion artifacts. Conclusions: The proposed in-house device can be used to implement the FBAG technique in current PET/CT scanners.« less
NASA Technical Reports Server (NTRS)
Keltner, D. J.
1975-01-01
The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.
2007-12-01
Hardware - In - Loop , Piccolo, UAV, Unmanned Aerial Vehicle 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...Maneuvering Target.......................... 35 C. HARDWARE - IN - LOOP SIMULATION............................................... 37 1. Hardware - In - Loop Setup...law as proposed in equation (23) is capable of tracking a maneuvering target. C. HARDWARE - IN - LOOP SIMULATION The intention of HIL simulation
Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem
NASA Technical Reports Server (NTRS)
Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
A software framework for pipelined arithmetic algorithms in field programmable gate arrays
NASA Astrophysics Data System (ADS)
Kim, J. B.; Won, E.
2018-03-01
Pipelined algorithms implemented in field programmable gate arrays are extensively used for hardware triggers in the modern experimental high energy physics field and the complexity of such algorithms increases rapidly. For development of such hardware triggers, algorithms are developed in C++, ported to hardware description language for synthesizing firmware, and then ported back to C++ for simulating the firmware response down to the single bit level. We present a C++ software framework which automatically simulates and generates hardware description language code for pipelined arithmetic algorithms.
Comparison of two hardware-based hit filtering methods for trackers in high-pileup environments
NASA Astrophysics Data System (ADS)
Gradin, J.; Mårtensson, M.; Brenner, R.
2018-04-01
As experiments in high energy physics aim to measure increasingly rare processes, the experiments continually strive to increase the expected signal yields. In the case of the High Luminosity upgrade of the LHC, the luminosity is raised by increasing the number of simultaneous proton-proton interactions, so-called pile-up. This increases the expected yields of signal and background processes alike. The signal is embedded in a large background of processes that mimic that of signal events. It is therefore imperative for the experiments to develop new triggering methods to effectively distinguish the interesting events from the background. We present a comparison of two methods for filtering detector hits to be used for triggering on particle tracks: one based on a pattern matching technique using Associative Memory (AM) chips and the other based on the Hough transform. Their efficiency and hit rejection are evaluated for proton-proton collisions with varying amounts of pile-up using a simulation of a generic silicon tracking detector. It is found that, while both methods are feasible options for a track trigger with single muon efficiencies around 98–99%, the AM based pattern matching produces a lower number of hit combinations with respect to the Hough transform whilst keeping more of the true signal hits. We also present the effect on the two methods of increasing the amount of support material in the detector and of introducing inefficiencies by deactivating detector modules. The increased support material has negligable effects on the efficiency for both methods, while dropping 5% (10%) of the available modules decreases the efficiency to about 95% (87%) for both methods, irrespective of the amount of pile-up.
The evolution of the Trigger and Data Acquisition System in the ATLAS experiment
NASA Astrophysics Data System (ADS)
Krasznahorkay, A.; Atlas Collaboration
2014-06-01
The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of the upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. The TDAQ system used to date is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as separate software systems distributed on separate, commodity hardware nodes. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. We will also be upgrading the hardware of the TDAQ system by introducing new elements to it. For the high-level trigger, the current plan is to deploy a single homogeneous system, which merges the execution of the second and third trigger levels, still separated, on a unique hardware node. Prototyping efforts already demonstrated many benefits to the simplified design. In this paper we report on the design and the development status of this new system.
A Full Mesh ATCA-based General Purpose Data Processing Board (Pulsar II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajuha, S.
The Pulsar II is a custom ATCA full mesh enabled FPGA-based processor board which has been designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth interconnections. The design has been motivated by silicon-based tracking trigger needs for LHC experiments. In this technical memo we describe the Pulsar II hardware and its performance, such as the performance test results with full mesh backplanes from different vendors, how the backplane is used for the development of low-latency time-multiplexed data transfer schemes and how the inter-shelf and intra-shelf synchronization works.
Simulacrum or Corporeal Manifestations in Antarctic Muon and Neutrino Detector Array
NASA Astrophysics Data System (ADS)
Liubarsky, Igor Romanovic
To date, Antarctic Muon and Neutrino Detector Array (AMANDA) collaboration has successfully deployed 382 optical modules at various depths in the South Polar ice sheet. The last 216 optical modules were put in place during the 1996-7 austral summer. This deployment completed a 10-stringed detector at depth between 1500-2000m (AMANDA-B). The detector has been operating successfully and taking data at a rate of 92Hz. However, due to the remoteness of location and the limited bandwidth for satellite transmission, only 5% of the latest data can be transmitted from the South Pole to the collaboration. Before the end of the 1996-7 antarctic season 6GBytes of data were carried to the rest of the world by hand. Since this data was taken while detector calibration was still being performed, it is far from ideal. Yet this sample, to date, represents the largest amount of the data taken by the 10 string detector available for analysis. A total of 11.8 hours of raw data was analysed, comprising 3,380,739 events. Of that number 2,951,118 were AMANDA-B triggers. After calibration and noise cleaning, the number of confirmed AMANDA-B triggers was further reduced to 2,880,391. From this data set a fraction of events were reconstructed without any filtering on the reconstructed direction of the final track. This resulted in 103,168 reconstructed tracks from all zenith angles. However, the full set of 2,880,391 triggers was used to reconstruct tracks, selecting only those that yielded an up-going muon. The procedure produced 25,122 tracks. Various quality criteria was then utilised to discriminate real up-going tracks from fake events mimicked by down-going muons. No real up-going events were found. My personal contribution to the AMANDA experiment has been in three main areas: hardware; I have built 40 of the first AMANDA-A modules; software; I have written subroutines for the University of Wisconsin-Madison AMANDA group's Monte Carlo; data analysis; I have analysed the early 10 string AMANDA-B data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
Online and Offline Pattern Recognition in PANDA
NASA Astrophysics Data System (ADS)
Boca, Gianluigi
2016-11-01
PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV). The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1) must be fast, since it has to be validated up to 20MHz interaction rate; 2) must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR) of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs) and, when available, I will report the performances.
Track vertex reconstruction with neural networks at the first level trigger of Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, Sara; Skambraks, Sebastian; Kiesling, Christian
2017-08-01
The track trigger is one of the main components of the Belle II first level trigger, taking input from the Central Drift Chamber (CDC). It consists of several stages, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally a 3D track reconstruction. The results of the track trigger are the track multiplicity, the momentum vector of each track and the longitudinal displacement of the origin or production vertex of each track ("z-vertex"). The latter allows to reject background tracks from outside of the interaction region and thus to suppress a large fraction of the machine background. This contribution focuses on the track finding stage using Hough transforms and on the z-vertex reconstruction with neural networks. We describe the algorithms and show performance studies on simulated events.
A neural network z-vertex trigger for Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.
2015-05-01
We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.
Leveraging Information Technology. Track VI: Hardware/Software Strategies.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers from the 1987 CAUSE conference's Track VI, Hardware/Software Strategies, are presented. They include: "Integrated Systems--The Next Steps" (Morris A. Hicks); "Administrative Microcomputing--Roads Traveled, Lessons Learned" (David L. Smallen); "Murphy's First Law and Its Application to Administrative…
The LHCb trigger and its upgrade
NASA Astrophysics Data System (ADS)
Dziurda, A.; LHCb Trigger Group
2016-07-01
The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava
Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
NASA Astrophysics Data System (ADS)
Kim, M. S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J. W.; Kang, M.; Kwon, J. H.; Lee, K. S.; Lee, S. K.; Park, S. K.; Pant, L. M.; Mohanty, A. K.; Chudasama, R.; Singh, J. B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W. V.; Cabrera, A.; Chaparro, L.; Gomez, J. P.; Gomez, B.; Sanabria, J. C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M. I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O. M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H. S.; Morales, M. I. P.; Bernardino, S. C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.
2014-10-01
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.
The ATLAS Level-1 Topological Trigger performance in Run 2
NASA Astrophysics Data System (ADS)
Riu, Imma; ATLAS Collaboration
2017-10-01
The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.
Real-time model-based vision system for object acquisition and tracking
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd
1987-01-01
A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.
NASA Astrophysics Data System (ADS)
Jie, Cao; Zhi-Hai, Wu; Li, Peng
2016-05-01
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).
EUV process improvement with novel litho track hardware
NASA Astrophysics Data System (ADS)
Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya
2017-03-01
Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.
Hardware accelerator design for tracking in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil
2011-10-01
Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.
A Matter of Millimeters: Defining the Processes for Critical Clearances on Curiosity
NASA Technical Reports Server (NTRS)
Florow, Brandon
2013-01-01
The Mars Science Laboratory (MSL) mission presents an immense packaging problem in that it takes a rover the size of a car with a sky crane landing system and packs it tightly into a spacecraft. This creates many areas of close and critical clearances. Critical Clearances are defined as hardware-to-hardware or hardware-to-envelope clearances which fall below a pre-established location dependent threshold and pose a risk of hardware to hardware contact during events such as launch, entry, landing, and operations. Close Clearances, on the other hand, are defined as any clearance value that is chosen to be tracked but is larger than the critical clearance threshold for its region. Close clearances may be tracked for various reasons including uncertainty in design, large expected dynamic motion, etc.
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
Real Time Target Tracking Using Dedicated Vision Hardware
NASA Astrophysics Data System (ADS)
Kambies, Keith; Walsh, Peter
1988-03-01
This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.
Event-triggered Kalman-consensus filter for two-target tracking sensor networks.
Su, Housheng; Li, Zhenghao; Ye, Yanyan
2017-11-01
This paper is concerned with the problem of event-triggered Kalman-consensus filter for two-target tracking sensor networks. According to the event-triggered protocol and the mean-square analysis, a suboptimal Kalman gain matrix is derived and a suboptimal event-triggered distributed filter is obtained. Based on the Kalman-consensus filter protocol, all sensors which only depend on its neighbors' information can track their corresponding targets. Furthermore, utilizing Lyapunov method and matrix theory, some sufficient conditions are presented for ensuring the stability of the system. Finally, a simulation example is presented to verify the effectiveness of the proposed event-triggered protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade
NASA Astrophysics Data System (ADS)
King, Robert; CMS Muon Group Team
2017-01-01
The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.
ESTL tracking and data relay satellite /TDRSS/ simulation system
NASA Technical Reports Server (NTRS)
Kapell, M. H.
1980-01-01
The Tracking Data Relay Satellite System (TDRSS) provides single access forward and return communication links with the Shuttle/Orbiter via S-band and Ku-band frequency bands. The ESTL (Electronic Systems Test Laboratory) at Lyndon B. Johnson Space Center (JSC) utilizes a TDRS satellite simulator and critical TDRS ground hardware for test operations. To accomplish Orbiter/TDRSS relay communications performance testing in the ESTL, a satellite simulator was developed which met the specification requirements of the TDRSS channels utilized by the Orbiter. Actual TDRSS ground hardware unique to the Orbiter communication interfaces was procured from individual vendors, integrated in the ESTL, and interfaced via a data bus for control and status monitoring. This paper discusses the satellite simulation hardware in terms of early development and subsequent modifications. The TDRS ground hardware configuration and the complex computer interface requirements are reviewed. Also, special test hardware such as a radio frequency interference test generator is discussed.
Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment
NASA Astrophysics Data System (ADS)
Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.
2017-09-01
The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.
Hardware Trojans - Prevention, Detection, Countermeasures (A Literature Review)
2011-07-01
Phase and Location . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hardware Trojan Actions...12 3.4 Trigger Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Prevention 14 4.1 Prevention...The specification is then realised into specific tar- 4 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1012 get technologies with consideration of functional and
Single Event Effect Hardware Trojans with Remote Activation
2017-03-01
kinetically as in the SDI approach. These high-energy directed energy weapons have been studied and developed largely for the purpose remote sensing and...Single Event Effect Hardware Trojans with Remote Activation Paul A. Quintana; John McCollum; William A. Hill Microsemi Corporation, San Jose...space qualified semiconductors the use of SEE sensitive circuits may represents a latent and remotely -triggered hardware Trojan which would be
Hardware packet pacing using a DMA in a parallel computer
Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos
2013-08-13
Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.
Zhang, Tisheng; Niu, Xiaoji; Ban, Yalong; Zhang, Hongping; Shi, Chuang; Liu, Jingnan
2015-01-01
A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype. PMID:25569751
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 2 continues the presentation of IOA worksheets.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Choi, Yun Ho; Yoo, Sung Jin
2018-06-01
This paper investigates the event-triggered decentralized adaptive tracking problem of a class of uncertain interconnected nonlinear systems with unexpected actuator failures. It is assumed that local control signals are transmitted to local actuators with time-varying faults whenever predefined conditions for triggering events are satisfied. Compared with the existing control-input-based event-triggering strategy for adaptive control of uncertain nonlinear systems, the aim of this paper is to propose a tracking-error-based event-triggering strategy in the decentralized adaptive fault-tolerant tracking framework. The proposed approach can relax drastic changes in control inputs caused by actuator faults in the existing triggering strategy. The stability of the proposed event-triggering control system is analyzed in the Lyapunov sense. Finally, simulation comparisons of the proposed and existing approaches are provided to show the effectiveness of the proposed theoretical result in the presence of actuator faults. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Monitoring and detection platform to prevent anomalous situations in home care.
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M
2014-06-05
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.
Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco
2007-10-15
Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.
Coordinating an Autonomous Earth-Observing Sensorweb
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth;
2006-01-01
A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.
Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.
2014-01-01
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853
Standard high-reliability integrated circuit logic packaging. [for deep space tracking stations
NASA Technical Reports Server (NTRS)
Slaughter, D. W.
1977-01-01
A family of standard, high-reliability hardware used for packaging digital integrated circuits is described. The design transition from early prototypes to production hardware is covered and future plans are discussed. Interconnections techniques are described as well as connectors and related hardware available at both the microcircuit packaging and main-frame level. General applications information is also provided.
Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram
2018-05-01
Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p < 0.05). Differences in iodine concentrations between healthy pancreatic tissue and carcinoma were statistically significant for DECT acquisitions corresponding to trigger delays of 15-21 s (p < 0.05). An acquisition window between 15 and 21 s after exceeding bolus tracking threshold shows promising results for acquisition of DECT iodine maps as an alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 3 continues the presentation of IOA worksheets and contains the potential critical items list, detailed analysis, and the NASA FMEA to IOA worksheet cross reference and recommendations.
Event and Pulse Node Hardware Design for Nuclear Fusion Experiments
NASA Astrophysics Data System (ADS)
Fortunato, J. C.; Batista, A.; Sousa, J.; Fernandes, H.; Varandas, C. A. F.
2008-04-01
This article presents an event and pulse node hardware module (EPN) developed for use in control and data acquisition (CODAC) in current and upcoming long discharges nuclear fusion experiments. Its purpose is to allow real time event management and trigger distribution. The use of a mixture of digital signal processing and field programmable gate arrays, with fiber optic channels for event broadcast between CODAC nodes, and short length paths between the EPN and CODAC hardware, allows an effective and low latency communication path. This hardware will be integrated in the ISTTOK CODAC to allow long AC plasma discharges.
Color image processing and object tracking workstation
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Paulick, Michael J.
1992-01-01
A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.
Design of efficient and simple interface testing equipment for opto-electric tracking system
NASA Astrophysics Data System (ADS)
Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao
2016-10-01
Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.
Studies on fast triggering and high precision tracking with Resistive Plate Chambers
NASA Astrophysics Data System (ADS)
Aielli, G.; Ball, R.; Bilki, B.; Chapman, J. W.; Cardarelli, R.; Dai, T.; Diehl, E.; Dubbert, J.; Ferretti, C.; Feng, H.; Francis, K.; Guan, L.; Han, L.; Hou, S.; Levin, D.; Li, B.; Liu, L.; Paolozzi, L.; Repond, J.; Roloff, J.; Santonico, R.; Song, H. Y.; Wang, X. L.; Wu, Y.; Xia, L.; Xu, L.; Zhao, T.; Zhao, Z.; Zhou, B.; Zhu, J.
2013-06-01
We report on studies of fast triggering and high precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV/c muon beam at CERN using glass RPCs with gas gaps of 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 μm using charge information and 287 μm only using signal arrival time information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking.
Digital tracking loops for a programmable digital modem
NASA Technical Reports Server (NTRS)
Poklemba, John J.
1992-01-01
In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.
NASA Astrophysics Data System (ADS)
Bianco, M.; Martoiu, S.; Sidiropoulou, O.; Zibell, A.
2015-12-01
A Micromegas (MM) quadruplet prototype with an active area of 0.5 m2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Software, a dedicated Micromegas segment has been implemented, in order to include the detector inside the main ATLAS DAQ partition. A full set of tests, on the hardware and software aspects, is presented.
Eye-Tracking Study of Complexity in Gas Law Problems
ERIC Educational Resources Information Center
Tang, Hui; Pienta, Norbert
2012-01-01
This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…
Hardware support for collecting performance counters directly to memory
Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.
2012-09-25
Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.
Real-time visual tracking of less textured three-dimensional objects on mobile platforms
NASA Astrophysics Data System (ADS)
Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2012-12-01
Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.
Event Reconstruction in the PandaRoot framework
NASA Astrophysics Data System (ADS)
Spataro, Stefano
2012-12-01
The PANDA experiment will study the collisions of beams of anti-protons, with momenta ranging from 2-15 GeV/c, with fixed proton and nuclear targets in the charm energy range, and will be built at the FAIR facility. In preparation for the experiment, the PandaRoot software framework is under development for detector simulation, reconstruction and data analysis, running on an Alien2-based grid. The basic features are handled by the FairRoot framework, based on ROOT and Virtual Monte Carlo, while the PANDA detector specifics and reconstruction code are implemented inside PandaRoot. The realization of Technical Design Reports for the tracking detectors has pushed the finalization of the tracking reconstruction code, which is complete for the Target Spectrometer, and of the analysis tools. Particle Identification algorithms are currently implemented using Bayesian approach and compared to Multivariate Analysis methods. Moreover, the PANDA data acquisition foresees a triggerless operation in which events are not defined by a hardware 1st level trigger decision, but all the signals are stored with time stamps requiring a deconvolution by the software. This has led to a redesign of the software from an event basis to a time-ordered structure. In this contribution, the reconstruction capabilities of the Panda spectrometer will be reported, focusing on the performances of the tracking system and the results for the analysis of physics benchmark channels, as well as the new (and challenging) concept of time-based simulation and its implementation.
Autonomous Visual Tracking of Stationary Targets Using Small Unmanned Aerial Vehicles
2004-06-01
59 Figure 43. Commanded and Actual Yaw Rates during Simulation ..................................60 Figure 44. Setup for Hardware In Loop Simulation...System with AVDS Figure 44. Setup for Hardware In Loop Simulation with AVDS and PerceptiVU 2. Test Conditions Simulations were conducted for the
The CMS electron and photon trigger for the LHC Run 2
NASA Astrophysics Data System (ADS)
Dezoort, Gage; Xia, Fan
2017-01-01
The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.
Tracking at High Level Trigger in CMS
NASA Astrophysics Data System (ADS)
Tosi, M.
2016-04-01
The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and lepton isolation. Reconstructed tracks are also used to distinguish the primary vertex, which identifies the hard interaction process, from the pileup ones. This task is particularly important in the LHC environment given the large number of interactions per bunch crossing: on average 25 in 2012, and expected to be around 40 in Run II. We will present the performance of HLT tracking algorithms, discussing its impact on CMS physics program, as well as new developments done towards the next data taking in 2015.
NASA Astrophysics Data System (ADS)
Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.
2018-03-01
A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Yoshihide
1989-04-01
A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.
Minitrack tracking function description, volume 2
NASA Technical Reports Server (NTRS)
Englar, T. S.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The minitrack tracking function is described and specific operations are identified. The subjects discussed are: (1) preprocessor listing, (2) minitrack hardware, (3) system calibration, (4) quadratic listing, and (5) quadratic flow diagram. Detailed information is provided on the construction of the tracking system and its operation. The calibration procedures are supported by mathematical models to show the application of the computer programs.
Shiloh, Ariel L; Lominadze, George; Gong, Michelle N; Savel, Richard H
2016-02-01
As a global effort toward improving patient safety, a specific area of focus has been the early recognition and rapid intervention in deteriorating ward patients. This focus on "failure to rescue" has led to the construction of early warning/track-and-trigger systems. In this review article, we present a description of the data behind the creation and implementation of such systems, including multiple algorithms and strategies for deployment. Additionally, the strengths and weaknesses of the various systems and their evaluation in the literature are emphasized. Despite the limitations of the current literature, the potential benefit of these early warning/track-and-trigger systems to improve patient outcomes remains significant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Delivery of Hardware for Syracuse University Faculty Loaner Program.
ERIC Educational Resources Information Center
Jares, Terry
This paper describes the Faculty Assistance and Computing Education Services (FACES) loaner program at Syracuse University and the method used by FACES staff to deliver and keep track of hardware, software, and documentation. The roles of the various people involved in the program are briefly discussed, i.e., the administrator, who handles the…
FPGA-based Trigger System for the Fermilab SeaQuest Experimentz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less
FPGA-based trigger system for the Fermilab SeaQuest experimentz
NASA Astrophysics Data System (ADS)
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin
2015-12-01
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.
FPGA-based Trigger System for the Fermilab SeaQuest Experimentz
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; ...
2015-09-10
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, SB; Cady, ST; Dominguez-Garcia, AD
This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less
Serrano-Gotarredona, Rafael; Oster, Matthias; Lichtsteiner, Patrick; Linares-Barranco, Alejandro; Paz-Vicente, Rafael; Gomez-Rodriguez, Francisco; Camunas-Mesa, Luis; Berner, Raphael; Rivas-Perez, Manuel; Delbruck, Tobi; Liu, Shih-Chii; Douglas, Rodney; Hafliger, Philipp; Jimenez-Moreno, Gabriel; Civit Ballcels, Anton; Serrano-Gotarredona, Teresa; Acosta-Jimenez, Antonio J; Linares-Barranco, Bernabé
2009-09-01
This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.
Development of the ZEUS central tracking detector
NASA Astrophysics Data System (ADS)
Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration
1989-11-01
The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.
2015-06-21
problem was detected . Protection elements were implemented to trigger on over- voltage , over-current, over/under-frequency, and zero-sequence voltage ...power hardware in the loop simulation of distribution networks with photovoltaic generation,” International Journal of Renewable Energy Research...source modules were intended to support both emulation of a representative gas turbine generator set, as well as a flexible, controllable voltage source
What triggers catch-up saccades during visual tracking?
de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe
2002-03-01
When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).
Color Image Processing and Object Tracking System
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.
1996-01-01
This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.
Construction and testing of a Scanning Laser Radar (SLR), phase 2
NASA Technical Reports Server (NTRS)
Flom, T.; Coombes, H. D.
1971-01-01
The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.
FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout
NASA Astrophysics Data System (ADS)
Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.
2016-02-01
The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.
NASA Technical Reports Server (NTRS)
West, R. S.
1975-01-01
The system is described as a computer-based system designed to track the status of problems and corrective actions pertinent to space shuttle hardware. The input, processing, output, and performance requirements of the system are presented along with standard display formats and examples. Operational requirements, hardware, requirements, and test requirements are also included.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers from the 1990 CAUSE Conference Track VII: Managing Applications and Technology are presented. Authors describe how colleges and universities are incorporating emerging technologies into their campus environments: hardware; software; and procedural techniques. Papers and their authors are as follows: "The Iowa Student Information…
Computer Simulation of a Multiaxis Air-to-Air Tracking Task Using the Optimal Pilot Control Model.
1982-12-01
v ABSTRACT ........ ............................. .. vi CHAPTER 1 - INTRODUCTION ....... ..................... 1 1.1 Motivation... Introduction ......... . 4 2.2 Optimal Pilot Control Model and Control Synthesis 4 2.3 Pitch Tracking Task ...... ................... 6 2.4 Multiaxis...CHAPTER 3 - SIMULATION SYSTEM ...... .................. 33 3.1 Introduction ........ ....................... 33 3.2 System Hardware
The deep space network. [tracking and communication support for space probes
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization of the deep space network are summarized. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. Interface support for the Mariner Venus Mercury 1973 flight and Pioneer 10 and 11 missions is included.
Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway
2016-09-01
Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5°), and low system latency (∼1.8ms, 0.32ms STD) at a relatively low-cost. Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Synchronous response modelling and control of an annular momentum control device
NASA Astrophysics Data System (ADS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-08-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
Synchronous response modelling and control of an annular momentum control device
NASA Technical Reports Server (NTRS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-01-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Takashi
A search for the pair production of supersymmetric partner of the top quark in scenario with R-parity violation is presented. The quantum number called R-parity distinguishes particles in standard model from supersymmetric particles. A scalar top quark (stop) is assumed to decay only via R p-violating supersymmetric coupling into tau lepton and b-quark. To collect events with multiple taus, a new special tau trigger (the lepton plus track trigger) is installed in Run II experiment of the Collider Detector at Fermilab (CDF). The goal of the lepton plus track trigger is to collect generic dilepton (ll, lτ, ττ) events withmore » lower p T threshold (8 GeV/c) and without prescale even at high luminosity. The Z → ττ event, where one τ-lepton decays leptonically and the other hadronically, is a good benchmark to calibrate the lepton plus track trigger and τ identification. The data sample of 72 pb -1, collected using the electron plus track trigger, contains clear a τ signal from Z → ττ events. The data used in stop search correspond to 200 pb -1. The lower stop mass bound of 134 GeV/c 2 at a 95% confidence level is obtained. This limit is also directly applicable to the case of the third generation scalar leptoquark (LQ 3) assuming a 100% branching for the LQ 3 → τb decay mode.« less
ATLAS level-1 calorimeter trigger: Run-2 performance and Phase-1 upgrades
NASA Astrophysics Data System (ADS)
Carlson, Ben; Hong, Tae Min; Atlas Collaboration
2017-01-01
The Run-2 performance and Phase-1 upgrade are presented for the hardware-based level-1 calorimeter trigger (L1Calo) for the ATLAS Experiment. This trigger has a latency of about 2.2 microseconds to make a decision to help ATLAS select about 100 kHz of the most interesting collisions from the nominal LHC rate of 40 MHz. We summarize the upgrade after Run-1 (2009-2012) and discuss its performance in Run-2 (2015-current). We also outline the on-going Phase-1 upgrade for the next run (2021-2024) and its expected performance.
NASA Astrophysics Data System (ADS)
Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.
2016-06-01
We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.
VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,
In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1975-01-01
Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
Renfroe, Michael B.; Mcdonald, Edward J.; Bradshaw, Kimberly
1988-01-01
The Logistics Asset Tracking System (LATS) devised by NASA contains data on Space Shuttle LRUs that are daily updated to reflect such LRU status changes as repair due to failure or modification due to changing engineering requirements. The implementation of LATS has substantially increased personnel responsiveness, preventing costly delays in Space Shuttle processing and obviating hardware cannibalization. An evaluation is presented of LATS achievements in the direction of an integrated logistical support posture.
Hardware Implementation of Maximum Power Point Tracking for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Maganga, Othman; Phillip, Navneesh; Burnham, Keith J.; Montecucco, Andrea; Siviter, Jonathan; Knox, Andrew; Simpson, Kevin
2014-06-01
This work describes the practical implementation of two maximum power point tracking (MPPT) algorithms, namely those of perturb and observe, and extremum seeking control. The proprietary dSPACE system is used to perform hardware in the loop (HIL) simulation whereby the two control algorithms are implemented using the MATLAB/Simulink (Mathworks, Natick, MA) software environment in order to control a synchronous buck-boost converter connected to two commercial thermoelectric modules. The process of performing HIL simulation using dSPACE is discussed, and a comparison between experimental and simulated results is highlighted. The experimental results demonstrate the validity of the two MPPT algorithms, and in conclusion the benefits and limitations of real-time implementation of MPPT controllers using dSPACE are discussed.
Some issues related to simulation of the tracking and communications computer network
NASA Technical Reports Server (NTRS)
Lacovara, Robert C.
1989-01-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
System Enhancements for Mechanical Inspection Processes
NASA Technical Reports Server (NTRS)
Hawkins, Myers IV
2011-01-01
Quality inspection of parts is a major component to any project that requires hardware implementation. Keeping track of all of the inspection jobs is essential to having a smooth running process. By using HTML, the programming language ColdFusion, and the MySQL database, I created a web-based job management system for the 170 Mechanical Inspection Group that will replace the Microsoft Access based management system. This will improve the ways inspectors and the people awaiting inspection view and keep track of hardware as it is in the inspection process. In the end, the management system should be able to insert jobs into a queue, place jobs in and out of a bonded state, pre-release bonded jobs, and close out inspection jobs.
Some issues related to simulation of the tracking and communications computer network
NASA Astrophysics Data System (ADS)
Lacovara, Robert C.
1989-12-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging
Fox, Matthew S.; Gaudet, Jeffrey M.; Foster, Paula J.
2015-01-01
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements. PMID:27042089
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
NASA Technical Reports Server (NTRS)
1977-01-01
A Deep Space Network progress report is presented dealing with in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System
NASA Astrophysics Data System (ADS)
Krennrich, F.; Anderson, J.; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Haberichter, W.; Imran, A.; Krawczynski, H.; Kreps, A.; Schroedter, M.; Smith, A.
2008-12-01
Next generation ground based γ-ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50-100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.
Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition
NASA Astrophysics Data System (ADS)
Khayat, Omid; Afarideh, Hossein
2013-04-01
Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.
A novel approach to Hough Transform for implementation in fast triggers
NASA Astrophysics Data System (ADS)
Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi
2016-10-01
Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.
Wireless GPS-based phase-locked synchronization system for outdoor environment.
Meyer, Frédéric; Bahr, Alexander; Lochmatter, Thomas; Borrani, Fabio
2012-01-03
Synchronization of data coming from different sources is of high importance in biomechanics to ensure reliable analyses. This synchronization can either be performed through hardware to obtain perfect matching of data, or post-processed digitally. Hardware synchronization can be achieved using trigger cables connecting different devices in many situations; however, this is often impractical, and sometimes impossible in outdoors situations. The aim of this paper is to describe a wireless system for outdoor use, allowing synchronization of different types of - potentially embedded and moving - devices. In this system, each synchronization device is composed of: (i) a GPS receiver (used as time reference), (ii) a radio transmitter, and (iii) a microcontroller. These components are used to provide synchronized trigger signals at the desired frequency to the measurement device connected. The synchronization devices communicate wirelessly, are very lightweight, battery-operated and thus very easy to set up. They are adaptable to every measurement device equipped with either trigger input or recording channel. The accuracy of the system was validated using an oscilloscope. The mean synchronization error was found to be 0.39 μs and pulses are generated with an accuracy of <2 μs. The system provides synchronization accuracy about two orders of magnitude better than commonly used post-processing methods, and does not suffer from any drift in trigger generation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Triggering soft bombs at the LHC
Knapen, Simon; Griso, Simone Pagan; Papucci, Michele; ...
2017-08-18
Very high multiplicity, spherically-symmetric distributions of soft particles, with p T ~ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such ‘soft bomb’ events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a ‘belt of fire’: a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy ormore » lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for ‘Higgs bombs’ triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.« less
Triggering soft bombs at the LHC
NASA Astrophysics Data System (ADS)
Knapen, Simon; Griso, Simone Pagan; Papucci, Michele; Robinson, Dean J.
2017-08-01
Very high multiplicity, spherically-symmetric distributions of soft particles, with p T ˜ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such `soft bomb' events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a `belt of fire': a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy or lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for `Higgs bombs' triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.
Triggering soft bombs at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapen, Simon; Griso, Simone Pagan; Papucci, Michele
Very high multiplicity, spherically-symmetric distributions of soft particles, with p T ~ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such ‘soft bomb’ events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a ‘belt of fire’: a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy ormore » lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for ‘Higgs bombs’ triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.« less
Downlink Acquisition and Tracking Procedures for the ASCAMP Satellite Communications Terminal
1993-09-14
ACQUISITION AND TRACKING PROCEDURES FOR THE ASCAMP SATELLITE COMMUNICATIONS TERMINAL R.J. FIGUCIA Group 66 DM QUAIrTY INPECTED S Accesion For NTIS CRAMI...accuracy of 50 ns for clock drifts up to 100 ns/s. 1 ne spatial tracking procedure sustains a 0.250 accuraci for a typical geosynchronous orbit and is...Fishman, Private communication (15 June 1990). 2. G. Gorski-Popiel, " Architecture of ASCAMP digital hardware," 1991 IEEE MiW. Commun. Conf. Rec., 1110-1116
Hybrid tracking and control system for computer-aided retinal surgery
NASA Astrophysics Data System (ADS)
Ferguson, R. D.; Wright, Cameron H. G.; Rylander, Henry G., III; Welch, Ashley J.; Barrett, Steven F.
1996-05-01
We describe initial experimental results of a new hybrid digital and analog design for retinal tracking and laser beam control. Initial results demonstrate tracking rates which exceed the equivalent of 50 degrees per second in the eye, with automatic lesion pattern creation and robust loss of lock detection. Robotically assisted laser surgery to treat conditions such as diabetic retinopathy, macular degeneration, and retinal tears can now be realized under clinical conditions with requisite safety using standard video hardware and inexpensive optical components.
Research and development of the laser tracker measurement system
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.
2013-01-01
The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. The IOA product for the Communication and Tracking consisted of 1,108 failure mode worksheets that resulted in 298 critical items being identified. Comparison was made to the NASA baseline which consists of 697 FMEAs and 239 CIL items. The comparison determined if there were any results which had been found by IOA but were not in the NASA baseline. This comparison produced agreement on all but 407 FMEAs which caused differences in 294 CIL items. Volume 1 contains the subsystem description, assessment results, ground rules and assumptions, and some of the IOA worksheets.
Effect of GNSS receiver carrier phase tracking loops on earthquake monitoring performance
NASA Astrophysics Data System (ADS)
Clare, Adam; Lin, Tao; Lachapelle, Gérard
2017-06-01
This research focuses on the performance of GNSS receiver carrier phase tracking loops for early earthquake monitoring systems. An earthquake was simulated using a hardware simulator and position, velocity and acceleration displacements were obtained to recreate the dynamics of the 2011 Tohoku earthquake. Using a software defined receiver, GSNRx, tracking bandwidths of 5, 10, 15, 20, 30, 40 and 50 Hz along with integration times of 1, 5 and 10 ms were tested. Using the phase lock indicator, an adaptive tracking loop was designed and tested to maximize performance for this application.
Clinical implementation of target tracking by breathing synchronized delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang
2006-11-15
Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of targetmore » tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.« less
Real-time lens distortion correction: speed, accuracy and efficiency
NASA Astrophysics Data System (ADS)
Bax, Michael R.; Shahidi, Ramin
2014-11-01
Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.
Space station communications and tracking equipment management/control system
NASA Technical Reports Server (NTRS)
Kapell, M. H.; Seyl, J. W.
1982-01-01
Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.
NASA Astrophysics Data System (ADS)
Foster, B.; Heath, G. P.; Llewellyn, T. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P. M.; Khatri, T.; McArthur, I. C.; Morawitz, P.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D. B.; Carter, R. C.; Jeffs, M. D.; Morrissey, M. C.; Quinton, S. P. H.; Lane, J. B.; Postranecky, M.
1993-05-01
The Central Tracking Detector of the ZEUS experiment employs a time difference technique to measure the z coordinate of each hit. The method provides fast, three-dimensional space point measurements which are used as input to all levels of the ZEUS trigger. Such a tracking trigger is essential in order to discriminate against events with vertices lying outside the nominal electron-proton interaction region. Since the beam crossing interval of the HERA collider is 96 ns, all data must be pipelined through the front-end readout electronics. Subsequent data aquisition employs a novel technique which utilizes a network of approximately 120 INMOS transputers to process the data in parallel. The z-by-timing method and its data aquisition have been employed successfully in recording and reconstructing tracks from electron-proton interactions in ZEUS.
L1 track triggers for ATLAS in the HL-LHC
Lipeles, E.
2012-01-01
The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volumemore » exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.« less
[Track and trigger systems in Denmark - small country, great variations].
Lønnee, Mads; Bukan, Ramin Brandt; Waldau, Tina; Møller, Ann Merete; Bukan, Katrine Brandt
2018-05-07
A track and trigger (TAT) system and mobile emergency team (MET) can aid observation and care for admitted patients in the hospital ward. We have examined the literature and find evidence, though not strong, that the introduction of TAT and MET systems reduce hospital mortality. However, in Denmark, many different TAT systems are used, and several hospitals do not have MET. We believe, that a standardised national TAT system could encourage interregional research and the investigation of system compliance, cost-benefit and impact on intensive care unit admissions.
Use of GPUs in Trigger Systems
NASA Astrophysics Data System (ADS)
Lamanna, Gianluca
In recent years the interest for using graphics processor (GPU) in general purpose high performance computing is constantly rising. In this paper we discuss the possible use of GPUs to construct a fast and effective real time trigger system, both in software and hardware levels. In particular, we study the integration of such a system in the NA62 trigger. The first application of GPUs for rings pattern recognition in the RICH will be presented. The results obtained show that there are not showstoppers in trigger systems with relatively low latency. Thanks to the use of off-the-shelf technology, in continous development for purposes related to video game and image processing market, the architecture described would be easily exported to other experiments, to build a versatile and fully customizable online selection.
The ATLAS Level-1 Calorimeter Trigger: PreProcessor implementation and performance
NASA Astrophysics Data System (ADS)
Åsman, B.; Achenbach, R.; Allbrooke, B. M. M.; Anders, G.; Andrei, V.; Büscher, V.; Bansil, H. S.; Barnett, B. M.; Bauss, B.; Bendtz, K.; Bohm, C.; Bracinik, J.; Brawn, I. P.; Brock, R.; Buttinger, W.; Caputo, R.; Caughron, S.; Cerrito, L.; Charlton, D. G.; Childers, J. T.; Curtis, C. J.; Daniells, A. C.; Davis, A. O.; Davygora, Y.; Dorn, M.; Eckweiler, S.; Edmunds, D.; Edwards, J. P.; Eisenhandler, E.; Ellis, K.; Ermoline, Y.; Föhlisch, F.; Faulkner, P. J. W.; Fedorko, W.; Fleckner, J.; French, S. T.; Gee, C. N. P.; Gillman, A. R.; Goeringer, C.; Hülsing, T.; Hadley, D. R.; Hanke, P.; Hauser, R.; Heim, S.; Hellman, S.; Hickling, R. S.; Hidvégi, A.; Hillier, S. J.; Hofmann, J. I.; Hristova, I.; Ji, W.; Johansen, M.; Keller, M.; Khomich, A.; Kluge, E.-E.; Koll, J.; Laier, H.; Landon, M. P. J.; Lang, V. S.; Laurens, P.; Lepold, F.; Lilley, J. N.; Linnemann, J. T.; Müller, F.; Müller, T.; Mahboubi, K.; Martin, T. A.; Mass, A.; Meier, K.; Meyer, C.; Middleton, R. P.; Moa, T.; Moritz, S.; Morris, J. D.; Mudd, R. D.; Narayan, R.; zur Nedden, M.; Neusiedl, A.; Newman, P. R.; Nikiforov, A.; Ohm, C. C.; Perera, V. J. O.; Pfeiffer, U.; Plucinski, P.; Poddar, S.; Prieur, D. P. F.; Qian, W.; Rieck, P.; Rizvi, E.; Sankey, D. P. C.; Schäfer, U.; Scharf, V.; Schmitt, K.; Schröder, C.; Schultz-Coulon, H.-C.; Schumacher, C.; Schwienhorst, R.; Silverstein, S. B.; Simioni, E.; Snidero, G.; Staley, R. J.; Stamen, R.; Stock, P.; Stockton, M. C.; Tan, C. L. A.; Tapprogge, S.; Thomas, J. P.; Thompson, P. D.; Thomson, M.; True, P.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Weber, P.; Wessels, M.; Wiglesworth, C.; Williams, S. L.
2012-12-01
The PreProcessor system of the ATLAS Level-1 Calorimeter Trigger (L1Calo) receives about 7200 analogue signals from the electromagnetic and hadronic components of the calorimetric detector system. Lateral division results in cells which are pre-summed to so-called Trigger Towers of size 0.1 × 0.1 along azimuth (phi) and pseudorapidity (η). The received calorimeter signals represent deposits of transverse energy. The system consists of 124 individual PreProcessor modules that digitise the input signals for each LHC collision, and provide energy and timing information to the digital processors of the L1Calo system, which identify physics objects forming much of the basis for the full ATLAS first level trigger decision. This paper describes the architecture of the PreProcessor, its hardware realisation, functionality, and performance.
NASA Technical Reports Server (NTRS)
1980-01-01
The functions and facilities of the Deep Space Network are considered. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported.
NASA Technical Reports Server (NTRS)
1979-01-01
Progress is reported in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. The functions and facilities of the Deep Space Network are emphasized.
The Level 0 Pixel Trigger system for the ALICE experiment
NASA Astrophysics Data System (ADS)
Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project
2007-01-01
The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.
Hardware for dynamic quantum computing experiments: Part I
NASA Astrophysics Data System (ADS)
Johnson, Blake; Ryan, Colm; Riste, Diego; Donovan, Brian; Ohki, Thomas
Static, pre-defined control sequences routinely achieve high-fidelity operation on superconducting quantum processors. Efforts toward dynamic experiments depending on real-time information have mostly proceeded through hardware duplication and triggers, requiring a combinatorial explosion in the number of channels. We provide a hardware efficient solution to dynamic control with a complete platform of specialized FPGA-based control and readout electronics; these components enable arbitrary control flow, low-latency feedback and/or feedforward, and scale far beyond single-qubit control and measurement. We will introduce the BBN Arbitrary Pulse Sequencer 2 (APS2) control system and the X6 QDSP readout platform. The BBN APS2 features: a sequencer built around implementing short quantum gates, a sequence cache to allow long sequences with branching structures, subroutines for code re-use, and a trigger distribution module to capture and distribute steering information. The X6 QDSP features a single-stage DSP pipeline that combines demodulation with arbitrary integration kernels, and multiple taps to inspect data flow for debugging and calibration. We will show system performance when putting it all together, including a latency budget for feedforward operations. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Contract No. W911NF-10-1-0324.
NASA Technical Reports Server (NTRS)
1979-01-01
A report is given of the Deep Space Networks progress in (1) flight project support, (2) tracking and data acquisition research and technology, (3) network engineering, (4) hardware and software implementation, and (5) operations.
Development of Shanghai satellite laser ranging station
NASA Technical Reports Server (NTRS)
Yang, Fu-Min; Tan, De-Tong; Xiao, Chi-Kun; Chen, Wan-Zhen; Zhang, J.-H.; Zhang, Z.-P.; Lu, Wen-Hu; Hu, Z.-Q.; Tang, W.-F.; Chen, J.-P.
1993-01-01
The topics covered include the following: improvement of the system hardware; upgrading of the software; the observation status; preliminary daylight tracking capability; testing the new type of laser; and future plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-01-01
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.
Khachatryan, Vardan
2017-01-24
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less
RPC based 5D tracking concept for high multiplicity tracking trigger
NASA Astrophysics Data System (ADS)
Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Distante, L.; Liberti, B.; Paolozzi, L.; Pastori, E.; Santonico, R.
2017-01-01
The recently approved High Luminosity LHC project (HL-LHC) and the future colliders proposals present a challenging experimental scenario, dominated by high pileup, radiation background and a bunch crossing time possibly shorter than 5 ns. This holds as well for muon systems, where RPCs can play a fundamental role in the design of the future experiments. The RPCs, thanks to their high space-time granularity, allows a sparse representation of the particle hits, in a very large parametric space containing, in addition to 3D spatial localization, also the pulse time and width associated to the avalanche charge. This 5D representation of the hits can be exploited to improve the performance of complex detectors such as muon systems and increase the discovery potential of a future experiment, by allowing a better track pileup rejection and sharper momentum resolution, an effective measurement of the particle velocity, to tag and trigger the non-ultrarelativistic particles, and the detection local multiple track events in close proximity without ambiguities. Moreover, due to the fast response, typically for RPCs of the order of a few ns, this information can be provided promptly to the lowest level trigger. We will discus theoretically and experimentally the principles and performance of this original method.
NASA Astrophysics Data System (ADS)
Li, Jun-Wei; Cao, Jun-Wei
2010-04-01
One challenge in large-scale scientific data analysis is to monitor data in real-time in a distributed environment. For the LIGO (Laser Interferometer Gravitational-wave Observatory) project, a dedicated suit of data monitoring tools (DMT) has been developed, yielding good extensibility to new data type and high flexibility to a distributed environment. Several services are provided, including visualization of data information in various forms and file output of monitoring results. In this work, a DMT monitor, OmegaMon, is developed for tracking statistics of gravitational-wave (OW) burst triggers that are generated from a specific OW burst data analysis pipeline, the Omega Pipeline. Such results can provide diagnostic information as reference of trigger post-processing and interferometer maintenance.
Bar Coding and Tracking in Pathology.
Hanna, Matthew G; Pantanowitz, Liron
2016-03-01
Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. Copyright © 2016 Elsevier Inc. All rights reserved.
Standard-M mobile satellite terminal employing electronic beam squint tracking
NASA Technical Reports Server (NTRS)
Hawkins, G. J.; Beach, M. A.; Hilton, G. S.
1990-01-01
In recent years, extensive experience has been built up at the University of Bristol in the use of the Electronic Beam Squint (EBS) tracking technique, applied to large earth station facilities. The current interest in land mobile satellite terminals, using small tracking antennas, has prompted the investigation of the applicability of the EBS technique to this environment. The development of an L-band mechanically steered vehicle antenna is presented. A description of the antenna is followed by a detailed investigation of the tracking environment and its implications on the error detection capability of the system. Finally, the overall hardware configuration is described along with plans for future work.
Bar Coding and Tracking in Pathology.
Hanna, Matthew G; Pantanowitz, Liron
2015-06-01
Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mudgway, D. J.; Traxler, M. R.
1977-01-01
Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.
FPGA based data processing in the ALICE High Level Trigger in LHC Run 2
NASA Astrophysics Data System (ADS)
Engel, Heiko; Alt, Torsten; Kebschull, Udo;
2017-10-01
The ALICE High Level Trigger (HLT) is a computing cluster dedicated to the online compression, reconstruction and calibration of experimental data. The HLT receives detector data via serial optical links into FPGA based readout boards that process the data on a per-link level already inside the FPGA and provide it to the host machines connected with a data transport framework. FPGA based data pre-processing is enabled for the biggest detector of ALICE, the Time Projection Chamber (TPC), with a hardware cluster finding algorithm. This algorithm was ported to the Common Read-Out Receiver Card (C-RORC) as used in the HLT for RUN 2. It was improved to handle double the input bandwidth and adjusted to the upgraded TPC Readout Control Unit (RCU2). A flexible firmware implementation in the HLT handles both the old and the new TPC data format and link rates transparently. Extended protocol and data error detection, error handling and the enhanced RCU2 data ordering scheme provide an improved physics performance of the cluster finder. The performance of the cluster finder was verified against large sets of reference data both in terms of throughput and algorithmic correctness. Comparisons with a software reference implementation confirm significant savings on CPU processing power using the hardware implementation. The C-RORC hardware with the cluster finder for RCU1 data is in use in the HLT since the start of RUN 2. The extended hardware cluster finder implementation for the RCU2 with doubled throughput is active since the upgrade of the TPC readout electronics in early 2016.
