NASA Astrophysics Data System (ADS)
Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.
2017-11-01
Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.
Mei, Liang; Svanberg, Sune
2015-03-20
This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.
NASA Technical Reports Server (NTRS)
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
Harmonic analysis of electrified railway based on improved HHT
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-06-27
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-01-01
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system. PMID:27355946
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
NASA Astrophysics Data System (ADS)
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-08-18
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.
Automatic computation and solution of generalized harmonic balance equations
NASA Astrophysics Data System (ADS)
Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.
2018-02-01
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-01-01
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171
Loganathan, Muthukumaran; Bristow, Douglas A
2014-04-01
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai
2017-07-01
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanti, Eli; Kaspi, Yohai; Durante, Daniele
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulatedmore » Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong
2015-08-01
Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
Extraction of small boat harmonic signatures from passive sonar.
Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E
2011-06-01
This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
A new approach to harmonic elimination based on a real-time comparison method
NASA Astrophysics Data System (ADS)
Gourisetti, Sri Nikhil Gupta
Undesired harmonics are responsible for noise in a transmission channel, power loss in power electronics and in motor control. Selective Harmonic Elimination (SHE) is a well-known method used to eliminate or suppress the unwanted harmonics between the fundamental and the carrier frequency harmonic/component. But SHE bears the disadvantage of its incapability to use in real-time applications. A novel reference-carrier comparative method has been developed which can be used to generate an SPWM signal to apply in real-time systems. A modified carrier signal is designed and tested for different carrier frequencies based on the generated SPWM FFT. The carrier signal may change for different fundamental to carrier ratio that leads to solving the equations each time. An analysis to find all possible solutions for a particular carrier frequency and fundamental amplitude is performed and found. This proves that there is no one global maxima instead several local maximas exists for a particular condition set that makes this method less sensitive. Additionally, an attempt to find a universal solution that is valid for any carrier signal with predefined fundamental amplitude is performed. A uniform distribution Monte-Carlo sensitivity analysis is performed to measure the window i.e., best and worst possible solutions. The simulations are performed using MATLAB and are justified with experimental results.
Maelstrom Research guidelines for rigorous retrospective data harmonization
Fortier, Isabel; Raina, Parminder; Van den Heuvel, Edwin R; Griffith, Lauren E; Craig, Camille; Saliba, Matilda; Doiron, Dany; Stolk, Ronald P; Knoppers, Bartha M; Ferretti, Vincent; Granda, Peter; Burton, Paul
2017-01-01
Abstract Background: It is widely accepted and acknowledged that data harmonization is crucial: in its absence, the co-analysis of major tranches of high quality extant data is liable to inefficiency or error. However, despite its widespread practice, no formalized/systematic guidelines exist to ensure high quality retrospective data harmonization. Methods: To better understand real-world harmonization practices and facilitate development of formal guidelines, three interrelated initiatives were undertaken between 2006 and 2015. They included a phone survey with 34 major international research initiatives, a series of workshops with experts, and case studies applying the proposed guidelines. Results: A wide range of projects use retrospective harmonization to support their research activities but even when appropriate approaches are used, the terminologies, procedures, technologies and methods adopted vary markedly. The generic guidelines outlined in this article delineate the essentials required and describe an interdependent step-by-step approach to harmonization: 0) define the research question, objectives and protocol; 1) assemble pre-existing knowledge and select studies; 2) define targeted variables and evaluate harmonization potential; 3) process data; 4) estimate quality of the harmonized dataset(s) generated; and 5) disseminate and preserve final harmonization products. Conclusions: This manuscript provides guidelines aiming to encourage rigorous and effective approaches to harmonization which are comprehensively and transparently documented and straightforward to interpret and implement. This can be seen as a key step towards implementing guiding principles analogous to those that are well recognised as being essential in securing the foundational underpinning of systematic reviews and the meta-analysis of clinical trials. PMID:27272186
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
An approach for spherical harmonic analysis of non-smooth data
NASA Astrophysics Data System (ADS)
Wang, Hansheng; Wu, Patrick; Wang, Zhiyong
2006-12-01
A method is proposed to evaluate the spherical harmonic coefficients of a global or regional, non-smooth, observable dataset sampled on an equiangular grid. The method is based on an integration strategy using new recursion relations. Because a bilinear function is used to interpolate points within the grid cells, this method is suitable for non-smooth data; the slope of the data may be piecewise continuous, with extreme changes at the boundaries. In order to validate the method, the coefficients of an axisymmetric model are computed, and compared with the derived analytical expressions. Numerical results show that this method is indeed reasonable for non-smooth models, and that the maximum degree for spherical harmonic analysis should be empirically determined by several factors including the model resolution and the degree of non-smoothness in the dataset, and it can be several times larger than the total number of latitudinal grid points. It is also shown that this method is appropriate for the approximate analysis of a smooth dataset. Moreover, this paper provides the program flowchart and an internet address where the FORTRAN code with program specifications are made available.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
A contour for the entanglement entropies in harmonic lattices
NASA Astrophysics Data System (ADS)
Coser, Andrea; De Nobili, Cristiano; Tonni, Erik
2017-08-01
We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massless regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.
1982-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines
NASA Astrophysics Data System (ADS)
Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert
2018-06-01
This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2018-02-01
In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.
A new method for gravity field recovery based on frequency analysis of spherical harmonics
NASA Astrophysics Data System (ADS)
Cai, Lin; Zhou, Zebing
2017-04-01
All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary results, which only compute lower degree spherical harmonics, indicates that the difference between the input (EGM2008) and output (coefficients from recovery) is smaller than 5E-17, while the minimal precision of computer software (Matlab) is 2.2204E-16.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Nomura, M.; Shimada, T.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.; Schnase, A.
2016-11-01
An rf cavity in the J-PARC RCS not only covers the frequency range of a fundamental acceleration pattern but also generates multi-harmonic rf voltage because it has a broadband impedance. However, analyzing the vacuum tube operation in the case of multi-harmonics is very complicated because many variables must be solved in a self-consistent manner. We developed a method to analyze the vacuum tube operation using a well-known formula and which includes the dependence on anode current for some variables. The calculation method is verified with beam tests, and the results indicate that it is efficient under condition of multi-harmonics with a heavy beam loading effect.
Location identification of closed crack based on Duffing oscillator transient transition
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning
2018-02-01
The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.
The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen
2017-10-01
In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.
Helicopter external noise prediction and correlation with flight test
NASA Technical Reports Server (NTRS)
Gupta, B. P.
1978-01-01
Mathematical analysis procedures for predicting the main and tail rotor rotational and broadband noise are presented. The aerodynamic and acoustical data from Operational Loads Survey (OLS) flight program are used for validating the analysis and noise prediction methodology. For the long method of rotational noise prediction, the spanwise, chordwise, and azimuthwise airloading is used. In the short method, the airloads are assumed to be concentrated at a single spanwise station and for higher harmonics an airloading harmonic exponent of 2.0 is assumed. For the same flight condition, the predictions from long and short methods of rotational noise prediction are compared with the flight test results. The short method correlates as well or better than the long method.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1980-01-01
Spherical harmonic analysis was used to analyze the observed climatological (C) fields of temperature at 850 mb, geopotential height at 500 mb, and sea level pressure. The spherical harmonic method was also applied to the corresponding "model climatological" fields (M) generated by a general circulation model, the "GISS climate model." The climate model was initialized with observed data for the first of December 1976 at 00. GMT and allowed to generate five years of meteorological history. Monthly means of the above fields for the five years were computed and subjected to spherical harmonic analysis. It was found from the comparison of the spectral components of both sets, M and C, that the climate model generated reasonable 500 mb geopotential heights. The model temperature field at 850 mb exhibited a generally correct structure. However, the meridional temperature gradient was overestimated and overheating of the continents was observed in summer.
Application of abstract harmonic analysis to the high-speed recognition of images
NASA Technical Reports Server (NTRS)
Usikov, D. A.
1979-01-01
Methods are constructed for rapidly computing correlation functions using the theory of abstract harmonic analysis. The theory developed includes as a particular case the familiar Fourier transform method for a correlation function which makes it possible to find images which are independent of their translation in the plane. Two examples of the application of the general theory described are the search for images, independent of their rotation and scale, and the search for images which are independent of their translations and rotations in the plane.
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
Stanescu, T; Jaffray, D
2018-05-25
Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Data harmonization and federated analysis of population-based studies: the BioSHaRE project
2013-01-01
Abstracts Background Individual-level data pooling of large population-based studies across research centres in international research projects faces many hurdles. The BioSHaRE (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project aims to address these issues by building a collaborative group of investigators and developing tools for data harmonization, database integration and federated data analyses. Methods Eight population-based studies in six European countries were recruited to participate in the BioSHaRE project. Through workshops, teleconferences and electronic communications, participating investigators identified a set of 96 variables targeted for harmonization to answer research questions of interest. Using each study’s questionnaires, standard operating procedures, and data dictionaries, harmonization potential was assessed. Whenever harmonization was deemed possible, processing algorithms were developed and implemented in an open-source software infrastructure to transform study-specific data into the target (i.e. harmonized) format. Harmonized datasets located on server in each research centres across Europe were interconnected through a federated database system to perform statistical analysis. Results Retrospective harmonization led to the generation of common format variables for 73% of matches considered (96 targeted variables across 8 studies). Authenticated investigators can now perform complex statistical analyses of harmonized datasets stored on distributed servers without actually sharing individual-level data using the DataSHIELD method. Conclusion New Internet-based networking technologies and database management systems are providing the means to support collaborative, multi-center research in an efficient and secure manner. The results from this pilot project show that, given a strong collaborative relationship between participating studies, it is possible to seamlessly co-analyse internationally harmonized research databases while allowing each study to retain full control over individual-level data. We encourage additional collaborative research networks in epidemiology, public health, and the social sciences to make use of the open source tools presented herein. PMID:24257327
Wu, Shulian; Huang, Yudian; Li, Hui; Wang, Yunxia; Zhang, Xiaoman
2015-01-01
Dermatofibrosarcoma protuberans (DFSP) is a skin cancer usually mistaken as other benign tumors. Abnormal DFSP resection results in tumor recurrence. Quantitative characterization of collagen alteration on the skin tumor is essential for developing a diagnostic technique. In this study, second harmonic generation (SHG) microscopy was performed to obtain images of the human DFSP skin and normal skin. Subsequently, structure and texture analysis methods were applied to determine the differences in skin texture characteristics between the two skin types, and the link between collagen alteration and tumor was established. Results suggest that combining SHG microscopy and texture analysis methods is a feasible and effective method to describe the characteristics of skin tumor like DFSP. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.
2013-12-01
A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Bandrauk, André D.
2018-02-01
We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.
NASA Astrophysics Data System (ADS)
Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey
Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.
Compensation of high order harmonic long quantum-path attosecond chirp
NASA Astrophysics Data System (ADS)
Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.
2017-12-01
We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate
NASA Astrophysics Data System (ADS)
Lin, Ruixing; Xu, Lin; Zheng, Xian
2018-03-01
Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.
Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at √{sN N }=2.76 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-10-01
We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of √{sN N }=2.76 TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic v2 and quadrangular v4 flow harmonics, as well as of anticorrelation between v2 and triangular v3 flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, ampt, and hijing models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.
Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Incani, E; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lehner, S; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, D; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schuchmann, S; Schukraft, J; Schulc, M; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shahzad, M I; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yang, P; Yano, S; Yasin, Z; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M
2016-10-28
We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of sqrt[s_{NN}]=2.76 TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic v_{2} and quadrangular v_{4} flow harmonics, as well as of anticorrelation between v_{2} and triangular v_{3} flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, ampt, and hijing models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.
NASA Technical Reports Server (NTRS)
Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.
1991-01-01
A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).
NASA Astrophysics Data System (ADS)
Chernov, N. N.; Zagray, N. P.; Laguta, M. V.; Varenikova, A. Yu
2018-05-01
The article describes the research of the method of localization and determining the size of heterogeneity in biological tissues. The equation for the acoustic harmonic wave, which propagates in the positive direction, is taken as the main one. A three-dimensional expression that describes the field of secondary sources at the observation point is obtained. The simulation of the change of the amplitude values of the vibrational velocity of the second harmonic of the acoustic wave at different coordinates of the inhomogeneity location in three-dimensional space is carried out. For the convenience of mathematical calculations, the area of heterogeneity is reduced to a point.
The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid
NASA Astrophysics Data System (ADS)
Heidarian, T.; Joorabian, M.; Reza, A.
2015-12-01
In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.
Data harmonization of environmental variables: from simple to general solutions
NASA Astrophysics Data System (ADS)
Baume, O.
2009-04-01
European data platforms often contain measurements from different regional or national networks. As standards and protocols - e.g. type of measurement devices, sensors or measurement site classification, laboratory analysis and post-processing methods, vary between networks, discontinuities will appear when mapping the target variable at an international scale. Standardisation is generally a costly solution and does not allow classical statistical analysis of previously reported values. As an alternative, harmonization should be envisaged as an integrated step in mapping procedures across borders. In this paper, several harmonization solutions developed under the INTAMAP FP6 project are presented. The INTAMAP FP6 project is currently developing an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods to web-based implementations. Harmonization is often considered as a pre-processing step in statistical data analysis workflow. If biases are assessed with little knowledge about the target variable - in particular when no explanatory covariate is integrated, a harmonization procedure along borders or between regionally overlapping networks may be adopted (Skøien et al., 2007). In this case, bias is estimated as the systematic difference between line or local predictions. On the other hand, when covariates can be included in spatial prediction, the harmonization step is integrated in the whole model estimation procedure, and, therefore, is no longer an independent pre-processing step of the automatic mapping process (Baume et al., 2007). In this case, bias factors become integrated parameters of the geostatistical model and are estimated alongside the other model parameters. The harmonization methods developed within the INTAMAP project were first applied within the field of radiation, where the European Radiological Data Exchange Platform (EURDEP) - http://eurdep.jrc.ec.europa.eu/ - has been active for all member states for more than a decade (de Cort and de Vries, 1997). This database contains biases because of the different networks processes used in data reporting (Bossew et al., 2007). In a comparison study, monthly averaged Gamma dose measurements from eight European countries were using the methods described above. Baume et al. (2008) showed that both methods yield similar results and can detect and remove bias from the EURDEP database. To broaden the potential of the methods developed within the INTAMAP project, another application example taken from soil science is presented in this paper. The Carbon/Nitrogen (C/N) ratio of forest soils is one of the best predictors for evaluating soil functions such as used in climate change issues. Although soil samples were analyzed according to a common European laboratory method, Carré et al. (2008) concluded that systematic errors are introduced in the measurements due to calibration issues and instability of the sample. The application of the harmonization procedures showed that bias could be adequately removed, although the procedures have difficulty to distinguish real differences from bias.
Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation
NASA Astrophysics Data System (ADS)
Heyden, S.; Ortiz, M.
2016-07-01
We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.
NASA Astrophysics Data System (ADS)
Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju
2018-05-01
Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.
Scaling of mode shapes from operational modal analysis using harmonic forces
NASA Astrophysics Data System (ADS)
Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.
2017-10-01
This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.
Identification of limit cycles in multi-nonlinearity, multiple path systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Barron, O. L.
1979-01-01
A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
Zhu, Li; Bharadwaj, Hari; Xia, Jing; Shinn-Cunningham, Barbara
2013-01-01
Two experiments, both presenting diotic, harmonic tone complexes (100 Hz fundamental), were conducted to explore the envelope-related component of the frequency-following response (FFRENV), a measure of synchronous, subcortical neural activity evoked by a periodic acoustic input. Experiment 1 directly compared two common analysis methods, computing the magnitude spectrum and the phase-locking value (PLV). Bootstrapping identified which FFRENV frequency components were statistically above the noise floor for each metric and quantified the statistical power of the approaches. Across listeners and conditions, the two methods produced highly correlated results. However, PLV analysis required fewer processing stages to produce readily interpretable results. Moreover, at the fundamental frequency of the input, PLVs were farther above the metric's noise floor than spectral magnitudes. Having established the advantages of PLV analysis, the efficacy of the approach was further demonstrated by investigating how different acoustic frequencies contribute to FFRENV, analyzing responses to complex tones composed of different acoustic harmonics of 100 Hz (Experiment 2). Results show that the FFRENV response is dominated by peripheral auditory channels responding to unresolved harmonics, although low-frequency channels driven by resolved harmonics also contribute. These results demonstrate the utility of the PLV for quantifying the strength of FFRENV across conditions. PMID:23862815
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes aremore » limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.« less
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, A.E.
1991-03-01
This article presents a preliminary analysis of the effect of randomly varying harmonic voltages on the temperature rise of squirrel-cage motors. The stochastic process of random variations of harmonic voltages is defined by means of simple statistics (mean, standard deviation, type of distribution). Computational models based on a first-order approximation of the motor losses and on the Monte Carlo method yield results which prove that equipment with large thermal time-constant is capable of withstanding for a short period of time larger distortions than THD = 5%.
Analysis of the harmonics and power-factor effects at a utility-inertied photovoltaic system
NASA Astrophysics Data System (ADS)
Campen, G. L.
The harmonics and power factor characteristics and effects of a single residential photovoltaic (PV) installation using a line commutated inverter are outlined. The data were taken during a 5 day measurement program at a prototype residential PV installation in Arizona. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system. A candidate method of modeling the installation for computer studies of larger concentrations is given.
NASA Astrophysics Data System (ADS)
Zhou, J. X.; Zhang, L.
2005-01-01
Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
NASA Astrophysics Data System (ADS)
de León, Jesús Ponce; Beltrán, José Ramón
2012-12-01
In this study, a new method of blind audio source separation (BASS) of monaural musical harmonic notes is presented. The input (mixed notes) signal is processed using a flexible analysis and synthesis algorithm (complex wavelet additive synthesis, CWAS), which is based on the complex continuous wavelet transform. When the harmonics from two or more sources overlap in a certain frequency band (or group of bands), a new technique based on amplitude similarity criteria is used to obtain an approximation to the original partial information. The aim is to show that the CWAS algorithm can be a powerful tool in BASS. Compared with other existing techniques, the main advantages of the proposed algorithm are its accuracy in the instantaneous phase estimation, its synthesis capability and that the only input information needed is the mixed signal itself. A set of synthetically mixed monaural isolated notes have been analyzed using this method, in eight different experiments: the same instrument playing two notes within the same octave and two harmonically related notes (5th and 12th intervals), two different musical instruments playing 5th and 12th intervals, two different instruments playing non-harmonic notes, major and minor chords played by the same musical instrument, three different instruments playing non-harmonically related notes and finally the mixture of a inharmonic instrument (piano) and one harmonic instrument. The results obtained show the strength of the technique.
Spherical harmonic analysis of a harmonic function given on a spheroid
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-07-01
A new analytical method for the computation of a truncated series of solid spherical harmonic coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived, using a transformation between surface and solid spherical HCs. A two-step procedure is derived to extend this transformation beyond degree and order (d/o) 520. The method is compared to the Hotine-Jekeli transformation in a numerical study based on the EGM2008 global gravity model. Both methods are shown to achieve submicrometre precision in terms of height anomalies for a model to d/o 2239. However, both methods result in spherical harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in gravity disturbances due to the different coordinate system used. While the Hotine-Jekeli transformation requires the use of an ellipsoidal coordinate system, the new method uses only spherical polar coordinates. The Hotine-Jekeli transformation is numerically more efficient, but the new method can more easily be extended to cases where (a linear combination of) normal derivatives of the function under consideration are given on the surface of the spheroid. It therefore provides a solution to many types of ellipsoidal boundary-value problems in the spectral domain.
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America
Huang, Jinbo; Yu, Yinghua; Wei, Changyuan; Qin, Qinghong; Mo, Qinguo; Yang, Weiping
2015-01-01
Background Despite the common use of conventional electrocautery in modified radical mastectomy for breast cancer, the harmonic scalpel is recently emerging as a dominant surgical instrument for dissection and haemostasis, which is thought to reduce the morbidity, such as seroma and blood loss. But the results of published trials are inconsistent. So we made the meta-analysis to assess the intraoperative and postoperative endpoints among women undergoing modified radical mastectomy with harmonic scalpel or electrocautery. Methods A comprehensive literature search of case-control studies from PubMed, MEDLINE, EMBASE and Cochrane Library databases involving modified radical mastectomy with harmonic scalpel or electrocautery was performed. We carried out a meta-analysis of primary endpoints including postoperative drainage, seroma development, intraoperative blood loss and secondly endpoints including operative time and wound complications. We used odds ratios (ORs) with 95% confidence intervals (CIs) to evaluate the effect size for categorical outcomes and standardised mean differences (SMDs) for continuous outcomes. Results A total of 11 studies with 702 patients were included for this meta-analysis. There was significant difference in total postoperative drainage (SMD: -0.74 [95%CI: -1.31, -0.16]; P< 0.01), seroma development[OR: 0.49 (0.34, 0.70); P < 0.01], intraoperative blood loss(SMD: -1.14 [95%CI: -1.81,-0.47]; P < 0.01) and wound complications [OR: 0.38 (0.24, 0.59); P < 0.01] between harmonic scalpel dissection and standard electrocautery in modified radical mastectomy for breast cancer. No difference was found as for operative time between harmonic scalpel dissection and standard electrocautery (SMD: 0.04 [95%CI: -0.41, 0.50]; P = 0.85). Conclusion Compared to standard electrocautery, harmonic scalpel dissection presents significant advantages in decreasing postoperative drainage, seroma development, intraoperative blood loss and wound complications in modified radical mastectomy for breast cancer, without increasing operative time. Harmonic scalpel can be recommended as a preferential surgical instrument in modified radical mastectomy. PMID:26544716
Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters
NASA Astrophysics Data System (ADS)
Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi
2017-06-01
This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.
NASA Technical Reports Server (NTRS)
Jin, R. S.
1975-01-01
Power spectral density analysis using Burg's maximum entropy method was applied to the geomagnetic dipole field and its rate of change for the years 1901 to 1969. Both spectra indicate relative maxima at 0.015 cycles/year and its harmonics. These maxima correspond approximately to 66, 33, 22, 17, 13, 11, and 9-year spectral lines. The application of the same analysis techniques to the length-of-day (l.o.d) fluctuations for the period 1865 to 1961 reveal similar spectral characteristics. Although peaks were observed at higher harmonics of the fundamental frequency, the 22-year and 11-year lines are not attributed unambiguously to the solar magnetic cycle and the solar cycle. It is suggested that the similarity in the l.o.d fluctuations and the dipole field variations is related to the motion within the earth's fluid core during the past one hundred years.
Variability of Currents in Great South Channel and Over Georges Bank: Observation and Modeling
1992-06-01
Rizzoli motivated me to study the driv:,: mechanism of stratified tidal rectification using diagnostic analysis methods . Conversations with Glen...drifter trajectories in the 1988 and 1989 surveys give further encouragement that the analysis method yields an accurate picture of the nontidal flow...harmonic truncation method . Scaling analysis argues that this method is not appropriate for a step topography because it is valid only when the
NASA Technical Reports Server (NTRS)
Meyers, Steven D.; Kelly, B. G.; O'Brien, J. J.
