Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-01-01
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system. PMID:27355946
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-06-27
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system.
Morrey spaces in harmonic analysis
NASA Astrophysics Data System (ADS)
Adams, David R.; Xiao, Jie
2012-10-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Spherical harmonics in texture analysis
NASA Astrophysics Data System (ADS)
Schaeben, Helmut; van den Boogaart, K. Gerald
2003-07-01
The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.
Quaternionic Harmonic Analysis of Texture
Mason, J.
2012-10-01
QHAT uses various functions and data structures native to MATLAB to analyze crystallographic texture information using harmonic functions on the space of rotations represented as normalized quaternions. These harmonic functions generalize the spherical harmonics in three dimensions, and form the basis for the irreducible representations of the four-dimensional rotation group. This allows the basis of harmonic functions to be reduced to linearly independent combinations that satisfy the crystal and sample symmetry point groups.
Harmonic analysis of perfusion pumps.
Dougherty, F Carroll; Donovan, F M; Townsley, Mary I
2003-12-01
The controversy over the use of nonpulsatile versus pulsatile pumps for maintenance of normal organ function during ex vivo perfusion has continued for many years, but resolution has been limited by lack of a congruent mathematical definition of pulsatility. We hypothesized that the waveform frequency and amplitude, as well as the underlying mean distending pressure are all key parameters controlling vascular function. Using discrete Fourier Analysis, our data demonstrate the complexity of the pulmonary arterial pressure waveform in vivo and the failure of commonly available perfusion pumps to mimic in vivo dynamics. In addition, our data show that the key harmonic signatures are intrinsic to the perfusion pumps, are similar for flow and pressure waveforms, and are unchanged by characteristics of the downstream perfusion circuit or perfusate viscosity.
Harmonic Analysis on Quantum Tori
NASA Astrophysics Data System (ADS)
Chen, Zeqian; Xu, Quanhua; Yin, Zhi
2013-09-01
This paper is devoted to the study of harmonic analysis on quantum tori. We consider several summation methods on these tori, including the square Fejér means, square and circular Poisson means, and Bochner-Riesz means. We first establish the maximal inequalities for these means, then obtain the corresponding pointwise convergence theorems. In particular, we prove the noncommutative analogue of the classical Stein theorem on Bochner-Riesz means. The second part of the paper deals with Fourier multipliers on quantum tori. We prove that the completely bounded L p Fourier multipliers on a quantum torus are exactly those on the classical torus of the same dimension. Finally, we present the Littlewood-Paley theory associated with the circular Poisson semigroup on quantum tori. We show that the Hardy spaces in this setting possess the usual properties of Hardy spaces, as one can expect. These include the quantum torus analogue of Fefferman's H1-BMO duality theorem and interpolation theorems. Our analysis is based on the recent developments of noncommutative martingale/ergodic inequalities and Littlewood-Paley-Stein theory.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-01-01
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-08-18
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.
Physical models for the source of Lascar's harmonic tremor
NASA Astrophysics Data System (ADS)
Hellweg, M.
2000-08-01
Over an 18 h interval in April 1994, the tremor at Lascar volcano, Chile, was characterized by a spectrum with narrow peaks at a fundamental freqency of about 0.63 Hz and more than 25 overtones at exact integer multiples. This harmonic tremor was recorded at four three-component, high-dynamic range stations during the deployment of the Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO'94). Usually this tremor's source is modeled as the resonance of a fluid-filled crack or organ pipe-like structure in the volcano. The resonance of a real, physical structure, however, can produce neither as many overtones nor such exact multiples as those observed in the harmonic tremor at Lascar. Harmonics also occur in a spectrum if the source signal is repetitive but nonsinusoidal. Fluid dynamics offers at least three realistic source models for harmonic tremor which produce repetitive, nonsinusoidal waveforms: the release of gas through a very small outlet (the soda bottle model), slug flow in a narrow conduit, and von Kármán vortices produced at obstacles. These models represent different flow regimes, each with its own characteristic range of Reynolds numbers. For each model the fundamental frequency of the tremor is related to the Reynolds number for the flow. Combining the Reynolds numbers for each model with typical kinematic viscosities for the possible fluids present in a volcano—magma, water, steam, air or some combination, at appropriate temperatures and pressures—provides limits on such physical parameters of the volcano as the dimensions of the flow conduit and the flow velocity of the fluid generating the tremor. If any single one of these three models is actually the process in the volcano which generates harmonic tremor, then the tremor is caused by movements of water or gases in the hydrothermal system near the volcano's surface.
Harmonic analysis of electrical distribution systems
1996-03-01
This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.