Issa, Kimona; Pierce, Todd P; Gwam, Chukwuweieke; Goljan, Peter; Festa, Anthony; Scillia, Anthony J; Mont, Michael A
2017-07-01
Airport security measures continue to be updated with the incorporation of the new body scanners and automatic target recognition software. The purpose of this study was analyze the incidence of: (1) triggering the security alarm; (2) extra security searches; (3) perceived inconvenience; and (4) presence of other surgical hardware in those who underwent total knee arthroplasty (TKA) and passed through airport security. A questionnaire was given to 125 consecutive patients with a TKA. Those who passed through airport security after January 2014 were considered for inclusion. A questionnaire was administered that addressed the number of encounters with airport security, metal detector activation, additional screening procedures, and perceived inconvenience. Out of the 125 patients, 53 met inclusion criteria. Out of the 53 patients, 20 (38%) reported that their prosthesis triggered a metal detector. Out of the 20 patients, 8 (40%) who reported triggering of metal detectors also reported the presence of surgical hardware elsewhere in the body. Eighteen of the 53 patients (34%) believed having a TKA was inconvenient for airplane travel. Compared with the historical cohort, alarms were triggered in 70 of 97 patients ( p = 0.0001) and 50 of 97 reported inconvenience when traveling ( n = 50 of 97 patients; p = 0.04). The incidences of those who underwent TKA triggering alarms and perceiving inconvenience when passing through airport security have decreased from previously published studies. This is most likely due to the recent updates and modifications to screening. As these security measures are modified and implant designs continue to evolve, this is an area of investigation that should continue. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Ryan E.; Barrett, Brian W.; Pedretti, Kevin
The Portals reference implementation is based on the Portals 4.X API, published by Sandia National Laboratories as a freely available public document. It is designed to be an implementation of the Portals Networking Application Programming Interface and is used by several other upper layer protocols like SHMEM, GASNet and MPI. It is implemented over existing networks, specifically Ethernet and InfiniBand networks. This implementation provides Portals networks functionality and serves as a software emulation of Portals compliant networking hardware. It can be used to develop software using the Portals API prior to the debut of Portals networking hardware, such as Bull’smore » BXI interconnect, as well as a substitute for portals hardware on development platforms that do not have Portals compliant hardware. The reference implementation provides new capabilities beyond that of a typical network, namely the ability to have messages matched in hardware in a way compatible with upper layer software such as MPI or SHMEM. It also offers methods of offloading network operations via triggered operations, which can be used to create offloaded collective operations. Specific details on the Portals API can be found at http://portals4.org.« less
Electro-optic tracking R&D for defense surveillance
NASA Astrophysics Data System (ADS)
Sutherland, Stuart; Woodruff, Chris J.
1995-09-01
Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.
Muon Trigger for Mobile Phones
NASA Astrophysics Data System (ADS)
Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.
2017-10-01
The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.
From alarm systems to smart houses.
Vlaskamp, F J
1992-01-01
The percentage of senior citizens in the Netherlands will rise in coming years. The expected percentage for the year 2010 of persons over age 65 in the total population is 15%. More persons over age 65 than ever before will continue to live in their own environment. Emergency response systems (ERS) can support independent living. The most common type of organization distributing ERS is a small, partly subsidized local alarm organization run by a social welfare office for the elderly. Government subsidy has been reduced in recent years which has motivated small organizations to join together into larger regional organizations in order to get a more solid financial base. On the other hand new semi-commercial and commercial organizations have come into being. These developments are part of the growing importance of home care, leading to more medical applications of ERS. User satisfaction with ERS is high. Portable triggers can enhance the effectiveness of the system. However, many users do not wear the portable trigger when feeling well. Future technical developments will result in multifunctionality of ERS-devices. In the long term the hardware of today will be integrated in a multimedia home terminal replacing the telephone. The portable trigger will remain the only specific hardware at home for ERS.
N-CET: Network-Centric Exploitation and Tracking
2009-10-01
DATES COVERED (From - To) October 2008 – August 2009 4 . TITLE AND SUBTITLE N-CET: NETWORK – CENTRIC EXPLOITATION AND TRACKING 5a. CONTRACT NUMBER...At the core of N-CET are information management services that decouple data producers and consumers , allowing reconfiguration to suit mission needs...Shown around the head-node are different pieces of hardware including the Sony PlayStation R©3 (PS3) nodes used for computationally demanding tasks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Jonatan Piedra
2005-04-21
The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the Bmore » $$0\\atop{s}$$ → D$$-\\atop{s}$$π + signature is of paramount importance in the measurement of the Δm s mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the Δm s measurement; and measuring the B$$0\\atop{d}$$ mixing frequency in a B → Dπ sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb -1 collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.« less
Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1983-01-01
The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.
Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design
DOT National Transportation Integrated Search
1977-06-01
Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...
Skylab Earth Resource Experiment Package critical design review. [conference
NASA Technical Reports Server (NTRS)
1973-01-01
An outline of the conference for reviewing the design of the EREP is presented. Systems design for review include: tape recorder, support equipment, view finder/tracking, support hardware, and control and display panel.
2006-11-08
Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing
2006-11-16
Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing
Gamma ray energy tracking in GRETINA
NASA Astrophysics Data System (ADS)
Lee, I. Y.
2011-10-01
The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in March 2011, and extensive engineering runs were carried out using radioactive sources, and beams from the 88-Inch Cyclotron at LBNL. The data obtained will be used to optimize its performance. Then the first scientific campaign will start in March 2012 at NSCL MSU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
1996-05-01
The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less
NASA Astrophysics Data System (ADS)
Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam
2018-06-01
This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.
OpenCV and TYZX : video surveillance for tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jim; Spencer, Andrew; Chu, Eric
2008-08-01
As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less
Research and design of portable photoelectric rotary table data-acquisition and analysis system
NASA Astrophysics Data System (ADS)
Yang, Dawei; Yang, Xiufang; Han, Junfeng; Yan, Xiaoxu
2015-02-01
Photoelectric rotary table as the main test tracking measurement platform, widely use in shooting range and aerospace fields. In the range of photoelectric tracking measurement system, in order to meet the photoelectric testing instruments and equipment of laboratory and field application demand, research and design the portable photoelectric rotary table data acquisition and analysis system, and introduces the FPGA device based on Xilinx company Virtex-4 series and its peripheral module of the system hardware design, and the software design of host computer in VC++ 6.0 programming platform and MFC package based on class libraries. The data acquisition and analysis system for data acquisition, display and storage, commission control, analysis, laboratory wave playback, transmission and fault diagnosis, and other functions into an organic whole, has the advantages of small volume, can be embedded, high speed, portable, simple operation, etc. By photoelectric tracking turntable as experimental object, carries on the system software and hardware alignment, the experimental results show that the system can realize the data acquisition, analysis and processing of photoelectric tracking equipment and control of turntable debugging good, and measurement results are accurate, reliable and good maintainability and extensibility. The research design for advancing the photoelectric tracking measurement equipment debugging for diagnosis and condition monitoring and fault analysis as well as the standardization and normalization of the interface and improve the maintainability of equipment is of great significance, and has certain innovative and practical value.
SOFIA tracking image simulation
NASA Astrophysics Data System (ADS)
Taylor, Charles R.; Gross, Michael A. K.
2016-09-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) tracking camera simulator is a component of the Telescope Assembly Simulator (TASim). TASim is a software simulation of the telescope optics, mounting, and control software. Currently in its fifth major version, TASim is relied upon for telescope operator training, mission planning and rehearsal, and mission control and science instrument software development and testing. TASim has recently been extended for hardware-in-the-loop operation in support of telescope and camera hardware development and control and tracking software improvements. All three SOFIA optical tracking cameras are simulated, including the Focal Plane Imager (FPI), which has recently been upgraded to the status of a science instrument that can be used on its own or in parallel with one of the seven infrared science instruments. The simulation includes tracking camera image simulation of starfields based on the UCAC4 catalog at real-time rates of 4-20 frames per second. For its role in training and planning, it is important for the tracker image simulation to provide images with a realistic appearance and response to changes in operating parameters. For its role in tracker software improvements, it is vital to have realistic signal and noise levels and precise star positions. The design of the software simulation for precise subpixel starfield rendering (including radial distortion), realistic point-spread function as a function of focus, tilt, and collimation, and streaking due to telescope motion will be described. The calibration of the simulation for light sensitivity, dark and bias signal, and noise will also be presented
History dependence in insect flight decisions during odor tracking.
Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne
2018-02-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
History dependence in insect flight decisions during odor tracking
van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A.; Fairhall, Adrienne
2018-01-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, “infotaxis”, in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking. PMID:29432454
NASA Astrophysics Data System (ADS)
Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet
2017-01-01
In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.
2015-03-27
i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year
Interplex modulation and a suppressed-carrier tracking loop for coherent communications systems
NASA Technical Reports Server (NTRS)
Butman, S.; Timor, U.
1974-01-01
Simple addition to hardware and new mode of operation of transmitter and receiver in coherent, PCM/PSK/PM configuration greatly improves channel efficiency. Procedure reduces amount of power lost to intermodulation products.
Installation and Test of Doppler Acoustic Sensor
DOT National Transportation Integrated Search
1977-12-01
This report presents details of the installation of a Doppler acoustic vortex sensing system at JFK Runway 31R, the hardware and software improvements made since installation, vortex diagnostic and tracking data and analysis, and conclusions and reco...
Implementation of a sensor guided flight algorithm for target tracking by small UAS
NASA Astrophysics Data System (ADS)
Collins, Gaemus E.; Stankevitz, Chris; Liese, Jeffrey
2011-06-01
Small xed-wing UAS (SUAS) such as Raven and Unicorn have limited power, speed, and maneuverability. Their missions can be dramatically hindered by environmental conditions (wind, terrain), obstructions (buildings, trees) blocking clear line of sight to a target, and/or sensor hardware limitations (xed stare, limited gimbal motion, lack of zoom). Toyon's Sensor Guided Flight (SGF) algorithm was designed to account for SUAS hardware shortcomings and enable long-term tracking of maneuvering targets by maintaining persistent eyes-on-target. SGF was successfully tested in simulation with high-delity UAS, sensor, and environment models, but real- world ight testing with 60 Unicorn UAS revealed surprising second order challenges that were not highlighted by the simulations. This paper describes the SGF algorithm, our rst round simulation results, our second order discoveries from ight testing, and subsequent improvements that were made to the algorithm.
NASA Technical Reports Server (NTRS)
Davis, V. Leon; Nordeen, Ross
1988-01-01
A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.
Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K
2008-01-01
A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.
Enabling image fusion for a CT guided needle placement robot
NASA Astrophysics Data System (ADS)
Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.
2017-03-01
Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.
Karkar, Ravi; Schroeder, Jessica; Epstein, Daniel A; Pina, Laura R; Scofield, Jeffrey; Fogarty, James; Kientz, Julie A; Munson, Sean A; Vilardaga, Roger; Zia, Jasmine
2017-05-02
Diagnostic self-tracking, the recording of personal information to diagnose or manage a health condition, is a common practice, especially for people with chronic conditions. Unfortunately, many who attempt diagnostic self-tracking have trouble accomplishing their goals. People often lack knowledge and skills needed to design and conduct scientifically rigorous experiments, and current tools provide little support. To address these shortcomings and explore opportunities for diagnostic self-tracking, we designed, developed, and evaluated a mobile app that applies a self-experimentation framework to support patients suffering from irritable bowel syndrome (IBS) in identifying their personal food triggers. TummyTrials aids a person in designing, executing, and analyzing self-experiments to evaluate whether a specific food triggers their symptoms. We examined the feasibility of this approach in a field study with 15 IBS patients, finding that participants could use the tool to reliably undergo a self-experiment. However, we also discovered an underlying tension between scientific validity and the lived experience of self-experimentation. We discuss challenges of applying clinical research methods in everyday life, motivating a need for the design of self-experimentation systems to balance rigor with the uncertainties of everyday life.
Large scale systems : a study of computer organizations for air traffic control applications.
DOT National Transportation Integrated Search
1971-06-01
Based on current sizing estimates and tracking algorithms, some computer organizations applicable to future air traffic control computing systems are described and assessed. Hardware and software problem areas are defined and solutions are outlined.
Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa
2012-04-01
We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics
Airborne optical tracking control system design study
NASA Astrophysics Data System (ADS)
1992-09-01
The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.
Lin, Hao-Ting
2017-06-04
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.
Lin, Hao-Ting
2017-01-01
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally. PMID:28587220
The TOTEM DAQ based on the Scalable Readout System (SRS)
NASA Astrophysics Data System (ADS)
Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio
2018-02-01
The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.
Physical instrumental vetoes for gravitational-wave burst triggers
NASA Astrophysics Data System (ADS)
Ajith, P.; Hewitson, M.; Smith, J. R.; Grote, H.; Hild, S.; Strain, K. A.
2007-08-01
We present a robust strategy to veto certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave detectors. This veto method is “physical” in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be transferred to the detector output (channel H) using the transfer function from X to H, provided the noise coupling is linear and the transfer function is unique. If a nonstationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the null stream constructed from channel H and the transferred channel X, and the second involves cross correlating the two. We demonstrate the efficiency of the veto by “injecting” instrumental glitches in the hardware of the GEO 600 detector. The veto safety is demonstrated by performing gravitational-wave like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.
JTAG-based remote configuration of FPGAs over optical fibers
Deng, B.; Xu, H.; Liu, C.; ...
2015-01-28
In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.
Readout and Trigger for the AFP Detector at the ATLAS Experiment at LHC
NASA Astrophysics Data System (ADS)
Korcyl, K.; Kocian, M.; Lopez Paz, I.; Avoni, G.
2017-10-01
The ATLAS Forward Proton is a new detector system in ATLAS that allows study of events with protons scattered at very small angles. The final design assumes four stations at distances of 205 and 217 m from the ATLAS interaction point on both sides of the detector exploiting the Roman Pot technology. In 2016 two stations in one arm were installed; installation of the other two is planned for 2017. This article describes details of the installed hardware, firmware and software leading to the full integration with the ATLAS central trigger and data acquisition systems.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, Mohammed Omair
2012-01-01
Our simulation was able to mimic the results of 30 tests on the actual hardware. This shows that simulations have the potential to enable early design validation - well before actual hardware exists. Although simulations focused around data processing procedures at subsystem and device level, they can also be applied to system level analysis to simulate mission scenarios and consumable tracking (e.g. power, propellant, etc.). Simulation engine plug-in developments are continually improving the product, but handling time for time-sensitive operations (like those of the remote engineering unit and bus controller) can be cumbersome.
Mechanisms that improve referential access*
Gernsbacher, Morton Ann
2015-01-01
Two mechanisms, suppression and enhancement, are proposed to improve referential access. Enhancement improves the accessibility of previously mentioned concepts by increasing or boosting their activation; suppression improves concepts’ accessibility by decreasing or dampening the activation of other concepts. Presumably, these mechanisms are triggered by the informational content of anaphors. Six experiments investigated this proposal by manipulating whether an anaphoric reference was made with a very explicit, repeated name anaphor or a less explicit pronoun. Subjects read sentences that introduced two participants in their first clauses, for example, “Ann predicted that Pam would lose the track race,” and the sentences referred to one of the two participants in their second clauses, “but Pam/she came in first very easily.” While subjects read each sentence, the activation level of the two participants was measured by a probe verification task. The first two experiments demonstrated that explicit, repeated name anaphors immediately trigger the enhancement of their own antecedents and immediately trigger the suppression of other (nonantecedent) participants. The third experiment demonstrated that less explicit, pronoun anaphors also trigger the suppression of other nonantecedents, but they do so less quickly—even when, as in the fourth experiment, the semantic information to identify their antecedents occurs prior to the pronouns (e.g., “Ann predicted that Pam would lose the track race. But after winning the race, she …”). The fifth experiment demonstrated that more explicit pronouns – pronouns that match the gender of only one participant—trigger suppression more powerfully. A final experiment demonstrated that it is not only rementioned participants who improve their referential access by triggering the suppression of other participants; newly introduced participants do so too (e.g., “Ann predicted that Pam would lose the track race, but Kim …”). Thus, both suppression and enhancement improve referential access, and the contribution of these two mechanisms is a function of explicitness. The role of these two mechanisms in mediating other referential access phenomena is also discussed. PMID:2752708
Active eye-tracking for an adaptive optics scanning laser ophthalmoscope
Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin
2015-01-01
We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370
Dithering Digital Ripple Correlation Control for Photovoltaic Maximum Power Point Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, C; Pilawa-Podgurski, RCN
This study demonstrates a new method for rapid and precise maximum power point tracking in photovoltaic (PV) applications using dithered PWM control. Constraints imposed by efficiency, cost, and component size limit the available PWM resolution of a power converter, and may in turn limit the MPP tracking efficiency of the PV system. In these scenarios, PWM dithering can be used to improve average PWM resolution. In this study, we present a control technique that uses ripple correlation control (RCC) on the dithering ripple, thereby achieving simultaneous fast tracking speed and high tracking accuracy. Moreover, the proposed method solves some ofmore » the practical challenges that have to date limited the effectiveness of RCC in solar PV applications. We present a theoretical derivation of the principles behind dithering digital ripple correlation control, as well as experimental results that show excellent tracking speed and accuracy with basic hardware requirements.« less
NASA Astrophysics Data System (ADS)
Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.
2014-07-01
A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.
Ivancevic, Marko K; Kwee, Thomas C; Takahara, Taro; Ogino, Tetsuo; Hussain, Hero K; Liu, Peter S; Chenevert, Thomas L
2009-11-01
To assess the feasibility of TRacking Only Navigator echo (TRON) for diffusion-weighted magnetic resonance imaging (DWI) of the liver at 3.0T. Ten volunteers underwent TRON, respiratory triggered, and free breathing DWI of the liver at 3.0 Tesla (T). Scan times were measured. Image sharpness, degree of stair-step and stripe artifacts for the three methods were assessed by two observers. Mean scan times of TRON and respiratory triggered DWI relative to free breathing DWI were 34% and 145% longer respectively. In four of eight comparisons (two observers, two b-values, two slice orientations), TRON DWI image sharpness was significantly better than free breathing DWI, but inferior to respiratory triggered DWI. In two of four comparisons (two observers, two b-values), degree of stair-step artifacts in TRON DWI was significantly lower than in respiratory triggered DWI. Degree of stripe artifacts between the three methods was not significantly different. DWI of the liver at 3.0T using TRON is feasible. Image sharpness in TRON DWI is superior to that in free breathing DWI. Although image sharpness of respiratory triggered DWI is still better, TRON DWI requires less scan time and reduces stair-step artifacts.
Development of a beam test telescope based on the Alibava readout system
NASA Astrophysics Data System (ADS)
Marco-Hernández, R.
2011-01-01
A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectrónica (CNM) of Barcelona and Instituto de Física Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.
Autonomous target tracking of UAVs based on low-power neural network hardware
NASA Astrophysics Data System (ADS)
Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe
2014-05-01
Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.
The minitrack tracking function description, volume 1
NASA Technical Reports Server (NTRS)
Englar, T. S., Jr.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The treatment of tracking data by the Minitrack system is described from the transmission of the nominal 136-MHz radio beacon energy from a satellite and the reception of this signal by the interferometer network through the ultimate derivation of the direction cosines (the angular coordinates of the vector from the tracking station to the spacecraft) as a function of time. Descriptions of some of the lesser-known functions operating on the system, such as the computer preprocessing program, are included. A large part of the report is devoted to the preprocessor, which provides for the data compression, smoothing, calibration correction, and ambiguity resolution of the raw interferometer phase tracking measurements teletyped from each of the worldwide Minitrack tracking stations to the central computer facility at Goddard Space Flight Center. An extensive bibliography of Minitrack hardware and theory is presented.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
Wireless tracking of cotton modules. Part I: Automatic message triggering
USDA-ARS?s Scientific Manuscript database
The ability to map profit across a cotton field would enable producers to see where money is being made or lost on their farms and to implement precise field management practices to ensure the highest return possible on each portion of a field. To this end, a wireless module-tracking system was rec...
More About The Video Event Trigger
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1996-01-01
Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.
The artificial retina processor for track reconstruction at the LHC crossing rate
Abba, A.; Bedeschi, F.; Citterio, M.; ...
2015-03-16
We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency.
Research in Application of Geodetic GPS Receivers in Time Synchronization
NASA Astrophysics Data System (ADS)
Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.
2018-04-01
In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least 2 common-view satellites for each tracking period when the elevation angle is 30°. Data processing used precise GPS satellite ephemeris, double-frequency P-code combination observations without ionosphere effects and the correction of the Black troposphere Delay Model. the weighted average of all common-viewed GPS satellites in the same tracking period is taken by weighting the root-mean-square error of each satellite, finally a time comparison data between two stations is obtained, and then the time synchronization result between the two stations (PTB and USNO) is obtained. It can be seen from the analysis of time synchronization result that the root mean square error of REFSV (the difference between the local frequency standard at the mid-point of the actual tracking length and the tracked satellite time in unit of 0.1 ns) shows a linear change within one day, However the jump occurs when jumping over the day which is mainly caused by satellites position being changed due to the interpolation of two-day precise satellite ephemeris across the day. the overall trend of time synchronization result is declining and tends to be stable within a week-long time. We compared the time synchronization results (without considering the hardware delay correction) with those published by the International Bureau of Weights and Measures (BIPM), and the comparing result from a week earlier shows that the trend is same but there is a systematic bias which was mainly caused by hardware delays of geodetic GPS receiver. Regardless of the hardware delay, the comparing result is about between 102 ns and 106 ns. the vast majority of the difference within 2 ns but the difference of individual moment does not exceed 4ns when taking into account the systemic bias which mainly caused by hardware delay. Therefore, it is feasible to use the geodetic GPS receiver to achieve the time synchronization result in nanosecond order between two stations which separated by thousands kilometers, and multi-channel geodetic GPS receivers have obvious advantages over single-channel geodetic GPS receivers in the number of common-viewing satellites. In order to obtain higher precision (e.g sub-nanosecond order) time synchronization results, we shall take account into carrier phase observations, hardware delay ,and more error-influencing factors should be considered such as troposphere delay correction, multipath effects, and hardware delays changes due to temperature changes.
Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade
NASA Astrophysics Data System (ADS)
MATSUSHITA, Takashi;
2017-10-01
The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.
Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system
NASA Astrophysics Data System (ADS)
Petrila, Diana; Muntean, Nicolae
2012-09-01
This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.
Geometric error characterization and error budgets. [thematic mapper
NASA Technical Reports Server (NTRS)
Beyer, E.
1982-01-01
Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.
Optoelectronics research for communication programs at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1991-01-01
Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.
NASA Technical Reports Server (NTRS)
Begault, D. R.; Wenzel, E. M.; Anderson, M. R.
2001-01-01
A study of sound localization performance was conducted using headphone-delivered virtual speech stimuli, rendered via HRTF-based acoustic auralization software and hardware, and blocked-meatus HRTF measurements. The independent variables were chosen to evaluate commonly held assumptions in the literature regarding improved localization: inclusion of head tracking, individualized HRTFs, and early and diffuse reflections. Significant effects were found for azimuth and elevation error, reversal rates, and externalization.
The ALICE Transition Radiation Detector: Construction, operation, and performance
NASA Astrophysics Data System (ADS)
Alice Collaboration
2018-02-01
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang
2014-07-03
Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.
System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies
NASA Technical Reports Server (NTRS)
Newlands, D. M.
1973-01-01
Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).
Telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
charged tracks or associated with photons or neutral hadrons. Hardware effort: A Digital Hadron fine segmentation, the energy resolution for single hadrons is preserved with a simple digital readout Physics Division Digital Hadron Calorimeter with RPCs (US effort) CALICE Collaboration American Linear
Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms
NASA Astrophysics Data System (ADS)
Taylor, Brian Kyle
The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.
Hardware test program for evaluation of baseline range/range rate sensor concept
NASA Technical Reports Server (NTRS)
1985-01-01
The Hardware Test Program for evaluation of the baseline range/range rate sensor concept was initiated 11 September 1984. This ninth report covers the period 12 May through 11 June 1885. A contract amendment adding a second phase has extended the Hardware Test Program through 10 December 1985. The objective of the added program phase is to establish range and range measurement accuracy and radar signature characteristics for a typical spacecraft target. Phase I of the Hardware Test Program was designed to reduce the risks associated with the Range/Range Rate (R/R) Sensor baseline design approach. These risks are associated with achieving the sensor performance required for the two modes of operation, the Interrupted CW (ICW) mode for initial acquisition and tracking to close-in ranges, and the CW mode, providing coverage during the final docking maneuver. The risks associated with these modes of operation have to do with the realization of adequate sensitivity to operate to their individual maximum ranges.
Calibration of large area Micromegas detectors using cosmic rays
NASA Astrophysics Data System (ADS)
Biebel, O.; Flierl, B.; Herrmann, M.; Hertenberger, R.; Klitzner, F.; Lösel, P.; Müller, R.; Valderanis, C.; Zibell, A.