1993-01-01
Wavelet analysis is a relatively new technique that is an important addition to standard signal analysis methods. Unlike Fourier analysis that yields an average amplitude and phase for each harmonic in a dataset, the wavelet transform produces an instantaneous estimate or local value for the amplitude and phase of each harmonic. This allows detailed study of nonstationary spatial or time-dependent signal characteristics. The wavelet transform is discussed, examples are given, and some methods for preprocessing data for wavelet analysis are compared. By studying the dispersion of Yanai waves in a reduced gravity equatorial model, the usefulness of the transform is demonstrated. The group velocity is measured directly over a finite range of wavenumbers by examining the time evolution of the transform. The results agree well with linear theory at higher wavenumber but the measured group velocity is reduced at lower wavenumbers, possibly due to interaction with the basin boundaries.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
NASA Astrophysics Data System (ADS)
Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot
2018-05-01
The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.
Dynamical Systems in Circuit Designer's Eyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odyniec, M.
Examples of nonlinear circuit design are given. Focus of the design process is on theory and engineering methods (as opposed to numerical analysis). Modeling is related to measurements It is seen that the phase plane is still very useful with proper models Harmonic balance/describing function offers powerful insight (via the combination of simulation with circuit and ODE theory). Measurement and simulation capabilities increased, especially harmonics measurements (since sinusoids are easy to generate)
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Non-linear dielectric spectroscopy of microbiological suspensions
Treo, Ernesto F; Felice, Carmelo J
2009-01-01
Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not observed at the same values. Conclusion Contrary to previous assertions, no repeatable dielectric non-linearity was exhibited in the bulk suspensions tested under the field and frequency condition reported with this recently designed analyzer. Indeed, interface related harmonics were observed and monitored during biochemical stimuli. The changes were coherent with the expected biological response. PMID:19772595
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.
2014-02-01
Second harmonic generation (SHG) in Bis (Cinnamic acid): Hexamine cocrystal was extensively analyzed through charge transfer (CT). The CT interactions through hydrogen bonding were well established with the aid of vibrational analysis and Natural Bond Orbital (NBO) analysis. The retentivity of coplanar nature of the cinnamic acid in the cocrystal was confirmed through UV-Visible spectroscopy and supported by Raman studies. Structural analysis indicated the quinoidal character of the given material presenting a high SHG efficiency. The first order hyperpolarizability value was calculated theoretically by density functional theory (DFT) and Hartree-Fock (HF) methods in support for the large value of SHG.
NASA Astrophysics Data System (ADS)
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.
2018-05-01
A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.
Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melidis, Christos, E-mail: christos.melidis@eortc.be; Bosch, Walther R.; Izewska, Joanna
2014-12-01
Purpose: To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by themore » GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.« less
Xu, Xiangbo; Chen, Shao
2015-08-31
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
Xu, Xiangbo; Chen, Shao
2015-01-01
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281
Dynamic analysis of nonlinear rotor-housing systems
NASA Technical Reports Server (NTRS)
Noah, Sherif T.
1988-01-01
Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine (SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the nonlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increment. The method is applied to a nonlinear generic model of the high pressure oxygen turbopump (HPOTP). As compared to the fourth order Runge-Kutta numerical integration methods, the convolution approach proved to be more accurate and more highly efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic responses fo the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-rotor models to their coordinates at the bearing clearances. Recommendations are included for further development of the method, for extending the analysis to aperiodic and chaotic regimes and for conducting critical parameteric studies of the nonlinear response of the current SSME turbopumps.
Astronomical Context of Georgian Folklore
NASA Astrophysics Data System (ADS)
Jijelava1, Badri; Holbrook, Jarita; Simonia, Irakli
2016-10-01
Objectives: The religious Ancient megalithic monuments are accordingly o/riente to the ancient Gods - The Sun, Moon, luminaries. The aim of this work to research the ethnographic data, current folklore and based on the results, harmonize the ancient Gods and the orientations of the religious megalithic complexes. Methods/Statistical Analysis: We harmonized the ethnographical, folklore and historical information and restoration of ancient celestial sphere (using special astronomy application) and identified the correlations between the some acronychal or helical rising/set of luminaries and orientations of megalithic objects. Such connections are stored in a folklore. Findings: This technique of investigations gives us more clear understanding of ancient universe. Using this method, we can receive additional information about the ancient Gods - Luminaries, clarify current mythology, date the megalithic complex. Application/Improvements: This method of investigation - Harmonization cultural astronomy and archae or astronomy with the archeological investigations will be more fruitful, because it gives us reliable information concerning the ancient culture, ancient religion and ancient people.
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min
2018-05-01
Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
Retrogressive harmonic motion as structural and stylistic characteristic of pop-rock music
NASA Astrophysics Data System (ADS)
Carter, Paul S.
The central issue addressed in this dissertation is that of progressive and retrogressive harmonic motion as it is utilized in the repertoire of pop-rock music. I believe that analysis in these terms may prove to be a valuable tool for the understanding of the structure, style and perception of this music. Throughout my study of this music, various patterns of progressive and retrogressive harmonic motions within a piece reveal a kind of musical character about it, a character on which much of a work's style, organization and extramusical nature often depends. Several influential theorists, especially Jean-Phillipe Rameau, Hugo Riemann, and Arnold Schoenberg, have addressed the issues of functional harmony and the nature of the motion between chords of a tonal harmonic space. After assessing these views, I have found that it is possible to differentiate between two fundamental types of harmonic motions. This difference, one that I believe is instrumental in characterizing pop-rock music, is the basis for the analytical perspective I wish to embrace. After establishing a method of evaluating tonal harmonic root motions in these terms, I wish to examine a corpus of this music in order to discover what a characterization of its harmonic motion may reveal about each piece. Determining this harmonic character may help to establish structural and stylistic traits for that piece, its genre, composer, period, or even its sociological purpose. Conclusions may then be drawn regarding the role these patterns play in defining musical style traits of pop-rock. Partly as a tool for serving the study mentioned above I develop a graphical method of accounting for root motion I name the tonal "Space-Plot"; This apparatus allows the analyst to measure several facets about the harmonic motion of the music, and to see a wide scope of relations in and around a diatonic key.
Areal and Temporal Analysis of Precipitation Patterns In Slovakia Using Spectral Analysis
NASA Astrophysics Data System (ADS)
Pishvaei, M. R.
Harmonic analysis as an objective method of precipitation seasonality studying is ap- plied to the 1901-2000 monthly precipitation averages at five stations in the low-land part of Slovakia with elevation less than 800 m a.s.l. The significant harmonics of long-term precipitation series have been separately computed for eight 30-year peri- ods, which cover the 20th century and some properties and the variations are com- pared to 100-year monthly precipitation averages. The selected results show that the first and the second harmonics pre-dominantly influence on the annual distribution and climatic seasonal regimes of pre-cipitation that contribute to the precipitation am- plitude/pattern with about 20% and 10%, respectively. These indicate annual and half year variations. The rest harmon-ics often have each less than 5% contribution on the Fourier interpolation course. Maximum in yearly precipitation course, which oc- curs approximately at the begin-ning of July, because of phase changing shifts then to the middle of June. Some probable reasons regarding to Fourier components are discussed. In addition, a tem-poral analysis over precipitation time series belonging to the Hurbanovo Observa-tory as the longest observational series on the territory of Slovakia (with 130-year precipitation records) has been individually performed and possible meteorological factors responsible for the observed patterns are suggested. A comparison of annual precipitation course obtained from daily precipitation totals analysis and polynomial trends with Fourier interpolation has been done too. Daily precipitation data in the latest period are compared for some stations in Slovakia as well. Only selected results are pre-sented in the poster.
Tracking Helicopters with a Seismic Array
NASA Astrophysics Data System (ADS)
Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert
2015-04-01
We observed that the pressure or acoustic wave created by the rotor blades of a helicopter can couple to the ground even at 30 km distance where it creates a signal strong enough to be detected by a seismometer. The signal is harmonic tremor with a fundamental frequency downgliding with the inflection point at e.g. 14 Hz and two equally spaced overtones up to the Nyquist frequency of 50 Hz. No difference in the amplitudes between the fundamental frequency and higher harmonics was observed. Such a signature is a consequence of the regularly repeating pressure pulses generated by the helicopter's rotor blades. The signal was recorded by a seven station broadband array with an aperture of 1.6 km. Our spacing is close enough to record the signal at all stations and far enough to observe traveltime differences. The separation of the spectral lines corresponds to the time interval between the repeating sources. The highlighted harmonics contain information about the spectral content of the single source as our signal corresponds to the convolution of an infinite comb function and a single pulse. As we see all harmonics and they have the same amplitude up to the Nyquist frequency we can deduce that the frequency content of the single pulse is flat i.e. it is effectively a delta function up to the Nyquist frequency. We perform a detailed spectral and location analysis of the signal, and compare our results with the known information on the helicopter's speed, location, the frequency of the blades rotation and the amount of blades. This analysis is based on the characteristic shape of the curve i.e. speed of the gliding, minimum and maximum fundamental frequency, amplitudes at the inflection points at different stations and traveltimes deduced from the inflection points at different stations. This observation has an educative value, because the same principle could be used for the analysis of the volcanic harmonic tremor. Harmonic volcanic tremor usually has fundamental frequencies below 10 Hz but frequency downgliding and upgliding up to 30 Hz was observed e.g. on Redoubt volcano. Due to the characteristic shape of the helicopter signal it is nevertheless rather unlikely that this signal is mistaken for volcanic tremor. The helicopter gives us a robust way of testing the method and possible application of the method to volcanic harmonic tremor.
Analysis of periodically excited non-linear systems by a parametric continuation technique
NASA Astrophysics Data System (ADS)
Padmanabhan, C.; Singh, R.
1995-07-01
The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.
NASA Astrophysics Data System (ADS)
Tapimo, Romuald; Tagne Kamdem, Hervé Thierry; Yemele, David
2018-03-01
A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \\vert μ \\vert ≥0.1 is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.
Selective suppression of high-order harmonics within phase-matched spectral regions.
Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren
2017-04-01
Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.
Second Harmonic Generation of Unpolarized Light
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.
2017-11-01
A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.
Harmonic Balance Computations of Fan Aeroelastic Stability
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturini, M.
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
NASA Astrophysics Data System (ADS)
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.
Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang
2016-04-18
In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in themore » number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.« less
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
NASA Astrophysics Data System (ADS)
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu
2013-01-01
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.
Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric
2016-10-03
A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.
The harmonic impact of electric vehicle battery charging
NASA Astrophysics Data System (ADS)
Staats, Preston Trent
The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.
The radio-frequency fluctuation effect on the floating harmonic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan
2016-08-15
The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less
Learning high-level features for chord recognition using Autoencoder
NASA Astrophysics Data System (ADS)
Phongthongloa, Vilailukkana; Kamonsantiroj, Suwatchai; Pipanmaekaporn, Luepol
2016-07-01
Chord transcription is valuable to do by itself. It is known that the manual transcription of chords is very tiresome, time-consuming. It requires, moreover, musical knowledge. Automatic chord recognition has recently attracted a number of researches in the Music Information Retrieval field. It has known that a pitch class profile (PCP) is the commonly signal representation of musical harmonic analysis. However, the PCP may contain additional non-harmonic noise such as harmonic overtones and transient noise. The problem of non-harmonic might be generating the sound energy in term of frequency more than the actual notes of the respective chord. Autoencoder neural network may be trained to learn a mapping from low level feature to one or more higher-level representation. These high-level representations can explain dependencies of the inputs and reduce the effect of non-harmonic noise. Then these improve features are fed into neural network classifier. The proposed high-level musical features show 80.90% of accuracy. The experimental results have shown that the proposed approach can achieve better performance in comparison with other based method.
Region Spherical Harmonic Magnetic Modeling from Near-Surface and Satellite-Altitude Anomlaies
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; von Frese, Ralph R. B.; Taylor, Patrick T.
2013-01-01
The compiled near-surface data and satellite crustal magnetic measured data are modeled with a regionally concentrated spherical harmonic presentation technique over Australia and Antarctica. Global crustal magnetic anomaly studies have used a spherical harmonic analysis to represent the Earth's magnetic crustal field. This global approach, however is best applied where the data are uniformly distributed over the entire Earth. Satellite observations generally meet this requirement, but unequally distributed data cannot be easily adapted in global modeling. Even for the satellite observations, due to the errors spread over the globe, data smoothing is inevitable in the global spherical harmonic presentations. In addition, global high-resolution modeling requires a great number of global spherical harmonic coefficients for the regional presentation of crustal magnetic anomalies, whereas a lesser number of localized spherical coefficients will satisfy. We compared methods in both global and regional approaches and for a case where the errors were propagated outside the region of interest. For observations from the upcoming Swarm constellation, the regional modeling will allow the production a lesser number of spherical coefficients that are relevant to the region of interest
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
NASA Astrophysics Data System (ADS)
Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.
2017-12-01
Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.
NASA Astrophysics Data System (ADS)
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua
2017-01-01
The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.
NASA Technical Reports Server (NTRS)
Vlassak, Irmien; Rubin, David N.; Odabashian, Jill A.; Garcia, Mario J.; King, Lisa M.; Lin, Steve S.; Drinko, Jeanne K.; Morehead, Annitta J.; Prior, David L.; Asher, Craig R.;
2002-01-01
BACKGROUND: Newer contrast agents as well as tissue harmonic imaging enhance left ventricular (LV) endocardial border delineation, and therefore, improve LV wall-motion analysis. Interpretation of dobutamine stress echocardiography is observer-dependent and requires experience. This study was performed to evaluate whether these new imaging modalities would improve endocardial visualization and enhance accuracy and efficiency of the inexperienced reader interpreting dobutamine stress echocardiography. METHODS AND RESULTS: Twenty-nine consecutive patients with known or suspected coronary artery disease underwent dobutamine stress echocardiography. Both fundamental (2.5 MHZ) and harmonic (1.7 and 3.5 MHZ) mode images were obtained in four standard views at rest and at peak stress during a standard dobutamine infusion stress protocol. Following the noncontrast images, Optison was administered intravenously in bolus (0.5-3.0 ml), and fundamental and harmonic images were obtained. The dobutamine echocardiography studies were reviewed by one experienced and one inexperienced echocardiographer. LV segments were graded for image quality and function. Time for interpretation also was recorded. Contrast with harmonic imaging improved the diagnostic concordance of the novice reader to the expert reader by 7.1%, 7.5%, and 12.6% (P < 0.001) as compared with harmonic imaging, fundamental imaging, and fundamental imaging with contrast, respectively. For the novice reader, reading time was reduced by 47%, 55%, and 58% (P < 0.005) as compared with the time needed for fundamental, fundamental contrast, and harmonic modes, respectively. With harmonic imaging, the image quality score was 4.6% higher (P < 0.001) than for fundamental imaging. Image quality scores were not significantly different for noncontrast and contrast images. CONCLUSION: Harmonic imaging with contrast significantly improves the accuracy and efficiency of the novice dobutamine stress echocardiography reader. The use of harmonic imaging reduces the frequency of nondiagnostic wall segments.
van der Vorm, Lisa N; Hendriks, Jan C M; Laarakkers, Coby M; Klaver, Siem; Armitage, Andrew E; Bamberg, Alison; Geurts-Moespot, Anneke J; Girelli, Domenico; Herkert, Matthias; Itkonen, Outi; Konrad, Robert J; Tomosugi, Naohisa; Westerman, Mark; Bansal, Sukhvinder S; Campostrini, Natascia; Drakesmith, Hal; Fillet, Marianne; Olbina, Gordana; Pasricha, Sant-Rayn; Pitts, Kelly R; Sloan, John H; Tagliaro, Franco; Weykamp, Cas W; Swinkels, Dorine W
2016-07-01
Absolute plasma hepcidin concentrations measured by various procedures differ substantially, complicating interpretation of results and rendering reference intervals method dependent. We investigated the degree of equivalence achievable by harmonization and the identification of a commutable secondary reference material to accomplish this goal. We applied technical procedures to achieve harmonization developed by the Consortium for Harmonization of Clinical Laboratory Results. Eleven plasma hepcidin measurement procedures (5 mass spectrometry based and 6 immunochemical based) quantified native individual plasma samples (n = 32) and native plasma pools (n = 8) to assess analytical performance and current and achievable equivalence. In addition, 8 types of candidate reference materials (3 concentrations each, n = 24) were assessed for their suitability, most notably in terms of commutability, to serve as secondary reference material. Absolute hepcidin values and reproducibility (intrameasurement procedure CVs 2.9%-8.7%) differed substantially between measurement procedures, but all were linear and correlated well. The current equivalence (intermeasurement procedure CV 28.6%) between the methods was mainly attributable to differences in calibration and could thus be improved by harmonization with a common calibrator. Linear regression analysis and standardized residuals showed that a candidate reference material consisting of native lyophilized plasma with cryolyoprotectant was commutable for all measurement procedures. Mathematically simulated harmonization with this calibrator resulted in a maximum achievable equivalence of 7.7%. The secondary reference material identified in this study has the potential to substantially improve equivalence between hepcidin measurement procedures and contributes to the establishment of a traceability chain that will ultimately allow standardization of hepcidin measurement results. © 2016 American Association for Clinical Chemistry.
Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens
2015-01-01
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.
Harmonic motion detection in a vibrating scattering medium.
Urban, Matthew W; Chen, Shigao; Greenleaf, James
2008-09-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.
Harmonic Motion Detection in a Vibrating Scattering Medium
Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.
2008-01-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892
Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode
NASA Astrophysics Data System (ADS)
Lv, Zhenhua; Shi, Mingming; Fei, Juntao
2018-02-01
The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.
Analysis of biochemical phase shift oscillators by a harmonic balancing technique.
Rapp, P
1976-11-25
The use of harmonic balancing techniques for theoretically investigating a large class of biochemical phase shift oscillators is outlined and the accuracy of this approximate technique for large dimension nonlinear chemical systems is considered. It is concluded that for the equations under study these techniques can be successfully employed to both find periodic solutions and to indicate those cases which can not oscillate. The technique is a general one and it is possible to state a step by step procedure for its application. It has a substantial advantage in producing results which are immediately valid for arbitrary dimension. As the accuracy of the method increases with dimension, it complements classical small dimension methods. The results obtained by harmonic balancing analysis are compared with those obtained by studying the local stability properties of the singular points of the differential equation. A general theorem is derived which identifies those special cases where the results of first order harmonic balancing are identical to those of local stability analysis, and a necessary condition for this equivalence is derived. As a concrete example, the n-dimensional Goodwin oscillator is considered where p, the Hill coefficient of the feedback metabolite, is equal to three and four. It is shown that for p = 3 or 4 and n less than or equal to 4 the approximation indicates that it is impossible to construct a set of physically permissible reaction constants such that the system possesses a periodic solution. However for n greater than or equal to 5 it is always possible to find a large domain in the reaction constant space giving stable oscillations. A means of constructing such a parameter set is given. The results obtained here are compared with previously derived results for p = 1 and p = 2.
NASA Astrophysics Data System (ADS)
Coudeyras, N.; Sinou, J.-J.; Nacivet, S.
2009-01-01
Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.
Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A
2015-08-04
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.
Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.
2015-01-01
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258
NASA Astrophysics Data System (ADS)
Singh, Sujay; Horrocks, Gregory; Marley, Peter M.; Shi, Zhenzhong; Banerjee, Sarbajit; Sambandamurthy, G.
2015-10-01
We discuss the mechanisms behind the electrically driven insulator-metal transition in single-crystalline VO2 nanobeams. Our dc and ac transport measurements and the versatile harmonic analysis method employed show that nonuniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. A Poole-Frenkel-like purely electric-field-induced transition is found to be absent, and the role of percolation near and away from the electrically driven transition in VO2 is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions.
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
Method and apparatus for wavefront sensing
Bahk, Seung-Whan
2016-08-23
A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.
Investigating student understanding of simple harmonic motion
NASA Astrophysics Data System (ADS)
Somroob, S.; Wattanakasiwich, P.
2017-09-01
This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.
Stevenson, Gareth P; Baker, Ruth E; Kennedy, Gareth F; Bond, Alan M; Gavaghan, David J; Gillow, Kathryn
2013-02-14
The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
Analysis of harmonic spline gravity models for Venus and Mars
NASA Technical Reports Server (NTRS)
Bowin, Carl
1986-01-01
Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.
Signal injection as a fault detection technique.
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.
Signal Injection as a Fault Detection Technique
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801
Non-homogeneous harmonic analysis: 16 years of development
NASA Astrophysics Data System (ADS)
Volberg, A. L.; Èiderman, V. Ya
2013-12-01
This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles.
Improved Continuous-Time Higher Harmonic Control Using Hinfinity Methods
NASA Astrophysics Data System (ADS)
Fan, Frank H.