Harmonic analysis of the precipitation in Greece
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Zerefos, C. S.
2009-04-01
Greece is a country with a big variety of climates due to its geographical position, to the many mountain ranges and also to the multifarious and long coastline. The mountainous volumes are of such orientation that influences the distribution of the precipitation, having as a result, Western Greece to present great differentiations from Central and Eastern Greece. The application of harmonic analysis to the annual variability of precipitation is the goal of this study, so that the components, which compose the annual variability, be elicited. For this purpose, the mean monthly precipitation data from 30 meteorological stations of National Meteorological Service were used for the time period 1950-2000. The initial target is to reduce the number of variables and to detect structure in the relationships between variables. The most commonly used technique for this purpose is the application of Factor Analysis to a table having as columns the meteorological stations-variables and rows the monthly mean precipitation, so that 2 main factors were calculated, which explain the 98% of total variability of precipitation in Greece. Factor 1, representing the so-called uniform field and interpreting the most of the total variance, refers in fact to the Mediterranean depressions, affecting mainly the West of Greece and also the East Aegean and the Asia Minor coasts. In the process, the Fourier Analysis was applied to the factor scores extracted from the Factor Analysis, so that 2 harmonic components are resulted, which explain above the 98% of the total variability of each main factor, and are due to different synoptic and thermodynamic processes associated with Greece's precipitation construction. Finally, the calculation of the time of occurrence of the maximum precipitation, for each harmonic component of each one of the two main factors, gives the spatial distribution of appearance of the maximum precipitation in the Hellenic region.
NASA Technical Reports Server (NTRS)
Benton, E. R.; Kohl, Benjamin C.
1986-01-01
An optimum truncation level, N, in a spherical-harmonic analysis of the geomagnetic main field at the core-mantle boundary is determined by harmonic-spline analysis. Specifically, that value of N is found at which the two analyses are closest in a well defined sense and, for that value of N, the 'closeness' of two models is determined. Depending slightly on the definition of closeness, optimum N is found to be either 10 or 11. For those values the two analyses give remarkably similar results, showing that the conveniences of spherical harmonics can be retained with little penalty.
Inconsistencies in the harmonic analysis applied to pulsating stars
NASA Astrophysics Data System (ADS)
Pascual-Granado, J.; Garrido, R.; Suárez, J. C.
2015-05-01
Harmonic analysis is the fundamental mathematical method used for the identification of pulsation frequencies in asteroseismology and other fields of physics. Here we introduce a test to evaluate the validity of the hypothesis in which Fourier theorem is based: the convergence of the expansion series. The huge number of difficulties found in the interpretation of the periodograms of pulsating stars observed by CoRoT and Kepler satellites lead us to test whether the function underlying these time series is analytic or not. Surprisingly, the main result is that these are originated from non-analytic functions, therefore, the condition for Parseval's theorem is not guaranteed.
A Primer on the Physical Principles of Tissue Harmonic Imaging.
Anvari, Arash; Forsberg, Flemming; Samir, Anthony E
2015-01-01
Tissue harmonic imaging (THI) is a routinely used component of diagnostic ultrasonography (US). In this method, higher-frequency harmonic waves produced by nonlinear fundamental US wave propagation are used to generate images that contain fewer artifacts than those seen on conventional fundamental wave US tissue imaging. Harmonic frequencies are integer multiples of the fundamental frequency. The majority of current clinical US systems use second harmonic echoes for THI image formation. Image processing techniques (ie, bandwidth receive filtering, pulse inversion, side-by-side phase cancellation, and pulse-coded harmonics) are used to eliminate the fundamental frequency echoes, and the remaining harmonic frequency data are used to generate the diagnostic image. Advantages of THI include improved signal-to-noise ratio and reduced artifacts produced by side lobes, grating lobes, and reverberation. THI has been accepted in US practice, and variations of the technology are available on most US systems typically used for diagnostic imaging in radiologic practice. Differential THI is a further improvement that combines the advantages of THI, including superior tissue definition and reduced speckle artifact, with the greater penetration of lower frequency US, which permits high-quality harmonic imaging at greater depth than could previously be performed with conventional THI.
Aerodynamic Analysis of Cup Anemometers Performance: The Stationary Harmonic Response
Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Ángel
2013-01-01
The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement. PMID:24381512
Aerodynamic analysis of cup anemometers performance: the stationary harmonic response.
Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Angel
2013-01-01
The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement.
Spherical harmonic analysis of steady photospheric flows
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1987-01-01
A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.
A Weighted Harmonic Means Analysis for the Proportional Unbalanced Design.