2017-06-01
Currently m2-sized micropattern detectors with spatial resolution better than 100 μm and online trigger capability are of big interest for many experiments. Large size in combination with superb spatial resolution and trigger capability implicates that the construction of these detectors is highly sophisticated and imposes strict mechanical tolerances. We developed a method to survey assembled and working detectors on potential deviations of the micro pattern readout structures from design value as well as deformations of the whole detector, using cosmic muons in a tracking facility. The LMU Cosmic Ray Facility consists of two 8 m2 ATLAS Monitored Drift Tube chambers (MDT) for precision muon reference tracking and two segmented trigger hodoscopes with sub-ns time-resolution and additional 10 cm position information along the wires of the MDTs. It provides information on homogeneity in efficiency and pulse height of one or several micropattern detectors installed in between the MDTs. With an angular acceptance of -30° to +30° the comparison of the reference muon tracking with centroidal position determination or time projection chamber like track reconstruction in the micropattern detector allows for calibration in three dimensions. We present results of a m2-sized one-dimensional resistive strip Micromegas detector consisting of two readout boards with in total 2048 strips, read out by 16 APV25 front-end boards. This 16-fold segmentation along the precision direction in combination with a 10-fold segmentation in orthogonal direction by the resolution of the trigger hodoscope, allows for very detailed analysis of the 1 m2 detector under study by subdivision into 160 partitions, each being analyzed separately. We are able to disentangle deviations from the readout strip straightness and global deformation due to the small overpressure caused by the Ar:CO2 (93:7) gas mixture flux. We introduce the alignment and calibration procedure, report on homogeneity in efficiency and pulse height and present results on deformation and performance of the m2-sized Micromegas.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zhai, Wanming; Chen, Zhaowei
2018-05-01
The dynamic performance of the railway vehicles and the guiding tracks is mainly governed by the wheel-rail interactions, particularly in cases of track irregularities. In this work, a united model was developed to investigate the track portions subject to violent wheel/rail forces triggered by track irregularities at middle-low frequencies. In the modeling procedures, a time-frequency unification method combining wavelet transform and Wigner-Ville distribution for characterizing time-frequency characteristics of track irregularities and a three-dimensional nonlinear model for describing vehicle-track interaction signatures were developed and coupled, based on which the method for predicting track portions subject to deteriorated wheel/rail forces was proposed. The theoretical models developed in this paper were comprehensively validated by numerical investigations. The significance of this present study mainly lies on offering a new path to establish correlation and realize mutual prediction between track irregularity and railway system dynamics.
The deep space network, volume 15
NASA Technical Reports Server (NTRS)
1973-01-01
The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.
The telecommunications and data acquisition report
NASA Technical Reports Server (NTRS)
Renzetti, N. A.
1980-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
Functional design specification for the problem data system. [space shuttle
NASA Technical Reports Server (NTRS)
Boatman, T. W.
1975-01-01
The purpose of the Functional Design Specification is to outline the design for the Problem Data System. The Problem Data System is a computer-based data management system designed to track the status of problems and corrective actions pertinent to space shuttle hardware.
The Deep Space Network, volume 39
NASA Technical Reports Server (NTRS)
1977-01-01
The functions, facilities, and capabilities of the Deep Space Network and its support of the Pioneer, Helios, and Viking missions are described. Progress in tracking and data acquisition research and technology, network engineering and modifications, as well as hardware and software implementation and operations are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
Mechanical confinement triggers glioma linear migration dependent on formin FHOD3
Monzo, Pascale; Chong, Yuk Kien; Guetta-Terrier, Charlotte; Krishnasamy, Anitha; Sathe, Sharvari R.; Yim, Evelyn K. F.; Ng, Wai Hoe; Ang, Beng Ti; Tang, Carol; Ladoux, Benoit; Gauthier, Nils C.; Sheetz, Michael P.
2016-01-01
Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3–10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50–400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration. PMID:26912794
Theorem Proving In Higher Order Logics
NASA Technical Reports Server (NTRS)
Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene
2002-01-01
The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.
NASA Technical Reports Server (NTRS)
Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.
2012-01-01
A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.
Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy; Niffte Collaboration
2015-10-01
Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.
Construction and Design of a full size sTGC prototype for the ATLAS New Small Wheel upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For the forthcoming Phase-I upgrade to the LHC (2018/19), the first station of the ATLAS muon end-cap system, Small Wheel, will need to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. In particular, the precision reconstruction of tracks requires a spatial resolution of about 100 μm, and the Level-1 trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The NSW will have two chamber technologies, one primarily devoted tomore » the Level-1 trigger function the small-strip Thin Gap Chambers (sTGC) and one dedicated to precision tracking, Micromegas detectors, (MM). The single sTGC planes of a quadruplet consists of an anode layer of 50 μm gold plated tungsten wire sandwiched between two resistive cathode layers. Behind one of the resistive cathode layers, a PCB with precise machined strips (thus the name sTGC's) spaced every 3.2 mm allows to achieve the position resolution that ranges from 70 to 150 μm, depending on the incident particle angle. Behind the second cathode, a PCB that contains an arrangement of pads, allows for a fast coincidence between successive sTGC layers to tag the passage of a track and reads only the corresponding strips for triggering. To be able to profit from the high accuracy of each of the sTGC planes for trigger purposes, their relative geometrical position between planes has to be controlled to within a precision of about 40 μm in their parallelism, as well (due to the various incident angles), to within a precision of 80 μm in the relative distance between the planes to achieve the overall angular resolution of 1 mrad. The needed accuracy in the position and parallelism of the strips is achieved by machining brass inserts together when machining the strip patterns into the cathode boards in a single step. The inserts can then be used as external references on a granite table. Precision methods are used to maintain high accuracy when combining four single detector gaps first into two doublets and then into a quadruplet. We will present results on the ongoing construction of full size (∼1 x 1 m) sTGC quadruplet prototypes before full construction starts in 2015. (authors)« less
Postflight hardware evaluation 360T026 (RSRM-26, STS-47)
NASA Technical Reports Server (NTRS)
Nielson, Greg
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T026 (STS-47) Redesigned Solid Rocket Motor (RSRM) flight set is provided. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64203), represents a summary of the 360T026 hardware evaluation. The as-flown hardware configuration is documented in TWR-60472. Disassembly evaluation photograph numbers are logged in TWA-1987. The 360T026 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 12 April 1993. Detailed evaluations were performed in accordance with the Clearfield Postflight Engineering Evaluation Plan (PEEP), TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.
Spares Management : Optimizing Hardware Usage for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Gulbrandsen, K. A.
1999-01-01
The complexity of the Space Shuttle Main Engine (SSME), combined with mounting requirements to reduce operations costs have increased demands for accurate tracking, maintenance, and projections of SSME assets. The SSME Logistics Team is developing an integrated asset management process. This PC-based tool provides a user-friendly asset database for daily decision making, plus a variable-input hardware usage simulation with complex logic yielding output that addresses essential asset management issues. Cycle times on critical tasks are significantly reduced. Associated costs have decreased as asset data quality and decision-making capability has increased.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Zheng, Steven; Suaning, Gregg J
2014-01-01
Simulated prosthetic vision (SPV) in normally sighted subjects is an established way of investigating the prospective efficacy of visual prosthesis designs in visually guided tasks such as mobility. To perform meaningful SPV mobility studies in computer-based environments, a credible representation of both the virtual scene to navigate and the experienced artificial vision has to be established. It is therefore prudent to make optimal use of existing hardware and software solutions when establishing a testing framework. The authors aimed at improving the realism and immersion of SPV by integrating state-of-the-art yet low-cost consumer technology. The feasibility of body motion tracking to control movement in photo-realistic virtual environments was evaluated in a pilot study. Five subjects were recruited and performed an obstacle avoidance and wayfinding task using either keyboard and mouse, gamepad or Kinect motion tracking. Walking speed and collisions were analyzed as basic measures for task performance. Kinect motion tracking resulted in lower performance as compared to classical input methods, yet results were more uniform across vision conditions. The chosen framework was successfully applied in a basic virtual task and is suited to realistically simulate real-world scenes under SPV in mobility research. Classical input peripherals remain a feasible and effective way of controlling the virtual movement. Motion tracking, despite its limitations and early state of implementation, is intuitive and can eliminate between-subject differences due to familiarity to established input methods.
The CMS High Level Trigger System: Experience and Future Development
NASA Astrophysics Data System (ADS)
Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.
2012-12-01
The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.
An extensive air shower trigger station for the Muon Portal detector
NASA Astrophysics Data System (ADS)
Riggi, F.; Blancato, A. A.; La Rocca, P.; Riggi, S.; Santagati, G.
2014-11-01
The Muon Portal project (
Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.
Schuster, Benjamin S; Ensign, Laura M; Allan, Daniel B; Suk, Jung Soo; Hanes, Justin
2015-08-30
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful. Copyright © 2015 Elsevier B.V. All rights reserved.
Considerations for multiple hypothesis correlation on tactical platforms
NASA Astrophysics Data System (ADS)
Thomas, Alan M.; Turpen, James E.
2013-05-01
Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.
Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS
NASA Astrophysics Data System (ADS)
Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.
2016-01-01
There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 1035 cm-2s-1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards.
Miller, Brian S; Calderan, Susannah; Gillespie, Douglas; Weatherup, Graham; Leaper, Russell; Collins, Kym; Double, Michael C
2016-03-01
Directional frequency analysis and recording (DIFAR) sonobuoys can allow real-time acoustic localization of baleen whales for underwater tracking and remote sensing, but limited availability of hardware and software has prevented wider usage. These software limitations were addressed by developing a module in the open-source software PAMGuard. A case study is presented demonstrating that this software provides greater efficiency and accessibility than previous methods for detecting, localizing, and tracking Antarctic blue whales in real time. Additionally, this software can easily be extended to track other low and mid frequency sounds including those from other cetaceans, pinnipeds, icebergs, shipping, and seismic airguns.
Lasercom system architecture with reduced complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)
1994-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
LaserCom System Architecture With Reduced Complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)
1996-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association
NASA Astrophysics Data System (ADS)
Malkoff, Donald B.
1997-07-01
The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.
ERIC Educational Resources Information Center
McLawhorn, Kerry
2001-01-01
Explains how the Scotland County School District in Laurinburg, North Carolina, tackled the problem of controlling building and room keys for fifteen K-12 schools and 7,000 students by marrying a computerized records management system for key tracking with a patented hardware system that produces keys that can't be duplicated. (GR)
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
The ALICE Transition Radiation Detector: Construction, operation, and performance
Acharya, S; Adam, J; Adamova, D; ...
2017-09-21
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less
From Heavy-Ion Collisions to Quark Matter (2/3)
Lourenco, C.
2018-05-23
The art of experimental (high-energy heavy-ion) physics 1) many experimental issues are crucial to properly understand the measurements and derive a correct physics interpretation: Acceptance and phase space windows; Efficiencies (of track reconstruction, vertexing, track matching, trigger, etc); Resolutions (of mass, momenta, energies, etc); Backgrounds, feed-downs and "expected sources"; Data selection; Monte Carlo adjustments, calibrations and smearing; luminosity and trigger conditions; Evaluation of systematic uncertainties, and several others. 2) "New Physics" often appears as excesses or suppressions with respect to "normal baselines", which must be very carefully established, on the basis of "reference" physics processes and collision systems. If we misunderstand these issues we can miss an important discovery...or we can "discover" non-existent "new physics."
The ALICE Transition Radiation Detector: Construction, operation, and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S; Adam, J; Adamova, D
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less
GPU-accelerated track reconstruction in the ALICE High Level Trigger
NASA Astrophysics Data System (ADS)
Rohr, David; Gorbunov, Sergey; Lindenstruth, Volker;
2017-10-01
ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is an online compute farm which reconstructs events measured by the ALICE detector in real-time. The most compute-intensive part is the reconstruction of particle trajectories called tracking and the most important detector for tracking is the Time Projection Chamber (TPC). The HLT uses a GPU-accelerated algorithm for TPC tracking that is based on the Cellular Automaton principle and on the Kalman filter. The GPU tracking has been running in 24/7 operation since 2012 in LHC Run 1 and 2. In order to better leverage the potential of the GPUs, and speed up the overall HLT reconstruction, we plan to bring more reconstruction steps (e.g. the tracking for other detectors) onto the GPUs. There are several tasks running so far on the CPU that could benefit from cooperation with the tracking, which is hardly feasible at the moment due to the delay of the PCI Express transfers. Moving more steps onto the GPU, and processing them on the GPU at once, will reduce PCI Express transfers and free up CPU resources. On top of that, modern GPUs and GPU programming APIs provide new features which are not yet exploited by the TPC tracking. We present our new developments for GPU reconstruction, both with a focus on the online reconstruction on GPU for the online offline computing upgrade in ALICE during LHC Run 3, and also taking into account how the current HLT in Run 2 can profit from these improvements.
Computer hardware for radiologists: Part 2
Indrajit, IK; Alam, A
2010-01-01
Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future. PMID:21423895
Computer hardware for radiologists: Part 2.
Indrajit, Ik; Alam, A
2010-11-01
Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future.
Time Triggered Protocol (TTP) for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard
2006-01-01
Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.
Trajectory control of robot manipulators with closed-kinematic chain mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy
1987-01-01
The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.
Optical communication for space missions
NASA Technical Reports Server (NTRS)
Firtmaurice, M.
1991-01-01
Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.
Shape and texture fused recognition of flying targets
NASA Astrophysics Data System (ADS)
Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás
2011-06-01
This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).
Market Research Kristen.Ardani@nrel.gov | 303-384-6461 Kristen is a Solar Program Lead focusing on efforts to reduce soft costs and transfer emerging technologies to market. Her areas of expertise include solar market analysis, PV system price-tracking, and non-hardware cost-reduction strategies. Research
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
NASA Technical Reports Server (NTRS)
Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.
2016-01-01
The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.
Rolls, A E; Maurel, B; Davis, M; Constantinou, J; Hamilton, G; Mastracci, T M
2016-09-01
Fusion of three-dimensional (3D) computed tomography and intraoperative two-dimensional imaging in endovascular surgery relies on manual rigid co-registration of bony landmarks and tracking of hardware to provide a 3D overlay (hardware-based tracking, HWT). An alternative technique (image-based tracking, IMT) uses image recognition to register and place the fusion mask. We present preliminary experience with an agnostic fusion technology that uses IMT, with the aim of comparing the accuracy of overlay for this technology with HWT. Data were collected prospectively for 12 patients. All devices were deployed using both IMT and HWT fusion assistance concurrently. Postoperative analysis of both systems was performed by three blinded expert observers, from selected time-points during the procedures, using the displacement of fusion rings, the overlay of vascular markings and the true ostia of renal arteries. The Mean overlay error and the deviation from mean error was derived using image analysis software. Comparison of the mean overlay error was made between IMT and HWT. The validity of the point-picking technique was assessed. IMT was successful in all of the first 12 cases, whereas technical learning curve challenges thwarted HWT in four cases. When independent operators assessed the degree of accuracy of the overlay, the median error for IMT was 3.9 mm (IQR 2.89-6.24, max 9.5) versus 8.64 mm (IQR 6.1-16.8, max 24.5) for HWT (p = .001). Variance per observer was 0.69 mm(2) and 95% limit of agreement ±1.63. In this preliminary study, the error of magnitude of displacement from the "true anatomy" during image overlay in IMT was less than for HWT. This confirms that ongoing manual re-registration, as recommended by the manufacturer, should be performed for HWT systems to maintain accuracy. The error in position of the fusion markers for IMT was consistent, thus may be considered predictable. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares
2018-02-01
We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink(R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2015-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
Continuous fractional-order Zero Phase Error Tracking Control.
Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan
2018-04-01
A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Hardware system of X-wave generator with simple driving pulses
NASA Astrophysics Data System (ADS)
Li, Xu; Li, Yaqin; Xiao, Feng; Ding, Mingyue; Yuchi, Ming
2013-03-01
The limited diffraction beams such as X-wave have the properties of larger depth of field. Thus, it has the potential to generate ultra-high frame rate ultrasound images. However, in practice, the real-time generation of X-wave ultrasonic field requires complex and high-cost system, especially the precise and specific voltage time distribution part for the excitation of each distinct array element. In order to simplify the hardware realization of X-wave, based on the previous works, X-wave excitation signals were decomposed and expressed as the superposition of a group of simple driving pulses, such as rectangular and triangular waves. The hardware system for the X-wave generator was also designed. The generator consists of a computer for communication with the circuit, universal serial bus (USB) based micro-controller unit (MCU) for data transmission, field programmable gate array (FPGA) based Direct Digital Synthesizer(DDS), 12-bit digital-to-analog (D/A) converter and a two stage amplifier.The hardware simulation results show that the designed system can generate the waveforms at different radius approximating the theoretical X-wave excitations with a maximum error of 0.49% triggered by the quantification of amplitude data.
NASA Astrophysics Data System (ADS)
Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert
2017-03-01
Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.
Design of a ``Digital Atlas Vme Electronics'' (DAVE) module
NASA Astrophysics Data System (ADS)
Goodrick, M.; Robinson, D.; Shaw, R.; Postranecky, M.; Warren, M.
2012-01-01
ATLAS-SCT has developed a new ATLAS trigger card, 'Digital Atlas Vme Electronics' (``DAVE''). The unit is designed to provide a versatile array of interface and logic resources, including a large FPGA. It interfaces to both VME bus and USB hosts. DAVE aims to provide exact ATLAS CTP (ATLAS Central Trigger Processor) functionality, with random trigger, simple and complex deadtime, ECR (Event Counter Reset), BCR (Bunch Counter Reset) etc. being generated to give exactly the same conditions in standalone running as experienced in combined runs. DAVE provides additional hardware and a large amount of free firmware resource to allow users to add or change functionality. The combination of the large number of individually programmable inputs and outputs in various formats, with very large external RAM and other components all connected to the FPGA, also makes DAVE a powerful and versatile FPGA utility card.
NASA Technical Reports Server (NTRS)
Kubicko, Richard M.; Bingham, Lindy
1995-01-01
Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.
Electronics design of the airborne stabilized platform attitude acquisition module
NASA Astrophysics Data System (ADS)
Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni
2014-02-01
We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.
Final postflight hardware evaluation report RSRM-28 (STS-53)
NASA Technical Reports Server (NTRS)
Starrett, William David, Jr.
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the RSRM-28 (STS-53) RSRM flight set is presented. All observed hardware conditions were documented on PFOR's and are included in Appendices A through C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64215), represents a summary of the RSRM-28 hardware evaluation. The as-flown hardware configuration is documented in TWR-63638. Disassembly evaluation photograph numbers are logged in TWA-1989. The RSRM-28 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on July 15, 1993. Additional time was required to perform the evaluation of the stiffener rings per special issue 4.1.5.2 because of the washout schedule. The release of this report was after completion of all special issues per program management direction. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable team and tracked through the PFAR system.
HiCAT Software Infrastructure: Safe hardware control with object oriented Python
NASA Astrophysics Data System (ADS)
Moriarty, Christopher; Brooks, Keira; Soummer, Remi
2018-01-01
High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.
NASA Technical Reports Server (NTRS)
Williams, David E.
2003-01-01
The assembly complete Environmental Control and Life Support (ECLS) s ystem for the International Space Station (ISS) will consist of compo nents and subsystems in both the U.S. and International partner eleme nts which together will perform the functions of Temperature and Hum idity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detect ion and Suppression (FDS), and Vacuum System (VS) for the station. D ue to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems , beginning with estimates during the hardware development phase thr ough measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS syste m hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics. ..
NASA Technical Reports Server (NTRS)
Williams, David E.
2004-01-01
The Core Complete Environmental Control and Life Support (ECLS) System for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the addition of future U.S. ECLS system hardware to get to Core Complete is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.
Status of the Boeing Dish Engine Critical Component Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, H.W.; Diver, R.B.; Nelving, H.
1999-01-08
The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less
Status of the Boeing Dish Engine Critical Component project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, K.W.; Nelving, H.; Braun, H.W.
1999-07-01
The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnel Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time. Generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnel Douglas/United Stirling AB/Southern California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less
Automated Planning for a Deep Space Communications Station
NASA Technical Reports Server (NTRS)
Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve
1999-01-01
This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.
Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Henderson, Steve
2005-01-01
Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers
NASA Astrophysics Data System (ADS)
Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok
2018-04-01
In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.
Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.
Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara
2016-09-01
Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.
The deep space network, volume 12
NASA Technical Reports Server (NTRS)
1972-01-01
Progress in the development of the DSN is reported along with TDA research and technology, network engineering, hardware, and software implementation. Included are descriptions of the DSN function and facilities, Helios mission support, Mariner Venus/Mercury 1973 mission support, Viking mission support, tracking and ground-based navigation, communications, network control and data processing, and deep space stations.
Active Voodoo Dolls: A Vision Based Input Device for Nonrigid Control.
1998-08-01
A vision based technique for nonrigid control is presented that can be used for animation and video game applications. The user grasps a soft...allowing the user to control it interactively. Our use of texture mapping hardware in tracking makes the system responsive enough for interactive animation and video game character control.
NASA Technical Reports Server (NTRS)
1983-01-01
Various parameters of the orbital space station are discussed. The space station environment, data management system, communication and tracking, environmental control, and life support system are considered. Specific topics reviewed include crew work stations, restraint systems, stowage, computer hardware, and expert systems.
New tracking implementation in the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Bryant, Scott H.
2001-01-01
As part of the Network Simplification Project, the tracking system of the Deep Space Network is being upgraded. This upgrade replaces the discrete logic sequential ranging system with a system that is based on commercial Digital Signal Processor boards. The new implementation allows both sequential and pseudo-noise types of ranging. The other major change is a modernization of the data formatting. Previously, there were several types of interfaces, delivering both intermediate data and processed data (called 'observables'). All of these interfaces were bit-packed blocks, which do not allow for easy expansion, and many of these interfaces required knowledge of the specific hardware implementations. The new interface supports four classes of data: raw (direct from the measuring equipment), derived (the observable data), interferometric (multiple antenna measurements), and filtered (data whose values depend on multiple measurements). All of the measurements are reported at the sky frequency or phase level, so that no knowledge of the actual hardware is required. The data is formatted into Standard Formatted Data Units, as defined by the Consultative Committee for Space Data Systems, so that expansion and cross-center usage is greatly enhanced.
Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J
2015-09-22
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.
Shuttle S-band communications technical concepts
NASA Technical Reports Server (NTRS)
Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.
1985-01-01
Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.
Yang, Fan; Paindavoine, M
2003-01-01
This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P.; Zelikowsky, Moriel; Navonne, Santiago G.; Perona, Pietro; Anderson, David J.
2015-01-01
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123
NASA Astrophysics Data System (ADS)
Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.
2017-02-01
The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.
Accelerated 4D self-gated MRI of tibiofemoral kinematics.
Mazzoli, Valentina; Schoormans, Jasper; Froeling, Martijn; Sprengers, Andre M; Coolen, Bram F; Verdonschot, Nico; Strijkers, Gustav J; Nederveen, Aart J
2017-11-01
Anatomical (static) magnetic resonance imaging (MRI) is the most useful imaging technique for the evaluation and assessment of internal derangement of the knee, but does not provide dynamic information and does not allow the study of the interaction of the different tissues during motion. As knee pain is often only experienced during dynamic tasks, the ability to obtain four-dimensional (4D) images of the knee during motion could improve the diagnosis and provide a deeper understanding of the knee joint. In this work, we present a novel approach for dynamic, high-resolution, 4D imaging of the freely moving knee without the need for external triggering. The dominant knee of five healthy volunteers was scanned during a flexion/extension task. To evaluate the effects of non-uniform motion and poor coordination skills on the quality of the reconstructed images, we performed a comparison between fully free movement and movement instructed by a visual cue. The trigger signal for self-gating was extracted using principal component analysis (PCA), and the images were reconstructed using a parallel imaging and compressed sensing reconstruction pipeline. The reconstructed 4D movies were scored for image quality and used to derive bone kinematics through image registration. Using our method, we were able to obtain 4D high-resolution movies of the knee without the need for external triggering hardware. The movies obtained with and without instruction did not differ significantly in terms of image scoring and quantitative values for tibiofemoral kinematics. Our method showed to be robust for the extraction of the self-gating signal even for uninstructed motion. This can make the technique suitable for patients who, as a result of pain, may find it difficult to comply exactly with instructions. Furthermore, bone kinematics can be derived from accelerated MRI without the need for additional hardware for triggering. Copyright © 2017 John Wiley & Sons, Ltd.