The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently, and maneuver in confined space. This versatility is enabled by the main rotor, which also causes undesired harmonic vibration during operation. This unwanted vibration has a negative impact on the practicality of the helicopter and also increases its operational cost. Passive control techniques have been applied to helicopter vibration suppression, but these methods are generally heavy and are not robust to changes in operating conditions. Feedback control offers the advantages of robustness and potentially higher performance over passive control techniques, and amongst the various feedback schemes, Shaw's higher harmonic control algorithm has been shown to be an effective method for attenuating harmonic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm is further developed to achieve improved performance. One goal in this thesis is to determine the importance of periodicity in the helicopter rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and simulation results, we conclude the helicopter rotor can be modeled reasonably well as linear and time-invariant for control design purposes. Modeling the helicopter rotor as linear time-invariant allows us to apply linear control theory concepts to the higher harmonic control problem. Another goal in this thesis is to find the limits of performance in harmonic disturbance rejection. To achieve this goal, we first define the metrics to measure the performance of the controller in terms of response speed and robustness to changes in the plant dynamics. The performance metrics are incorporated into an Hinfinity control problem. For a given plant, the resulting Hinfinity controller achieves the maximum performance, thus allowing us to identify the performance limitation in harmonic disturbance rejection. However, the Hinfinity controllers are of high order, and may have unstable poles, leading us to develop a design method to generate stable, fixed-order, and high performance controllers. Both the Hinfinity and the fixed-order controllers are designed for constant flight conditions. A gain-scheduled control law is used to reduce the vibration throughout the flight envelope. The gain-scheduling is accomplished by blending the outputs from fixed-order controllers designed for different flight conditions. The structure of the fixed-order controller allows the usage of a previously developed anti-windup scheme, and the blending function results in a bumpless full flight envelope control law. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Rogala, Maja M; Danielewska, Monika E; Antończyk, Agnieszka; Kiełbowicz, Zdzisław; Rogowska, Marta E; Kozuń, Marta; Detyna, Jerzy; Iskander, D Robert
2017-09-01
The aim was to ascertain whether the characteristics of the corneal pulse (CP) measured in-vivo in a rabbit eye change after short-term artificial increase of intraocular pressure (IOP) and whether they correlate with corneal biomechanics assessed in-vitro. Eight New Zealand white rabbits were included in this study and were anesthetized. In-vivo experiments included simultaneous measurements of the CP signal, registered with a non-contact method, IOP, intra-arterial blood pressure, and blood pulse (BPL), at the baseline and short-term elevated IOP. Afterwards, thickness of post-mortem corneas was determined and then uniaxial tensile tests were conducted leading to estimates of their Young's modulus (E). At the baseline IOP, backward stepwise regression analyses were performed in which successively the ocular biomechanical, biometric and cardiovascular predictors were separately taken into account. Results of the analysis revealed that the 3rd CP harmonic can be statistically significantly predicted by E and central corneal thickness (Models: R 2 = 0.662, p < 0.005 and R 2 = 0.832, p < 0.001 for the signal amplitude and power, respectively). The 1st CP harmonic can be statistically significantly predicted by the amplitude and power of the 1st BPL harmonic (Models: R 2 = 0.534, p = 0.015 and R 2 = 0.509, p < 0.018, respectively). For elevated IOP, non-parametric analysis indicated significant differences for the power of the 1st CP harmonic (Kruskal-Wallis test; p = 0.031) and for the mean, systolic and diastolic blood pressures (p = 0.025, p = 0.019, p = 0.033, respectively). In conclusion, for the first time, the association between parameters of the CP signal in-vivo and corneal biomechanics in-vitro was confirmed. In particular, spectral analysis revealed that higher amplitude and power of the 3rd CP harmonic indicates higher corneal stiffness, while the 1st CP harmonic correlates positively with the corresponding harmonic of the BPL signal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iodine in food- and dietary supplement–composition databases123
Pehrsson, Pamela R; Patterson, Kristine Y; Spungen, Judith H; Wirtz, Mark S; Andrews, Karen W; Dwyer, Johanna T; Swanson, Christine A
2016-01-01
The US Food and Drug Administration (FDA) and the Nutrient Data Laboratory (NDL) of the USDA Agricultural Research Service have worked independently on determining the iodine content of foods and dietary supplements and are now harmonizing their efforts. The objective of the current article is to describe the harmonization plan and the results of initial iodine analyses accomplished under that plan. For many years, the FDA’s Total Diet Study (TDS) has measured iodine concentrations in selected foods collected in 4 regions of the country each year. For more than a decade, the NDL has collected and analyzed foods as part of the National Food and Nutrient Analysis Program; iodine analysis is now being added to the program. The NDL recently qualified a commercial laboratory to conduct iodine analysis of foods by an inductively coupled plasma mass spectrometry (ICP-MS) method. Co-analysis of a set of samples by the commercial laboratory using the ICP-MS method and by the FDA laboratory using its standard colorimetric method yielded comparable results. The FDA recently reviewed historical TDS data for trends in the iodine content of selected foods, and the NDL analyzed samples of a limited subset of those foods for iodine. The FDA and the NDL are working to combine their data on iodine in foods and to produce an online database that can be used for estimating iodine intake from foods in the US population. In addition, the NDL continues to analyze dietary supplements for iodine and, in collaboration with the NIH Office of Dietary Supplements, to publish the data online in the Dietary Supplement Ingredient Database. The goal is to provide, through these 2 harmonized databases and the continuing TDS focus on iodine, improved tools for estimating iodine intake in population studies. PMID:27534627
Global harmonization of quality assurance naming conventions in radiation therapy clinical trials.
Melidis, Christos; Bosch, Walther R; Izewska, Joanna; Fidarova, Elena; Zubizarreta, Eduardo; Ulin, Kenneth; Ishikura, Satoshi; Followill, David; Galvin, James; Haworth, Annette; Besuijen, Deidre; Clark, Catharine H; Clark, Clark H; Miles, Elizabeth; Aird, Edwin; Weber, Damien C; Hurkmans, Coen W; Verellen, Dirk
2014-12-01
To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Analysis of graphic representation ability in oscillation phenomena
NASA Astrophysics Data System (ADS)
Dewi, A. R. C.; Putra, N. M. D.; Susilo
2018-03-01
This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.
Harmonic analysis and suppression in hybrid wind & PV solar system
NASA Astrophysics Data System (ADS)
Gupta, Tripti; Namekar, Swapnil
2018-04-01
The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.
NASA Astrophysics Data System (ADS)
Ma, Chen-xi; Ding, Guo-qing
2017-10-01
Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.
GMOMETHODS: the European Union database of reference methods for GMO analysis.
Bonfini, Laura; Van den Bulcke, Marc H; Mazzara, Marco; Ben, Enrico; Patak, Alexandre
2012-01-01
In order to provide reliable and harmonized information on methods for GMO (genetically modified organism) analysis we have published a database called "GMOMETHODS" that supplies information on PCR assays validated according to the principles and requirements of ISO 5725 and/or the International Union of Pure and Applied Chemistry protocol. In addition, the database contains methods that have been verified by the European Union Reference Laboratory for Genetically Modified Food and Feed in the context of compliance with an European Union legislative act. The web application provides search capabilities to retrieve primers and probes sequence information on the available methods. It further supplies core data required by analytical labs to carry out GM tests and comprises information on the applied reference material and plasmid standards. The GMOMETHODS database currently contains 118 different PCR methods allowing identification of 51 single GM events and 18 taxon-specific genes in a sample. It also provides screening assays for detection of eight different genetic elements commonly used for the development of GMOs. The application is referred to by the Biosafety Clearing House, a global mechanism set up by the Cartagena Protocol on Biosafety to facilitate the exchange of information on Living Modified Organisms. The publication of the GMOMETHODS database can be considered an important step toward worldwide standardization and harmonization in GMO analysis.
Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens
2015-01-01
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications. PMID:25885290
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.
2018-04-01
In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.
Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.
Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I
2011-07-01
Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.
Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A
The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.
Challenges and Opportunities for Harmonizing Research Methodology: Raw Accelerometry.
van Hees, Vincent T; Thaler-Kall, Kathrin; Wolf, Klaus-Hendrik; Brønd, Jan C; Bonomi, Alberto; Schulze, Mareike; Vigl, Matthäus; Morseth, Bente; Hopstock, Laila Arnesdatter; Gorzelniak, Lukas; Schulz, Holger; Brage, Søren; Horsch, Alexander
2016-12-07
Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how increased methodological harmonization may be achieved. The authors of this work convened for a two-day workshop (March 2014) themed on methodological harmonization of raw accelerometry. The discussions at the workshop were used as a basis for this review. Key stakeholders were identified as manufacturers, method developers, method users (application), publishers, and funders. To facilitate methodological harmonization in raw accelerometry the following action points were proposed: i) Manufacturers are encouraged to provide a detailed specification of their sensors, ii) Each fundamental step of algorithms for processing raw accelerometer data should be documented, and ideally also motivated, to facilitate interpretation and discussion, iii) Algorithm developers and method users should be open about uncertainties in the description of data and the uncertainty of the inference itself, iv) All new algorithms which are pitched as "ready for implementation" should be shared with the community to facilitate replication and ongoing evaluation by independent groups, and v) A dynamic interaction between method stakeholders should be encouraged to facilitate a well-informed harmonization process. The workshop led to the identification of a number of opportunities for harmonizing methodological practice. The discussion as well as the practical checklists proposed in this review should provide guidance for stakeholders on how to contribute to increased harmonization.
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
Texture analysis applied to second harmonic generation image data for ovarian cancer classification
NASA Astrophysics Data System (ADS)
Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.
2014-09-01
Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.
Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices
NASA Astrophysics Data System (ADS)
Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.
2017-01-01
Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.
Modified harmonic balance method for the solution of nonlinear jerk equations
NASA Astrophysics Data System (ADS)
Rahman, M. Saifur; Hasan, A. S. M. Z.
2018-03-01
In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.
Limitations in Using Multiple Imputation to Harmonize Individual Participant Data for Meta-Analysis.
Siddique, Juned; de Chavez, Peter J; Howe, George; Cruden, Gracelyn; Brown, C Hendricks
2018-02-01
Individual participant data (IPD) meta-analysis is a meta-analysis in which the individual-level data for each study are obtained and used for synthesis. A common challenge in IPD meta-analysis is when variables of interest are measured differently in different studies. The term harmonization has been coined to describe the procedure of placing variables on the same scale in order to permit pooling of data from a large number of studies. Using data from an IPD meta-analysis of 19 adolescent depression trials, we describe a multiple imputation approach for harmonizing 10 depression measures across the 19 trials by treating those depression measures that were not used in a study as missing data. We then apply diagnostics to address the fit of our imputation model. Even after reducing the scale of our application, we were still unable to produce accurate imputations of the missing values. We describe those features of the data that made it difficult to harmonize the depression measures and provide some guidelines for using multiple imputation for harmonization in IPD meta-analysis.
Geometrical Method for the Calculation of Spherical Harmonics up to an Arbitrary Degree and Order
NASA Astrophysics Data System (ADS)
Svehla, D.
2009-12-01
We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, i.e. up to a degree and order 1e6 and beyond. It is shown, that spherical harmonics can be treated as vectors in Hilbert hyperspace leading to the unitary hermitian rotation matrices with geometric properties.
USDA-ARS?s Scientific Manuscript database
Harmonic radar has provided a new approach to individually track movement of small insects under field conditions. In a series of studies, we developed methods to improve durability of harmonic radar tags attached to insects and established the efficacy of a portable harmonic radar system at detect...
Grummer, Jared A; Bryson, Robert W; Reeder, Tod W
2014-03-01
Current molecular methods of species delimitation are limited by the types of species delimitation models and scenarios that can be tested. Bayes factors allow for more flexibility in testing non-nested species delimitation models and hypotheses of individual assignment to alternative lineages. Here, we examined the efficacy of Bayes factors in delimiting species through simulations and empirical data from the Sceloporus scalaris species group. Marginal-likelihood scores of competing species delimitation models, from which Bayes factor values were compared, were estimated with four different methods: harmonic mean estimation (HME), smoothed harmonic mean estimation (sHME), path-sampling/thermodynamic integration (PS), and stepping-stone (SS) analysis. We also performed model selection using a posterior simulation-based analog of the Akaike information criterion through Markov chain Monte Carlo analysis (AICM). Bayes factor species delimitation results from the empirical data were then compared with results from the reversible-jump MCMC (rjMCMC) coalescent-based species delimitation method Bayesian Phylogenetics and Phylogeography (BP&P). Simulation results show that HME and sHME perform poorly compared with PS and SS marginal-likelihood estimators when identifying the true species delimitation model. Furthermore, Bayes factor delimitation (BFD) of species showed improved performance when species limits are tested by reassigning individuals between species, as opposed to either lumping or splitting lineages. In the empirical data, BFD through PS and SS analyses, as well as the rjMCMC method, each provide support for the recognition of all scalaris group taxa as independent evolutionary lineages. Bayes factor species delimitation and BP&P also support the recognition of three previously undescribed lineages. In both simulated and empirical data sets, harmonic and smoothed harmonic mean marginal-likelihood estimators provided much higher marginal-likelihood estimates than PS and SS estimators. The AICM displayed poor repeatability in both simulated and empirical data sets, and produced inconsistent model rankings across replicate runs with the empirical data. Our results suggest that species delimitation through the use of Bayes factors with marginal-likelihood estimates via PS or SS analyses provide a useful and complementary alternative to existing species delimitation methods.
Range side lobe inversion for chirp-encoded dual-band tissue harmonic imaging.
Shen, Che-Chou; Peng, Jun-Kai; Wu, Chi
2014-02-01
Dual-band (DB) harmonic imaging is performed by transmitting and receiving at both fundamental band (f0) and second-harmonic band (2f0). In our previous work, particular chirp excitation has been developed to increase the signal- to-noise ratio in DB harmonic imaging. However, spectral overlap between the second-order DB harmonic signals results in range side lobes in the pulse compression. In this study, a novel range side lobe inversion (RSI) method is developed to alleviate the level of range side lobes from spectral overlap. The method is implemented by firing an auxiliary chirp to change the polarity of the range side lobes so that the range side lobes can be suppressed in the combination of the original chirp and the auxiliary chirp. Hydrophone measurements show that the RSI method reduces the range side lobe level (RSLL) and thus increases the quality of pulse compression in DB harmonic imaging. With the signal bandwidth of 60%, the RSLL decreases from -23 dB to -36 dB and the corresponding compression quality improves from 78% to 94%. B-mode images also indicate that the magnitude of range side lobe is suppressed by 7 dB when the RSI method is applied.
NASA Technical Reports Server (NTRS)
Liu, Ketao (Inventor); Uetrecht, David S. (Inventor)
2002-01-01
A method, apparatus, article of manufacture, and a memory structure for compensating for instrument induced spacecraft jitter is disclosed. The apparatus comprises a spacecraft control processor for producing an actuator command signal, a signal generator, for producing a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and at least one spacecraft control actuator, communicatively coupled to the spacecraft control processor and the signal generator for inducing satellite motion according to the actuator command signal and the cancellation signal. The method comprises the steps of generating a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and providing the cancellation signal to a spacecraft control actuator. The apparatus comprises a storage device tangibly embodying the method steps described above.
Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.
Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan
2014-01-01
Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.
High order harmonics anomaly of jet screech
NASA Astrophysics Data System (ADS)
Chen, Zhe; Wu, Jiu Hui; Ren, A.-Dan; Chen, Xin
2018-05-01
Imperfectly expanded supersonic jets under strong screech could generate both fundamental screech tones and multiple tones at the harmonics of the fundamental frequency. The paper compares the fundamental frequency of jets from both AR = 3 (Aspect Ratio) and AR = 4 rectangular nozzles, and conducts analysis of harmonics on Sound Pressure Level (SPL) spectrums of jet noise. The research suggests that the fundamental frequency of the first two- or three-order harmonics increases when the Nozzle Pressure Ratio (NPR) decreases, whereas the highest order harmonic decreases when the NPR decreases. Besides, the paper also observes the differences between the highest order harmonics and other harmonics that have never been reported before. Further analysis on flow field schlieren of AR = 3 nozzle indicates that the highest order harmonic is the outcome of interaction between second shock-cell and nonlinear instable wave. The revolution of these high order harmonics can provide guidance for the prevention of small-scale structure fatigue damage. Moreover, the distribution test of the noises is also carried out to verify the high order harmonics anomaly, and indicate that the jet noise spreads mainly towards downstream while screech towards upstream. In addition, the broadband shock-associated noise spreads vertical to the jet flow and exhibits the feature of directivity.
NASA Technical Reports Server (NTRS)
Eggleston, John M; Mathews, Charles W
1954-01-01
In the process of analyzing the longitudinal frequency-response characteristics of aircraft, information on some of the methods of analysis has been obtained by the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics. In the investigation of these methods, the practical applications and limitations were stressed. In general, the methods considered may be classed as: (1) analysis of sinusoidal response, (2) analysis of transient response as to harmonic content through determination of the Fourier integral by manual or machine methods, and (3) analysis of the transient through the use of least-squares solutions of the coefficients of an assumed equation for either the transient time response or frequency response (sometimes referred to as curve-fitting methods). (author)
NASA Astrophysics Data System (ADS)
Oumaamar, Mohamed El Kamel; Maouche, Yassine; Boucherma, Mohamed; Khezzar, Abdelmalek
2017-02-01
The mixed eccentricity fault detection in a squirrel cage induction motor has been thoroughly investigated. However, a few papers have been related to pure static eccentricity fault and the authors focused on the RSH harmonics presented in stator current. The main objective of this paper is to present an alternative method based on the analysis of line neutral voltage taking place between the supply and the stator neutrals in order to detect air-gap static eccentricity, and to highlight the classification of all RSH harmonics in line neutral voltage. The model of squirrel cage induction machine relies on the rotor geometry and winding layout. Such developed model is used to analyze the impact of the pure static air-gap eccentricity by predicting the related frequencies in the line neutral voltage spectrum. The results show that the line neutral voltage spectrum are more sensitive to the air-gap static eccentricity fault compared to stator current one. The theoretical analysis and simulated results are confirmed by experiments.
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
NASA Astrophysics Data System (ADS)
Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa
2017-08-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.
Comparison of filtering methods for extracellular gastric slow wave recordings.
Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2013-01-01
Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.
2018-01-01
It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.
An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.
Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A
2000-05-01
The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.
Boedo, J A; Rudakov, D L
2017-03-01
We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J. A.; Rudakov, D. L.
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
Boedo, J. A.; Rudakov, D. L.
2017-03-20
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
NASA Astrophysics Data System (ADS)
Overstreet, Sarah; Wang, Haipeng
2017-09-01
An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
DOT National Transportation Integrated Search
2015-01-01
Speed harmonization is a method to reduce congestion and improve traffic performance. This method is applied at points where lanes merge and form bottlenecks, the greatest cause of congestion nationwide. The strategy involves gradually lowering speed...
NASA Astrophysics Data System (ADS)
Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.
2005-07-01
Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Novel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model
Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan
2014-01-01
Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods. PMID:25506389
FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters
Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.
2015-01-01
This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852
Ranjit, Suman; Dobrinskikh, Evgenia; Montford, John; Dvornikov, Alexander; Lehman, Allison; Orlicky, David J.; Nemenoff, Raphael; Gratton, Enrico; Levi, Moshe; Furgeson, Seth
2017-01-01
All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. The work described here shows the development of a fast and operator-independent method to measure fibrosis. To study renal fibrosis, the unilateral ureteral obstruction (UUO) model was chosen. Mice develop a time-dependent increase in obstructed kidneys; contralateral kidneys are used as controls. After UUO, kidneys were analyzed at three time points: 7 days, 14 days, and 21 days. Fibrosis was investigated using FLIM (Fluorescence Lifetime Imaging) and SHG (Second Harmonic Generation) in the deep tissue imaging microscope called DIVER (Deep Imaging via Enhanced photon Recovery). This microscope was developed for deep tissue and SHG and THG (Third Harmonic Generation) imaging and has extraordinary sensitivity towards harmonic generation. SHG data suggests the presence of more fibrillar collagen in the diseased kidneys. The combinations of short wavelength FLIM and SHG analysis results in a robust analysis procedure independent of observer interpretation and let us create a criterion to quantify the extent of fibrosis directly from the image. The progression of fibrosis in UUO model has been studied using this new FLIM-SHG technique and it shows remarkable improvement in quantification of fibrosis compared to standard histological techniques. PMID:27555119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvetsov, N. K., E-mail: elmash@em.ispu.ru
2016-11-15
The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.
Target Identification Using Harmonic Wavelet Based ISAR Imaging
NASA Astrophysics Data System (ADS)
Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.
2006-12-01
A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.
Harmonic analysis of traction power supply system based on wavelet decomposition
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.
Quasi-phase-matching of only even-order high harmonics.
Diskin, Tzvi; Cohen, Oren
2014-03-24
High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.
Second-harmonic generation of practical Bessel beams
NASA Astrophysics Data System (ADS)
Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung
2009-11-01
A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.
1987-08-01
HVAC duct hanger system over an extensive frequency range. The finite element, component mode synthesis, and statistical energy analysis methods are...800-5,000 Hz) analysis was conducted with Statistical Energy Analysis (SEA) coupled with a closed-form harmonic beam analysis program. These...resonances may be obtained by using a finer frequency increment. Statistical Energy Analysis The basic assumption used in SEA analysis is that within each band
Travison, Thomas G.; Vesper, Hubert W.; Orwoll, Eric; Wu, Frederick; Kaufman, Jean Marc; Wang, Ying; Lapauw, Bruno; Fiers, Tom; Matsumoto, Alvin M.
2017-01-01
Background: Reference ranges for testosterone are essential for making a diagnosis of hypogonadism in men. Objective: To establish harmonized reference ranges for total testosterone in men that can be applied across laboratories by cross-calibrating assays to a reference method and standard. Population: The 9054 community-dwelling men in cohort studies in the United States and Europe: Framingham Heart Study; European Male Aging Study; Osteoporotic Fractures in Men Study; and Male Sibling Study of Osteoporosis. Methods: Testosterone concentrations in 100 participants in each of the four cohorts were measured using a reference method at Centers for Disease Control and Prevention (CDC). Generalized additive models and Bland-Altman analyses supported the use of normalizing equations for transformation between cohort-specific and CDC values. Normalizing equations, generated using Passing-Bablok regression, were used to generate harmonized values, which were used to derive standardized, age-specific reference ranges. Results: Harmonization procedure reduced intercohort variation between testosterone measurements in men of similar ages. In healthy nonobese men, 19 to 39 years, harmonized 2.5th, 5th, 50th, 95th, and 97.5th percentile values were 264, 303, 531, 852, and 916 ng/dL, respectively. Age-specific harmonized testosterone concentrations in nonobese men were similar across cohorts and greater than in all men. Conclusion: Harmonized normal range in a healthy nonobese population of European and American men, 19 to 39 years, is 264 to 916 ng/dL. A substantial proportion of intercohort variation in testosterone levels is due to assay differences. These data demonstrate the feasibility of generating harmonized reference ranges for testosterone that can be applied to assays, which have been calibrated to a reference method and calibrator. PMID:28324103
Wang, B; Switowski, K; Cojocaru, C; Roppo, V; Sheng, Y; Scalora, M; Kisielewski, J; Pawlak, D; Vilaseca, R; Akhouayri, H; Krolikowski, W; Trull, J
2018-01-22
We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.
Mathematics of Computed Tomography
NASA Astrophysics Data System (ADS)
Hawkins, William Grant
A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.
Harmonic oscillators and resonance series generated by a periodic unstable classical orbit
NASA Technical Reports Server (NTRS)
Kazansky, A. K.; Ostrovsky, Valentin N.
1995-01-01
The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.
ERIC Educational Resources Information Center
Svetina, Dubravka
2013-01-01
The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in noncompensatory multidimensional item response models using dimensionality assessment procedures based on DETECT (dimensionality evaluation to enumerate contributing traits) and NOHARM (normal ogive harmonic analysis robust method). Five…
Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)
NASA Astrophysics Data System (ADS)
Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til
2005-04-01
Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.
Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M
2015-01-01
Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.
2014-09-01
signal) operations; it is general enough so that it can accommodate high - power (large-signal) sensing as well—which may be needed to detect targets... Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target...Research Laboratory Adelphi, MD 20783-1138 ARL-TR-7121 September 2014 Generalized Wideband Harmonic Imaging of Nonlinearly Loaded
NASA Technical Reports Server (NTRS)
Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.
1959-01-01
A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Durante, Daniele; Iess, Luciano; Kaspi, Yohai
2017-04-01
The ongoing Juno spacecraft measurements are improving our knowledge of Jupiter's gravity field. Similarly, the Cassini Grand Finale will improve the gravity estimate of Saturn. The analysis of the Juno and Cassini Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity fields of Jupiter and Saturn, additional information needs to be incorporated into the analysis, especially with regards to the planets' wind structures. In this work we propose a new iterative approach for the estimation of Jupiter and Saturn gravity fields, using simulated measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model is used to obtain the gravitational moments. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an optimization method, the likely penetration depth of the winds is computed, and its uncertainty is evaluated. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an estimate of their uncertainties, to be used as a priori for a new calculation of the gravity field. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that by using this method some of the gravitational moments are fitted better to the `observed' ones, mainly due to the added information from the dynamical model which includes the wind structure and its depth. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity moments estimated from the Juno and Cassini radio science experiments.