ERIC Educational Resources Information Center
Bonett, Douglas G.
1982-01-01
A weighted harmonic means analysis is presented that incorporates all of the available data, preserves the planned proportionality of the design, and avoids the problems associated with the replacement of missing data with sample estimates. (Author/BW)
Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis
NASA Astrophysics Data System (ADS)
Hod, Shahar
2015-06-01
The spheroidal harmonics Slm (θ ; c) have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues {Alm (c) } of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime m → ∞ with a fixed value of c, or to the complementary regime | c | → ∞ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit m → ∞ and | c | → ∞ with a fixed m / c ratio.
NASA Technical Reports Server (NTRS)
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
Li, Yang; Zhu, Xiaosong; Zhang, Qingbin; Qin, Meiyan; Lu, Peixiang
2013-02-25
We perform a quantum-orbit analysis for the dependence of high-order-harmonic yield on the driving field ellipticity and the polarization properties of the generated high harmonics. The electron trajectories responsible for the emission of particular harmonics are identified. It is found that, in elliptically polarized driving field, the electrons have ellipticity-dependent initial velocities, which lead to the decrease of the ionization rate. Thus the harmonic yield steeply decreases with laser ellipticity. Besides, we show that the polarization properties of the harmonics are related to the complex momenta of the electron. The physical origin of the harmonic ellipticity is interpreted as the consequence of quantum-mechanical uncertainty of the electron momentum. Our results are verified with the experimental results as well as the numerical solutions of the time dependent Schrödinger equation from the literature.
[A New HAC Unsupervised Classifier Based on Spectral Harmonic Analysis].
Yang, Ke-ming; Wei, Hua-feng; Shi, Gang-qiang; Sun, Yang-yang; Liu, Fei
2015-07-01
Hyperspectral images classification is one of the important methods to identify image information, which has great significance for feature identification, dynamic monitoring and thematic information extraction, etc. Unsupervised classification without prior knowledge is widely used in hyperspectral image classification. This article proposes a new hyperspectral images unsupervised classification algorithm based on harmonic analysis(HA), which is called the harmonic analysis classifer (HAC). First, the HAC algorithm counts the first harmonic component and draws the histogram, so it can determine the initial feature categories and the pixel of cluster centers according to the number and location of the peak. Then, the algorithm is to map the waveform information of pixels to be classified spectrum into the feature space made up of harmonic decomposition times, amplitude and phase, and the similar features can be gotten together in the feature space, these pixels will be classified according to the principle of minimum distance. Finally, the algorithm computes the Euclidean distance of these pixels between cluster center, and merges the initial classification by setting the distance threshold. so the HAC can achieve the purpose of hyperspectral images classification. The paper collects spectral curves of two feature categories, and obtains harmonic decomposition times, amplitude and phase after harmonic analysis, the distribution of HA components in the feature space verified the correctness of the HAC. While the HAC algorithm is applied to EO-1 satellite Hyperion hyperspectral image and obtains the results of classification. Comparing with the hyperspectral image classifying results of K-MEANS, ISODATA and HAC classifiers, the HAC, as a unsupervised classification method, is confirmed to have better application on hyperspectral image classification.
The graph theoretical analysis of the SSVEP harmonic response networks.
Zhang, Yangsong; Guo, Daqing; Cheng, Kaiwen; Yao, Dezhong; Xu, Peng
2015-06-01
Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal-occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
RF physics of ICWC discharge at high cyclotron harmonics
Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team
2014-02-12
Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.
On the precipitation climatology of Turkey by harmonic analysis
NASA Astrophysics Data System (ADS)
Kadolu, Mikdat; Öztürk, Naim; Erdun, Hakan; En, Zekai
1999-12-01
Basic climatological features over any region are hidden in many meteorological variables, especially in precipitation and temperature records. Among these features the single most important one is the periodicity of different harmonics. Identification of periodic features require regionally and temporally representative data sets and treatment methodology for depicting their amplitudes, frequencies, phase angles and basic statistical parameters. In this paper, only precipitation records are considered for depicting spatial periodic features over the whole of Turkey. Herein, more than 200 precipitation records, uniformly scattered all over Turkey, are studied with basic harmonic analysis revealing the various climatological patterns of Turkey in the form of contour maps. It is observed that only the first and the second harmonics are sufficient to explain more than 90% of the climatological variations in Turkey.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
Harmonic Analysis for Optically Modulating Bodies Using the Harmonic Structure Function
NASA Astrophysics Data System (ADS)
Dikeman, R. D.; Lin, S.; Kim, C.