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.
Quesada, Luis; León, Alejandro J
2012-10-01
Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.
Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, JT; Park, S; Chen, CL
2013-03-01
We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott
We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less
Seasonal movements and environmental triggers to fall migration of Sage Sparrows
Fesenmyer, K.A.; Knick, S.T.
2011-01-01
Post-breeding ecology of shrubland passerines prior to onset of migration is unknown relative to dynamics of breeding areas. We radiomarked and monitored 38 Sage Sparrows (Amphispiza belli ssp. nevadensis) at one site in Oregon and two in Nevada from September to mid-November 2007 to track local movements, estimate seasonal range sizes, and characterize weather patterns triggering onset of migration. Median area used by Sage Sparrows monitored between 3 and 18 days during or prior to migration was 14 ha; maximum daily movement was 15 km. Radio-marked Sage Sparrows at each location departed individually, rather than en masse, corresponding with passage of cold front weather systems. Conventional telemetry techniques limited our ability to monitor Sage Sparrows beyond pre-migratory periods and precluded detecting and tracking actual movements during migration. ?? 2011 by the Wilson Ornithological Society.
Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.
Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animalmore » tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.« less
Avionics-compatible video facial cognizer for detection of pilot incapacitation.
Steffin, Morris
2006-01-01
High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.
Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments
NASA Astrophysics Data System (ADS)
Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael
2017-06-01
The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.
Muir, Dylan R; Kampa, Björn M
2014-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.
Muir, Dylan R.; Kampa, Björn M.
2015-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614
NASA Technical Reports Server (NTRS)
Bell, David; Estabrook, Polly; Romer, Richard
1995-01-01
A system for global inventory control of electronically tagged military hardware is achievable using a LEO satellite constellation. An equipment Tag can communicate directly to the satellite with a power of 5 watts or less at a data rate of 2400 to 50,000 bps. As examples, two proposed commercial LEO systems, IRIDIUM and ORBCOMM, are both capable of providing global coverage but with dramatically different telecom capacities. Investigation of these two LEO systems as applied to the Tag scenario provides insight into satellite design trade-offs, constellation trade-offs and signal dynamics that effect the performance of a satellite-based global inventory control system.
Ku-band antenna acquisition and tracking performance study, volume 4
NASA Technical Reports Server (NTRS)
Huang, T. C.; Lindsey, W. C.
1977-01-01
The results pertaining to the tradeoff analysis and performance of the Ku-band shuttle antenna pointing and signal acquisition system are presented. The square, hexagonal and spiral antenna trajectories were investigated assuming the TDRS postulated uncertainty region and a flexible statistical model for the location of the TDRS within the uncertainty volume. The scanning trajectories, shuttle/TDRS signal parameters and dynamics, and three signal acquisition algorithms were integrated into a hardware simulation. The hardware simulation is quite flexible in that it allows for the evaluation of signal acquisition performance for an arbitrary (programmable) antenna pattern, a large range of C/N sub O's, various TDRS/shuttle a priori uncertainty distributions, and three distinct signal search algorithms.
A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor
González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco
2012-01-01
This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989
Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility
NASA Astrophysics Data System (ADS)
Oussena, Baya; Annand, John
2013-10-01
Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
Intersatellite communications optoelectronics research at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.
Looking Forward: Comment on Morgante, Zolfaghari, and Johnson
ERIC Educational Resources Information Center
Creel, Sarah C.
2012-01-01
Morgante et al. (in press) find inconsistencies in the time reporting of a Tobii T60XL eye tracker. Their study raises important questions about the use of the Tobii T-series in particular, and various software and hardware in general, in different infant eye tracking paradigms. It leaves open the question of the source of the inconsistencies.…
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Papers from the 1987 CAUSE conference on information technology in higher education are presented. They are organized according to the conference's seven concurrent tracks in the general areas of policy and planning, management, organization, and support services, as well as in the specialized areas of communications, hardware/software strategies,…
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
Development of Robotics Applications in a Solid Propellant Mixing Laboratory
1988-06-01
implementation of robotic hardware and software into a laboratory environment requires a carefully structured series of phases which examines, in...strategy. The general methodology utilized in this project is discussed in Appendix A. The proposed laboratory robotics development program was structured ...Accessibility - Potential modifications - Safety precautions e) Robot Transport - Slider mechanisms - Linear tracks - Gantry configuration - Mobility f
NASA Astrophysics Data System (ADS)
Kirkpatrick, B. A.; Currier, R. D.; Simoniello, C.
2016-02-01
The tagging and tracking of aquatic animals using acoustic telemetry hardware has traditionally been the purview of individual researchers that specialize in single species. Concerns over data privacy and unauthorized use of receiver arrays have prevented the construction of large-scale, multi-species, multi-institution, multi-researcher collaborative acoustic arrays. We have developed a toolset to build the new portal using the Flask microframework, Python language, and Twitter bootstrap. Initial feedback has been overwhelmingly positive. The privacy policy has been praised for its granularity: principal investigators can choose between three levels of privacy for all data and hardware: Completely private - viewable only by the PI Visible to iTAG members Visible to the general public At the time of this writing iTAG is still in the beta stage, but the feedback received to date indicates that with the proper design and security features, and an iterative cycle of feedback from potential members, constructing a collaborative acoustic tracking network system is possible. Initial usage will be limited to the entry and searching for `orphan/mystery' tags, with the integration of historical array deployments and data following shortly thereafter. We have also been working with staff from the Ocean Tracking Network to allow for integration of the two systems. The database schema of iTAG is based on the marine metadata convention for acoustic telemetry. This should permit machine-to-machine data exchange between iTAG and OTN. The integration of animal telemetry data into the GCOOS portal will allow researchers to easily access the physiochemical oceanography data, thus allowing for a more in depth understanding of animal response and usage patterns.
State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery
Sirsi, Shashank; Borden, Mark
2014-01-01
Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162
NASA Astrophysics Data System (ADS)
Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J. S.; Mansfield, D.; Xu, W.; Zuo, G. Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X. C.; Gong, X. Z.; Wan, B. N.; Li, J. G.; the EAST Team
2018-03-01
The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1 mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter >600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~80 m s-1 into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation
NASA Astrophysics Data System (ADS)
Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei
2016-11-01
Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.
NASA Astrophysics Data System (ADS)
Stark, Giordon; Atlas Collaboration
2015-04-01
The Global Feature Extraction (gFEX) module is a Level 1 jet trigger system planned for installation in ATLAS during the Phase 1 upgrade in 2018. The gFEX selects large-radius jets for capturing Lorentz-boosted objects by means of wide-area jet algorithms refined by subjet information. The architecture of the gFEX permits event-by-event local pile-up suppression for these jets using the same subtraction techniques developed for offline analyses. The gFEX architecture is also suitable for other global event algorithms such as missing transverse energy (MET), centrality for heavy ion collisions, and ``jets without jets.'' The gFEX will use 4 processor FPGAs to perform calculations on the incoming data and a Hybrid APU-FPGA for slow control of the module. The gFEX is unique in both design and implementation and substantially enhance the selectivity of the L1 trigger and increases sensitivity to key physics channels.
Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators
NASA Technical Reports Server (NTRS)
Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.
2000-01-01
The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.
Hardware-in-the-loop tow missile system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldman, G.S.; Wootton, J.R.; Hobson, G.L.
1993-07-06
A missile system simulator is described for use in training people for target acquisition, missile launch, and missile guidance under simulated battlefield conditions comprising: simulating means for producing a digital signal representing a simulated battlefield environment including at least one target movable therewithin, the simulating means generating an infrared map representing the field-of-view and the target; interface means for converting said digital signals to an infrared image; missile system hardware including the missile acquisition, tracking, and guidance portions thereof, said hardware sensing the infrared image to determine the location of the target in a field-of-view; and, image means for generatingmore » an infrared image of a missile launched at the target and guided thereto, the image means imposing the missile image onto the field-of-view for the missile hardware to acquire the image of the missile in addition to that of the target, and to generate guidance signals to guide the missile image to the target image, wherein the interfacing means is responsive to a guidance signal from the hardware to simulate, in real-time, the response of the missile to the guidance signal, the image means including a blackbody, laser means for irradiating the blackbody to heat it to a temperature at which it emits infrared radiation, and optic means for integrating the radiant image produced by heating the blackbody into the infrared map.« less
Proposed hardware architectures of particle filter for object tracking
NASA Astrophysics Data System (ADS)
Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED
2012-12-01
In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.
... instructions on how to manage asthma, including: what medicines your child needs and when what your child's triggers are ... help manage asthma. Tracking your child's symptoms and medicines will help you know when your child is more likely to have a flare-up. ...
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I
2016-05-25
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.
2016-01-01
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914
Intelligent tracking techniques
NASA Astrophysics Data System (ADS)
Willett, T. J.; Abruzzo, J.; Zagardo, V.; Shipley, J.; Kossa, L.
1980-10-01
This is the fifth quarterly report under a contract to investigate the design, test, and implementation of a set of algorithms to perform intelligent tracking and intelligent homing on FLIR and TV imagery. The system concept was described. The problem of target aspect determination in support of aimpoint selection was analyzed. Sequences of 875 line FLIR data were extracted from the data base and an example of aspect determination for a maneuvering target in the presence of obscurations was presented. An example was also presented for close in homing (less than 500 meters) and the emergence of interior features, target movement, and scale changes. Hardware implementation in terms of VLSI/VHSIC chips was analyzed.
The robot's eyes - Stereo vision system for automated scene analysis
NASA Technical Reports Server (NTRS)
Williams, D. S.
1977-01-01
Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.
Real-time tracking of visually attended objects in virtual environments and its application to LOD.
Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon
2009-01-01
This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.
An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes
Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin
2014-01-01
In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179
Optical instrument development for detection of pesticide residue in apple surface
NASA Astrophysics Data System (ADS)
Dhakal, Sagar; Li, Yongyu; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei
2013-05-01
Apple is the world largest produced and consumed fruit item. At the same time, apple ranks number one among the fruit item contaminated with pesticide. This research focuses on development of laboratory based self-developed software and hardware for detection of commercially available organophosphorous pesticide (chlorpyrifos) in apple surface. A laser light source of 785nm was used to excite the sample, and Raman spectroscopy assembled with CCD camera was used for optical data acquisition. A hardware system was designed and fabricated to clamp and rotate apple sample of varying size maintaining constant working distance between optical probe and sample surface. Graphical Users Interface (GUI) based on LabView platform was developed to control the hardware system. The GUI was used to control the Raman system including CCD temperature, exposure time, track height and track centre, data acquisition, data processing and result prediction. Different concentrations of commercially available 48% chlorpyrifos pesticide solutions were prepared and gently placed in apple surface and dried. Raman spectral data at different points from same apple along the equatorial region were then acquired. The results show that prominent peaks at 341cm-1, 632cm-1 and 680 cm-1 represent the pesticide residue. The laboratory based experiment was able to detect pesticide solution of 20ppm within 3 seconds. A linear relation between Raman intensity and pesticide residue was developed with accuracy of 97.8%. The result of the research is promising and thus is a milestone for developing industrially desired real time, non-invasive pesticide residue detection technology in future.
Research in software allocation for advanced manned mission communications and tracking systems
NASA Technical Reports Server (NTRS)
Warnagiris, Tom; Wolff, Bill; Kusmanoff, Antone
1990-01-01
An assessment of the planned processing hardware and software/firmware for the Communications and Tracking System of the Space Station Freedom (SSF) was performed. The intent of the assessment was to determine the optimum distribution of software/firmware in the processing hardware for maximum throughput with minimum required memory. As a product of the assessment process an assessment methodology was to be developed that could be used for similar assessments of future manned spacecraft system designs. The assessment process was hampered by changing requirements for the Space Station. As a result, the initial objective of determining the optimum software/firmware allocation was not fulfilled, but several useful conclusions and recommendations resulted from the assessment. It was concluded that the assessment process would not be completely successful for a system with changing requirements. It was also concluded that memory requirements and hardware requirements were being modified to fit as a consequence of the change process, and although throughput could not be quantitized, potential problem areas could be identified. Finally, inherent flexibility of the system design was essential for the success of a system design with changing requirements. Recommendations resulting from the assessment included development of common software for some embedded controller functions, reduction of embedded processor requirements by hardwiring some Orbital Replacement Units (ORUs) to make better use of processor capabilities, and improvement in communications between software development personnel to enhance the integration process. Lastly, a critical observation was made regarding the software integration tasks did not appear to be addressed in the design process to the degree necessary for successful satisfaction of the system requirements.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kankam, David (Technical Monitor)
2003-01-01
A laboratory implementation of a fuzzy logic-tracking controller using a low cost Motorola MC68HC11E9 microprocessor is described in this report. The objective is to design the most optimal yet practical controller that can be implemented and marketed, and which gives respectable performance, even when the system loads, inertia and parameters are varying. A distinguishing feature of this work is the by-product goal of developing a marketable, simple, functional and low cost controller. Additionally, real-time nonlinearities are not ignored, and a mathematical model is not required. A number of components have been designed, built and tested individually, and in various combinations of hardware and software segments. These components have been integrated with a brushless motor to constitute the drive system. A microprocessor-based FLC is incorporated to provide robust speed and position control. Design objectives that are difficult to express mathematically can be easily incorporated in a fuzzy logic-based controller by linguistic information (in the form of fuzzy IF-THEN rules). The theory and design are tested in the laboratory using a hardware setup. Several test cases have been conducted to confirm the effectiveness of the proposed controller. The results indicate excellent tracking performance for both speed and position trajectories. For the purpose of comparison, a bang-bang controller has been tested. The fuzzy logic controller performs significantly better than the traditional bang-bang controller. The bang-bang controller has been shown to be relatively inaccurate and lacking in robustness. Description of the implementation hardware system is also given.
MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems
NASA Astrophysics Data System (ADS)
Kopecky, Ken; Winer, Eliot
2014-06-01
Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.
Mousetrap: An integrated, open-source mouse-tracking package.
Kieslich, Pascal J; Henninger, Felix
2017-10-01
Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .
The deep space network, volume 10
NASA Technical Reports Server (NTRS)
1972-01-01
Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... installed, one-time torquing of the nut and bolt, and corrective actions if necessary. This proposed AD... nut and bolt, and corrective actions if necessary. That AD resulted from reports of parts coming off... of the slat track hardware (i.e., the bolt, washers, downstops, stop location, and nut shown in...
An Evaluation of Alternative Delivery Modes for Information Services.
ERIC Educational Resources Information Center
Short, Craig; Christal, Melodie E.
The use of the floppy disk as an alternative mode for delivering Information Services reports was evaluated for fiscal year 1985 by the National Center for Higher Education Management Systems (NCHEMS). A 5.25 inch, 8/9 sector, 40 track ASCII floppy disk used under PC-DOS on the IBM PC and IBM PC compatible hardware was tested. Tabular data but not…
ERIC Educational Resources Information Center
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.
2009-01-01
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
Modified timing module for Loran-C receiver
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1983-01-01
Full hardware documentation is provided for the circuit card implementing the Loran-C timing loop, and the receiver event-mark and re-track functions. This documentation is to be combined with overall receiver drawings to form the as-built record for this device. Computer software to support this module is integrated with the remainder of the receiver software, in the LORPROM program.
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
Kinematic parameter estimation using close range photogrammetry for sport applications
NASA Astrophysics Data System (ADS)
Magre Colorado, Luz Alejandra; Martínez Santos, Juan Carlos
2015-12-01
In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performance of the sportsman and avoid injuries or accidents. We used a web-cam as the data acquisition hardware and develop the software stack in Processing using the OpenCV library. Our algorithm extracts size, position, velocity, and acceleration measurements of the bar along the course of the exercise. We present detailed characteristics of the system with their results in a controlled setting. The current work improves the detection and tracking capabilities from a previous version of this system by using HSV color model instead of RGB. Preliminary results show that the system is able to profile the movement of the bar as well as determine the size, position, velocity, and acceleration values of a marker/target in scene. The average error finding the size of object at four meters of distance is less than 4%, and the error of the acceleration value is 1.01% in average.
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
High-Speed Noninvasive Eye-Tracking System
NASA Technical Reports Server (NTRS)
Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin
2007-01-01
The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.
TASLIMAGE System #2 Technical Equivalence Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topper, J. D.; Stone, D. K.
In early 2017, a second TASLIMAGE system (TASL 2) was procured from Track Analysis Systems, Ltd. The new device is intended to complement the first system (TASL 1) and to provide redundancy to the original system which was acquired in 2009. The new system functions primarily the same as the earlier system, though with different X-Y stage hardware and a USB link from the camera to the host computer, both of which contribute to a reduction in CR-39 foil imaging time. The camera and image analysis software are identical between the two systems. Neutron dose calculations are performed externally andmore » independent of the imaging system used to collect track data, relying only on the measured recoil proton track density per cm 2 for a set of known-dose CR-39 foils processed in each etch.« less
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Alem, W. K.; Huth, G. K.; Simon, M. K.
1978-01-01
The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.
Heads up and camera down: a vision-based tracking modality for mobile mixed reality.
DiVerdi, Stephen; Höllerer, Tobias
2008-01-01
Anywhere Augmentation pursues the goal of lowering the initial investment of time and money necessary to participate in mixed reality work, bridging the gap between researchers in the field and regular computer users. Our paper contributes to this goal by introducing the GroundCam, a cheap tracking modality with no significant setup necessary. By itself, the GroundCam provides high frequency, high resolution relative position information similar to an inertial navigation system, but with significantly less drift. We present the design and implementation of the GroundCam, analyze the impact of several design and run-time factors on tracking accuracy, and consider the implications of extending our GroundCam to different hardware configurations. Motivated by the performance analysis, we developed a hybrid tracker that couples the GroundCam with a wide area tracking modality via a complementary Kalman filter, resulting in a powerful base for indoor and outdoor mobile mixed reality work. To conclude, the performance of the hybrid tracker and its utility within mixed reality applications is discussed.
Driver face tracking using semantics-based feature of eyes on single FPGA
NASA Astrophysics Data System (ADS)
Yu, Ying-Hao; Chen, Ji-An; Ting, Yi-Siang; Kwok, Ngaiming
2017-06-01
Tracking driver's face is one of the essentialities for driving safety control. This kind of system is usually designed with complicated algorithms to recognize driver's face by means of powerful computers. The design problem is not only about detecting rate but also from parts damages under rigorous environments by vibration, heat, and humidity. A feasible strategy to counteract these damages is to integrate entire system into a single chip in order to achieve minimum installation dimension, weight, power consumption, and exposure to air. Meanwhile, an extraordinary methodology is also indispensable to overcome the dilemma of low-computing capability and real-time performance on a low-end chip. In this paper, a novel driver face tracking system is proposed by employing semantics-based vague image representation (SVIR) for minimum hardware resource usages on a FPGA, and the real-time performance is also guaranteed at the same time. Our experimental results have indicated that the proposed face tracking system is viable and promising for the smart car design in the future.
The pixel tracking telescope at the Fermilab Test Beam Facility
Kwan, Simon; Lei, CM; Menasce, Dario; ...
2016-03-01
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
Level Zero Trigger Processor for the NA62 experiment
NASA Astrophysics Data System (ADS)
Soldi, D.; Chiozzi, S.
2018-05-01
The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.
Optical tracking of nanoscale particles in microscale environments
NASA Astrophysics Data System (ADS)
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-03-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy J.
Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was also to develop analyses to demonstrate the fissionTPC's performance abilities/limitations in measuring the alpha/SF branching ratio of 252Cf and 244Cm. Our method results in benchmarking the fissionTPC's ability to produce a competitive alpha/SF ratio for 252Cf with sub-percent precision.
The OPERA muon spectrometer tracking electronics
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.
2004-11-01
The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.
ATLAS offline software performance monitoring and optimization
NASA Astrophysics Data System (ADS)
Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration
2014-06-01
In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying the most common operations, with the call parameters well understood, and allowing improvements to be quantified in detail.
Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA
NASA Astrophysics Data System (ADS)
Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.
2013-07-01
The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.
Electronics design of the RPC system for the OPERA muon spectrometer
NASA Astrophysics Data System (ADS)
Acquafredda, R.; Ambrosio, M.; Balsamo, E.; Barichello, G.; Bergnoli, A.; Consiglio, L.; Corradi, G.; dal Corso, F.; Felici, G.; Manea, C.; Masone, V.; Parascandolo, P.; Sorrentino, G.
2004-09-01
The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes).
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
Development, Validation and Integration of the ATLAS Trigger System Software in Run 2
NASA Astrophysics Data System (ADS)
Keyes, Robert; ATLAS Collaboration
2017-10-01
The trigger system of the ATLAS detector at the LHC is a combination of hardware, firmware, and software, associated to various sub-detectors that must seamlessly cooperate in order to select one collision of interest out of every 40,000 delivered by the LHC every millisecond. These proceedings discuss the challenges, organization and work flow of the ongoing trigger software development, validation, and deployment. The goal of this development is to ensure that the most up-to-date algorithms are used to optimize the performance of the experiment. The goal of the validation is to ensure the reliability and predictability of the software performance. Integration tests are carried out to ensure that the software deployed to the online trigger farm during data-taking run as desired. Trigger software is validated by emulating online conditions using a benchmark run and mimicking the reconstruction that occurs during normal data-taking. This exercise is computationally demanding and thus runs on the ATLAS high performance computing grid with high priority. Performance metrics ranging from low-level memory and CPU requirements, to distributions and efficiencies of high-level physics quantities are visualized and validated by a range of experts. This is a multifaceted critical task that ties together many aspects of the experimental effort and thus directly influences the overall performance of the ATLAS experiment.
NASA Technical Reports Server (NTRS)
Evertt, Shonn F.; Collins, Michael; Hahn, William
2008-01-01
The International Space Station (ISS) Configuration Analysis Modeling and Mass Properties (CAMMP) Team is presenting a demo of certain CAMMP capabilities at a Booz Allen Hamilton conference in San Antonio. The team will be showing pictures of low fidelity, simplified ISS models, but no dimensions or technical data. The presentation will include a brief description of the contract and task, description and picture of the Topology, description of Generic Ground Rules and Constraints (GGR&C), description of Stage Analysis with constraints applied, and wrap up with description of other tasks such as Special Studies, Cable Routing, etc. The models include conceptual Crew Exploration Vehicle (CEV) and Lunar Lander images and animations created for promotional purposes, which are based entirely on public domain conceptual images from public NASA web sites and publicly available magazine articles and are not based on any actual designs, measurements, or 3D models. Conceptual Mars rover and lander are completely conceptual and are not based on any NASA designs or data. The demonstration includes High Fidelity Computer Aided Design (CAD) models of ISS provided by the ISS 3D CAD Team which will be used in a visual display to demonstrate the capabilities of the Teamcenter Visualization software. The demonstration will include 3D views of the CAD models including random measurements that will be taken to demonstrate the measurement tool. A 3D PDF file will be demonstrated of the Blue Book fidelity assembly complete model with no vehicles attached. The 3D zoom and rotation will be displayed as well as random measurements from the measurement tool. The External Configuration Analysis and Tracking Tool (ExCATT) Microsoft Access Database will be demonstrated to show its capabilities to organize and track hardware on ISS. The data included will be part numbers, serial numbers, historical, current, and future locations, of external hardware components on station. It includes dates of all external ISS events and flights and the associated hardware changes for each event. The hardware location information does not always reveal the exact location of the hardware, only the general location. In some cases the location is a module or carrier, in other cases it is a WIF socket, handrail, or attach point. Only small portions of the data will be displayed for demonstration purposes.
NASA Astrophysics Data System (ADS)
Krivda, M.; NA62 Collaboration
2013-08-01
The main aim of the NA62 experiment (NA62 Technical Design Report,
Design of an Incubator for Premature Infant Based on LabVIEW.