Real time analysis of voiced sounds
NASA Technical Reports Server (NTRS)
Hong, J. P. (Inventor)
1976-01-01
A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.
A novel surface registration algorithm with biomedical modeling applications.
Huang, Heng; Shen, Li; Zhang, Rong; Makedon, Fillia; Saykin, Andrew; Pearlman, Justin
2007-07-01
In this paper, we propose a novel surface matching algorithm for arbitrarily shaped but simply connected 3-D objects. The spherical harmonic (SPHARM) method is used to describe these 3-D objects, and a novel surface registration approach is presented. The proposed technique is applied to various applications of medical image analysis. The results are compared with those using the traditional method, in which the first-order ellipsoid is used for establishing surface correspondence and aligning objects. In these applications, our surface alignment method is demonstrated to be more accurate and flexible than the traditional approach. This is due in large part to the fact that a new surface parameterization is generated by a shortcut that employs a useful rotational property of spherical harmonic basis functions for a fast implementation. In order to achieve a suitable computational speed for practical applications, we propose a fast alignment algorithm that improves computational complexity of the new surface registration method from O(n3) to O(n2).
Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396
Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.
Detection the nonlinear ultrasonic signals based on modified Duffing equations
NASA Astrophysics Data System (ADS)
Zhang, Yuhua; Mao, Hanling; Mao, Hanying; Huang, Zhenfeng
The nonlinear ultrasonic signals, like second harmonic generation (SHG) signals, could reflect the nonlinearity of material induced by fatigue damage in nonlinear ultrasonic technique which are weak nonlinear signals and usually submerged by strong background noise. In this paper the modified Duffing equations are applied to detect the SHG signals relating to the fatigue damage of material. Due to the Duffing equation could only detect the signal with specific frequency and initial phase, firstly the frequency transformation is carried on the Duffing equation which could detect the signal with any frequency. Then the influence of initial phases of to-be-detected signal and reference signal on the detection result is studied in detail, four modified Duffing equations are proposed to detect actual engineering signals with any initial phase. The relationship between the response amplitude and the total driving force is applied to estimate the amplitude of weak periodic signal. The detection results show the modified Duffing equations could effectively detect the second harmonic in SHG signals. When the SHG signals include strong background noise, the noise doesn't change the motion state of Duffing equation and the second harmonic signal could be detected until the SNR of noisy SHG signals are -26.3, yet the frequency spectrum method could only identify when the SNR is greater than 0.5. When estimation the amplitude of second harmonic signal, the estimation error of Duffing equation is obviously less than the frequency spectrum analysis method under the same noise level, which illustrates the Duffing equation has the noise immune capacity. The presence of the second harmonic signal in nonlinear ultrasonic experiments could provide an insight about the early fatigue damage of engineering components.
NASA Astrophysics Data System (ADS)
Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung
2018-03-01
We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.
NASA Technical Reports Server (NTRS)
Press, Harry; Mazelsky, Bernard
1954-01-01
The applicability of some results from the theory of generalized harmonic analysis (or power-spectral analysis) to the analysis of gust loads on airplanes in continuous rough air is examined. The general relations for linear systems between power spectrums of a random input disturbance and an output response are used to relate the spectrum of airplane load in rough air to the spectrum of atmospheric gust velocity. The power spectrum of loads is shown to provide a measure of the load intensity in terms of the standard deviation (root mean square) of the load distribution for an airplane in flight through continuous rough air. For the case of a load output having a normal distribution, which appears from experimental evidence to apply to homogeneous rough air, the standard deviation is shown to describe the probability distribution of loads or the proportion of total time that the load has given values. Thus, for airplane in flight through homogeneous rough air, the probability distribution of loads may be determined from a power-spectral analysis. In order to illustrate the application of power-spectral analysis to gust-load analysis and to obtain an insight into the relations between loads and airplane gust-response characteristics, two selected series of calculations are presented. The results indicate that both methods of analysis yield results that are consistent to a first approximation.
Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing
Yan, Leyang; Zhang, Hui; Ye, Peiqing
2017-01-01
Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505
High Power Amplifier Harmonic Output Level Measurement
NASA Technical Reports Server (NTRS)
Perez, R. M.; Hoppe, D. J.; Khan, A. R.
1995-01-01
A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
DOT National Transportation Integrated Search
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
Belaineh, Getachew; Sumner, David; Carter, Edward; Clapp, David
2013-01-01
Potential evapotranspiration (PET) and reference evapotranspiration (RET) data are usually critical components of hydrologic analysis. Many different equations are available to estimate PET and RET. Most of these equations, such as the Priestley-Taylor and Penman- Monteith methods, rely on detailed meteorological data collected at ground-based weather stations. Few weather stations collect enough data to estimate PET or RET using one of the more complex evapotranspiration equations. Currently, satellite data integrated with ground meteorological data are used with one of these evapotranspiration equations to accurately estimate PET and RET. However, earlier than the last few decades, historical reconstructions of PET and RET needed for many hydrologic analyses are limited by the paucity of satellite data and of some types of ground data. Air temperature stands out as the most generally available meteorological ground data type over the last century. Temperature-based approaches used with readily available historical temperature data offer the potential for long period-of-record PET and RET historical reconstructions. A challenge is the inconsistency between the more accurate, but more data intensive, methods appropriate for more recent periods and the less accurate, but less data intensive, methods appropriate to the more distant past. In this study, multiple methods are harmonized in a seamless reconstruction of historical PET and RET by quantifying and eliminating the biases of the simple Hargreaves-Samani method relative to the more complex and accurate Priestley-Taylor and Penman-Monteith methods. This harmonization process is used to generate long-term, internally consistent, spatiotemporal databases of PET and RET.
The use of harmonic analysis to investigate processes in irradiated transistor structures
NASA Astrophysics Data System (ADS)
Gnap, A. K.; Zaliubovskii, I. I.; Dakhov, V. M.; Pelikhatyi, N. M.; Filippenko, V. E.
A theoretical model is developed for analyzing the behavior of transistor structures under irradiation by high-energy particles. Specifically, attention is given to the operation of a transistor switch under irradiation by 2-MeV neutrons. The proposed approach involves the replacement of the actual voltage pulse by a trapezoidal pulse, and the application of harmonic analysis to the latter. The parameters of the actual pulse can then be determined from an analysis of the constant component of the signal and the value of one of its harmonics.
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
NASA Astrophysics Data System (ADS)
Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai
2017-02-01
Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.
Nimata, Masaomi; Okada, Hideki; Kurihara, Kei; Sugimoto, Tsukasa; Honjoh, Tsutomu; Kuroda, Kazuhiko; Yano, Takeo; Tachibana, Hirofumi; Shoji, Masahiro
2018-01-01
Food allergy is a serious health issue worldwide. Implementing allergen labeling regulations is extremely challenging for regulators, food manufacturers, and analytical kit manufacturers. Here we have developed an "amino acid sequence immunoassay" approach to ELISA. The new ELISA comprises of a monoclonal antibody generated via an analyte specific peptide antigen and sodium lauryl sulfate/sulfite solution. This combination enables the antibody to access the epitope site in unfolded analyte protein. The newly developed ELISA recovered 87.1%-106.4% ovalbumin from ovalbumin-incurred model processed foods, thereby demonstrating its applicability as practical egg allergen determination. Furthermore, the comparison of LC-MS/MS and the new ELISA, which targets the amino acid sequence conforming to the LC-MS/MS detection peptide, showed a good agreement. Consequently the harmonization of two methods was demonstrated. The complementary use of the new ELISA and LC-MS analysis can offer a wide range of practical benefits in terms of easiness, cost, accuracy, and efficiency in food allergen analysis. In addition, the new assay is attractive in respect to its easy antigen preparation and predetermined specificity. Graphical abstract The ELISA composing of the monoclonal antibody targeting the amino acid sequence conformed to LC-MS detection peptide, and the protein conformation unfolding reagent was developed. In ovalbumin determination, the developed ELISA showed a good agreement with LC-MS analysis. Consequently the harmonization of immunoassay with LC-MS analysis by using common target amino acid sequence was demonstrated.
Attachment of second harmonic-active moiety to molecules for detection of molecules at interfaces
Salafsky, Joshua S.; Eisenthal, Kenneth B.
2005-10-11
This invention provides methods of detecting molecules at an interface, which comprise labeling the molecules with a second harmonic-active moiety and detecting the labeled molecules at the interface using a surface selective technique. The invention also provides methods for detecting a molecule in a medium and for determining the orientation of a molecular species within a planar surface using a second harmonic-active moiety and a surface selective technique.
Huang, Chin-Ming; Wei, Ching-Chuan; Liao, Yin-Tzu; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung
2011-01-01
In this article, we analyze the arterial pulse in the spectral domain. A parameter, the spectral harmonic energy ratio (SHER), is developed to assess the features of the overly decreased spectral energy in the fourth to sixth harmonic for palpitation patients. Compared with normal subjects, the statistical results reveal that the mean value of SHER in the patient group (57.7 ± 27.9) is significantly higher than that of the normal group (39.7 ± 20.9) (P-value = .0066 < .01). This means that the total energy in the fourth to sixth harmonic of palpitation patients is significantly less than it is in normal subjects. In other words, the spectral distribution of the arterial pulse gradually decreases for normal subjects while it decreases abruptly in higher-order harmonics (the fourth, fifth and sixth harmonics) for palpitation patients. Hence, SHER is an effective method to distinguish the two groups in the spectral domain. Also, we can thus know that a “gradual decrease” might mean a “balanced” state, whereas an “abrupt decrease” might mean an “unbalanced” state in blood circulation and pulse diagnosis. By SHER, we can determine the ratio of energy distribution in different harmonic bands, and this method gives us a novel viewpoint from which to comprehend and quantify the spectral harmonic distribution of circulation information conveyed by the arterial pulse. These concepts can be further applied to improve the clinical diagnosis not only in Western medicine but also in traditional Chinese medicine (TCM). PMID:21845200
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-07-01
We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.
Perturbing laser field dependent high harmonic phase modulations
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.
2018-06-01
A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.
Selection rules for harmonic generation in solids
NASA Astrophysics Data System (ADS)
Moiseyev, Nimrod
2015-05-01
High-order harmonic generation (HHG) in a bulk crystal was first observed in 2011 [S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011), 10.1038/nphys1847]. Only odd-order harmonics were observed as expected on the basis of the selection rules in solids, which were derived when only the interband currents were taken into consideration. Here we study HHG in solids when the intraband currents are taken into consideration as well. We show that the dynamical selection rules are broken in solids and the possibility of generation of even-order harmonics cannot be excluded on the basis of the dynamical symmetry analysis. However, a simple analysis of the expression we obtained for the amplitude of the emitted high-order harmonics shows, without the need to carry out numerical calculations, that the even-order harmonics are suppressed due to the localization of the field-free one-electron density probability on the atoms in the solids.
Rosselló, J M; Dellavale, D; Bonetto, F J
2016-07-01
The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAc(HF)) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAc(HF) on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N ≫ 1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved. Copyright © 2016 Elsevier B.V. All rights reserved.
A real time study on condition monitoring of distribution transformer using thermal imager
NASA Astrophysics Data System (ADS)
Mariprasath, T.; Kirubakaran, V.
2018-05-01
The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.
Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-07-13
We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.
High-harmonic generation from Bloch electrons in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Ghimire, Shambhu; Reis, David A.; Schafer, Kenneth J.; Gaarde, Mette B.
2015-04-01
We study the generation of high-harmonic radiation by Bloch electrons in a model transparent solid driven by a strong midinfrared laser field. We solve the single-electron time-dependent Schrödinger equation (TDSE) using a velocity-gauge method [M. Korbman et al., New J. Phys. 15, 013006 (2013), 10.1088/1367-2630/15/1/013006] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494], which allows us to separate interband and intraband contributions to the time-dependent current. We find that the interband and intraband contributions display very different time-frequency characteristics. We show that solutions in these two bases are equivalent under a unitary transformation but that, unlike the velocity-gauge method, the Houston state treatment is numerically unstable when more than a few low-lying energy bands are used.
Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.
Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang
2006-07-01
To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1990-01-01
Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
NASA Astrophysics Data System (ADS)
Claessens, S. J.; Hirt, C.
2015-10-01
A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.
NASA Astrophysics Data System (ADS)
Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.
2017-10-01
We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2011-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the response. The results instead showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists. Because the bulk of resonance problems are due to the "clean" excitations, a 10% underprediction is not necessarily a problem, especially since the average response in the transient is similar to the frequency response result, and so in a realistic finite life calculation, the life would be same. However, in the rare cases when the "messy" excitations harmonics are identified as the source of potential resonance concerns, this research does indicate that frequency response analysis is inadequate for accurate characterization of blade structural capability.
Compensation of the sheath effects in cylindrical floating probes
NASA Astrophysics Data System (ADS)
Park, Ji-Hwan; Chung, Chin-Wook
2018-05-01
In cylindrical floating probe measurements, the plasma density and electron temperature are overestimated due to sheath expansion and oscillation. To reduce these sheath effects, a compensation method based on well-developed floating sheath theories is proposed and applied to the floating harmonic method. The iterative calculation of the Allen-Boyd-Reynolds equation can derive the floating sheath thickness, which can be used to calculate the effective ion collection area; in this way, an accurate ion density is obtained. The Child-Langmuir law is used to calculate the ion harmonic currents caused by sheath oscillation of the alternating-voltage-biased probe tip. Accurate plasma parameters can be obtained by subtracting these ion harmonic currents from the total measured harmonic currents. Herein, the measurement principles and compensation method are discussed in detail and an experimental demonstration is presented.
Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.
Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin
2014-01-01
We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.
Correlating the EMC analysis and testing methods for space systems in MIL-STD-1541A
NASA Technical Reports Server (NTRS)
Perez, Reinaldo J.
1990-01-01
A study was conducted to improve the correlation between the electromagnetic compatibility (EMC) analysis models stated in MIL-STD-1541A and the suggested testing methods used for space systems. The test and analysis methods outlined in MIL-STD-1541A are described, and a comparative assessment of testing and analysis techniques as they relate to several EMC areas is presented. Suggestions on present analysis and test methods are introduced to harmonize and bring the analysis and testing tools in MIL-STD-1541A into closer agreement. It is suggested that test procedures in MIL-STD-1541A must be improved by providing alternatives to the present use of shielded enclosures as the primary site for such tests. In addition, the alternate use of anechoic chambers and open field test sites must be considered.
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Allen, Matthew S.
2016-08-01
Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence there is interest in developing methods to experimentally and numerically determine a system's NNMs for model updating or simply to characterize its dynamic response. Previous experimental work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic response in the neighborhood of a NNM along the main backbones of a system. This work shows that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of a structure couple to produce an internal resonance. It is shown that one can tune the multiple harmonics of the input excitation using a plot of the input force versus the response velocity until the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is measured, one can increase the force level and retune the frequency to obtain a NNM at a higher amplitude or remove the excitation and measure the structure's decay down a NNM backbone. This work explores both methods using simulations and measurements of a nominally-flat clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are used to validate the method in a well defined environment and to provide comparison with the experimentally measured NNMs. The experimental results seem to produce a good estimate of two NNMs along their backbone and part of an internal resonance branch. Full-field measurements are then used to further explore the couplings between the underlying linear modes along the identified NNMs.
Automated detection and characterization of harmonic tremor in continuous seismic data
NASA Astrophysics Data System (ADS)
Roman, Diana C.
2017-06-01
Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006
We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.
Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian
Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less
NASA Astrophysics Data System (ADS)
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
NASA Astrophysics Data System (ADS)
Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.
2017-02-01
The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.
NASA Astrophysics Data System (ADS)
Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin
2018-02-01
A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansone, G.; Stagira, S.; Nisoli, M.
2004-07-01
High-order harmonic generation process in the few- and multiple-optical-cycle regime is theoretically investigated, using the saddle-point method generalized to account for nonadiabatic effects. The influence of the carrier-envelope phase of the driving pulses on the various electron quantum paths is analyzed. We demonstrate that the short and long quantum paths are influenced in different ways by the carrier-envelope phase. In particular, we show that clear phase effects are visible on the long quantum paths even in the multiple-optical-cycle regime, while the short quantum paths are significantly influenced by the carrier-envelope phase only in the few-optical-cycle regime.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
NASA Astrophysics Data System (ADS)
Mönkölä, Sanna
2013-06-01
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.
NASA Technical Reports Server (NTRS)
Takahashi, H.; Yahagi, N.
1985-01-01
The spherical harmonic analysis of cosmic ray neutron data from the worldwide network neutron monitor stations during the years, 1966 to 1969 was carried out. The second zonal harmonic component obtained from the analysis corresponds to the Pole-Equator anisotropy of the cosmic ray neutron intensity. Such an anisotropy makes a semiannual variation. In addition to this, it is shown that the Pole-Equator anisotropy makes a variation depending on the interplanetary magnetic field (IMF) sector polarities around the passages of the IMF sector boundary. A mechanism to interpret these results is also discussed.
Adaptive Harmonic Balance Method for Unsteady, Nonlinear, One-Dimensional Periodic Flows
2002-09-01
Design and Implemen- tation. May 1999. REF-2 23. Toro , Eleuterio F . Fiemann Solvers and Numerical Methods for Fluid Dynamics, chapter 15. New York...prominent for high-frequency unsteady-flows. Experimental Analysis of Splitting-induced Error To assess the actual effect of splitting error on a...VITA-1 vi List of Figures Figure Page 1.1. Experimental Pressure Data on Inlet Guide Vane Upstream of Transonic Rotating
In vivo time-harmonic multifrequency elastography of the human liver
NASA Astrophysics Data System (ADS)
Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf
2014-04-01
Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.
NASA Astrophysics Data System (ADS)
Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo
2009-04-01
In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.
Effects of low harmonics on tone identification in natural and vocoded speech.
Liu, Chang; Azimi, Behnam; Tahmina, Qudsia; Hu, Yi
2012-11-01
This study investigated the contribution of low-frequency harmonics to identifying Mandarin tones in natural and vocoded speech in quiet and noisy conditions. Results showed that low-frequency harmonics of natural speech led to highly accurate tone identification; however, for vocoded speech, low-frequency harmonics yielded lower tone identification than stimuli with full harmonics, except for tone 4. Analysis of the correlation between tone accuracy and the amplitude-F0 correlation index suggested that "more" speech contents (i.e., more harmonics) did not necessarily yield better tone recognition for vocoded speech, especially when the amplitude contour of the signals did not co-vary with the F0 contour.
Vibration characteristics of teak wood filled steel tubes
NASA Astrophysics Data System (ADS)
Danawade, Bharatesh Adappa; Malagi, Ravindra Rachappa
2018-05-01
The objective of this paper is to determine fundamental frequency and damping ratio of teak wood filled steel tubes. Mechanically bonded teak wood filled steel tubes have been evaluated by experimental impact hammer test using modal analysis. The results of impact hammer test were verified and validated by finite element tool ANSYS using harmonic analysis. The error between the two methods was observed to be within acceptable limit.
2015-01-01
for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of
Exploratory Multivariate Analysis. A Graphical Approach.
1981-01-01
Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate
NASA Astrophysics Data System (ADS)
Tang, Qiangang; Sun, Shixian
1992-03-01
In this paper, the perturbation technique is introduced into the method of harmonic balance. A new method used for analyzing nonlinear free vibration of multidegree-of-freedom systems and structures is obtained. The form of solution is expanded into a series of small parameters and harmonics, so no term will be lost in the solution and the algebraic equations are linear. With the linear transformations, the matrices of the equations become diagonal. As soon as the modes related to linear vibration are found, the solution can be obtained. This method is superior to the method of linearized iteration. The examples show that the method has high accuracy for small-amplitude problems and the results for rather large amplitudes are satisfactory.
Harmonic Fourier beads method for studying rare events on rugged energy surfaces.
Khavrutskii, Ilja V; Arora, Karunesh; Brooks, Charles L
2006-11-07
We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.
NASA Astrophysics Data System (ADS)
Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen
2014-11-01
The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.
NASA Technical Reports Server (NTRS)
Weatherill, Warren H.; Ehlers, F. Edward
1989-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.
2018-01-01
By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.
NASA Astrophysics Data System (ADS)
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
NASA Technical Reports Server (NTRS)
Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.
2000-01-01
Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.
Image Perception Wavelet Simulation and Enhancement for the Visually Impaired.
1994-12-01
and Computational Harmonic Analysis, 1:54-81 (1993). 6. Cornsweet, Tom N. "The Staircase-Method in Psychophysics," The American Journal of Psychology ...of a Visual Model," Proceedings of the IEEE, 60(7):828-842 (July 1972). 33. Taylor, M. M. and C Douglas Creelman . "PEST: Efficient Estimates on
Spherical harmonic analysis of a model-generated climatology
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1981-01-01
Monthly mean fields of 850 mb temperature (T850), 500 mb geopotential height (G500) and sea level pressure (SLP) were generated in the course of a five-year climate simulation run with a global general circulation model. Both the model-generated climatology and an observed climatology were subjected to spherical harmonic analysis, with separate analyses of the globe and the Northern Hemisphere. Comparison of the dominant harmonics of the two climatologies indicates that more than 95% of the area-weighted spatial variance of G500 and more than 90% of that of T850 are explained by fewer than three components, and that the model adequately simulates these large-scale characteristics. On the other hand, as many as 25 harmonics are needed to explain 95% of the observed variance of SLP, and the model simulation of this field is much less satisfactory. The model climatology is also evaluated in terms of the annual cycles of the dominant harmonics.
Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data
NASA Astrophysics Data System (ADS)
Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning
2018-06-01
North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.
Bridging national and reference definitions for harmonizing forest statistics
Göran Ståhl; Emil Cienciala; Gherardo Chirici; Adrian Lanz; Claude Vidal; Susanne Winter; Ronald E. McRoberts; Jacques Rondeux; Klemens Schadauer; Erkki Tomppo
2012-01-01
Harmonization is the process of making information and estimates comparable across administrative borders. The degree to which harmonization succeeds depends on many factors, including the conciseness of the definitions, the availability and quality of data, and the methods used to convert an estimate according to a local definition to an estimate according to the...
A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring
NASA Astrophysics Data System (ADS)
Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji
2016-01-01
Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.
A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring.
Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji
2016-01-06
Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.
A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring
Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji
2016-01-01
Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms. PMID:26732251
Dual-pulse frequency compounded superharmonic imaging.
van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico
2011-11-01
Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.
Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain
Daniel, Matej; Tomanová, Michaela; Hornová, Jana; Novotná, Iva; Lhotská, Lenka
2017-01-01
[Purpose] Low back pain is a pervasive problem in modern societies. Physical rehabilitation in treatment of low back pain should reduce pain, muscle tension and restore spine stability and balance. The INFINITY® rehabilitation method that is based on a figure of eight movement pattern was proved to be effective in low back pain treatment. The aim of the paper is to estimate the effect of a figure of eight motion on the L5/S1 load and lumbar spine muscle activation in comparison to other motion patterns. [Subjects and Methods] Three-dimensional model of lumbar spine musculoskeletal system is used to simulate effect of various load motion pattern induced by displacement of the center of gravity of the upper body. Four motion patterns were examined: lateral and oblique pendulum-like motion, elliptical motion and figure of eight motion. [Results] The simple pendulum-like and elliptical-like patterns induce harmonic muscle activation and harmonic spinal load. The figure of eight motion pattern creates high-frequency spinal loading that activates remodeling of bones and tendons. The figure of eight pattern also requires muscle activity that differs from harmonic frequency and is more demanding on muscle control and could also improve muscle coordination. [Conclusion] The results of the study indicate that complex motion pattern during INFINITY® rehabilitation might enhance the spine stability by influencing its passive, active and neural components. PMID:28603355
Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor
NASA Astrophysics Data System (ADS)
Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.
2003-03-01
Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.
Synthesizing Virtual Oscillators to Control Islanded Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.
Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged modelsmore » reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.« less
Harmonic analysis of spacecraft power systems using a personal computer
NASA Technical Reports Server (NTRS)
Williamson, Frank; Sheble, Gerald B.
1989-01-01
The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.
Harmonic versus LigaSure hemostasis technique in thyroid surgery: A meta-analysis
Upadhyaya, Arun; Hu, Tianpeng; Meng, Zhaowei; Li, Xue; He, Xianghui; Tian, Weijun; Jia, Qiang; Tan, Jian
2016-01-01
Harmonic scalpel and LigaSure vessel sealing systems have been suggested as options for saving surgical time and reducing postoperative complications. The aim of the present meta-analysis was to compare surgical time, postoperative complications and other parameters between them in for the open thyroidectomy procedure. Studies were retrieved from MEDLINE, Cochrane Library, EMBASE and ISI Web of Science until December 2015. All the randomized controlled trials (RCTs) comparing Harmonic scalpel and LigaSure during open thyroidectomy were selected. Following data extraction, statistical analyses were performed. Among the 24 studies that were evaluated for eligibility, 7 RCTs with 981 patients were included. The Harmonic scalpel significantly reduced surgical time compared with LigaSure techniques (8.79 min; 95% confidence interval, −15.91 to −1.67; P=0.02). However, no significant difference was observed for the intraoperative blood loss, postoperative blood loss, duration of hospital stay, thyroid weight and serum calcium level postoperatively in either group. The present meta-analysis indicated superiority of Harmonic Scalpel only in terms of surgical time compared with LigaSure hemostasis techniques in open thyroid surgery. PMID:27446546
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
NASA Astrophysics Data System (ADS)
Liang, Weibin; Ouyang, Sen; Huang, Xiang; Su, Weijian
2017-05-01
The existing modeling process of power quality about electrified railways connected to power grid is complicated and the simulation scene is incomplete, so this paper puts forward a novel evaluation method of power quality based on PSCAD/ETMDC. Firstly, a model of power quality about electrified railways connected to power grid is established, which is based on testing report or measured data. The equivalent model of electrified locomotive contains power characteristic and harmonic characteristic, which are substituted by load and harmonic source. Secondly, in order to make evaluation more complete, an analysis scheme has been put forward. The scheme uses a combination of three-dimensions of electrified locomotive, which contains types, working conditions and quantity. At last, Shenmao Railway is taken as example to evaluate the power quality at different scenes, and the result shows electrified railways connected to power grid have significant effect on power quality.
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Huang, Jinbo; Yu, Yinghua; Wei, Changyuan; Qin, Qinghong; Mo, Qinguo; Yang, Weiping
2015-01-01
Despite the common use of conventional electrocautery in modified radical mastectomy for breast cancer, the harmonic scalpel is recently emerging as a dominant surgical instrument for dissection and haemostasis, which is thought to reduce the morbidity, such as seroma and blood loss. But the results of published trials are inconsistent. So we made the meta-analysis to assess the intraoperative and postoperative endpoints among women undergoing modified radical mastectomy with harmonic scalpel or electrocautery. A comprehensive literature search of case-control studies from PubMed, MEDLINE, EMBASE and Cochrane Library databases involving modified radical mastectomy with harmonic scalpel or electrocautery was performed. We carried out a meta-analysis of primary endpoints including postoperative drainage, seroma development, intraoperative blood loss and secondly endpoints including operative time and wound complications. We used odds ratios (ORs) with 95% confidence intervals (CIs) to evaluate the effect size for categorical outcomes and standardised mean differences (SMDs) for continuous outcomes. A total of 11 studies with 702 patients were included for this meta-analysis. There was significant difference in total postoperative drainage (SMD: -0.74 [95%CI: -1.31, -0.16]; P< 0.01), seroma development[OR: 0.49 (0.34, 0.70); P < 0.01], intraoperative blood loss(SMD: -1.14 [95%CI: -1.81,-0.47]; P < 0.01) and wound complications [OR: 0.38 (0.24, 0.59); P < 0.01] between harmonic scalpel dissection and standard electrocautery in modified radical mastectomy for breast cancer. No difference was found as for operative time between harmonic scalpel dissection and standard electrocautery (SMD: 0.04 [95%CI: -0.41, 0.50]; P = 0.85). Compared to standard electrocautery, harmonic scalpel dissection presents significant advantages in decreasing postoperative drainage, seroma development, intraoperative blood loss and wound complications in modified radical mastectomy for breast cancer, without increasing operative time. Harmonic scalpel can be recommended as a preferential surgical instrument in modified radical mastectomy.
Weak periodic solutions of xẍ + 1 = 0 and the Harmonic Balance Method
NASA Astrophysics Data System (ADS)
García-Saldaña, J. D.; Gasull, A.
2017-02-01
We prove that the differential equation xẍ + 1 = 0 has continuous weak periodic solutions and compute their periods. Then, we use the Harmonic Balance Method until order six to approximate these periods and to illustrate how the accuracy of the method increases with the order. Our computations rely on the Gröbner basis approach.
Schröder, Winfried; Pesch, Roland; Schmidt, Gunther
2006-03-01
In Germany, environmental monitoring is intended to provide a holistic view of the environmental condition. To this end the monitoring operated by the federal states must use harmonized, resp., standardized methods. In addition, the monitoring sites should cover the ecoregions without any geographical gaps, the monitoring design should have no gaps in terms of ecologically relevant measurement parameters, and the sample data should be spatially without any gaps. This article outlines the extent to which the Rhoen Biosphere Reserve, occupying a part of the German federal states of Bavaria, Hesse and Thuringia, fulfills the listed requirements. The investigation considered collection, data banking and analysis of monitoring data and metadata, ecological regionalization and geostatistics. Metadata on the monitoring networks were collected by questionnaires and provided a complete inventory and description of the monitoring activities in the reserve and its surroundings. The analysis of these metadata reveals that most of the monitoring methods are harmonized across the boundaries of the three federal states the Rhoen is part of. The monitoring networks that measure precipitation, surface water levels, and groundwater quality are particularly overrepresented in the central ecoregions of the biosphere reserve. Soil monitoring sites are more equally distributed within the ecoregions of the Rhoen. The number of sites for the monitoring of air pollutants is not sufficient to draw spatially valid conclusions. To fill these spatial gaps, additional data on the annual average values of the concentrations of air pollutants from monitoring sites outside of the biosphere reserve had therefore been subject to geostatistical analysis and estimation. This yields valid information on the spatial patterns and temporal trends of air quality. The approach illustrated is applicable to similar cases, as, for example, the harmonization of international monitoring networks.
NASA Astrophysics Data System (ADS)
Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra
2018-03-01
Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.
NASA Astrophysics Data System (ADS)
Xu, Kaili
Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also simulated by using the Real Time Digital Simulator (RTDS) with a few assumptions. Simulation results of various operating conditions confirm the theoretical analysis results.
NASA Astrophysics Data System (ADS)
Liu, Sen; Gang, Tieqiang
2018-03-01
Harmonic drives are widely used in aerospace and industrial robots. Flexibility, friction and parameter uncertainty will result in transmission performance degradation. In this paper, an adaptive back-stepping method with friction compensation is proposed to improve the tracking performance of the harmonic drive system. The nonlinear friction is described by LuGre model and compensated with a friction observer, and the uncertainty of model parameters is resolved by adaptive parameter estimation method. By using Lyapunov stability theory, it is proved that all the errors of the closed-loop system are uniformly ultimately bounded. Simulations illustrate the effectiveness of our friction compensation method.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
High-harmonic spectroscopy of aligned molecules
NASA Astrophysics Data System (ADS)
Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee
2017-01-01
High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.
Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.
2005-08-15
Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.
Geometrical Theory of Spherical Harmonics for Geosciences
NASA Astrophysics Data System (ADS)
Svehla, Drazen
2010-05-01
Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.
Magnetic nanoparticle thermometry independent of Brownian relaxation
NASA Astrophysics Data System (ADS)
Zhong, Jing; Schilling, Meinhard; Ludwig, Frank
2018-01-01
An improved method of magnetic nanoparticle (MNP) thermometry is proposed. The phase lag ϕ of the fundamental f 0 harmonic is measured to eliminate the influence of Brownian relaxation on the ratio of 3f 0 to f 0 harmonic amplitudes applying a phenomenological model, thus allowing measurements in high-frequency ac magnetic fields. The model is verified by simulations of the Fokker-Planck equation. An MNP spectrometer is calibrated for the measurements of the phase lag ϕ and the amplitudes of 3f 0 and f 0 harmonics. Calibration curves of the harmonic ratio and tanϕ are measured by varying the frequency (from 10 Hz to 1840 Hz) of ac magnetic fields with different amplitudes (from 3.60 mT to 4.00 mT) at a known temperature. A phenomenological model is employed to fit the calibration curves. Afterwards, the improved method is proposed to iteratively compensate the measured harmonic ratio with tanϕ, and consequently calculate temperature applying the static Langevin function. Experimental results on SHP-25 MNPs show that the proposed method significantly improves the systematic error to 2 K at maximum with a relative accuracy of about 0.63%. This demonstrates the feasibility of the proposed method for MNP thermometry with SHP-25 MNPs even if the MNP signal is affected by Brownian relaxation.
NASA Astrophysics Data System (ADS)
Bedi, Tarun; Heema, Dave; Singh, Dheerendra
2018-03-01
It is known that harmonics are generated in any power electronics based application. Since presence of harmonics is not desirable, it is necessary to remove the harmonics. The IFOC is based on stator current regulation, and the stator currents are sensed and used in the speed control algorithm. The current needs to be free from noise and harmonics for accurate further processing. In this paper, a passive analog filter, as well as a 50th order FIR filter is designed in MATLAB and implemented in Code Composer Studio to remove noise and distortion, and a comparative analysis has been done, for the speed control of an induction motor fed through ZSI, for electric vehicle application.
On the Application of Euler Deconvolution to the Analytic Signal
NASA Astrophysics Data System (ADS)
Fedi, M.; Florio, G.; Pasteka, R.
2005-05-01
In the last years papers on Euler deconvolution (ED) used formulations that accounted for the unknown background field, allowing to consider the structural index (N) an unknown to be solved for, together with the source coordinates. Among them, Hsu (2002) and Fedi and Florio (2002) independently pointed out that the use of an adequate m-order derivative of the field, instead than the field itself, allowed solving for both N and source position. For the same reason, Keating and Pilkington (2004) proposed the ED of the analytic signal. A function being analyzed by ED must be homogeneous but also harmonic, because it must be possible to compute its vertical derivative, as well known from potential field theory. Huang et al. (1995), demonstrated that analytic signal is a homogeneous function, but, for instance, it is rather obvious that the magnetic field modulus (corresponding to the analytic signal of a gravity field) is not a harmonic function (e.g.: Grant & West, 1965). Thus, it appears that a straightforward application of ED to the analytic signal is not possible because a vertical derivation of this function is not correct by using standard potential fields analysis tools. In this note we want to theoretically and empirically check what kind of error are caused in the ED by such wrong assumption about analytic signal harmonicity. We will discuss results on profile and map synthetic data, and use a simple method to compute the vertical derivative of non-harmonic functions measured on a horizontal plane. Our main conclusions are: 1. To approximate a correct evaluation of the vertical derivative of a non-harmonic function it is useful to compute it with finite-difference, by using upward continuation. 2. We found that the errors on the vertical derivative computed as if the analytic signal was harmonic reflects mainly on the structural index estimate; these errors can mislead an interpretation even though the depth estimates are almost correct. 3. Consistent estimates of depth and S.I. are instead obtained by using a finite-difference vertical derivative of the analytic signal. 4. Analysis of a case history confirms the strong error in the estimation of structural index if the analytic signal is treated as an harmonic function.
Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija
2016-01-01
Introduction We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. Materials and methods An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. Results The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF’s test reports. Conclusions Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety. PMID:27812307
ERIC Educational Resources Information Center
Earl, Boyd L.
2008-01-01
A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…
Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng
2017-08-09
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Harmonic mode-locking using the double interval technique in quantum dot lasers.
Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F
2010-07-05
Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.
Analysing harmonic motions with an iPhone’s magnetometer
NASA Astrophysics Data System (ADS)
Yavuz, Ahmet; Kağan Temiz, Burak
2016-05-01
In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.
NASA Astrophysics Data System (ADS)
Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.
2018-03-01
We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.
Fortier, Isabel; Burton, Paul R; Robson, Paula J; Ferretti, Vincent; Little, Julian; L’Heureux, Francois; Deschênes, Mylène; Knoppers, Bartha M; Doiron, Dany; Keers, Joost C; Linksted, Pamela; Harris, Jennifer R; Lachance, Geneviève; Boileau, Catherine; Pedersen, Nancy L; Hamilton, Carol M; Hveem, Kristian; Borugian, Marilyn J; Gallagher, Richard P; McLaughlin, John; Parker, Louise; Potter, John D; Gallacher, John; Kaaks, Rudolf; Liu, Bette; Sprosen, Tim; Vilain, Anne; Atkinson, Susan A; Rengifo, Andrea; Morton, Robin; Metspalu, Andres; Wichmann, H Erich; Tremblay, Mark; Chisholm, Rex L; Garcia-Montero, Andrés; Hillege, Hans; Litton, Jan-Eric; Palmer, Lyle J; Perola, Markus; Wolffenbuttel, Bruce HR; Peltonen, Leena; Hudson, Thomas J
2010-01-01
Background Vast sample sizes are often essential in the quest to disentangle the complex interplay of the genetic, lifestyle, environmental and social factors that determine the aetiology and progression of chronic diseases. The pooling of information between studies is therefore of central importance to contemporary bioscience. However, there are many technical, ethico-legal and scientific challenges to be overcome if an effective, valid, pooled analysis is to be achieved. Perhaps most critically, any data that are to be analysed in this way must be adequately ‘harmonized’. This implies that the collection and recording of information and data must be done in a manner that is sufficiently similar in the different studies to allow valid synthesis to take place. Methods This conceptual article describes the origins, purpose and scientific foundations of the DataSHaPER (DataSchema and Harmonization Platform for Epidemiological Research; http://www.datashaper.org), which has been created by a multidisciplinary consortium of experts that was pulled together and coordinated by three international organizations: P3G (Public Population Project in Genomics), PHOEBE (Promoting Harmonization of Epidemiological Biobanks in Europe) and CPT (Canadian Partnership for Tomorrow Project). Results The DataSHaPER provides a flexible, structured approach to the harmonization and pooling of information between studies. Its two primary components, the ‘DataSchema’ and ‘Harmonization Platforms’, together support the preparation of effective data-collection protocols and provide a central reference to facilitate harmonization. The DataSHaPER supports both ‘prospective’ and ‘retrospective’ harmonization. Conclusion It is hoped that this article will encourage readers to investigate the project further: the more the research groups and studies are actively involved, the more effective the DataSHaPER programme will ultimately be. PMID:20813861
Dynamics and control of instrumented harmonic drives
NASA Technical Reports Server (NTRS)
Kazerooni, H.; Ellis, S. R. (Principal Investigator)
1995-01-01
Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.
NASA Astrophysics Data System (ADS)
Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.
2017-02-01
Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the data set, and requires no prior knowledge about the harmonics. Modelling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modelling example, symmetry based noise removal improved signal-to-noise ratio in the data by 10 per cent. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multilayered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.
Bifurcation analysis of parametrically excited bipolar disorder model
NASA Astrophysics Data System (ADS)
Nana, Laurent
2009-02-01
Bipolar II disorder is characterized by alternating hypomanic and major depressive episode. We model the periodic mood variations of a bipolar II patient with a negatively damped harmonic oscillator. The medications administrated to the patient are modeled via a forcing function that is capable of stabilizing the mood variations and of varying their amplitude. We analyze analytically, using perturbation method, the amplitude and stability of limit cycles and check this analysis with numerical simulations.
A general numerical analysis of the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1985-01-01
For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.
NASA Astrophysics Data System (ADS)
Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.
2014-05-01
The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.
Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M
2015-02-05
The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Parnis, J. Mark; Thompson, Matthew G. K.
2004-01-01
An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
Young children pause on phrase boundaries in self-paced music listening: The role of harmonic cues.
Kragness, Haley E; Trainor, Laurel J
2018-05-01
Proper segmentation of auditory streams is essential for understanding music. Many cues, including meter, melodic contour, and harmony, influence adults' perception of musical phrase boundaries. To date, no studies have examined young children's musical grouping in a production task. We used a musical self-pacing method to investigate (1) whether dwell times index young children's musical phrase grouping and, if so, (2) whether children dwell longer on phrase boundaries defined by harmonic cues specifically. In Experiment 1, we asked 3-year-old children to self-pace through chord progressions from Bach chorales (sequences in which metrical, harmonic, and melodic contour grouping cues aligned) by pressing a computer key to present each chord in the sequence. Participants dwelled longer on chords in the 8th position, which corresponded to phrase endings. In Experiment 2, we tested 3-, 4-, and 7-year-old children's sensitivity to harmonic cues to phrase grouping when metrical regularity cues and melodic contour cues were misaligned with the harmonic phrase boundaries. In this case, 7 and 4 year olds but not 3 year olds dwelled longer on harmonic phrase boundaries, suggesting that the influence of harmonic cues on phrase boundary perception develops substantially between 3 and 4 years of age in Western children. Overall, we show that the musical dwell time method is child-friendly and can be used to investigate various aspects of young children's musical understanding, including phrase grouping and harmonic knowledge. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
WE-AB-204-05: Harmonizing PET/CT Quantification in Multicenter Studies: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques da Silva, A; Fischer, A
2015-06-15
Purpose: To present the implementation of a strategy to harmonize FDG PET/CT quantification (SUV), performed with different scanner models and manufacturers. Methods: The strategy was based on Boellaard (2011) and EARL FDG-PET/CT accreditation program, that propose quality control measurements for harmonizing scanner performance. A NEMA IEC Body phantom study was performed using four different devices: PHP-1 (Gemini TF Base, Philips); PHP-2 (Gemini GXL, Philips); GEH (Discovery 600, General Electric); SMS (Biograph Hi-Rez 16, Siemens). The SUV Recovery Coefficient (RC) was calculated using the clinical protocol and other clinically relevant reconstruction parameters. The most appropriate reconstruction parameters (MARP) for SUV harmonization,more » in each scanner, are those which achieve EARL harmonizing standards. They were identified using the lowest root mean square errors (RMSE). To evaluate the strategy’s effectiveness, the Maximum Differences (MD) between the clinical and MARP RC values were calculated. Results: The reconstructions parameters that obtained the lowest RMSE are: FBP 5mm (PHP-1); LOR-RAMLA 2i0.008l (PHP-2); VuePointHD 2i32s10mm (GEH); and FORE+OSEM 4i8s6mm (SMS). Thus, to ensure that quantitative PET image measurements are interchangeable between these sites, images must be reconstructed with the above-mentioned parameters. Although, a decoupling between the best image for PET/CT qualitative analysis and the best image for quantification studies was observed. The MD showed that the strategy was effective in reducing the variability of SUV quantification for small structures (<17mm). Conclusion: The harmonization strategy of the SUV quantification implemented with these devices was effective in reducing the variability of small structures quantification, minimizing the inter-scanner and inter-institution differences in quantification. However, it is essential that, in addition to the harmonization of quantification, the standardization of the methodology of patient preparation must be maintained, in order to minimize the SUV variability due to biological factors. Financial support by CAPES.« less
Theoretical analysis of high-order harmonic generation from a coherent superposition of states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milosevic, Dejan B.; Max-Born-Institut, Max-Born-Strasse 2a, Berlin, 12489
2006-02-15
A quantum theory of high-order harmonic generation by a strong laser field in the presence of more bound states is formulated. The obtained numerical and analytical results for a two-state hydrogenlike atom model show that the harmonic spectrum consists of two parts: a usual single-state harmonic spectrum of odd harmonics having the energies (2k+1){omega} and a resonant part with the peaks around the excitation energy {delta}{omega}. The energy of the harmonics in the resonant part of the spectrum is equal to {delta}{omega}{+-}{omega}, {delta}{omega}{+-}3{omega}, .... For energies higher than the excitation energy, the resonant part forms a plateau, followed by amore » cutoff. The emission rate of the harmonics in this resonant plateau is many orders of magnitude higher than that of the harmonics generated in the presence of the ground state alone. The influence of the depletion of the initial states, as well as of the pulse shape and intensity, is analyzed.« less
A new method of presentation the large-scale magnetic field structure on the Sun and solar corona
NASA Technical Reports Server (NTRS)
Ponyavin, D. I.
1995-01-01
The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.
Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei
2015-01-01
The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858
NASA Astrophysics Data System (ADS)
Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah
2017-10-01
There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Soil-site relationships of the upland oaks
Willard H. Carmean
1971-01-01
Site quality for upland oaks can be estimated directly by using site-index curves, or indirect estimations can be made by using soil-site prediction methods. Presently available harmonized site-index curves may not be suitable for all upland oak species, or may not be suitable throughout their range. New stem-analysis data show that different species of oak have...
Crystal growth and optical properties of 4-aminobenzophenone (ABP)
NASA Astrophysics Data System (ADS)
Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan
1997-02-01
Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.
Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie
2017-10-02
Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.
Analytical and experimental study of high phase order induction motors
NASA Technical Reports Server (NTRS)
Klingshirn, Eugene A.
1989-01-01
Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.
Method for determining surface properties of microparticles
Eisenthal, Kenneth B.