Zhang, Lina; Zhou, Runjing
2005-01-01
This paper introduces the system structure, hardware circuits, control algorithms, and software program of the incubator for premature infant based on LabVIEW. The main advantages of this device are that preheating is less time than others, the capability of meeting of emergency is provided, control track of temperature and humidity are visible, operation is easy to clinical practice, and maintainability is possessed.
TDRSS operations control analysis study
NASA Technical Reports Server (NTRS)
1976-01-01
The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.
Software components for medical image visualization and surgical planning
NASA Astrophysics Data System (ADS)
Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.
2001-05-01
Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.
The design, status and performance of the ZEUS central tracking detector electronics
NASA Astrophysics Data System (ADS)
Cussans, D. G.; Fawcett, H. F.; Foster, B.; Gilmore, R. S.; Heath, G. P.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P.; Nash, J.; Khatri, T.; Shield, P. D.; McArthur, I.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D.; Baird, S. A.; Carter, R.; Galagardera, S.; Gibson, M. D.; Hatley, R. S.; Jeffs, M.; Milborrow, R.; Morissey, M.; Quinton, S. P. H.; White, D. J.; Lane, J.; Nixon, G.; Postranecky, M.; Jamdagni, A. K.; Marcou, C.; Miller, D. B.; Toudup, L.
1992-05-01
The readout system developed for the ZEUS central trackign detector (CDT) is described. The CTD is required to provide an accurate measurement of the sagitta and energy loss of charged particles as well as provide fast trigger information. This must be carried out in the HERA environment in which beams cross every 96 ns. The first two aims are achieved by digitizing chamber pulses using a pipelined 104 MHz FADC system. The trigger uses a fast determination of the difference in the arrival times of a pulse at each end of the CTD. It processes this data and gives information to the ZEUS global first level trigger. The modules are housed in custom-built racks and crates and read out using a DAQ system based on Transputer readout controllers. These also monitor data quality and produce data for the ZEUS second level Trigger.
1994-01-01
In neuroendocrine cells, cytosolic Ca2+ triggers exocytosis in tens of milliseconds, yet known pathways of endocytic membrane retrieval take minutes. To test for faster retrieval mechanisms, we have triggered short bursts of exocytosis by flash photolysis of caged Ca2+, and have tracked subsequent retrieval by measuring the plasma membrane capacitance. We find that a limited amount of membrane can be retrieved with a time constant of 4 s at 21-26 degrees C, and that this occurs partially via structures larger than coated vesicles. This novel mechanism may be arrested at a late step. Incomplete retrieval structures then remain on the cell surface for minutes until the consequences of a renewed increase in cytosolic [Ca2+] disconnect them from the cell surface in < 1 s. Our results provide evidence for a rapid, triggered membrane retrieval pathway in excitable cells. PMID:8120090
Systems special investigation group overview
NASA Technical Reports Server (NTRS)
Mason, James B.; Dursch, Harry; Edelman, Joel
1992-01-01
The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented by LDEF hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. Testing to date was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment were detected by the Systems SIG. Some low cost electrical components were used successfully, although relays were a continuing problem. Extensive mechanical galling was observed, but no evidence of coldwelding was identified. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. LDEF hardware currently available to the Systems SIG includes most of the LDEF facility systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The Systems SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.
Systems special investigation group overview
NASA Technical Reports Server (NTRS)
Mason, James B.; Dursch, Harry; Edelman, Joel
1991-01-01
The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented in the Long Duration Exposure Facility (LDEF) hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. To date, testing was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment have yet been detected. Some low cost electrical components were used successfully, although relays were a continuing problem. Mechanical galling was observed unexpectedly, but no evidence of cold welding was identified yet. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. The LDEF hardware currently available to the Systems SIG includes most of the LDEF systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The System SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.
Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.
2004-01-01
A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.
A full field, 3-D velocimeter for microgravity crystallization experiments
NASA Technical Reports Server (NTRS)
Brodkey, Robert S.; Russ, Keith M.
1991-01-01
The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.
Tracking the NOvA Detectors' Performance
NASA Astrophysics Data System (ADS)
Psihas, Fernanda; NOvA Collaboration
2016-03-01
The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.
SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes.
Sanchez, Antonio; Blanc, Sara; Climent, Salvador; Yuste, Pedro; Ors, Rafael
2013-09-04
The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I-V for EH), based on I-V hardware tracking. I-V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time-days, weeks, months or years-using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.
Minimal hardware Bluetooth tracking for long-term at-home elder supervision.
Kelly, Damian; McLoone, Sean; Farrell, Ronan
2010-01-01
The ability to automatically detect the location of an elder within their own home is a significant enabler of remote elder supervision and interaction applications. This location information is typically generated via a myriad of sensors throughout the home environment. Even with high sensor redundancy, there are still situations where traditional elder monitoring systems are unable to resolve the location of the elder. This work develops a minimal infrastructure radio-frequency localisation system for long-term elder location tracking. An RFID room-labelling technique is employed and with it, the localisation system developed in this work is shown to exhibit superior performance to more traditional localisation systems in realistic long-term deployments.
Multi-baseline bootstrapping at the Navy precision optical interferometer
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.
2014-07-01
The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes
Sanchez, Antonio; Blanc, Sara; Climent, Salvador; Yuste, Pedro; Ors, Rafael
2013-01-01
The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH), based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach. PMID:24008287
Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; ...
2016-06-25
Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher
Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.
First incremental buy for Increment 2 of the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
1989-01-01
Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.
Accounting for hardware imperfections in EIT image reconstruction algorithms.
Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.
Satellite-tracking and Earth dynamics research programs
NASA Technical Reports Server (NTRS)
1982-01-01
The activities carried out by the Smithsonian Astrophysical Observatory (SAO) are described. The SAO network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics. A major program in laser upgrading continued to improve ranging accuracy and data yield. This program includes an increase in pulse repetition rate from 8 ppm to 30 ppm, a reduction in laser pulse width from 6 nsec to 2 to 3 nsec, improvements in the photoreceiver and the electronics to improve daylight ranging, and an analog pulse detection system to improve range noise and accuracy. Data processing hardware and software are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Simon; Lei, CM; Menasce, Dario
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunsford, R.; Sun, Zhen; Maingi, Rajesh
The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper-single null discharges with an ITER like tungsten monoblock divertor. ELM triggering was a prompt response to granule injection, andmore » for granules of a sufficient size there was no evidence of a "trigger lag" phenomenon as observed in full metal machines. We also demonstrated that the triggering efficiency decreased with granule size during dynamic size scans. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. Furthermore, by simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined. Simulated 900 micron granules capable of triggering an ELM show a peaked mass deposition of 3.9 x 10 17 atoms per mm of penetration at a depth of approximately 5 cm past the separatrix.« less
Lunsford, R.; Sun, Zhen; Maingi, Rajesh; ...
2017-12-19
The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper-single null discharges with an ITER like tungsten monoblock divertor. ELM triggering was a prompt response to granule injection, andmore » for granules of a sufficient size there was no evidence of a "trigger lag" phenomenon as observed in full metal machines. We also demonstrated that the triggering efficiency decreased with granule size during dynamic size scans. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. Furthermore, by simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined. Simulated 900 micron granules capable of triggering an ELM show a peaked mass deposition of 3.9 x 10 17 atoms per mm of penetration at a depth of approximately 5 cm past the separatrix.« less
Task Decomposition in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald Laurids; Joe, Jeffrey Clark
2014-06-01
In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approachesmore » should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.« less
A New Event Builder for CMS Run II
NASA Astrophysics Data System (ADS)
Albertsson, K.; Andre, J.-M.; Andronidis, A.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.
2015-12-01
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.
A new event builder for CMS Run II
Albertsson, K.; Andre, J-M; Andronidis, A.; ...
2015-12-23
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Innibandmore » FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. In conclusion, ee present performance measurements from small-scale prototypes and from the full-scale production system.« less
Non-invasive timing of gas gun projectiles with light detection and ranging
NASA Astrophysics Data System (ADS)
Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.
2014-05-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.
Launching Payloads Into Orbit at Relatively Low Cost
NASA Technical Reports Server (NTRS)
Wilcox, Brian
2007-01-01
A report proposes the development of a system for launching payloads into orbit at about one-fifth the cost per unit payload weight of current systems. The PILOT system was a solid-fuel, aerodynamically spun and spin-stabilized, five-stage rocket with onboard controls including little more than an optoelectronic horizon sensor and a timer for triggering the second and fifth stages, respectively. The proposal calls for four improvements over the PILOT system to enable control of orbital parameters: (1) the aerodynamic tipover of the rocket at the top of the atmosphere could be modeled as a nonuniform gyroscopic precession and could be controlled by selection of the initial rocket configuration and launch conditions; (2) the attitude of the rocket at the top of the first-stage trajectory could be measured by use of radar tracking or differential Global Positioning System receivers to determine when to trigger the second stage; (3) the final-stage engines could be configured around the payload to enhance spin stabilization during a half-orbit coast up to apoapsis where the final stage would be triggered; and (4) the final payload stage could be equipped with a "beltline" of small thrusters for correcting small errors in the trajectory as measured by an off-board tracking subsystem.
Autonomous sensor-based dual-arm satellite grappling
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce
1989-01-01
Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.
Topex Microwave Radiometer thermal control - Post-system-test modifications and on-orbit performance
NASA Technical Reports Server (NTRS)
Lin, Edward I.
1993-01-01
The Topex Microwave Radiometer has had an excellent thermal performance since launch. The instrument, however, went through a hardware modification right before launch to correct for a thermal design inadequacy that was uncovered during the spacecraft thermal vacuum test. This paper reports on how the initially obscure problem was tracked down, and how the thermal models were revised, validated, and utilized to investigate the solution options and guide the hardware modification decisions. Details related to test data interpretation, analytical uncertainties, and model-prediction vs. test-data correlation, are documented. Instrument/spacecraft interface issues, where the problem originated and where in general pitfalls abound, are dealt with specifically. Finally, on-orbit thermal performance data are presented, which exhibit good agreement with flight predictions, and lessons learned are discussed.
Radar error statistics for the space shuttle
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.
Neely, Alice N.; Sittig, Dean F.
2002-01-01
Computer technology from the management of individual patient medical records to the tracking of epidemiologic trends has become an essential part of all aspects of modern medicine. Consequently, computers, including bedside components, point-of-care testing equipment, and handheld computer devices, are increasingly present in patients’ rooms. Recent articles have indicated that computer hardware, just as other medical equipment, may act as a reservoir for microorganisms and contribute to the transfer of pathogens to patients. This article presents basic microbiological concepts relative to infection, reviews the present literature concerning possible links between computer contamination and nosocomial colonizations and infections, discusses basic principles for the control of contamination, and provides guidelines for reducing the risk of transfer of microorganisms to susceptible patient populations. PMID:12223502
Real-time skin feature identification in a time-sequential video stream
NASA Astrophysics Data System (ADS)
Kramberger, Iztok
2005-04-01
Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.
Post-Launch Analysis of Swift's Gamma-Ray Burst Detection Sensitivity
NASA Technical Reports Server (NTRS)
Band, David L.
2005-01-01
The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.
A VME-based software trigger system using UNIX processors
NASA Astrophysics Data System (ADS)
Atmur, Robert; Connor, David F.; Molzon, William
1997-02-01
We have constructed a distributed computing platform with eight processors to assemble and filter data from digitization crates. The filtered data were transported to a tape-writing UNIX computer via ethernet. Each processor ran a UNIX operating system and was installed in its own VME crate. Each VME crate contained dual-port memories which interfaced with the digitizers. Using standard hardware and software (VME and UNIX) allows us to select from a wide variety of non-proprietary products and makes upgrades simpler, if they are necessary.
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Briscoe, Jeri M.
2005-01-01
Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1995-01-01
The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.
Optical tracking of nanoscale particles in microscale environments
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-01-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research. PMID:27213022
An image-based array trigger for imaging atmospheric Cherenkov telescope arrays
NASA Astrophysics Data System (ADS)
Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary
2018-05-01
It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.
Efficient global fiber tracking on multi-dimensional diffusion direction maps
NASA Astrophysics Data System (ADS)
Klein, Jan; Köhler, Benjamin; Hahn, Horst K.
2012-02-01
Global fiber tracking algorithms have recently been proposed which were able to compute results of unprecedented quality. They account for avoiding accumulation errors by a global optimization process at the cost of a high computation time of several hours or even days. In this paper, we introduce a novel global fiber tracking algorithm which, for the first time, globally optimizes the underlying diffusion direction map obtained from DTI or HARDI data, instead of single fiber segments. As a consequence, the number of iterations in the optimization process can drastically be reduced by about three orders of magnitude. Furthermore, in contrast to all previous algorithms, the density of the tracked fibers can be adjusted after the optimization within a few seconds. We evaluated our method for diffusion-weighted images obtained from software phantoms, healthy volunteers, and tumor patients. We show that difficult fiber bundles, e.g., the visual pathways or tracts for different motor functions can be determined and separated in an excellent quality. Furthermore, crossing and kissing bundles are correctly resolved. On current standard hardware, a dense fiber tracking result of a whole brain can be determined in less than half an hour which is a strong improvement compared to previous work.
Implementation of a web-based medication tracking system in a large academic medical center.
Calabrese, Sam V; Williams, Jonathan P
2012-10-01
Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.
2016-01-01
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800
Automated tracking for advanced satellite laser ranging systems
NASA Astrophysics Data System (ADS)
McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.
1996-06-01
NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.
A compact muon tracking system for didactic and outreach activities
NASA Astrophysics Data System (ADS)
Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.
2016-07-01
We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.
An event-triggered control approach for the leader-tracking problem with heterogeneous agents
NASA Astrophysics Data System (ADS)
Garcia, Eloy; Cao, Yongcan; Casbeer, David W.
2018-05-01
This paper presents an event-triggered control and communication framework for the cooperative leader-tracking problem with communication constraints. Continuous communication among agents is not assumed in this work and decentralised event-based strategies are proposed for agents with heterogeneous linear dynamics. Also, the leader dynamics are unknown and only intermittent measurements of its states are obtained by a subset of the followers. The event-based method not only represents a way to restrict communication among agents, but it also provides a decentralised scheme for scheduling information broadcasts. Notably, each agent is able to determine its own broadcasting instants independently of any other agent in the network. In an extension, the case where transmission of information is affected by time-varying communication delays is addressed. Finally, positive lower-bounds on the inter-event time intervals are obtained in order to show that Zeno behaviour does not exist and, therefore, continuous exchange of information is never needed in this framework.
Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin
2013-01-01
Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Mission planning and simulation via intelligent agents
NASA Technical Reports Server (NTRS)
Gargan, Robert A., Jr.; Tilley, Randall W.
1987-01-01
A system that can operate from a flight manifest to plan and simulate payload preparation and transport via Shuttle flights is described. The design alternatives and the prototype implementation of the payload hardware and inventory tracking system are discussed. It is shown how intelligent agents can be used to generate mission schedules, and how, through the use of these intelligent agents, knowledge becomes separated into small manageable knowledge bases.
Arduino and Nagios integration for monitoring
NASA Astrophysics Data System (ADS)
Fernández, V.; Pazos, A.; Saborido, J.; Seco, M.
2014-06-01
The data centre at the Galician Institute of High Energy Physics (IGFAE) of the Santiago de Compostela University (USC) is a computing cluster with about 150 nodes and 1250 cores that hosts the LHCb Tiers 2 and 3. In this small data centre, and of course in similar or bigger ones, it is very important to keep optimal conditions of temperature, humidity and pressure. Therefore, it is a necessity to monitor the environment and be able to trigger alarms when operating outside the recommended settings. There are currently many tools and systems developed for data centre monitoring, but until recent years all of them were of commercial nature and expensive. In recent years there has been an increasing interest in the use of technologies based on Arduino due to its open hardware licensing and the low cost of this type of components. In this article we describe the system developed to monitor IGFAE's data centre, which integrates an Arduino controlled sensor network with the Nagios monitoring software. Sensors of several types, temperature, humidity and pressure, are connected to the Arduino board. The Nagios software is in charge of monitoring the various sensors and, with the help of Nagiosgraph, to keep track of the historic data and to produce the plots. An Arduino program, developed in house, provides the Nagios plugin with the readout of one or several sensors depending on the plugin's request. The Nagios plugin for reading the temperature sensors also broadcasts an SNMP trap when the temperature gets out of the allowed operating range.
Towards improved migraine management: Determining potential trigger factors in individual patients.
Peris, Francesc; Donoghue, Stephen; Torres, Ferran; Mian, Alec; Wöber, Christian
2017-04-01
Background Certain chronic diseases such as migraine result in episodic, debilitating attacks for which neither cause nor timing is well understood. Historically, possible triggers were identified through analysis of aggregated data from populations of patients. However, triggers common in populations may not be wholly responsible for an individual's attacks. To explore this hypothesis we developed a method to identify individual 'potential trigger' profiles and analysed the degree of inter-individual variation. Methods We applied N = 1 statistical analysis to a 326-migraine-patient database from a study in which patients used paper-based diaries for 90 days to track 33 factors (potential triggers or premonitory symptoms) associated with their migraine attacks. For each patient, univariate associations between factors and migraine events were analysed using Cox proportional hazards models. Results We generated individual factor-attack association profiles for 87% of the patients. The average number of factors associated with attacks was four per patient: Factor profiles were highly individual and were unique in 85% of patients with at least one identified association. Conclusion Accurate identification of individual factor-attack profiles is a prerequisite for testing which are true triggers and for development of trigger avoidance or desensitisation strategies. Our methodology represents a necessary development toward this goal.
The trigger system of the JEM-EUSO Project
NASA Astrophysics Data System (ADS)
Bertaina, M.; Ebisuzaki, T.; Hamada, T.; Ikeda, H.; Kawasai, Y.; Sawabe, T.; Takahashi, Y.; JEM-EUSO Collaboration
The trigger system of JEM-EUSO should face different major challenging points: a) cope with the limited down-link transmission rate from the ISS to Earth, by operating a severe on-board and on-time data reduction; b) use very fast, low power consuming and radiation hard electronics; c) have a high signal-over-noise performance and flexibility in order to lower as much as possible the energy threshold of the detector, adjust the system to a variable nightglow background, and trigger on different categories of events (images insisting on the same pixels or crossing huge portions of the entire focal surface). Based on the above stringent requirements, the main ingredients for the trigger logic are: the Gate Time Unit (GTU); the minimum number Nthresh of photo-electrons piling up in a GTU in a pixel to be fired; the persistency level Npers, in which fired pixels are over threshold; the localization and correlation in space and time of the fired pixels, that distinguish a real EAS from an accidental background enhancement. The core of the trigger logic is the Track Trigger Algorithm that has been specifically developed for this purpose. Its characteristics, preliminary performance and its possible implementation on FPGA or DSP will be discussed together with a general overview of the architecture of the triggering system of JEM-EUSO.
Tracking scanning laser ophthalmoscope (TSLO)
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.
2003-07-01
The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.
ISS Asset Tracking Using SAW RFID Technology
NASA Technical Reports Server (NTRS)
Schellhase, Amy; Powers, Annie
2004-01-01
A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.
A reconfigurable computing platform for plume tracking with mobile sensor networks
NASA Astrophysics Data System (ADS)
Kim, Byung Hwa; D'Souza, Colin; Voyles, Richard M.; Hesch, Joel; Roumeliotis, Stergios I.
2006-05-01
Much work has been undertaken recently toward the development of low-power, high-performance sensor networks. There are many static remote sensing applications for which this is appropriate. The focus of this development effort is applications that require higher performance computation, but still involve severe constraints on power and other resources. Toward that end, we are developing a reconfigurable computing platform for miniature robotic and human-deployed sensor systems composed of several mobile nodes. The system provides static and dynamic reconfigurability for both software and hardware by the combination of CPU (central processing unit) and FPGA (field-programmable gate array) allowing on-the-fly reprogrammability. Static reconfigurability of the hardware manifests itself in the form of a "morphing bus" architecture that permits the modular connection of various sensors with no bus interface logic. Dynamic hardware reconfigurability provides for the reallocation of hardware resources at run-time as the mobile, resource-constrained nodes encounter unknown environmental conditions that render various sensors ineffective. This computing platform will be described in the context of work on chemical/biological/radiological plume tracking using a distributed team of mobile sensors. The objective for a dispersed team of ground and/or aerial autonomous vehicles (or hand-carried sensors) is to acquire measurements of the concentration of the chemical agent from optimal locations and estimate its source and spread. This requires appropriate distribution, coordination and communication within the team members across a potentially unknown environment. The key problem is to determine the parameters of the distribution of the harmful agent so as to use these values for determining its source and predicting its spread. The accuracy and convergence rate of this estimation process depend not only on the number and accuracy of the sensor measurements but also on their spatial distribution over time (the sampling strategy). For the safety of a human-deployed distribution of sensors, optimized trajectories to minimize human exposure are also of importance. The systems described in this paper are currently being developed. Parts of the system are already in existence and some results from these are described.
A New Approach to Time-Resolved 3D-PTV
NASA Astrophysics Data System (ADS)
Boomsma, Aaron; Troolin, Dan; Bjorkquist, Dan; TSI Inc Team
2017-11-01
Volumetric three-component velocimetry via particle tracking is a powerful alternative to TomoPIV. It has been thoroughly documented that compared to TomoPIV, particle tracking velocimetry (PTV) methods (whether 2D or 3D) better resolve regions of high velocity gradient, identify fewer ghost particles, and are less computationally demanding, which results in shorter processing times. Recently, 3D-PTV has seen renewed interest in the PIV community with the availability of time-resolved data. Of course, advances in hardware are partly to thank for that availability-higher speed cameras, more effective memory management, and higher speed lasers. But in software, algorithms that utilize time resolved data to improve 3D particle reconstruction and particle tracking are also under development and advancing (e.g. shake-the-box, neighbor tracking reconstruction, etc.). .In the current study, we present a new 3D-PTV method that incorporates time-resolved data. We detail the method, its performance in terms of particle identification and reconstruction error and their relation to varying seeding densities, as well as computational performance.
A real-time tracking system of infrared dim and small target based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun
2014-11-01
A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.
LHCb detector and trigger performance in Run II
NASA Astrophysics Data System (ADS)
Francesca, Dordei
2017-12-01
The LHCb detector is a forward spectrometer at the LHC, designed to perform high precision studies of b- and c- hadrons. In Run II of the LHC, a new scheme for the software trigger at LHCb allows splitting the triggering of events into two stages, giving room to perform the alignment and calibration in real time. In the novel detector alignment and calibration strategy for Run II, data collected at the start of the fill are processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. This allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The larger timing budget, available in the trigger, allows to perform the same track reconstruction online and offline. This enables LHCb to achieve the best reconstruction performance already in the trigger, and allows physics analyses to be performed directly on the data produced by the trigger reconstruction. The novel real-time processing strategy at LHCb is discussed from both the technical and operational point of view. The overall performance of the LHCb detector on the data of Run II is presented as well.
Upgrade project and plans for the ATLAS detector and trigger
NASA Astrophysics Data System (ADS)
Pastore, Francesca; Atlas Collaboration
2013-08-01
The LHC is expected to under go upgrades over the coming years in order to extend its scientific potential. Through two different phases (namely Phase-I and Phase-II), the average luminosity will be increased by a factor 5-10 above the design luminosity, 1034 cm-2 s-1. Consequently, the LHC experiments will need upgraded detectors and new infrastructure of the trigger and DAQ systems, to take into account the increase of radiation level and of particle rates foreseen at such high luminosity. In this paper we describe the planned changes and the investigations for the ATLAS experiment, focusing on the requirements for the trigger system to handle the increase rate of collisions per beam crossing, while maintaining widely inclusive selections. In different steps, the trigger detectors will improve their selectivity by benefiting from increased granularity. To improve the flexibility of the system, the use of the tracking information in the lower levels of the trigger selection is also discussed. Lastly different scenarios are compared, based on the expected physics potential of ATLAS in this high luminosity regime.
Calorie counting and fitness tracking technology: Associations with eating disorder symptomatology.