2000-01-01
Second harmonic generation (SHG), sum frequency generation (SFG) and difference frequency generation (DFG) can be used for surface analysis or characterization of microparticles having a non-metallic surface feature. The microparticles can be centrosymmetric or such that non-metallic molecules of interest are centrosymmetrically distributed inside and outside the microparticles but not at the surface of the microparticles where the asymmetry aligns the molecules. The signal is quadratic in incident laser intensity or proportional to the product of two incident laser intensities for SFG, it is sharply peaked at the second harmonic wavelength, quadratic in the density of molecules adsorbed onto the microparticle surface, and linear in microparticles density. In medical or pharmacological applications, molecules of interest may be of drugs or toxins, for example.
Studies of higher-order flow harmonics in PbPb collisions at 2.76 TeV with CMS
NASA Astrophysics Data System (ADS)
Tuo, Shengquan
2013-05-01
High-order Fourier harmonics (vn, n>2) in the azimuthal distributions of charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy s=2.76TeV are presented. The vn coefficients are studied using the event-plane method and a Fourier decomposition analysis of the two particle correlations in various collision centrality, pT and η ranges. A unique measurement of vn in the ultra-central collisions (UCC) is performed using the long-range component of the two particle correlations. These data provide strong constraints on the theoretical models of the initial condition in heavy ion collisions and the transport properties of the produced medium.
Comparative performance analysis of shunt and series passive filter for LED lamp
NASA Astrophysics Data System (ADS)
Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo
2018-03-01
Light Emitting Diode lamp or LED lamp nowadays is widely used by consumers as a new innovation in the lighting technologies due to its energy saving for low power consumption lamps for brighter light intensity. How ever, the LED lamp produce an electric pollutant known as harmonics. The harmonics is generated by rectifier as part of LED lamp circuit. The present of harmonics in current or voltage has made the source waveform from the grid is distorted. This distortion may cause inacurrate measurement, mall function, and excessive heating for any element at the grid. This paper present an analysis work of shunt and series filters to suppress the harmonics generated by the LED lamp circuit. The work was initiated by conducting several tests to investigate the harmonic content of voltage and currents. The measurements in this work were carried out by using HIOKI Power Quality Analyzer 3197. The measurement results showed that the harmonics current of tested LED lamps were above the limit of IEEE standard 519-2014. Based on the measurement results shunt and series filters were constructed as low pass filters. The bode analysis were appled during construction and prediction of the filters performance. Based on experimental results, the application of shunt filter at input side of LED lamp has reduced THD current up to 88%. On the other hand, the series filter has significantly reduced THD current up to 92%.
Walsh, James C.; Angstmann, Christopher N.; Duggin, Iain G.
2017-01-01
The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution. PMID:29040283
Sustainability Analysis | Energy Analysis | NREL
environmental, life-cycle, climate, and other impacts of renewable energy technologies. Photo of a man viewing a energy choices within the complex web of connections between energy and water. Life Cycle Assessment Harmonization Our life cycle assessment harmonization provides lenders, utility executives, and lawmakers with
A projection operator method for the analysis of magnetic neutron form factors
NASA Astrophysics Data System (ADS)
Kaprzyk, S.; Van Laar, B.; Maniawski, F.
1981-03-01
A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.
Harmonic skeleton guided evaluation of stenoses in human coronary arteries.
Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R; Giddens, Don P
2005-01-01
This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease.
Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko
2011-05-01
A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.
Hsi-Ping, Liu
1980-01-01
Harmonic distortion in the stress-time function applied to rock specimens affects the measurement of rock internal friction in the seismic wave periods by the stress-strain hysteresis loop method. If neglected, the harmonic distortion can cause measurements of rock internal friction to be in error by 3O% in the linear range. The stress-time function therefore must be recorded and Fourier analysed for correct interpretation of the experimental data. Such a procedure would also yield a value for internal friction at the higher harmonic frequencies.-Author
Kahn, Michael G.; Callahan, Tiffany J.; Barnard, Juliana; Bauck, Alan E.; Brown, Jeff; Davidson, Bruce N.; Estiri, Hossein; Goerg, Carsten; Holve, Erin; Johnson, Steven G.; Liaw, Siaw-Teng; Hamilton-Lopez, Marianne; Meeker, Daniella; Ong, Toan C.; Ryan, Patrick; Shang, Ning; Weiskopf, Nicole G.; Weng, Chunhua; Zozus, Meredith N.; Schilling, Lisa
2016-01-01
Objective: Harmonized data quality (DQ) assessment terms, methods, and reporting practices can establish a common understanding of the strengths and limitations of electronic health record (EHR) data for operational analytics, quality improvement, and research. Existing published DQ terms were harmonized to a comprehensive unified terminology with definitions and examples and organized into a conceptual framework to support a common approach to defining whether EHR data is ‘fit’ for specific uses. Materials and Methods: DQ publications, informatics and analytics experts, managers of established DQ programs, and operational manuals from several mature EHR-based research networks were reviewed to identify potential DQ terms and categories. Two face-to-face stakeholder meetings were used to vet an initial set of DQ terms and definitions that were grouped into an overall conceptual framework. Feedback received from data producers and users was used to construct a draft set of harmonized DQ terms and categories. Multiple rounds of iterative refinement resulted in a set of terms and organizing framework consisting of DQ categories, subcategories, terms, definitions, and examples. The harmonized terminology and logical framework’s inclusiveness was evaluated against ten published DQ terminologies. Results: Existing DQ terms were harmonized and organized into a framework by defining three DQ categories: (1) Conformance (2) Completeness and (3) Plausibility and two DQ assessment contexts: (1) Verification and (2) Validation. Conformance and Plausibility categories were further divided into subcategories. Each category and subcategory was defined with respect to whether the data may be verified with organizational data, or validated against an accepted gold standard, depending on proposed context and uses. The coverage of the harmonized DQ terminology was validated by successfully aligning to multiple published DQ terminologies. Discussion: Existing DQ concepts, community input, and expert review informed the development of a distinct set of terms, organized into categories and subcategories. The resulting DQ terms successfully encompassed a wide range of disparate DQ terminologies. Operational definitions were developed to provide guidance for implementing DQ assessment procedures. The resulting structure is an inclusive DQ framework for standardizing DQ assessment and reporting. While our analysis focused on the DQ issues often found in EHR data, the new terminology may be applicable to a wide range of electronic health data such as administrative, research, and patient-reported data. Conclusion: A consistent, common DQ terminology, organized into a logical framework, is an initial step in enabling data owners and users, patients, and policy makers to evaluate and communicate data quality findings in a well-defined manner with a shared vocabulary. Future work will leverage the framework and terminology to develop reusable data quality assessment and reporting methods. PMID:27713905
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Fast calculation of low altitude disturbing gravity for ballistics
NASA Astrophysics Data System (ADS)
Wang, Jianqiang; Wang, Fanghao; Tian, Shasha
2018-03-01
Fast calculation of disturbing gravity is a key technology in ballistics while spherical cap harmonic(SCH) theory can be used to solve this problem. By using adjusted spherical cap harmonic(ASCH) methods, the spherical cap coordinates are projected into a global coordinates, then the non-integer associated Legendre functions(ALF) of SCH are replaced by integer ALF of spherical harmonics(SH). This new method is called virtual spherical harmonics(VSH) and some numerical experiment were done to test the effect of VSH. The results of earth's gravity model were set as the theoretical observation, and the model of regional gravity field was constructed by the new method. Simulation results show that the approximated errors are less than 5mGal in the low altitude range of the central region. In addition, numerical experiments were conducted to compare the calculation speed of SH model, SCH model and VSH model, and the results show that the calculation speed of the VSH model is raised one order magnitude in a small scope.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436
Morris, Jeffrey; Brown, Sally; Cotton, Matthew; Matthews, H Scott
2017-05-16
This study reviewed 147 life cycle studies, with 28 found suitable for harmonizing food waste management methods' climate and energy impacts. A total of 80 scientific soil productivity studies were assessed to rank management method soil benefits. Harmonized climate impacts per kilogram of food waste range from -0.20 kg of carbon dioxide equivalents (CO 2 e) for anaerobic digestion (AD) to 0.38 kg of CO 2 e for landfill gas-to-energy (LFGTE). Aerobic composting (AC) emits -0.10 kg of CO 2 e. In-sink grinding (ISG) via a food-waste disposer and flushing for management with other sewage at a wastewater treatment plant emits 0.10 kg of CO 2 e. Harmonization reduced climate emissions versus nonharmonized averages. Harmonized energy impacts range from -0.32 MJ for ISG to 1.14 MJ for AC. AD at 0.27 MJ and LFGTE at 0.40 MJ fall in between. Rankings based on soil studies show AC first for carbon storage and water conservation, with AD second. AD first for fertilizer replacement, with AC second, and AC and AD tied for first for plant yield increase. ISG ranks third and LFGTE fourth on all four soil-quality and productivity indicators. Suggestions for further research include developing soil benefits measurement methods and resolving inconsistencies in the results between life-cycle assessments and soil science studies.
Detection of stator winding faults in induction motors using three-phase current monitoring.
Sharifi, Rasool; Ebrahimi, Mohammad
2011-01-01
The objective of this paper is to propose a new method for the detection of inter-turn short circuits in the stator windings of induction motors. In the previous reported methods, the supply voltage unbalance was the major difficulty, and this was solved mostly based on the sequence component impedance or current which are difficult to implement. Some other methods essentially are included in the offline methods. The proposed method is based on the motor current signature analysis and utilizes three phase current spectra to overcome the mentioned problem. Simulation results indicate that under healthy conditions, the rotor slot harmonics have the same magnitude in three phase currents, while under even 1 turn (0.3%) short circuit condition they differ from each other. Although the magnitude of these harmonics depends on the level of unbalanced voltage, they have the same magnitude in three phases in these conditions. Experiments performed under various load, fault, and supply voltage conditions validate the simulation results and demonstrate the effectiveness of the proposed technique. It is shown that the detection of resistive slight short circuits, without sensitivity to supply voltage unbalance is possible. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Sun, Weifang; Yao, Bin; He, Yuchao; Zeng, Nianyin; He, Wangpeng
2017-01-01
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages. PMID:28792453
Higher-order harmonics of general limited diffraction Bessel beams
NASA Astrophysics Data System (ADS)
Ding, De-Sheng; Huang, Jin-Huang
2016-12-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).
Pulse compression of harmonic chirp signals using the fractional fourier transform.
Arif, M; Cowell, D M J; Freear, S
2010-06-01
In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepehri Javan, N., E-mail: sepehri-javan@uma.ac.ir
2015-08-21
This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonatesmore » with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.« less
Calibration of a high harmonic spectrometer by laser induced plasma emission.
Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M
2009-08-17
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America
Harmonic generation with a dual frequency pulse.
Keravnou, Christina P; Averkiou, Michalakis A
2014-05-01
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
Calculation of four-particle harmonic-oscillator transformation brackets
NASA Astrophysics Data System (ADS)
Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.
2010-02-01
A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
High-frequency harmonic imaging of the eye.
Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L
2005-01-01
PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.
High-frequency harmonic imaging of the eye
NASA Astrophysics Data System (ADS)
Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.
2005-04-01
Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.
NASA Astrophysics Data System (ADS)
Vishwakarma, Vinod
Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from measurements of forced response. Forcing function is estimated for synchronous excitation of 3DOF rotor model, Academic rotor and Transonic rotor from measurement of response at few nodes. For asynchronous excitation forcing function is estimated only for 3DOF rotor model and Academic rotor from measurement of response. The impact of number of measurement locations and accuracy of ROM on the estimation of forcing function is discussed. iv.
The conjecture concerning time variations in the solar neutrino flux
NASA Technical Reports Server (NTRS)
Haubold, H. J.; Gerth, E.
1985-01-01
The results of the Fourier transformation of the unequally-spaced time series of the recorded Ar-37 production rate of the solar neutrino experiment (runs 18 to 80, 1970 to 1983) are reviewed. Significance criteria for every period discovered by the harmonic analysis are determined. A Fourier synthesis of certain discovered harmonics are performed. It seems that the solar neutrino flux increases shock-like with a period of approximately 8.3 years and after that breaks down. Possible connections between the periods found by the harmonic analysis and several observed phenomena on the solar surface are indicated.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1984-01-01
The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.
Control Systems with Pulse Width Modulation in Matrix Converters
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Fedorov, S. V.; Muravyova, E. A.
2018-03-01
In this article, the matrix frequency converter for the system of the frequency control of the electric drive is considered. Algorithms of formation of an output signal on the basis of pulse width modulation were developed for the quantitative analysis of quality of an output signal on the basis of mathematical models. On the basis of simulation models of an output signal, assessment of quality of this signal was carried out. The analysis of harmonic composition of the voltage output received on the basis of pulse width modulation was made for the purpose of determination of opportunities of the control system for improving harmonic composition. The result of such analysis led to the fact that the device formation of switching functions of the control system on the basis of PWM does not lead to a distortion reduction of a harmonic of the control signal, and leads to offset of harmonic in the field of frequencies, the multiple relatively carrier frequency.
Making chaotic behavior in a damped linear harmonic oscillator
NASA Astrophysics Data System (ADS)
Konishi, Keiji
2001-06-01
The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.
Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes
ERIC Educational Resources Information Center
Gauthier, N.
2004-01-01
An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…
Surface diffusion of Sb on Ge(111) investigated by second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, K.A.
Surface diffusion of Sb on Ge(111) has been measured with the newly-developed technique of second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by second harmonic generation with 5 [mu]m spatial resolution. A Boltzmann-Matano analysis of the concentration profiles yields the coverage dependence of the diffusivity D without parameterization. Experiments were performed at roughly 70% of the bulk melting temperature T[sub m]. In the coverage range of 0 < [theta] < 0.6, the activation energy E[sub diff] remains constant at 47.5 [+-] 1.5 kcal/mol. The corresponding pre-exponential factor decreases from 8.7 [times] 10[sup 3[+-]0.4] tomore » 1.6 [times] 10[sup 2[+-]0.4] cm[sup 2]/sec. The results are explained in terms of a new vacancy model for surface diffusion at high-temperatures. The model accounts semiquantitatively for the large values of E[sub diff] and D[sub o], and suggest that these quantities may be manipulated by bulk doping levels and photon illumination of the surface.« less
NASA Technical Reports Server (NTRS)
Chao, B. F.
1983-01-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang
2015-08-15
The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O
2018-06-01
Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto
2003-01-01
This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.
NASA Astrophysics Data System (ADS)
Chao, B. F.
1983-12-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2016-09-01
Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.
Linking high harmonics from gases and solids.
Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B
2015-06-25
When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.
Harmonic distortion in microwave photonic filters.
Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José
2012-04-09
We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.
Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)
NASA Technical Reports Server (NTRS)
Greenwood, Eric
2011-01-01
A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.
Equity prices as a simple harmonic oscillator with noise
NASA Astrophysics Data System (ADS)
Ataullah, Ali; Tippett, Mark
2007-08-01
The centred return on the London Stock Exchange's FTSE All Share Index is modelled as a simple harmonic oscillator with noise over the period from 1 January, 1994 until 30 June 2006. Our empirical results are compatible with the hypothesis that there is a period in the FTSE All Share Index of between two and two and one half years. This means the centred return will on average continue to increase for about a year after reaching the minimum in its oscillatory cycle; alternatively, it will continue on average to decline for about a year after reaching a maximum. Our analysis also shows that there is potential to exploit the harmonic nature of the returns process to earn abnormal profits. Extending our analysis to the low energy states of a quantum harmonic oscillator is also suggested.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics
Improved Efficiency Type II Second Harmonic Generation
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J., Jr.
2009-01-01
Second harmonic efficiency is limited by lateral and temporal separation of the ordinary and extraordinary components of the fundamental. A mode locked dual beam laser demonstrated these effects and a novel method to minimize them.
Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay
NASA Astrophysics Data System (ADS)
Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai
2016-08-01
In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.
Calculation and manipulation of the chirp rates of high-order harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, M.; Mauritsson, J.; Schafer, K.J.
2005-01-01
We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev.more » A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.« less
Theory of high-order harmonic generation for gapless graphene
NASA Astrophysics Data System (ADS)
Zurrón, Óscar; Picón, Antonio; Plaja, Luis
2018-05-01
We study the high-harmonic spectrum emitted by a single-layer graphene, irradiated by an ultrashort intense infrared laser pulse. We show the emergence of the typical non-perturbative spectral features, harmonic plateau and cut-off, for mid-infrared driving fields, at fluences below the damage threshold. In contrast to previous works, using THz drivings, we demonstrate that the harmonic cut-off frequency saturates with the intensity. Our results are derived from the numerical integration of the time-dependent Schrödinger equation using a nearest neighbor tight-binding description of graphene. We also develop a saddle-point analysis that reveals a mechanism for harmonic emission in graphene different from that reported in atoms, molecules and finite gap solids. In graphene, the first step is initiated by the non-diabatic crossing of the valence band electron trajectories through the Dirac points, instead of tunneling ionization/excitation. We include a complete identification of the trajectories contributing to any particular high harmonic and reproduce the harmonic cut-off scaling with the driving intensity.
Li, Peng-Cheng; Sheu, Yae-Lin; Laughlin, Cecil; Chu, Shih-I
2015-05-20
Near- and below-threshold harmonic generation provides a potential approach to generate vacuum-ultraviolet frequency comb. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of caesium (Cs) atoms in an intense 3,600-nm mid-infrared laser field. Combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, the roles of multiphoton and multiple rescattering trajectories on the near- and below-threshold harmonic generation processes are clarified. We find that the multiphoton-dominated trajectories only involve the electrons scattered off the higher part of the combined atom-field potential followed by the absorption of many photons in near- and below-threshold regime. Furthermore, only the near-resonant below-threshold harmonic is exclusive to exhibit phase locked features. Our results shed light on the dynamic origin of the near- and below-threshold harmonic generation.
Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Gary, S. Peter
1987-01-01
The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.
Strategies for efficient resolution analysis in full-waveform inversion
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Leeuwen, T.; Trampert, J.
2016-12-01
Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.
The Technology of Suppressing Harmonics with Complex Neural Network is Applied to Microgrid
NASA Astrophysics Data System (ADS)
Zhang, Jing; Li, Zhan-Ying; Wang, Yan-ping; Li, Yang; Zong, Ke-yong
2018-03-01
According to the traits of harmonics in microgrid, a new CANN controller which combines BP and RBF neural network is proposed to control APF to detect and suppress harmonics. This controller has the function of current prediction. By simulation in Matlab / Simulink, this design can shorten the delay time nearly 0.02s (a power supply current cycle) in comparison with the traditional controller based on ip-iq method. The new controller also has higher compensation accuracy and better dynamic tracking traits, it can greatly suppress the harmonics and improve the power quality.
Harmonic Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries
Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R.; Giddens, Don P.
2013-01-01
This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease. PMID:16685882
Probing Graphene χ((2)) Using a Gold Photon Sieve.
Lobet, Michaël; Sarrazin, Michaël; Cecchet, Francesca; Reckinger, Nicolas; Vlad, Alexandru; Colomer, Jean-François; Lis, Dan
2016-01-13
Nonlinear second harmonic optical activity of graphene covering a gold photon sieve was determined for different polarizations. The photon sieve consists of a subwavelength gold nanohole array placed on glass. It combines the benefits of efficient light trapping and surface plasmon propagation to unravel different elements of graphene second-order susceptibility χ((2)). Those elements efficiently contribute to second harmonic generation. In fact, the graphene-coated photon sieve produces a second harmonic intensity at least two orders of magnitude higher compared with a bare, flat gold layer and an order of magnitude coming from the plasmonic effect of the photon sieve; the remaining enhancement arises from the graphene layer itself. The measured second harmonic generation yield, supplemented by semianalytical computations, provides an original method to constrain the graphene χ((2)) elements. The values obtained are |d31 + d33| ≤ 8.1 × 10(3) pm(2)/V and |d15| ≤ 1.4 × 10(6) pm(2)/V for a second harmonic signal at 780 nm. This original method can be applied to any kind of 2D materials covering such a plasmonic structure.
Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid
2013-09-01
electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is
Harmonic maps of S into a complex Grassmann manifold.
Chern, S S; Wolfson, J
1985-04-01
Let G(k, n) be the Grassmann manifold of all C(k) in C(n), the complex spaces of dimensions k and n, respectively, or, what is the same, the manifold of all projective spaces P(k-1) in P(n-1), so that G(1, n) is the complex projective space P(n-1) itself. We study harmonic maps of the two-dimensional sphere S(2) into G(k, n). The case k = 1 has been the subject of investigation by several authors [see, for example, Din, A. M. & Zakrzewski, W. J. (1980) Nucl. Phys. B 174, 397-406; Eells, J. & Wood, J. C. (1983) Adv. Math. 49, 217-263; and Wolfson, J. G. Trans. Am. Math. Soc., in press]. The harmonic maps S(2) --> G(2, 4) have been studied by Ramanathan [Ramanathan, J. (1984) J. Differ. Geom. 19, 207-219]. We shall describe all harmonic maps S(2) --> G(2, n). The method is based on several geometrical constructions, which lead from a given harmonic map to new harmonic maps, in which the image projective spaces are related by "fundamental collineations." The key result is the degeneracy of some fundamental collineations, which is a global consequence, following from the fact that the domain manifold is S(2). The method extends to G(k, n).
High-harmonic generation in amorphous solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Yin, Yanchun; Wu, Yi
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-harmonic generation in amorphous solids
You, Yong Sing; Yin, Yanchun; Wu, Yi; ...
2017-09-28
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ormiston, R. A.
1975-01-01
Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.
TSHIPS : Transportation shipping harmonization and integration planning system
DOT National Transportation Integrated Search
2001-03-01
This report documents the development of the Transportation Shipping Harmonization and Integration Planning System (TSHIPS). The TSHIPS project was developed to advance the state of the art in transportation systems analysis. Existing approaches and ...
Predicting chaos in memristive oscillator via harmonic balance method.
Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai
2012-12-01
This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.
NASA Astrophysics Data System (ADS)
Beauchamp, James W.
2002-11-01
Software has been developed which enables users to perform time-varying spectral analysis of individual musical tones or successions of them and to perform further processing of the data. The package, called sndan, is freely available in source code, uses EPS graphics for display, and is written in ansi c for ease of code modification and extension. Two analyzers, a fixed-filter-bank phase vocoder (''pvan'') and a frequency-tracking analyzer (''mqan'') constitute the analysis front end of the package. While pvan's output consists of continuous amplitudes and frequencies of harmonics, mqan produces disjoint ''tracks.'' However, another program extracts a fundamental frequency and separates harmonics from the tracks, resulting in a continuous harmonic output. ''monan'' is a program used to display harmonic data in a variety of formats, perform various spectral modifications, and perform additive resynthesis of the harmonic partials, including possible pitch-shifting and time-scaling. Sounds can also be synthesized according to a musical score using a companion synthesis language, Music 4C. Several other programs in the sndan suite can be used for specialized tasks, such as signal display and editing. Applications of the software include producing specialized sounds for music compositions or psychoacoustic experiments or as a basis for developing new synthesis algorithms.