Simpson, Courtney C; Mazzeo, Suzanne E
2017-08-01
The use of online calorie tracking applications and activity monitors is increasing exponentially. Anecdotal reports document the potential for these trackers to trigger, maintain, or exacerbate eating disorder symptomatology. Yet, research has not examined the relation between use of these devices and eating disorder-related attitudes and behaviors. This study explored associations between the use of calorie counting and fitness tracking devices and eating disorder symptomatology. Participants (N=493) were college students who reported their use of tracking technology and completed measures of eating disorder symptomatology. Individuals who reported using calorie trackers manifested higher levels of eating concern and dietary restraint, controlling for BMI. Additionally, fitness tracking was uniquely associated with ED symptomatology after adjusting for gender and bingeing and purging behavior within the past month. Findings highlight associations between use of calorie and fitness trackers and eating disorder symptomatology. Although preliminary, overall results suggest that for some individuals, these devices might do more harm than good. Copyright © 2017 Elsevier Ltd. All rights reserved.
Issa, Kimona; Pierce, Todd P; Gwam, Chukwuweieke; Festa, Anthony; Scillia, Anthony J; Mont, Michael A
2018-03-01
There have been historical reports on the experiences of patients with total hip arthroplasty (THA) passing through standard metal detectors at airports. The purpose of this study was to analyse those who had recently passed through airport security and the incidence of: (i) triggering of the alarm; (ii) extra security searches; and (iii) perceived inconvenience. A questionnaire was given to 125 patients with a THA during a follow-up appointment. Those who had passed through airport security after January 2014 met inclusion criteria. A survey was administered that addressed the number of encounters with airport security, frequency of metal detector activation, additional screening procedures utilised, whether security officials required prosthesis documentation, and perceived inconvenience. 51 patients met inclusion criteria. 10 patients (20%) reported triggered security scanners. 4 of the 10 patients stated they had surgical hardware elsewhere in the body. 13 of the 51 patients (25%) believed that having their THA increased the inconvenience of traveling. This is different from the historical cohort with standard metal detectors which patients reported a greater incidence of alarm triggering (n = 120 of 143; p = 0.0001) and perceived inconvenience (n = 99 of 143; p = 0.0001). The percentage of patients who have THA triggering security alarms has decreased. Furthermore, the number of patients who feel that their prosthesis caused traveling inconvenience has decreased. We feel that this decrease in alarms triggered and improved perceptions about inconvenience are related to the increased usage of new technology.
Nekton Interaction Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-03-15
The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less
A real time sorting algorithm to time sort any deterministic time disordered data stream
NASA Astrophysics Data System (ADS)
Saini, J.; Mandal, S.; Chakrabarti, A.; Chattopadhyay, S.
2017-12-01
In new generation high intensity high energy physics experiments, millions of free streaming high rate data sources are to be readout. Free streaming data with associated time-stamp can only be controlled by thresholds as there is no trigger information available for the readout. Therefore, these readouts are prone to collect large amount of noise and unwanted data. For this reason, these experiments can have output data rate of several orders of magnitude higher than the useful signal data rate. It is therefore necessary to perform online processing of the data to extract useful information from the full data set. Without trigger information, pre-processing on the free streaming data can only be done with time based correlation among the data set. Multiple data sources have different path delays and bandwidth utilizations and therefore the unsorted merged data requires significant computational efforts for real time manifestation of sorting before analysis. Present work reports a new high speed scalable data stream sorting algorithm with its architectural design, verified through Field programmable Gate Array (FPGA) based hardware simulation. Realistic time based simulated data likely to be collected in an high energy physics experiment have been used to study the performance of the algorithm. The proposed algorithm uses parallel read-write blocks with added memory management and zero suppression features to make it efficient for high rate data-streams. This algorithm is best suited for online data streams with deterministic time disorder/unsorting on FPGA like hardware.
Optimetrics for Precise Navigation
NASA Technical Reports Server (NTRS)
Yang, Guangning; Heckler, Gregory; Gramling, Cheryl
2017-01-01
Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.
Augmented Virtual Reality Laboratory
NASA Technical Reports Server (NTRS)
Tully-Hanson, Benjamin
2015-01-01
Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.
NASA Astrophysics Data System (ADS)
Ji, Peng; Song, Aiguo; Song, Zimo; Liu, Yuqing; Jiang, Guohua; Zhao, Guopu
2017-02-01
In this paper, we describe a heading direction correction algorithm for a tracked mobile robot. To save hardware resources as far as possible, the mobile robot’s wrist camera is used as the only sensor, which is rotated to face stairs. An ensemble heading deviation detector is proposed to help the mobile robot correct its heading direction. To improve the generalization ability, a multi-scale Gabor filter is used to process the input image previously. Final deviation result is acquired by applying the majority vote strategy on all the classifiers’ results. The experimental results show that our detector is able to enable the mobile robot to correct its heading direction adaptively while it is climbing the stairs.
Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.
2004-01-01
A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.
MR-guided endovascular interventions: a comprehensive review on techniques and applications.
Kos, Sebastian; Huegli, Rolf; Bongartz, Georg M; Jacob, Augustinus L; Bilecen, Deniz
2008-04-01
The magnetic resonance (MR) guidance of endovascular interventions is probably one of the greatest challenges of clinical MR research. MR angiography is not only an imaging tool for the vasculature but can also simultaneously depict high tissue contrast, including the differentiation of the vascular wall and perivascular tissues, as well as vascular function. Several hurdles had to be overcome to allow MR guidance for endovascular interventions. MR hardware and sequence design had to be developed to achieve acceptable patient access and to allow real-time or near real-time imaging. The development of interventional devices, both applicable and safe for MR imaging (MRI), was also mandatory. The subject of this review is to summarize the latest developments in real-time MRI hardware, MRI, visualization tools, interventional devices, endovascular tracking techniques, actual applications and safety issues.
A search for Earth-crossing asteroids, supplement
NASA Technical Reports Server (NTRS)
Taff, L. G.; Sorvari, J. M.; Kostishack, D. F.
1984-01-01
The ground based electro-optical deep space surveillance program involves a network of computer controlled 40 inch 1m telescopes equipped with large format, low light level, television cameras of the intensified silicon diode array type which is to replace the Baker-Nunn photographic camera system for artificial satellite tracking. A prototype observatory was constructed where distant artificial satellites are discriminated from stars in real time on the basis of the satellites' proper motion. Hardware was modified and the technique was used to observe and search for minor planets. Asteroids are now routinely observed and searched. The complete observing cycle, including the 2"-3" measurement of position, requires about four minutes at present. The commonality of asteroids and artificial satellite observing, searching, data reduction, and orbital analysis is stressed. Improvements to the hardware and software as well as operational techniques are considered.
Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
2002-01-01
The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
3 Tools to Help You Quit | NIH MedlinePlus the Magazine
... and long-term challenges, start by examining your smoking habits. Track how many cigarettes you smoke a day and what you are doing when you light up. Look for patterns. You may discover triggers you weren't aware of. Smoking at certain times or in varying circumstances may ...
Advantages and challenges in automated apatite fission track counting
NASA Astrophysics Data System (ADS)
Enkelmann, E.; Ehlers, T. A.
2012-04-01
Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for each individual surface area and grain counted. This manual correction procedure significantly increases (up to four times) the time required to analyze a sample with the automated counting procedure compared to the conventional approach.
The high-rate data challenge: computing for the CBM experiment
NASA Astrophysics Data System (ADS)
Friese, V.;
2017-10-01
The Compressed Baryonic Matter experiment (CBM) is a next-generation heavy-ion experiment to be operated at the FAIR facility, currently under construction in Darmstadt, Germany. A key feature of CBM is very high interaction rate, exceeding those of contemporary nuclear collision experiments by several orders of magnitude. Such interaction rates forbid a conventional, hardware-triggered readout; instead, experiment data will be freely streaming from self-triggered front-end electronics. In order to reduce the huge raw data volume to a recordable rate, data will be selected exclusively on CPU, which necessitates partial event reconstruction in real-time. Consequently, the traditional segregation of online and offline software vanishes; an integrated on- and offline data processing concept is called for. In this paper, we will report on concepts and developments for computing for CBM as well as on the status of preparations for its first physics run.
Readiness of the ATLAS Trigger and Data Acquisition system for the first LHC beams
NASA Astrophysics Data System (ADS)
Vandelli, W.; Atlas Tdaq Collaboration
2009-12-01
The ATLAS Trigger and Data Acquisition (TDAQ) system is based on O(2k) processing nodes, interconnected by a multi-layer Gigabit network, and consists of a combination of custom electronics and commercial products. In its final configuration, O(20k) applications will provide the needed capabilities in terms of event selection, data flow, local storage and data monitoring. In preparation for the first LHC beams, many TDAQ sub-systems already reached the final configuration and roughly one third of the final processing power has been deployed. Therefore, the current system allows for a sensible evaluation of the performance and scaling properties. In this paper we introduce the ATLAS TDAQ system requirements and architecture and we discuss the status of software and hardware component. We moreover present the results of performance measurements validating the system design and providing a figure for the ATLAS data acquisition capabilities in the initial data taking period.
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
UMass Amherst and UT Austin @ The TREC 2009 Relevance Feedback Track
2009-11-01
number of terms to select com- pared to our case. We chose AdaRank [Xu and Li, 2007] for the following reasons . It directly optimizes retrieval performance...and the number of topics containing at least one relevant document. query car parts dinosaurs espn sports atari cell phone hoboken dogs adoption auto...infraorder disney activision ringtone nj puppy body bird abc sega forum ny pet lowest extinct channel hardware wireless brook rottweiler cost
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III
1988-01-01
The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.
Thematic Mapper: Design through flight evaluation
NASA Technical Reports Server (NTRS)
1984-01-01
LANDSAT 4 and 5, launched in 1982 and 1984, not only carried the Thematic Mapper, but were redesigned to handle the increased data rates associated with it, and to communicate that data to Earth via geosynchronous orbiting Tracking and Data Relay Satellites (TDRS). The TM development program is summarized. A brief historical perspective is presented of the evolution of design requirements and hardware development. The basic performance parameters that serve as sensor design guidelines are presented.
Centroid tracker and aimpoint selection
NASA Astrophysics Data System (ADS)
Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.
1992-11-01
Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.
Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-12-01
The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.
Skripka, A; Marin, R; Benayas, A; Canton, P; Hemmer, E; Vetrone, F
2017-05-17
Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF 4 :Er 3+ ,Ho 3+ ,Yb 3+ /NaGdF 4 :Nd 3+ ,Yb 3+ /NaGdF 4 ) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380-1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.
Non-Invasive Timing of Gas Gun Projectiles with Light Detection and Ranging
NASA Astrophysics Data System (ADS)
Goodwin, Peter; Wu, Ming; Dattelbaum, Dana
2013-06-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of the gas gun barrel in real-time. This capability permits the generation of precisely timed trigger pulses useful for pre-triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore single-stage gas gun routinely used for dynamic research at Los Alamos National Laboratory. A 655-nm pulsed (~100 ps) diode laser operating at a pulse repetition rate of ~100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~3 meters prior to impact. The position record showed that the projectile moved at a constant velocity (483 m/s) prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry, and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The LIDAR return can be processed in real-time to generate pre-trigger pulses at preset separations between the projectile and target. Work funded by LANL Laboratory Directed Research Project 2011012DR. LA-UR-13-21121, approved for public release.
Response of African Elephants (Loxodonta africana) to Seasonal Changes in Rainfall
Garstang, Michael; Davis, Robert E.; Leggett, Keith; Frauenfeld, Oliver W.; Greco, Steven; Zipser, Edward; Peterson, Michael
2014-01-01
The factors that trigger sudden, seasonal movements of elephants are uncertain. We hypothesized that savannah elephant movements at the end of the dry season may be a response to their detection of distant thunderstorms. Nine elephants carrying Global Positioning System (GPS) receivers were tracked over seven years in the extremely dry and rugged region of northwestern Namibia. The transition date from dry to wet season conditions was determined annually from surface- and satellite-derived rainfall. The distance, location, and timing of rain events relative to the elephants were determined using the Tropical Rainfall Measurement Mission (TRMM) satellite precipitation observations. Behavioral Change Point Analysis (BCPA) was applied to four of these seven years demonstrating a response in movement of these elephants to intra- and inter-seasonal occurrences of rainfall. Statistically significant changes in movement were found prior to or near the time of onset of the wet season and before the occurrence of wet episodes within the dry season, although the characteristics of the movement changes are not consistent between elephants and years. Elephants in overlapping ranges, but following separate tracks, exhibited statistically valid non-random near-simultaneous changes in movements when rainfall was occurring more than 100 km from their location. While the environmental trigger that causes these excursions remains uncertain, rain-system generated infrasound, which can travel such distances and be detected by elephants, is a possible trigger for such changes in movement. PMID:25299514
Response of African elephants (Loxodonta africana) to seasonal changes in rainfall.
Garstang, Michael; Davis, Robert E; Leggett, Keith; Frauenfeld, Oliver W; Greco, Steven; Zipser, Edward; Peterson, Michael
2014-01-01
The factors that trigger sudden, seasonal movements of elephants are uncertain. We hypothesized that savannah elephant movements at the end of the dry season may be a response to their detection of distant thunderstorms. Nine elephants carrying Global Positioning System (GPS) receivers were tracked over seven years in the extremely dry and rugged region of northwestern Namibia. The transition date from dry to wet season conditions was determined annually from surface- and satellite-derived rainfall. The distance, location, and timing of rain events relative to the elephants were determined using the Tropical Rainfall Measurement Mission (TRMM) satellite precipitation observations. Behavioral Change Point Analysis (BCPA) was applied to four of these seven years demonstrating a response in movement of these elephants to intra- and inter-seasonal occurrences of rainfall. Statistically significant changes in movement were found prior to or near the time of onset of the wet season and before the occurrence of wet episodes within the dry season, although the characteristics of the movement changes are not consistent between elephants and years. Elephants in overlapping ranges, but following separate tracks, exhibited statistically valid non-random near-simultaneous changes in movements when rainfall was occurring more than 100 km from their location. While the environmental trigger that causes these excursions remains uncertain, rain-system generated infrasound, which can travel such distances and be detected by elephants, is a possible trigger for such changes in movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzatu, Adrian
2011-08-01
The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has not yet been observed experimentally. If it exists, it explains the spontaneous electroweak symmetry breaking and the origin of mass for gauge bosons and fermions. We test the validity of the SM by performing a search for the associated production of a Higgs boson and a W boson in the channel where the Higgs boson decays to a bottom-antibottom quark pair and the W boson decays to a charged lepton and a neutrino (the WH channel). We study a dataset of proton-antiproton collisions atmore » a centre-of-mass energy √s = 1.96 TeV provided by the Tevatron accelerator, corresponding to an integrated luminosity of 5.7 fb -1, and recorded using the Collider Detector at Fermilab (CDF).We select events consistent with the signature of exactly one charged lepton (electron or muon), missing transverse energy due to the undetected neutrino (MET) and two collimated streams of particles (jets), at least one of which is required to be identified as originating from a bottom quark. We improve the discrimination of Higgs signal from backgrounds through the use of an artificial neural network. Using a Bayesian statistical inference approach, we set for each hypothetical Higgs boson mass in the range 100-150 GeV/c 2 with 5 GeV/c 2 increments a 95% credibility level (CL) upper limit on the ratio between the Higgs production cross section times branching fraction and the SM prediction. Our main original contributions are the addition of a novel charged lepton reconstruction algorithm with looser requirements (ISOTRK) with respect the electron or muon tight criteria (TIGHT), as well as the introduction of a novel trigger-combination method that allows to maximize the event yield while avoiding trigger correlations and that is used for the ISOTRK category. The ISOTRK candidate is a high-transverse-momentum good-quality track isolated from other activity in the tracking system and not required to match a calorimeter cluster, as for a tight electron candidate, or an energy deposit in the muon detector, as for a tight muon candidate. The ISOTRK category recovers real charged leptons that otherwise would be lost in the non-instrumented regions of the detector. This allows the reconstruction of more W boson candidates, which in turn increases the number of reconstructed WH signal candidate events, and therefore improves the sensitivity of the WH search. For the TIGHT charged lepton categories, we employ charged-lepton-dedicated triggers to improve the rate of WH signal acceptance during data taking. Since there is no ISOTRK-dedicated trigger at CDF, for the ISOTRK charged lepton category we employ three MET-plus-jets-based triggers. For each trigger we first identify the jet selection where the trigger efficiency is flat with respect to jet information (transverse energy and direction of motion in the transverse plane for the two jets in the event) and then we parametrize the trigger efficiency as a function of trigger MET. On an event-by-event basis, for each trigger we compute a trigger efficiency as a function of trigger parametrization, trigger MET, jet information, trigger prescale and information about whether the trigger is defined or not. For the ISOTRK category we combine the three triggers using a novel method, which allows the combination of any number of triggers in order to maximize the event yield while avoiding trigger correlations. On an event-by-event basis, only the trigger with the largest efficiency is used. By avoiding a logical 'OR' between triggers, the loss in the yield of events accepted by the trigger combination is compensated by a smaller and easier-to-compute corresponding systematic uncertainty. The addition of the ISOTRK charged lepton category to the TIGHT category produces an increase of 33% in the WH signal yield and a decrease of 15.5% to 19.0% in the median expected 95% CL cross-section upper limits across the entire studied Higgs mass interval. The improvement in analysis sensitivity is smaller than the improvement in signal yield because the ISOTRK category has a smaller signal over background ratio than the TIGHT category, due to the looser ISOTRK reconstruction criteria. The observed (median expected) 95% CL SM Higgs upper limits on cross section times branching ratio vary between 2.39 x SM (2.73 x SM) for a Higgs mass of 100 GeV/c 2 to 31.1 x SM (31.2 x SM) for a Higgs mass of 150 GeV/c 2, while the value for a 115 GeV/c 2 Higgs boson is that of 5.08 x SM (3.79 x SM). The novel trigger combination method is already in use by several CDF analyses. It is applicable to any analysis that uses triggers based on MET and jets, such as supersymmetry searches at the ATLAS and CMS experiments at the Large Hadron Collider. In its most general form, the method can be used by any analysis that combines any number of different triggers.« less
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
Intelligent surgical laser system configuration and software implementation
NASA Astrophysics Data System (ADS)
Hsueh, Chi-Fu T.; Bille, Josef F.
1992-06-01
An intelligent surgical laser system, which can help the ophthalmologist to achieve higher precision and control during their procedures, has been developed by ISL as model CLS 4001. In addition to the laser and laser delivery system, the system is also equipped with a vision system (IPU), robotics motion control (MCU), and a tracking closed loop system (ETS) that tracks the eye in three dimensions (X, Y and Z). The initial patient setup is computer controlled with guidance from the vision system. The tracking system is automatically engaged when the target is in position. A multi-level tracking system is developed by integrating our vision and tracking systems which have been able to maintain our laser beam precisely on target. The capabilities of the automatic eye setup and the tracking in three dimensions provides for improved accuracy and measurement repeatability. The system is operated through the Surgical Control Unit (SCU). The SCU communicates with the IPU and the MCU through both ethernet and RS232. Various scanning pattern (i.e., line, curve, circle, spiral, etc.) can be selected with given parameters. When a warning is activated, a voice message is played that will normally require a panel touch acknowledgement. The reliability of the system is ensured in three levels: (1) hardware, (2) software real time monitoring, and (3) user. The system is currently under clinical validation.
A low-cost test-bed for real-time landmark tracking
NASA Astrophysics Data System (ADS)
Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher
2007-04-01
A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.
Level Zero Trigger Processor for the ultra rare kaon decay experiment: NA62
NASA Astrophysics Data System (ADS)
Soldi, Dario; Chiozzi, S.; Gamberini, E.; Gianoli, A.; Mila, G.; Neri, I.; Petrucci, F.
2017-02-01
The NA62 experiment is designed to measure the (ultra-)rare decay K+ →π+ ν ν bar branching ratio with a precision of ∼ 10 % at the CERN Super Proton Synchrotron (SPS). The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the L0TP is completely new for a high energy physics experiment. It is fully digital, based on a standard gigabit ethernet communication between detectors and L0TP Board. The L0TP Board is a commercial development board, Terasic DE4, mounting an Altera Stratix IV FPGA. The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period (about 5 seconds). The L0TP realigns in time the primitives coming from 7 different sources and manages the information of the time plus all the characteristics of the event as energy, multiplicity and position of hits in order to select good events with a comparison with preset masks. It should guarantee a maximum latency of 1 ms. The maximum input rate is 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A complete trigger-less parasitic acquisition of the primitives is possible using mirroring switches to monitor the L0 behavior. A first version of the L0TP was commissioned during the 2014 NA62 pilot run and it is used in the current data taking. A description of the trigger algorithm is here presented.
Atlas : A library for numerical weather prediction and climate modelling
NASA Astrophysics Data System (ADS)
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
Top-down and bottom-up definitions of human failure events in human reliability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald Laurids
2014-10-01
In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approachesmore » should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down—defined as a subset of the PRA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.« less
The TJO-OAdM robotic observatory: OpenROCS and dome control
NASA Astrophysics Data System (ADS)
Colomé, Josep; Francisco, Xavier; Ribas, Ignasi; Casteels, Kevin; Martín, Jonatan
2010-07-01
The Telescope Joan Oró at the Montsec Astronomical Observatory (TJO - OAdM) is a small-class observatory working in completely unattended control. There are key problems to solve when a robotic control is envisaged, both on hardware and software issues. We present the OpenROCS (ROCS stands for Robotic Observatory Control System), an open source platform developed for the robotic control of the TJO - OAdM and similar astronomical observatories. It is a complex software architecture, composed of several applications for hardware control, event handling, environment monitoring, target scheduling, image reduction pipeline, etc. The code is developed in Java, C++, Python and Perl. The software infrastructure used is based on the Internet Communications Engine (Ice), an object-oriented middleware that provides object-oriented remote procedure call, grid computing, and publish/subscribe functionality. We also describe the subsystem in charge of the dome control: several hardware and software elements developed to specially protect the system at this identified single point of failure. It integrates a redundant control and a rain detector signal for alarm triggering and it responds autonomously in case communication with any of the control elements is lost (watchdog functionality). The self-developed control software suite (OpenROCS) and dome control system have proven to be highly reliable.
Development and validation of the Overlap Muon Track Finder for the CMS experiment
NASA Astrophysics Data System (ADS)
Dobosz, J.; Mietki, P.; Zawistowski, K.; Żarnecki, G.
2016-09-01
Present article is a description of the authors contribution in upgrade and analysis of performance of the Level-1 Muon Trigger of the CMS experiment. The authors are students of University of Warsaw and Gdansk University of Technology. They are collaborating with the CMS Warsaw Group. This article summarises students' work presented during the Students session during the Workshop XXXVIII-th IEEE-SPIE Joint Symposium Wilga 2016. In the first section the CMS experiment is briefly described and the importance of the trigger system is explained. There is also shown basic difference between old muon trigger strategy and the upgraded one. The second section is devoted to Overlap Muon Track Finder (OMTF). This is one of the crucial components of the Level-1 Muon Trigger. The algorithm of OMTF is described. In the third section there is discussed one of the event selection aspects - cut on the muon transverse momentum pT . Sometimes physical muon with pT bigger than a certain threshold is unnecessarily cut and physical muon with lower pT survives. To improve pT selection modified algorithm was proposed and its performance was studied. One of the features of the OMTF is that one physical muon often results in several muon candidates. The Ghost-Buster algorithm is designed to eliminate surplus candidates. In the fourth section this algorithm and its performance on different data samples are discussed. In the fifth section Local Data Acquisition System (Local DAQ) is briefly described. It supports initial system commissioning. The test done with OMTF Local DAQ are described. In the sixth section there is described development of web application used for the control and monitoring of CMS electronics. The application provides access to graphical user interface for manual control and the connection to the CMS hierarchical Run Control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Ronco, Saverio
2006-01-01
This thesis reports the reconstruction and lifetime measurement of B +, Bmore » $$0/atop{d}$$ and B$$0/atop{s}$$ mesons, performed using fully reconstructed hadronic decays collected by a dedicated trigger at CDF II experiment. This dedicated trigger selects significantly displaced tracks from primary vertex of p$$\\bar{p}$$ collisions generated at Tevatron collider, obtaining, in this way, huge data samples enriched of long-lived particles, and is therefore suitable for reconstruction of B meson in hadronic decay modes. Due to the trigger track impact parameter selections, the proper decay time distributions of the B mesons no longer follow a simply exponential decay law. This complicates the lifetime measurement and requires a correct understanding and treatment of all the involved effects to keep systematic uncertainties under control. This thesis presents a method to extract the lifetime of B mesons in “ct- biased” samples, based on a Monte Carlo approach, to correct for the effects of the trigger and analysis selections. We present the results of this method when applied on fully re- constructed decays of B collected by CDF II in the data taking runs up to August 2004, corresponding to an integrated luminosity of about 360 pb -1. The lifetimes are extracted using the decay modes B + → $$\\bar{D}$$ 0π +,B$$0\\atop{d}$$ → D -π +, B$$0\\atop{d}$$ → D -π +π -π +, B$$0\\atop{s}$$ → D$$-\\atop{s}$$π + and B$$0\\atop{s}$$ → D$$-\\atop{s}$$ π +π -π +(and c.c.) and performing combined mass-lifetime unbinned maximum likelihood fits.« less
FELIX: The new detector readout system for the ATLAS experiment
NASA Astrophysics Data System (ADS)
Ryu, Soo; ATLAS TDAQ Collaboration
2017-10-01
After the Phase-I upgrades (2019) of the ATLAS experiment, the Front-End Link eXchange (FELIX) system will be the interface between the data acquisition system and the detector front-end and trigger electronics. FELIX will function as a router between custom serial links and a commodity switch network using standard technologies (Ethernet or Infiniband) to communicate with commercial data collecting and processing components. The system architecture of FELIX will be described and the status of the firmware implementation and hardware development currently in progress will be presented.
Operation and performance of the LHCb calorimeters
NASA Astrophysics Data System (ADS)
Chefdeville, M.
2018-03-01
The LHCb calorimeters play a key role in the hardware trigger of the experiment. They also serve the measurement of radiative heavy flavor decays and the identification of electrons. Located at twelve meters from the interaction region, they are composed of a plane of scintillating tiles, a preshower detector, an electromagnetic and a hadronic sampling calorimeters using scintillators as active elements. In these proceedings, technical and operational aspects of these detectors are described. Emphasis is then put on calorimeter reconstruction and calibration. Finally, performance for benchmark physics modes are briefly reported.
Multipurpose active pixel sensor (APS)-based microtracker
NASA Astrophysics Data System (ADS)
Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.
1998-12-01
A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.
Adaptive and accelerated tracking-learning-detection
NASA Astrophysics Data System (ADS)
Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu
2013-08-01
An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickerson, Jonathan W; Younkin, James R
Radio-frequency identification (RFID) technology has revolutionized the concept of asset tracking. By affixing an RFID tag to a valued asset, one can track the item throughout any facility where RIFD readers are in place, thereby alerting inspectors to theft, misuse, and misplacement of the tracked item. While not yet implemented for tracking very high value assets, RFID technology is already widely used in many industries as the standard for asset tracking. A subset of RFID technology exists called Ultra-Wide-Band (UWB) RFID. While traditional (sometimes called narrow-band) RFID technology transmits a continuous sine-wave signal of a narrow frequency range, UWB technologymore » works by transmitting signals as short pulses of a broad frequency range. This improves performance in several areas, namely, range, precision, and accuracy of motion detection. Because of the nature of the technology, it also performs well in close proximity to metal, which sets it apart from traditional RFID. The purpose of this paper is to investigate the current state of UWB RFID technology and research the areas where it already is being used. This is accomplished through study of publicly known uses of the technology as well as personal exploration of RFID hardware and software. This paper presents the findings in a general manner to facilitate their usefulness for diverse applications.« less
KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery
NASA Astrophysics Data System (ADS)
Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan
2013-05-01
KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.
Track monitoring from the dynamic response of a passing train: A sparse approach
NASA Astrophysics Data System (ADS)
Lederman, George; Chen, Siheng; Garrett, James H.; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo
2017-06-01
Collecting vibration data from revenue service trains could be a low-cost way to more frequently monitor railroad tracks, yet operational variability makes robust analysis a challenge. We propose a novel analysis technique for track monitoring that exploits the sparsity inherent in train-vibration data. This sparsity is based on the observation that large vertical train vibrations typically involve the excitation of the train's fundamental mode due to track joints, switchgear, or other discrete hardware. Rather than try to model the entire rail profile, in this study we examine a sparse approach to solving an inverse problem where (1) the roughness is constrained to a discrete and limited set of "bumps"; and (2) the train system is idealized as a simple damped oscillator that models the train's vibration in the fundamental mode. We use an expectation maximization (EM) approach to iteratively solve for the track profile and the train system properties, using orthogonal matching pursuit (OMP) to find the sparse approximation within each step. By enforcing sparsity, the inverse problem is well posed and the train's position can be found relative to the sparse bumps, thus reducing the uncertainty in the GPS data. We validate the sparse approach on two sections of track monitored from an operational train over a 16 month period of time, one where track changes did not occur during this period and another where changes did occur. We show that this approach can not only detect when track changes occur, but also offers insight into the type of such changes.
A comparison of Manchester symbol tracking loops for block 5 applications
NASA Technical Reports Server (NTRS)
Holmes, J. K.
1991-01-01
The linearized tracking errors of three Manchester (biphase coded) symbol tracking loops are compared to determine which is appropriate for Block 5 receiver applications. The first is a nonreturn to zero (NRZ) symbol synchronizer loop operating at twice the symbol rate (NRZ x 2) so that it operates on half symbols. The second near optimally processes the mid-symbol transitions and ignores the between symbol transitions. In the third configuration, the first two approaches are combined as a hybrid to produce the best performance. Although this hybrid loop is the best at low symbol signal to noise ratios (SNRs), it has about the same performance as the NRZ x 2 loop at higher SNRs (greater than 0-dB E sub s/N sub 0). Based on this analysis, it is tentatively recommended that the hybrid loop be implemented for Manchester data in the Block 5 receiver. However, the high data rate case and the hardware implications of each implementation must be understood and analyzed before the hybrid loop is recommended unconditionally.
Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D
2009-01-01
Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.
Enhancing DSN Operations Efficiency with the Discrepancy Reporting Management System (DRMS)
NASA Technical Reports Server (NTRS)
Chatillon, Mark; Lin, James; Cooper, Tonja M.
2003-01-01
The DRMS is the Discrepancy Reporting Management System used by the Deep Space Network (DSN). It uses a web interface and is a management tool designed to track and manage: data outage incidents during spacecraft tracks against equipment and software known as DRs (discrepancy Reports), to record "out of pass" incident logs against equipment and software in a Station Log, to record instances where equipment has be restarted or reset as Reset records, and to electronically record equipment readiness status across the DSN. Tracking and managing these items increases DSN operational efficiency by providing: the ability to establish the operational history of equipment items, data on the quality of service provided to the DSN customers, the ability to measure service performance, early insight into processes, procedures and interfaces that may need updating or changing, and the capability to trace a data outage to a software or hardware change. The items listed above help the DSN to focus resources on areas of most need.
NASA Astrophysics Data System (ADS)
Bennett, Ian Graham
Automatic Dependent Surveillance-Broadcast (ADS-B) is quickly becoming the new standard for more efficient air traffic control, but as a satellite/ground-based hybrid system it faces limitations on its usefulness over oceans and remote areas. Tracking of aircraft from space presents many challenges that if overcome will greatly increase the safety and efficiency of commercial air travel in these areas. This thesis presents work performed to develop a flight-ready ADS-B receiver payload for the CanX-7 technology demonstration satellite. Work presented includes a simulation of payload performance and coverage area, the design and testing of a single-feed circularly polarized L-band antenna, the design of software to control the payload and manage its data, and verification of the performance of the hardware prior to integration with the satellite and launch. Also included is a short overview of results from the seven-month aircraft tracking campaign conducted with the spacecraft.
Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer.
Cohen, Adam E; Moerner, W E
2008-05-12
We present an Anti-Brownian Electrokinetic trap (ABEL trap) capable of trapping individual fluorescently labeled protein molecules in aqueous buffer. The ABEL trap operates by tracking the Brownian motion of a single fluorescent particle in solution, and applying a time-dependent electric field designed to induce an electrokinetic drift that cancels the Brownian motion. The trapping strength of the ABEL trap is limited by the latency of the feedback loop. In previous versions of the trap, this latency was set by the finite frame rate of the camera used for video-tracking. In the present system, the motion of the particle is tracked entirely in hardware (without a camera or image-processing software) using a rapidly rotating laser focus and lock-in detection. The feedback latency is set by the finite rate of arrival of photons. We demonstrate trapping of individual molecules of the protein GroEL in buffer, and we show confinement of single fluorophores of the dye Cy3 in water.
DSA process window expansion with novel DSA track hardware
NASA Astrophysics Data System (ADS)
Harumoto, Masahiko; Stokes, Harold; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Chalres; Asai, Masaya; Argoud, Maxime; Servin, Isabelle; Chamiot-Maitral, Gaëlle; Claveau, Guillaume; Tiron, Raluca; Cayrefourcq, Ian
2017-03-01
PS-b-PMMA block copolymer is a well-known DSA material, and there are many DSA patterning methods that make effective the use of such 1st generation materials. Consequently, this variety of patterning methods opens a wide array of possibilities for DSA application[1-4]. Last year, during the inaugural International DSA Symposium, researchers and lithographers concurred on common key issues for DSA patterning methods such as: defect density, LWR, placement error, etc. Defect density was specifically expressed as the biggest obstacle for new processes. Coat-Develop track systems contribute to the DSA pattern fabrication and also influence the DSA pattern performances[4]. In this study, defectivity was investigated using an atmosphere-controlled chamber on the SOKUDO DUO track. As an initial step for expanding the DSA process window, fingerprint patterns were used for various atmospheric conditions during DSA self-assembly annealing. In this study, we will demonstrate an improved DSA process window, and then we will discuss the mechanism for this atmospheric effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.
Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...
2016-12-28
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.
NASA Astrophysics Data System (ADS)
Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.
2016-12-01
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.
Video Guidance Sensor and Time-of-Flight Rangefinder
NASA Technical Reports Server (NTRS)
Bryan, Thomas; Howard, Richard; Bell, Joseph L.; Roe, Fred D.; Book, Michael L.
2007-01-01
A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode.
Optimization and Modification of the SeaQuest Trigger Efficiency Program
NASA Astrophysics Data System (ADS)
White, Nattapat
2017-09-01
The primary purpose E906/SeaQuest is to examine the quark and antiquark distributions within the nucleon. This experiment uses the proton beam from the 120 GeV Fermi National Accelerator Laboratory Main Injector to collide with one of several fixed targets. From the collision, a pair of muons produced by the Drell-Yan process directly probes the nucleon sea antiquarks. The Seaquest spectrometer consists of two focusing magnets, several detectors, and multiple planes of scintillating hodoscopes that helped track and analyze the properties of particles. Hodoscope hits are compared to predetermined hit combinations that would result from a pair of muons that originated in the target. Understanding the trigger efficiency is part of the path to determine the probability of Drell Yan muon pair production in the experiment. Over the years of data taking, the trigger efficiency varied as individual scintillator detection efficiency changed. To accurately determine how the trigger efficiency varied over time, the trigger efficiency program needed to be upgraded to include the effects of inefficiencies in the 284 individual channels in the hodoscope systems. The optimization, modification, and results of the upgraded trigger efficiency program will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
Real-time optimizations for integrated smart network camera
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois
2005-02-01
We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.
NASA Astrophysics Data System (ADS)
Taliercio, C.; Luchetta, A.; Manduchi, G.; Rigoni, A.
2017-07-01
High-speed event driven acquisition is normally performed by analog-to-digital converter (ADC) boards with a given number of pretrigger sample and posttrigger sample that are recorded upon the occurrence of a hardware trigger. A direct physical connection is, therefore, required between the source of event (trigger) and the ADC, because any other software-based communication method would introduce a delay in triggering that would turn out to be not acceptable in many cases. This paper proposes a solution for the relaxation of the event communication time that can be, in this case, carried out by software messaging (e.g., via an LAN), provided that the system components are synchronized in time using the IEEE 1588 synchronization mechanism. The information about the exact event occurrence time is contained in the software packet that is sent to communicate the event and is used by the ADC FPGA to identify the exact sample in the ADC sample queue. The length of the ADC sample queue will depend on the maximum delay in software event message communication time. A prototype implementation using a National FlexRIO FPGA board connected with an ADC device is presented as the proof of concept.
The Trigger and Data Acquisition System for the 8 tower subsystem of the KM3NeT detector
NASA Astrophysics Data System (ADS)
Manzali, M.; Chiarusi, T.; Favaro, M.; Giacomini, F.; Margiotta, A.; Pellegrino, C.
2016-07-01
KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host a large Cherenkov neutrino telescope that will collect photons emitted along the path of the charged particles produced in neutrino interactions in the vicinity of the detector. The philosophy of the DAQ system of the detector foresees that all data are sent to shore after a proper sampling of the photomultiplier signals. No off-shore hardware trigger is implemented and a software selection of the data is performed with an on-line Trigger and Data Acquisition System (TriDAS) to reduce the large throughput due to the environmental light background. A first version of the TriDAS has been developed to operate a prototype detection unit deployed in March 2013 in the abyssal site of Capo Passero (Sicily, Italy), about 3500 m deep. A revised and improved version has been developed to meet the requirements of the final detector, using new tools and modern design solutions. First installation and scalability tests have been performed at the Bologna Common Infrastructure and results comparable to what expected have been observed.
Proposed US Contributions to LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen
2013-01-01
Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.
A History of Space Shuttle Main Engine (SSME) Redline Limits Management
NASA Technical Reports Server (NTRS)
Arnold, Thomas M.
2011-01-01
The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.
1977-10-01
These modules make up a multi-task priority real - time operating system in which each of the functions of the Supervisor is performed by one or more tasks. The Initialization module performs the initialization of the Supervisor software and hardware including the Input Buffer, the FIFO, and the Track Correlator This module is used both at initial program load time and upon receipt of a SC Initialization Command.
2010-04-01
for predicting central blood volume changes to focus on the development of software algorithms and systems to provide a capability to track, and...which creatively fills this Critical Care gap. Technology in this sense means hardware and software systems which incorporate sensors, processors...devices for use in forward surgical and combat areas. Mil Med 170: 76-82, 2005. [10] Gaylord KM, Cooper DB, Mercado JM, Kennedy JE, Yoder LH, and
NASA Customer Data and Operations System
NASA Technical Reports Server (NTRS)
Butler, Madeline J.; Stallings, William H.
1991-01-01
In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.
Fluorescence Behavioral Imaging (FBI) Tracks Identity in Heterogeneous Groups of Drosophila
Ramdya, Pavan; Schaffter, Thomas; Floreano, Dario; Benton, Richard
2012-01-01
Distinguishing subpopulations in group behavioral experiments can reveal the impact of differences in genetic, pharmacological and life-histories on social interactions and decision-making. Here we describe Fluorescence Behavioral Imaging (FBI), a toolkit that uses transgenic fluorescence to discriminate subpopulations, imaging hardware that simultaneously records behavior and fluorescence expression, and open-source software for automated, high-accuracy determination of genetic identity. Using FBI, we measure courtship partner choice in genetically mixed groups of Drosophila. PMID:23144871
Fluorescence behavioral imaging (FBI) tracks identity in heterogeneous groups of Drosophila.
Ramdya, Pavan; Schaffter, Thomas; Floreano, Dario; Benton, Richard
2012-01-01
Distinguishing subpopulations in group behavioral experiments can reveal the impact of differences in genetic, pharmacological and life-histories on social interactions and decision-making. Here we describe Fluorescence Behavioral Imaging (FBI), a toolkit that uses transgenic fluorescence to discriminate subpopulations, imaging hardware that simultaneously records behavior and fluorescence expression, and open-source software for automated, high-accuracy determination of genetic identity. Using FBI, we measure courtship partner choice in genetically mixed groups of Drosophila.
Spaces of Surveillance: Indexicality and Solicitation on the Internet.
ERIC Educational Resources Information Center
Elmer, Greg
1997-01-01
Investigates significance of the index in the process of mapping and formatting sites, spaces, and words on the Internet as well as diagnosing, tracking, and soliciting users. Argues that indexical technologies are increasingly called upon by commercial interests to automate the solicitation process whereby entry into an Internet site triggers the…
MRI and (31)P magnetic resonance spectroscopy hardware for axillary lymph node investigation at 7T.
Rivera, Debra S; Wijnen, Jannie P; van der Kemp, Wybe J M; Raaijmakers, Alexander J; Luijten, Peter R; Klomp, Dennis W J
2015-05-01
Neoadjuvant treatment response in lymph nodes predicts patient outcome, but existing methods do not track response during therapy accurately. In this study, specialized hardware was used to adapt high-field (7T) (31) P magnetic resonance spectroscopy (MRS), which has been shown to track treatment response in small breast tumors, to monitor axillary lymph nodes. A dual-tuned quadrature coil that is a (31) P (120 MHz) transceiver and a (1) H (300 MHz) receiver was designed using a novel detune circuit. The transceiver/receiver coil in the axilla is used with a fractionated dipole antenna on the back of the subject and the conventional breast coil for transmit. The novel circuit detuned the (1) H resonance without disturbing the (31) P resonance. In vivo demonstrations included: >80% homogeneous B1 (+) for (1) H over the axilla, identification of a small (3-mm diameter) lymph node, and (31) P MR spectra from a single healthy lymph node. The setup can detect <2 millimolar concentrations of metabolites from a 2-mL voxel. The first (31) P MR spectrum from an in vivo lymph node indicates that the presented design may be sufficiently sensitive to detect metabolic response to neoadjuvant therapy. Multinuclei MRS of the lymph nodes at 7T is possible through combining lightweight antenna elements with dual-tuned transceiver/receive-only coils. © 2014 Wiley Periodicals, Inc.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Particle tracking velocimetry in three-dimensional flows
NASA Astrophysics Data System (ADS)
Maas, H. G.; Gruen, A.; Papantoniou, D.
1993-07-01
Particle Tracking Velocimetry (PTV) is a well-known technique for the determination of velocity vectors within an observation volume. However, for a long time it has rarely been applied because of the intensive effort necessary to measure coordinates of a large number of flow marker particles in many images. With today's imaging hardware in combination with the methods of digital image processing and digital photogrammetry, however, new possibilities have arisen for the design of completely automatic PTV systems. A powerful 3 D PTV has been developed in a cooperation of the Institute of Geodesy and Photogrammetry with the Institute of Hydromechanics and Water Resources Management at the Swiss Federal Institute of Technology. In this paper hardware components for 3 D PTV systems wil be discussed, and a strict mathematical model of photogrammetric 3 D coordinate determination, taking into account the different refractive indices in the optical path, will be presented. The system described is capable of determining coordinate sets of some 1000 particles in a flow field at a time resolution of 25 datasets per second and almost arbitrary sequence length completely automatically after an initialization by an operator. The strict mathematical modelling of the measurement geometry, together with a thorough calibration of the system provide for a coordinate accuracy of typically 0.06 mm in X, Y and 0.18 mm in Z (depth coordinate) in a volume of 200 × 160 × 50 mm3.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Study and design of laser communications system for space shuttle
NASA Technical Reports Server (NTRS)
1973-01-01
The design, development and operation are described of the laser communications system developed for potential space shuttle application. A brief study was conducted to identify the need, if any, for narrow bandwidth space-to-space communication on the shuttle vehicles. None have been specifically identified that could not be accommodated with existing equipments. The key technical features developed in this hardware are the conically scanned tracker for optimized track while communicating with a single detector, and the utilization of a common optical carrier frequency for both transmission and detection. This latter feature permits a multiple access capability so that several transceivers can communicate with one another. The conically scanned tracker technique allows the received signal energy to be efficiently divided between the tracking and communications functions within a common detector.
An animal tracking system for behavior analysis using radio frequency identification.
Catarinucci, Luca; Colella, Riccardo; Mainetti, Luca; Patrono, Luigi; Pieretti, Stefano; Secco, Andrea; Sergi, Ilaria
2014-09-01
Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth. They provide an overview of the system's hardware and software components as well as describe their technique for surgically implanting passive RFID tags in mice. Finally, the authors present the findings of two validation studies to compare the accuracy of the RFID system versus commonly used approaches for evaluating the locomotor activity and object exploration of mice.
Real-time object tracking based on scale-invariant features employing bio-inspired hardware.
Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya
2016-09-01
We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.
ATCA-based ATLAS FTK input interface system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Yasuyuki; Liu, Tiehui Ted; Olsen, Jamieson
The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.
Passive coherent location direct signal suppression using hardware mixing techniques
NASA Astrophysics Data System (ADS)
Kaiser, Sean A.; Christianson, Andrew J.; Narayanan, Ram M.
2017-05-01
Passive coherent location (PCL) is a radar technique, in which the system uses reflections from opportunistic illumination sources in the environment for detection and tracking. Typically, PCL uses civilian communication transmitters not ideally suited for radar. The physical geometry of PCL is developed on the basis of bistatic radar without control of the transmitter antenna or waveform design. This poses the problem that often the receiver is designed with two antennas and channels, one for reference and one for surveillance. The surveillance channel is also contaminated with the direct signal and thus direct signal suppression (DSS) techniques must be used. This paper proposes an analytical solution based around hardware for DSS which is compared to other methods available in the literature. The methods are tested in varying bistatic geometries and with varying target radar cross section (RCS) and signal-to-noise ratio (SNR).
Determining Data Quality for the NOvA Experiment
NASA Astrophysics Data System (ADS)
Murphy, Ryan; NOvA Collaboration Collaboration
2016-03-01
NOvA is a long-baseline neutrino oscillation experiment with two liquid scintillator filled tracking calorimeter detectors separated by 809 km. The detectors are located 14.6 milliradians off-axis of Fermilab's NuMI beam. The NOvA experiment is designed to measure the rate of electron-neutrino appearance out of the almost-pure muon-neutrino NuMI beam, with the data measured at the Near Detector being used to accurately determine the expected rate of the Far Detector. It is therefore very important to have automated and accurate monitoring of the data recorded by the detectors so any hardware, DAQ or beam issues arising in the 0.3 million (20k) channels of the far (near) detector which could effect this extrapolation technique are identified and the affected data removed from the physics analysis data set. This poster will cover the techniques and efficiency of selecting good data, describing the selections placed on different data and hardware levels.
Practical low-cost stereo head-mounted display
NASA Astrophysics Data System (ADS)
Pausch, Randy; Dwivedi, Pramod; Long, Allan C., Jr.
1991-08-01
A high-resolution head-mounted display has been developed from substantially cheaper components than previous systems. Monochrome displays provide 720 by 280 monochrome pixels to each eye in a one-inch-square region positioned approximately one inch from each eye. The display hardware is the Private Eye, manufactured by Reflection Technologies, Inc. The tracking system uses the Polhemus Isotrak, providing (x,y,z, azimuth, elevation and roll) information on the user''s head position and orientation 60 times per second. In combination with a modified Nintendo Power Glove, this system provides a full-functionality virtual reality/simulation system. Using two host 80386 computers, real-time wire frame images can be produced. Other virtual reality systems require roughly 250,000 in hardware, while this one requires only 5,000. Stereo is particularly useful for this system because shading or occlusion cannot be used as depth cues.
Dual-mode capability for hardware-in-the-loop
NASA Astrophysics Data System (ADS)
Vamivakas, A. N.; Jackson, Ron L.
2000-07-01
This paper details a Hardware-in-the-Loop Facility (HIL) developed for evaluation and verification of a missile system with dual mode capability. The missile has the capability of tracking and intercepting a target using either an RF antenna or an IR sensor. The testing of a dual mode system presents a significant challenge in the development of the HIL facility. An IR and RF target environment must be presented simultaneously to the missile under test. These targets, simulated by IR and RF sources, must be presented to the missile under test without interference from each other. The location of each source is critical in the development of the HIL facility. The requirements for building a HIL facility with dual mode capability and the methodology for testing the dual mode system are defined within this paper. Methods for the verification and validation of the facility are discussed.