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
Tang, Guiji; Tian, Tian; Zhou, Chong
2018-01-01
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time–time (IHTT) transform, by combining a Hilbert time–time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures. PMID:29662013
A Drive Method for Small Inductance PM Motor Under No-Load Condition
NASA Astrophysics Data System (ADS)
Tanaka, Daisuke; Ohishi, Kiyoshi
The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.
Mathes, Tim; Jacobs, Esther; Morfeld, Jana-Carina; Pieper, Dawid
2013-09-30
The number of Health Technology Assessment (HTA) agencies increases. One component of HTAs are economic aspects. To incorporate economic aspects commonly economic evaluations are performed. A convergence of recommendations for methods of health economic evaluations between international HTA agencies would facilitate the adaption of results to different settings and avoid unnecessary expense. A first step in this direction is a detailed analysis of existing similarities and differences in recommendations to identify potential for harmonization. The objective is to provide an overview and comparison of the methodological recommendations of international HTA agencies for economic evaluations. The webpages of 127 international HTA agencies were searched for guidelines containing recommendations on methods for the preparation of economic evaluations. Additionally, the HTA agencies were requested information on methods for economic evaluations. Recommendations of the included guidelines were extracted in standardized tables according to 13 methodological aspects. All process steps were performed independently by two reviewers. Finally 25 publications of 14 HTA agencies were included in the analysis. Methods for economic evaluations vary widely. The greatest accordance could be found for the type of analysis and comparator. Cost-utility-analyses or cost-effectiveness-analyses are recommended. The comparator should continuously be usual care. Again the greatest differences were shown in the recommendations on the measurement/sources of effects, discounting and in the analysis of sensitivity. The main difference regarding effects is the focus either on efficacy or effectiveness. Recommended discounting rates range from 1.5%-5% for effects and 3%-5% for costs whereby it is mostly recommended to use the same rate for costs and effects. With respect to the analysis of sensitivity the main difference is that oftentimes the probabilistic or deterministic approach is recommended exclusively. Methods for modeling are only described vaguely and mainly with the rational that the "appropriate model" depends on the decision problem. Considering all other aspects a comparison is challenging as recommendations vary regarding detailedness and addressed issues. There is a considerable unexplainable variance in recommendations. Further effort is needed to harmonize methods for preparing economic evaluations.
Rapid Harmonic Analysis of Piezoelectric MEMS Resonators.
Puder, Jonathan M; Pulskamp, Jeffrey S; Rudy, Ryan Q; Cassella, Cristian; Rinaldi, Matteo; Chen, Guofeng; Bhave, Sunil A; Polcawich, Ronald G
2018-06-01
This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.
Harmonic oscillator in quantum rotational spectra: Molecules and nuclei
NASA Technical Reports Server (NTRS)
Pavlichenkov, Igor M.
1995-01-01
The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.
2016-01-01
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan
2013-12-01
Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.
Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.
de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael
2015-01-26
We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.
The shift of harmonics with different initial vibrational states in the H{}_{2}^{+} molecular ion
NASA Astrophysics Data System (ADS)
Zhang, Jun; Pan, Xue-Fei; Xu, Tong-Tong; Liu, Xue-Shen
2017-05-01
Molecular high-order harmonic generation of H{}2+ and its isotopes is investigated by numerical simulations of the non-Born-Oppenheimer time-dependent Schrödinger equations. The general characteristic of the typical high-order harmonic generation (HHG) spectra for the H{}2+ molecule indicates that only the odd harmonics can be generated. Here we show that how the initial vibrational states and nuclear dynamics break down this standard characteristic, i.e. a redshift or blueshift of the harmonics appears. We investigate the effect of the initial vibrational states on the redshift or blueshift of the HHG spectrum under trapezoidal laser pulses. The ionization probability and time-frequency analysis are used to illustrate the physical mechanism of the shift of the harmonics. We also show the HHG spectra from the different isotopes of H2+ molecule with different initial vibrational states.
Understanding fifth-harmonic generation in CLBO
NASA Astrophysics Data System (ADS)
Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.
2018-02-01
We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.
Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.
Chacón, Ricardo
2006-09-15
A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.
More About the Phase-Synchronized Enhancement Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
2004-01-01
A report presents further details regarding the subject matter of "Phase-Synchronized Enhancement Method for Engine Diagnostics" (MFS-26435), NASA Tech Briefs, Vol. 22, No. 1 (January 1998), page 54. To recapitulate: The phase-synchronized enhancement method (PSEM) involves the digital resampling of a quasi-periodic signal in synchronism with the instantaneous phase of one of its spectral components. This resampling transforms the quasi-periodic signal into a periodic one more amenable to analysis. It is particularly useful for diagnosis of a rotating machine through analysis of vibration spectra that include components at the fundamental and harmonics of a slightly fluctuating rotation frequency. The report discusses the machinery-signal-analysis problem, outlines the PSEM algorithms, presents the mathematical basis of the PSEM, and presents examples of application of the PSEM in some computational simulations.
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.
Fang, Yishan; Huang, Xinjian; Wang, Lishi
2015-01-06
Discrimination and quantification of electroactive species are traditionally realized by a potential difference which is mainly determined by thermodynamics. However, the resolution of this approach is limited to tens of millivolts. In this paper, we described an application of Fourier transformed sinusoidal voltammetry (FT-SV) that provides a new approach for discrimination and quantitative evaluation of electroactive species, especially thermodynamic similar ones. Numerical simulation indicates that electron transfer kinetics difference between electroactive species can be revealed by the phase angle of higher order harmonics of FT-SV, and the difference can be amplified order by order. Thus, even a very subtle kinetics difference can be amplified to be distinguishable at a certain order of harmonics. This method was verified with structurally similar ferrocene derivatives which were chosen as the model systems. Although these molecules have very close redox potential (<10 mV), discrimination and selective detection were achieved by as high as the thirteenth harmonics. The results demonstrated the feasibility and reliability of the method. It was also implied that the combination of the traditional thermodynamic method and this kinetics method can form a two-dimension resolved detection method, and it has the potential to extend the resolution of voltammetric techniques to a new level.
A use of regression analysis in acoustical diagnostics of gear drives
NASA Technical Reports Server (NTRS)
Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Kobrinskiy, A. A.; Sokolova, A. G.
1973-01-01
A study is presented of components of the vibration spectrum as the filtered first and second harmonics of the tooth frequency which permits information to be obtained on the physical characteristics of the vibration excitation process, and an approach to be made to comparison of models of the gearing. Regression analysis of two random processes has shown a strong dependence of the second harmonic on the first, and independence of the first from the second. The nature of change in the regression line, with change in loading moment, gives rise to the idea of a variable phase shift between the first and second harmonics.
NASA Astrophysics Data System (ADS)
Fong Chao, B.
1983-12-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980) which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. Principal conclusion of this analysis are that (1) the ILS data support the multiple-component hypothesis of the Chandler wobble (it is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograte motion, a behavior that is inconsistent with the hypothesis of a single Chandler period excited in a temporally and/or spatially random fashion). (2) the four-component Chandler wobble model ``explains'' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation, (3) the annual wobble is shown to be rather stationary over the years both in amplitude and in phase and no evidence is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling
NASA Astrophysics Data System (ADS)
Fecher, T.; Gruber, T.; Rummel, R.
2009-04-01
Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?
Nonlinear vibration of viscoelastic beams described using fractional order derivatives
NASA Astrophysics Data System (ADS)
Lewandowski, Roman; Wielentejczyk, Przemysław
2017-07-01
The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.
High Power Klystrons for Efficient Reliable High Power Amplifiers.
1980-11-01
techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer
Hu, Yi
2010-05-01
Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.
Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1998-01-01
This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.
Power system frequency estimation based on an orthogonal decomposition method
NASA Astrophysics Data System (ADS)
Lee, Chih-Hung; Tsai, Men-Shen
2018-06-01
In recent years, several frequency estimation techniques have been proposed by which to estimate the frequency variations in power systems. In order to properly identify power quality issues under asynchronously-sampled signals that are contaminated with noise, flicker, and harmonic and inter-harmonic components, a good frequency estimator that is able to estimate the frequency as well as the rate of frequency changes precisely is needed. However, accurately estimating the fundamental frequency becomes a very difficult task without a priori information about the sampling frequency. In this paper, a better frequency evaluation scheme for power systems is proposed. This method employs a reconstruction technique in combination with orthogonal filters, which may maintain the required frequency characteristics of the orthogonal filters and improve the overall efficiency of power system monitoring through two-stage sliding discrete Fourier transforms. The results showed that this method can accurately estimate the power system frequency under different conditions, including asynchronously sampled signals contaminated by noise, flicker, and harmonic and inter-harmonic components. The proposed approach also provides high computational efficiency.
NASA Astrophysics Data System (ADS)
Konks, V. Ia.
1981-05-01
Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.
NASA Technical Reports Server (NTRS)
Noah, S. T.; Kim, Y. B.
1991-01-01
A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
Finite mode analysis through harmonic waveguides
Alieva; Wolf
2000-08-01
The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part computes their fast Fourier transform. We illustrate this process with the Kravchuk transform.
Global Ray Tracing Simulations of the SABER Gravity Wave Climatology
2009-01-01
atmosphere , the residual temperature profiles are analyzed by a combi- nation of maximum entropy method (MEM) and harmonic analysis, thus providing the...accepted 24 February 2009; published 30 April 2009. [1] Since February 2002, the SABER (sounding of the atmosphere using broadband emission radiometry...satellite instrument has measured temperatures throughout the entire middle atmosphere . Employing the same techniques as previously used for CRISTA
Thibierge, C; L'Hôte, D; Ladieu, F; Tourbot, R
2008-10-01
We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz < or = f < or = 3x10(4) Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10(-7). We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Theoretical analysis of chirp excitation of contrast agents
NASA Astrophysics Data System (ADS)
Barlow, Euan; Mulholland, Anthony J.; Nordon, Alison; Gachagan, Anthony
2010-01-01
Analytic expressions are found for the amplitude of the first and second harmonics of the Ultrasound Contrast Agent's (UCA's) dynamics when excited by a chirp. The dependency of the second harmonic amplitude on the system parameters, the UCA shell parameters, and the insonifying signal parameters is then investigated. It is shown that optimal parameter values exist which give rise to a clear increase in the second harmonic component of the UCA's motion.
Islanding detection technique using wavelet energy in grid-connected PV system
NASA Astrophysics Data System (ADS)
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon
2018-01-01
This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Cheng, Mark M. C.; Le, Khai Q.; Chen, Pai-Yen
2015-10-01
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the ‘Internet of Nano-Things’.
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier
2016-09-01
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound \\text{FeSi} over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light.
Farhat, Mohamed; Cheng, Mark M C; Le, Khai Q; Chen, Pai-Yen
2015-10-16
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.
NASA Astrophysics Data System (ADS)
Moustafa, Sabry Gad Al-Hak Mohammad
Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is shown to vary slowly with system-size. This allow us to get the FE in the thermodynamic limit by extrapolating the one isomer results to infinity and correct for that by the effect from considering proton-disorder measured at a small system. These techniques are applied to empty hydrates (of types: SI, SII, and SH) to estimate their thermodynamic stability. For conditions where the harmonic model fails, performing MS is needed to estimate rigorously the full (harmonic plus anharmonic) quantity. Although several MS methods are available for that purpose, they do not benefit from the harmonic nature of crystals---which represents the main contribution and is cheap to compute. In other words, those "conventional" methods always "start from scratch" even at states where anharmonic part is negligible. In this work, we develop very efficient MS methods that leverage information, on-the-fly, from the harmonic behavior of configurations such that the anharmonic contributions are directly measured. The approach is named harmonically-mapped averaging (HMA) for the rest of this thesis. Since the major contribution of thermodynamic properties comes from the harmonic nature of crystal, the fluctuations in the anharmonic quantities is to be small; hence, uncertainty associated with the HMA method is small. The HMA method is given in a general formulation such that it can handle properties related to both first- and second-derivatives of free energy. The HMA approach is first applied to Lennard-Jones (LJ) model. First- and second-derivatives of FE with respect to temperature and volume yield the following properties: energy, pressure, isochoric heat capacity, bulk modulus, and thermal pressure coefficient. A considerable improvement in the efficiency of measuring those properties is observed even at melting conditions where anharmonicity is non-negligible. First-derivative properties are computed with 100 to 10,000 times less computational effort, while speedup for the second-derivative properties exceeds a millionfold for the highest density examined. In addition, the finite-size and long-range cutoff effects of the anharmonic contribution is much smaller than those due to harmonic part. Therefore, we were able to get the thermodynamic limit of thermodynamic properties by extrapolating the harmonic contribution to infinity and fix that with the anharmonic contribution from MS of small systems. Moreover, the anharmonic trajectory shows better features than the conventional one; it equilibrates almost instantaneously and data is less correlated (i.e. good statistics can be obtained with shorter trajectory). As a byproduct of the HMA, the free energy along an isochore is computed using thermodynamic integration (TI) technique of energy. Again, the HMA shows substantial improvement (50--1000 speedup) over the well-known Frenkel-Ladd integration (with Einstein crystal reference) method. Finally, to test the method against a more sophisticated model, we applied it to an embedded-atom-model (EAM) model of iron system. The results show a qualitatively similar behavior as that of LJ model. Finally, the method is applied to tackle one of the long-standing problems of Earth science; namely, the crystal structure of the Earth's inner core (IC). (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.
2013-04-01
The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.
One-Dimensional Harmonic Model for Biomolecules
Krizan, John E.
1973-01-01
Following in spirit a paper by Rosen, we propose a one-dimensional harmonic model for biomolecules. Energy bands with gaps of the order of semi-conductor gaps are found. The method is discussed for general symmetric and periodic potential functions. PMID:4709518
Increased first and second pulse harmonics in Tai Chi Chuan practitioners.
Lu, Wan-An; Chen, Yung-Sheng; Kuo, Cheng-Deng
2016-02-29
Tai Chi Chuan (TCC) is known to be a good calisthenics for people. This study examined the relationship between pulse harmonics and autonomic nervous modulation in TCC practitioners. Power spectral measures of right pulse wave and heart rate variability (HRV) measures were compared between TCC practitioners and control subjects. Correlation analyses between pulse harmonics and HRV measures were performed using linear regression analysis. At baseline, the total power of pulse (TPp), powers of all individual pulse harmonics, normalized power of the 1(st) harmonics (nPh1) of TCC practitioners were greater, while the normalized power of the 4(th) pulse harmonics (nPh4) of TCC practitioners was smaller, than those of the controls. Similarly, the baseline standard deviation (SD(RR)), coefficient of variation (CV(RR)), and normalized high-frequency power (nHFP) of RR intervals were smaller, while the normalized very low-frequency power (nVLFP) and low-/high- frequency power ratio (LHR) were larger in the TCC practitioners. The TCC age correlated significantly and negatively with nPh1, and nearly significantly and negatively with nPh2 in the TCC practitioners. Thirty min after TCC exercise, the percentage changes in mRRI, SDRR, TP, VLFP were decreased, while the percentage changes in HR, ULFP, nLFP, and Ph2 were increased, relative to the controls. Correlation analysis shows that the %Ph2 correlates significantly and negatively with %mRRI and significantly and positively with %HR. The TCC practitioners had increased baseline total power of pulse and the 1(st) and 2(nd) pulse harmonics, and decreased power of the 4(th) pulse harmonics, along with decreased vagal modulation and increased sympathetic modulation. After TCC exercise, the power of the 2(nd) harmonics of TCC practitioners was increased which might be related to the increase in HR due to decreased vascular resistance after TCC exercise.
A transmission line model for propagation in elliptical core optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.
The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the casemore » of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.« less
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
NASA Astrophysics Data System (ADS)
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Analysis of regional crustal magnetization in Vector Cartesian Harmonics
NASA Astrophysics Data System (ADS)
Gubbins, D.; Ivers, D. J.; Williams, S.
2017-12-01
We introduce a set of basis functions for analysing magnetization in a plane layer, called Vector Cartesian Harmonics, that separate the part of the magnetization responsible for generating the external potential field from the part that generates no observable field. They are counterparts of similar functions defined on a sphere, Vector Spherical Harmonics, which we introduced earlier for magnetization in a spherical shell. We expand four example magnetizations in these functions and determine which parts are responsible for the observed magnetic field above the layer. For a point dipole, the component of magnetization responsible for the external potential field is the sum of a point dipole of half strength and a distributed magnetization that gives the same field. The dipping prism has no magnetic field if magnetized along strike; otherwise it, like the point dipole, has the correct dipping structure but of half the correct intensity accompanied by a distributed magnetization producing the same magnetic field. Interestingly, the distributed magnetization has singularities at the edges of the dipping slab. The buried cube is done numerically and again only a fraction of the true magnetization appears along with distributed magnetizations, strongest at the edges of the cube, making up the rest of the field. The Bishop model, a model of magnetization often used to test analysis methods, behaves similarly. In cases where the magnetization is induced by a known, non-horizontal field it is always possible to recover the vertically averaged susceptibility except for its horizontal average. Simple damped inversion of magnetic data will return only the harmonics responsible for the external field, so the analysis gives a clear indication of how any combination of induced and remanent magnetization would be returned. In practice, most interpretations of magnetic surveys are done in combination with other geological data and insights. We propose using this prior information to construct a quantitative magnetization that can be expanded in Vector Cartesian Harmonics to determine the part that generates the observed magnetic anomalies; this part can be refined to fit the data while the remaining part can only be improved using different information. The separation is simple and fast to implement using standard software because it involves only elementary manipulations of 2-dimensional Fourier transforms.
NASA Astrophysics Data System (ADS)
Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier
2001-04-01
The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of the bending motion during the HCN/CNH isomerization, computed with the HADA and the exact wave function.
Winters, Kristi; Netscher, Sebastian
2016-01-01
Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable ‘marital status’, we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences. PMID:26859494
Quaternion-valued single-phase model for three-phase power system
NASA Astrophysics Data System (ADS)
Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin
2018-03-01
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
Thermal image analysis using the serpentine method
NASA Astrophysics Data System (ADS)
Koprowski, Robert; Wilczyński, Sławomir
2018-03-01
Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.
Symmetry properties of second harmonics generated by antisymmetric Lamb waves
NASA Astrophysics Data System (ADS)
Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen
2018-03-01
Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.
Telle, H R; Meschede, D; Hänsch, T W
1990-05-15
We explore and demonstrate the feasibility of an optical-frequency-to-radio-frequency division method that is based on visible or near-infrared laser oscillators only. Comparing harmonic and sum frequencies, we generate the arithmetic average of two visible frequencies. Cascading n stages provides difference-frequency division by 2(n). For a demonstration we have phase locked the second harmonic and the sum frequency of two independent diode lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
Degradation in finite-harmonic subcarrier demodulation
NASA Technical Reports Server (NTRS)
Feria, Y.; Townes, S.; Pham, T.
1995-01-01
Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.
A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields
NASA Astrophysics Data System (ADS)
Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang
2017-03-01
Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.
Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis
NASA Astrophysics Data System (ADS)
Gabay, Natasha C.; Robinson, P. A.
2017-09-01
Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.
Life sciences domain analysis model
Freimuth, Robert R; Freund, Elaine T; Schick, Lisa; Sharma, Mukesh K; Stafford, Grace A; Suzek, Baris E; Hernandez, Joyce; Hipp, Jason; Kelley, Jenny M; Rokicki, Konrad; Pan, Sue; Buckler, Andrew; Stokes, Todd H; Fernandez, Anna; Fore, Ian; Buetow, Kenneth H
2012-01-01
Objective Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science. PMID:22744959
Long-term motion of resonant satellites with arbitrary eccentricity and inclination
NASA Technical Reports Server (NTRS)
Nacozy, P. E.; Diehl, R. E.
1982-01-01
A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet. We present here an application of the method to a synchronous satellite including J2 and J22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.
1996-11-19
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
NASA Technical Reports Server (NTRS)
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
Gaussian representation of high-intensity focused ultrasound beams.
Soneson, Joshua E; Myers, Matthew R
2007-11-01
A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Tuo, Shengquan; CMS Collaboration
2017-11-01
The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles are presented as a function of pT and centrality in PbPb collisions at √{sNN} = 2.76 TeV and 5.02 TeV with the CMS detector. The results are obtained using the scalar product method, and cover a pT range from 0.3 GeV/c to 8.0 GeV/c, pseudorapidity | η | < 2.4, and a centrality range of 0-60%. The mixed harmonic results at 5.02 TeV are compared to the matching higher-order flow harmonics from two-particle correlations, which measure vn values with respect to the n-th order event plane. It is observed that the nonlinear response coefficients of the odd harmonics are larger than the even harmonics ones. The results are compared with hydrodynamic predictions using different shear viscosity to entropy density ratios and different initial conditions.
An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter
NASA Astrophysics Data System (ADS)
Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu
2017-05-01
Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.
Generalized Preconditioned Locally Harmonic Residual Eigensolver (GPLHR) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
VECHARYNSKI, EUGENE; YANG, CHAO
The software contains a MATLAB implementation of the Generalized Preconditioned Locally Harmonic Residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen- or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework.
Dynamic analysis of a magnetic bearing system with flux control
NASA Technical Reports Server (NTRS)
Knight, Josiah; Walsh, Thomas; Virgin, Lawrence
1994-01-01
Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.
Application of Fourier transform-second-harmonic generation imaging to the rat cervix.
Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C
2013-07-01
We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
A harmonic linear dynamical system for prominent ECG feature extraction.
Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc
2014-01-01
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
Chen, Sen; Luo, Sheng Nian
2018-03-01
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sen; Luo, Sheng-Nian
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less
Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.
Strelkov, V V; Ganeev, R A
2017-09-04
We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.
Indirect (source-free) integration method. II. Self-force consistent radial fall
NASA Astrophysics Data System (ADS)
Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane
2016-12-01
We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force (SF). The Mode-Sum regularization is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for this orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the SF through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in [Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450090].
Wentzel-Kramers-Brillouin method in the Bargmann representation. [of quantum mechanics
NASA Technical Reports Server (NTRS)
Voros, A.
1989-01-01
It is demonstrated that the Bargmann representation of quantum mechanics is ideally suited for semiclassical analysis, using as an example the WKB method applied to the bound-state problem in a single well of one degree of freedom. For the harmonic oscillator, this WKB method trivially gives the exact eigenfunctions in addition to the exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale illuminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety of multidimensional extensions.
Harmonic dissection versus electrocautery in breast surgery in regional Victoria.
Kiyingi, Andrew K; Macdonald, Leigh J; Shugg, Sarah A; Bollard, Ruth C
2015-05-01
Harmonic instruments are an alternative tool for surgical dissection. The aim of this study is to evaluate differences in clinical outcomes relating to harmonic dissection when compared with electrocautery in patients undergoing major breast surgery in a regional centre over a 3-year period. Retrospective chart analysis was conducted of 52 patients undergoing major breast surgery for carcinoma or ductal carcinoma in situ by a single surgeon in a regional centre from May 2008 to January 2011. Analysis involved the extraction of qualitative data relating to patient demographics, surgery type and specimen histopathology. Quantitative data were extracted relating to duration of surgery, duration of patient-controlled analgesia (PCA) use, length of hospital admission, drainage output and presence of infection, haematoma or seroma. Fifty-two patients underwent major breast surgery; harmonic dissection n = 32 and electrocautery n = 20. The two groups were comparable. There was no significant difference identified relating the outcome measures. The median operative duration was shorter in the harmonic dissection group, however, was not of statistical significance. No significant difference was identified between groups relating to length of inpatient stay, duration of PCA use and total volume wound drainage and total days of drainage. Incidence of seroma and infection in the groups was not significantly different. The harmonic dissection is safe and effective in major breast surgery. The study did not demonstrate any clinical advantage from the use of harmonic dissection in major breast surgery compared with electrocautery, nor was there any difference in the complication rates measured. © 2014 Royal Australasian College of Surgeons.
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
Detection of main tidal frequencies using least squares harmonic estimation method
NASA Astrophysics Data System (ADS)
Mousavian, R.; Hossainali, M. Mashhadi
2012-11-01
In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.
NASA Astrophysics Data System (ADS)
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor
NASA Astrophysics Data System (ADS)
Liu, J.; Li, L.; Huang, X.; Jezequel, L.
2017-10-01
In this paper, we propose a method to suppress the vibration of the integral bladed disk ('blisk' for short) in aero-engines using synchronized switch damping based on negative capacitor (SSDNC). Different from the classical piezoelectric shunt damping, SSDNC is a type of nonlinear piezoelectric damping. A multi-harmonic balance method combined with the alternating frequency/time method (MHBM-AFT) is used to predict and further analyze the dynamic characteristics of the electromechanical system, and an arc-length continuation technique is used to improve the convergence of the method. In order to validate the algorithm as well as to recognize the characteristics of the system with SSDNC, a two degree-of-freedom (2-DOF) system with SSDNC is studied at first. The nonlinear complex modal information is calculated and compared with those of the corresponding system with a linear RL shunt circuit. The results indicate that the natural frequencies and modal damping ratio do not change with the modal amplitude, which means that SSDNC has the same modal damping corresponding to different system energy levels. In addition, SSDNC can improve the damping level of all the modes nearly without affecting the natural frequencies of the system. Then, the forced response of the blisk with SSDNC in the frequency domain is calculated and analyzed, including a tuned blisk, which is excited by the traveling wave excitation with a single harmonic and multi-harmonic, and a mistuned blisk, which is excited by traveling wave excitation with a single harmonic and multi-harmonic. We present two advantages of the SSDNC technique when compared with piezoelectric shunt damping. First, SSDNC can suppress the vibration of the blisk under a multi-harmonic wideband the traveling wave, and second, the vibration suppression performance of SSDNC is insensitive to the mistuning of mechanical parameters of the blisk. The results will be of great significance in overcoming the problem of the amplitude magnification induced by the inevitable mistuning of the blisk in aero-engines.
Construction of SO(5)⊃SO(3) spherical harmonics and Clebsch-Gordan coefficients
NASA Astrophysics Data System (ADS)
Caprio, M. A.; Rowe, D. J.; Welsh, T. A.
2009-07-01
The SO(5)⊃SO(3) spherical harmonics form a natural basis for expansion of nuclear collective model angular wave functions. They underlie the recently-proposed algebraic method for diagonalization of the nuclear collective model Hamiltonian in an SU(1,1)×SO(5) basis. We present a computer code for explicit construction of the SO(5)⊃SO(3) spherical harmonics and use them to compute the Clebsch-Gordan coefficients needed for collective model calculations in an SO(3)-coupled basis. With these Clebsch-Gordan coefficients it becomes possible to compute the matrix elements of collective model observables by purely algebraic methods. Program summaryProgram title: GammaHarmonic Catalogue identifier: AECY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 346 421 No. of bytes in distributed program, including test data, etc.: 16 037 234 Distribution format: tar.gz Programming language: Mathematica 6 Computer: Any which supports Mathematica Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux Classification: 4.2 Nature of problem: Explicit construction of SO(5) ⊃ SO(3) spherical harmonics on S. Evaluation of SO(3)-reduced matrix elements and SO(5) ⊃ SO(3) Clebsch-Gordan coefficients (isoscalar factors). Solution method: Construction of SO(5) ⊃ SO(3) spherical harmonics by orthonormalization, obtained from a generating set of functions, according to the method of Rowe, Turner, and Repka [1]. Matrix elements and Clebsch-Gordan coefficients follow by construction and integration of SO(3) scalar products. Running time: Depends strongly on the maximum SO(5) and SO(3) representation labels involved. A few minutes for the calculation in the Mathematica notebook. References: [1] D.J. Rowe, P.S. Turner, J. Repka, J. Math. Phys. 45 (2004) 2761.
Firnkorn, D; Ganzinger, M; Muley, T; Thomas, M; Knaup, P
2015-01-01
Joint data analysis is a key requirement in medical research networks. Data are available in heterogeneous formats at each network partner and their harmonization is often rather complex. The objective of our paper is to provide a generic approach for the harmonization process in research networks. We applied the process when harmonizing data from three sites for the Lung Cancer Phenotype Database within the German Center for Lung Research. We developed a spreadsheet-based solution as tool to support the harmonization process for lung cancer data and a data integration procedure based on Talend Open Studio. The harmonization process consists of eight steps describing a systematic approach for defining and reviewing source data elements and standardizing common data elements. The steps for defining common data elements and harmonizing them with local data definitions are repeated until consensus is reached. Application of this process for building the phenotype database led to a common basic data set on lung cancer with 285 structured parameters. The Lung Cancer Phenotype Database was realized as an i2b2 research data warehouse. Data harmonization is a challenging task requiring informatics skills as well as domain knowledge. Our approach facilitates data harmonization by providing guidance through a uniform process that can be applied in a wide range of projects.
Simulation of 100-300 GHz solid-state harmonic sources
NASA Technical Reports Server (NTRS)
Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.
1995-01-01
Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.
Heslar, John; Chu, Shih-I.
2016-11-24
Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
NASA Technical Reports Server (NTRS)
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
The Mars Reconnaissance Orbiter (MRO) spacecraft has three two-axis gimbal assemblies that support and move the High Gain Antenna and two solar array wings. The gimbal assemblies are required to move almost continuously throughout the mission's seven-year lifetime, requiring a large number of output revolutions for each actuator in the gimbal assemblies. The actuator for each of the six axes consists of a two-phase brushless dc motor with a direct drive to the wave generator of a size-32 cup-type harmonic gear. During life testing of an actuator assembly, the harmonic gear teeth failed completely, leaving the size-32 harmonic gear with a maximum output torque capability less than 10% of its design capability. The investigation that followed the failure revealed limitations of the heritage material choices that were made for the harmonic gear components that had passed similar life requirements on several previous programs. Additionally, the methods used to increase the stiffness of a standard harmonic gear component set, while accepted practice for harmonic gears, is limited in its range. The stiffness of harmonic gear assemblies can be increased up to a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; ...
2016-07-20
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Dipanshu; Aref, Amjad; Dargush, Gary
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.; ...
2017-04-26
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow
NASA Technical Reports Server (NTRS)
Dusto, A. R.; Epton, M. A.
1980-01-01
An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.
Frequency doubling in poled polymers using anomalous dispersion phase-matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.
1995-10-01
The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individualmore » phase-matching techniques.« less
Computerized series solution of relativistic equations of motion.
NASA Technical Reports Server (NTRS)
Broucke, R.
1971-01-01
A method of solution of the equations of planetary motion is described. It consists of the use of numerical general perturbations in orbital elements and in rectangular coordinates. The solution is expanded in Fourier series in the mean anomaly with the aid of harmonic analysis and computerized series manipulation techniques. A detailed application to the relativistic motion of the planet Mercury is described both for Schwarzschild and isotropic coordinates.
Common Methods for Security Risk Analysis
2005-01-12
recognized in the others. In Canada, three firms have been accredited as IT Security Evaluation and Testing (ITSET) Facility, under ISO / IEC 17025 -1999...harmonized security standards such as the Common Criteria and ISO 17799 may further increase the applicability of TRA approach. 3.4.8 MOST AUTOMATION...create something more suitable, the Common Criteria with Mutual Recognition Agreement (MRA) signed in October 1998. The CC became an ISO standard
Sliding and Debonding Inclusions
1988-08-15
19 124 List of Publications Published under ARO StonsorshiD during this period 1. R.R. Castles and T. Mura, The analysis of eigenstrains outside of an...slippding interface, J. Aonl. Mech., 53 (1986) 103- 107. 12. N. Kinoshita and T. Mura, An ellipsoidal inclusion with polynomial eigenstrains , Quart...Theory and application of harmonic eigenstrains , O.J.Mech. ADDl Math., 40 (1987) 169-188. 20. T. Mura, The eigenstrains method applied to fracture
NASA Technical Reports Server (NTRS)
Abdrashitov, G.
1943-01-01
An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.
Simplification of the kinematic model of human movement
NASA Astrophysics Data System (ADS)
Dusza, Jacek J.; Wawrzyniak, Zbigniew M.; del Prado Martinez, David
2013-10-01
The paper presents a methods of simplification of the human gait model. The experimental data were obtained in the laboratory of the group SATI in the Electronics Engineering Department of the University of Valencia. As a result of the Mean Double Step (MDS) procedure, the human motion were described by a matrix containing the Cartesian coordinates of 26 markers placed on the human body recorded in the 100 time points. With these data it has been possible to develop an software application which performs a wide diversity of tasks like array simplification, mask calculation for the simplification, error calculation as well as tools for signals comparison and movement animation of the markers. Simplifications were made by the spectral analysis of signals and calculating the standard deviation of the differences between the signal and its approximation. Using this method the signals of displacement could be written as the time series limited to a small number of harmonic signals. This approach allows us for a high degree of data compression. The model presented in this work can be applied into the context of medical diagnostics or rehabilitation because for a given approximation error and a large number of harmonics may demonstrate some abnormalities (of orthopaedic symptoms) in the gait cycle analysis.
Schmittbuhl, M; Le Minor, J M; Allenbach, B; Schaaf, A
1998-07-01
By using new methodologies based on automatic image analysis, the shape of the piriform aperture was analyzed in Gorilla gorilla (33 males, 13 females), Pan troglodytes (35 males, 22 females), and modern Homo sapiens (30 males, 12 females). The determination of the piriform aperture index (breadth/height) allowed the authors to demonstrate a marked elongation of the aperture in Homo compared with Gorilla and Pan. Individual characterization of the shape was possible with great precision and without ambiguity by using Fourier analysis. An absolute, interspecific partition between Gorilla, Pan, and Homo resulted from the canonical discriminant analysis of the Fourier descriptors. However, a closeness of shape between some individuals in Pan and some in Gorilla and Homo was observed, demonstrating a morphological continuum of the shape of the piriform aperture in hominoids: Pan was in intermediate position between Gorilla and Homo. Interspecific differences between Homo and the group Pan-Gorilla were explained principally by the differences in elongation (amplitude of the second harmonic) and pentagonality (amplitude of the fifth harmonic) and by differences in orientation of quadrangularity (phase of the fourth harmonic). Differences in the shape of the piriform aperture between Pan and Gorilla were explained by differences in orientation of elongation (phase of the second harmonic) and by differences in the component of triangularity (amplitude of the third harmonic). In Gorilla and Pan, the little, elongated, and relatively trapezoidal piriform aperture seems to be a shared primitive feature (plesiomorphic), whereas an elongated piriform aperture seems to be a characteristic and derived feature (apomorphic) of modern Homo sapiens.
Kunduk, Melda; Vansant, Mathew B; Ikuma, Takeshi; McWhorter, Andrew
2017-03-01
This study investigated the effect of menstrual cycle on vocal fold vibratory characteristics in young women using high-speed digital imaging. This study examined the menstrual phase effect on five objective high-speed imaging parameters and two self-rated perceptual parameters. The effects of oral birth control use were also investigated. Thirteen subjects with no prior voice complaints were included in this study. All data were collected at three different time periods (premenses, postmenses, ovulation) over the course of one menstrual cycle. For five of the 13 subjects, data were collected for two consecutive cycles. Six of 13 subjects were oral birth control users. From high-speed imaging data, five objective parameters were computed: fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, and ratio of first and second harmonics. They were supplemented by two self-rated parameters: Reflux Severity Index and perceptual voice quality rating. Analysis included mixed model linear analysis with repeated measures. Results indicated no significant main effects for menstrual phase, between-cycle, or birth control use in the analysis for mean fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, first and second harmonics, Reflux Severity Index, and perceptual voice quality rating. Additionally, there were no interaction effects. Hormone fluctuations observed across the menstrual cycle do not appear to have direct effect on vocal fold vibratory characteristics in young women with no voice concerns. Birth control use, on the other hand, may have influence on spectral richness of vocal fold vibration. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Operational modal analysis applied to the concert harp
NASA Astrophysics Data System (ADS)
Chomette, B.; Le Carrou, J.-L.
2015-05-01
Operational modal analysis (OMA) methods are useful to extract modal parameters of operating systems. These methods seem to be particularly interesting to investigate the modal basis of string instruments during operation to avoid certain disadvantages due to conventional methods. However, the excitation in the case of string instruments is not optimal for OMA due to the presence of damped harmonic components and low noise in the disturbance signal. Therefore, the present study investigates the least-square complex exponential (LSCE) and the modified least-square complex exponential methods in the case of a string instrument to identify modal parameters of the instrument when it is played. The efficiency of the approach is experimentally demonstrated on a concert harp excited by some of its strings and the two methods are compared to a conventional modal analysis. The results show that OMA allows us to identify modes particularly present in the instrument's response with a good estimation especially if they are close to the excitation frequency with the modified LSCE method.
Reflective array modeling for reflective and directional SAW transducers.
Morgan, D P
1998-01-01
This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.
Detection of rotor imbalance, including root cause, severity and location
NASA Astrophysics Data System (ADS)
Cacciola, S.; Munduate Agud, I.; Bottasso, C. L.
2016-09-01
This paper presents a new way of detecting imbalances on wind turbine rotors, by using a harmonic analysis of the rotor response in the fixed frame. The method is capable of distinguishing among different root causes of the imbalance. In addition, the imbalance severity and location, i.e. the affected blade, can be identified. The automatic classification of the imbalance problem is obtained by using a neural network. The performance of the method is illustrated with the help of different fault scenarios, within a high-fidelity simulation environment.
Malachowski, George C; Clegg, Robert M; Redford, Glen I
2007-12-01
A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.
Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea
2016-03-26
Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients' care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine.
Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea
2016-01-01
Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients’ care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine. PMID:27019800
A mean-based filter to remove power line harmonic noise from seismic reflection data
NASA Astrophysics Data System (ADS)
Karslı, Hakan; Dondurur, Derman
2018-06-01
Power line harmonic noise generated by power lines during the seismic data acquisition in land and marine seismic surveys generally appears as a single frequency with 50/60 Hz (or multiples of these frequencies) and contaminates seismic data leading to complicate the identification of fine details in the data. Commonly applied method during seismic data processing to remove the harmonic noise is classical notch filter (or very narrow band-stop filter), however, it also attenuates all recorded data around the notch frequencies and results in a complete loss of available information which corresponds to fine details in the seismic data. In this study, we introduce an application of the algorithm of iterative trimmed and truncated mean filter method (ITTM) to remove the harmonic noise from seismic data, and here, we name the method as local ITTM (LITTM) since we applied it to the seismic data locally in spectral domain. In this method, an optimal value is iteratively searched depending on a threshold value by trimming and truncating process for the spectral amplitude samples within the specified spectral window. Therefore, the LITTM filter converges to the median, but, there is no need to sort the data as in the case of conventional median filters. On the other hand, the LITTM filtering process doesn't require any reference signal or a precise estimate of the fundamental frequency of the harmonic noise, and only approximate frequency band of the noise within the amplitude spectra is considered. The only required parameter of the method is the width of this frequency band in the spectral domain. The LITTM filter is first applied to synthetic data and then we analyze a real marine dataset to compare the quality of the output after removing the power line noise by classical notch, median and proposed LITTM filters. We observe that the power line harmonic noise is completely filtered out by LITTM filter, and unlike the conventional notch filter, without any damage on the available frequencies around the notch frequency band. It also provides a more balanced amplitude spectrum since it does not produce amplitude notches in the spectrum.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...
2016-01-01
We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Nanoengineering of strong field processes in solids
NASA Astrophysics Data System (ADS)
Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.
2018-04-01
We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.
Evaluation of thermograph data for California streams
Limerinos, J.T.
1978-01-01
Statistical analysis of water-temperature data from California streams indicates that, for most purposes, long-term operation of thermographs (automatic water-temperature recording instruments) does not provide a more useful record than either short-term operation of such instruments or periodic measurements. Harmonic analyses were made of thermograph records 5 to 14 years in length from 82 stations. More than 80 percent of the annual variation in water temperature is explained by the harmonic function for 77 of the 82 stations. Harmonic coefficients based on 8 years of thermograph record at 12 stations varied only slightly from coefficients computed using two equally split 4-year records. At five stations where both thermograph and periodic (10 to 23 measurements per year) data were collected concurrently, harmonic coefficients for periodic data were defined nearly as well as those for thermograph data. Results of this analysis indicate that, except where detailed surveillance of water temperatures is required or where there is a chance of temporal change, thermograph operations can be reduced substantially without affecting the usefulness of temperature records.
Reaction Wheel Disturbance Model Extraction Software - RWDMES
NASA Technical Reports Server (NTRS)
Blaurock, Carl
2009-01-01
The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral densities); converting PSDs to order analysis data; extracting harmonics; initializing and simultaneously tuning a harmonic model and a wheel structural model; initializing and tuning a broadband model; and verifying the harmonic/broadband/structural model against the measurement data. Functional operation is through a MATLAB GUI that loads test data, performs the various analyses, plots evaluation data for assessment and refinement of analysis parameters, and exports the data to documentation or downstream analysis code. The harmonic models are defined as specified functions of frequency, typically speed-squared. The reaction wheel structural model is realized as mass, damping, and stiffness matrices (typically from a finite element analysis package) with the addition of a gyroscopic forcing matrix. The broadband noise model is realized as a set of speed-dependent filters. The tuning of the combined model is performed using nonlinear least squares techniques. RWDMES is implemented as a MATLAB toolbox comprising the Fit Manager for performing the model extraction, Data Manager for managing input data and output models, the Gyro Manager for modifying wheel structural models, and the Harmonic Editor for evaluating and tuning harmonic models. This software was validated using data from Goodrich E wheels, and from GSFC Lunar Reconnaissance Orbiter (LRO) wheels. The validation testing proved that RWDMES has the capability to extract accurate disturbance models from flight reaction wheels with minimal user effort.
Harmonizing and Optimizing Fish Testing Methods: The OECD Framework Project
The Organisation for Economic Cooperation and Development (OECD) serves a key role in the international harmonization of testing of a wide variety of chemicals. An integrated fish testing framework project was initiated in mid-2009 through the OECD with the US as the lead country...
The One-Dimensional Damped Forced Harmonic Oscillator Revisited
ERIC Educational Resources Information Center
Flores-Hidalgo, G.; Barone, F. A.
2011-01-01
In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
NASA Astrophysics Data System (ADS)
Edler, Karl T.
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl
Chen, Shigao; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2007-07-01
Vibro-acoustography is an imaging method that uses the radiation force of two interfering ultrasound beams of slightly different frequency to probe an object. An image is made using the acoustic emission resulted from the object vibration at the difference frequency. In this paper, the feasibility of imaging objects at twice the difference frequency (harmonic acoustic emission) is studied. Several possible origins of harmonic acoustic emission are explored. As an example, it is shown that microbubbles close to resonance can produce significant harmonic acoustic emission due to its high nonlinearity. Experiments demonstrate that, compared to the fundamental acoustic emission, harmonic acoustic emission greatly improves the contrast between microbubbles and other objects in vibro-acoustography (an improvement of 17-23 dB in these experiments). Applications of this technique include imaging the nonlinearity of the object and selective detection of microbubbles for perfusion imaging. The impact of microbubble destruction during the imaging process also is discussed.
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
NASA Astrophysics Data System (ADS)
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-10-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83-91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Kahn, Michael G; Callahan, Tiffany J; Barnard, Juliana; Bauck, Alan E; Brown, Jeff; Davidson, Bruce N; Estiri, Hossein; Goerg, Carsten; Holve, Erin; Johnson, Steven G; Liaw, Siaw-Teng; Hamilton-Lopez, Marianne; Meeker, Daniella; Ong, Toan C; Ryan, Patrick; Shang, Ning; Weiskopf, Nicole G; Weng, Chunhua; Zozus, Meredith N; Schilling, Lisa
2016-01-01
Harmonized data quality (DQ) assessment terms, methods, and reporting practices can establish a common understanding of the strengths and limitations of electronic health record (EHR) data for operational analytics, quality improvement, and research. Existing published DQ terms were harmonized to a comprehensive unified terminology with definitions and examples and organized into a conceptual framework to support a common approach to defining whether EHR data is 'fit' for specific uses. DQ publications, informatics and analytics experts, managers of established DQ programs, and operational manuals from several mature EHR-based research networks were reviewed to identify potential DQ terms and categories. Two face-to-face stakeholder meetings were used to vet an initial set of DQ terms and definitions that were grouped into an overall conceptual framework. Feedback received from data producers and users was used to construct a draft set of harmonized DQ terms and categories. Multiple rounds of iterative refinement resulted in a set of terms and organizing framework consisting of DQ categories, subcategories, terms, definitions, and examples. The harmonized terminology and logical framework's inclusiveness was evaluated against ten published DQ terminologies. Existing DQ terms were harmonized and organized into a framework by defining three DQ categories: (1) Conformance (2) Completeness and (3) Plausibility and two DQ assessment contexts: (1) Verification and (2) Validation. Conformance and Plausibility categories were further divided into subcategories. Each category and subcategory was defined with respect to whether the data may be verified with organizational data, or validated against an accepted gold standard, depending on proposed context and uses. The coverage of the harmonized DQ terminology was validated by successfully aligning to multiple published DQ terminologies. Existing DQ concepts, community input, and expert review informed the development of a distinct set of terms, organized into categories and subcategories. The resulting DQ terms successfully encompassed a wide range of disparate DQ terminologies. Operational definitions were developed to provide guidance for implementing DQ assessment procedures. The resulting structure is an inclusive DQ framework for standardizing DQ assessment and reporting. While our analysis focused on the DQ issues often found in EHR data, the new terminology may be applicable to a wide range of electronic health data such as administrative, research, and patient-reported data. A consistent, common DQ terminology, organized into a logical framework, is an initial step in enabling data owners and users, patients, and policy makers to evaluate and communicate data quality findings in a well-defined manner with a shared vocabulary. Future work will leverage the framework and terminology to develop reusable data quality assessment and reporting methods.