Lockheed Martin Hawaii presents a novel signal processing algorithm for focal plane array processing. We introduce the Harmonic Structure Function (HSF) and demonstrate its capability in detecting, classifying and counting rotating bodies in a single pixel. The HSF has a powerful use in dynamical situations occurring on scales less than the single pixel solid angle. The work presented here is making a major impact in the Missile Defense Agency's Project Hercules Forward Based Sensor (FBS) group but the results presented here is shown in an unclassified form. First, the HSF algorithm is detailed. The origin of the HSF is in the ASW (AntiSubmarine Warfare) acoustic processing domain and the analogy to the focal plane is given. Next, the mathematical definition of the HSF and the natural extension from integral to discrete form is detailed. Thereafter, additional harmonic processing techniques such as the so-called 'sidelobe' reduction are explained. These techniques are powerful methods to determine the fundamental frequency of a given rotating body that can have various harmonically related narrow band tonal structures. Simulations of rotating bodies and modulating reflectance used for analysis are then discussed. These simulations result in the construction of time series data for rotating bodies with fundamental frequencies in noisy backgrounds. The HSF is then used to analyze these fidelity simulations. It is shown that the HSF is capable of detecting, classifying and countingobjects on a single pixel. Finally, the robustness of the algorithm is analyzed and it is shown that the number of detectable objects is dependent on sample rate, target temporal extent, and other factors. This analysis yield important considerations for sensor developers and operators.
Harmonic analysis of precipitation climatology in Saudi Arabia
NASA Astrophysics Data System (ADS)
Tarawneh, Qassem
2016-04-01
Annual rainfall records of 20 stations for 30 years are used in order to detect rainfall regimes and climatic features of Saudi Arabia using harmonic analysis techniques. In this study, the percentages of variance, amplitudes, and phase angles are calculated in order to depict the spatial and temporal characteristics of the country's rainfall. The first harmonic explains 42 % of rainfall variation in the western (W) region. This percentage increases toward east (E) and north (N) with 69 and 67 %, respectively. In the southwest (SW) region, the percentages explain 43 % of rainfall variation. The percentages of variance in W and SW are lower than in the E, NW, and central (C) regions. This implies significant contributions of the second harmonic in W and SW regions with 26 and 16 %, respectively. The high percentages of the second and third harmonics in W and SW regions suggest that these two regions are affected by different weather systems at different times. The SW region has the highest amplitudes of the first, second, and third harmonics. The amplitude of the first harmonic reaches to 21 mm in SW and 9 mm in both C and E regions. The time of maximum rainfall is calculated using phase angle; the result reflects that maximum rainfall is shifted forward on the time axis toward the spring season in SW and C regions, January in E and NW regions, and October and November in the W region. This reveals that the SW region is a completely different climatic region, though some of what affects this region also affects the central region. Conditions in the E and NW regions are mainly affected by Mediterranean weather systems, while the W region is affected by unstable conditions caused by the active Red Sea Trough (RST) in October and November.
A note about Norbert Wiener and his contribution to Harmonic Analysis and Tauberian Theorems
NASA Astrophysics Data System (ADS)
Almira, J. M.; Romero, A. E.
2009-05-01
In this note we explain the main motivations Norbert Wiener had for the creation of his Generalized Harmonic Analysis [13] and his Tauberian Theorems [14]. Although these papers belong to the most pure mathematical tradition, they were deeply based on some Engineering and Physics Problems and Wiener was able to use them for such diverse areas as Optics, Brownian motion, Filter Theory, Prediction Theory and Cybernetics.
BAYESIAN ANALYSIS OF MULTIPLE HARMONIC OSCILLATIONS IN THE SOLAR CORONA
Arregui, I.; Asensio Ramos, A.; Diaz, A. J.
2013-03-01
The detection of multiple mode harmonic kink oscillations in coronal loops enables us to obtain information on coronal density stratification and magnetic field expansion using seismology inversion techniques. The inference is based on the measurement of the period ratio between the fundamental mode and the first overtone and theoretical results for the period ratio under the hypotheses of coronal density stratification and magnetic field expansion of the wave guide. We present a Bayesian analysis of multiple mode harmonic oscillations for the inversion of the density scale height and magnetic flux tube expansion under each of the hypotheses. The two models are then compared using a Bayesian model comparison scheme to assess how plausible each one is given our current state of knowledge.
An analysis of cochlear response harmonics: Contribution of neural excitation
Chertoff, M. E.; Kamerer, A. M.; Peppi, M.; Lichtenhan, J. T.
2015-01-01
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (fTr). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo fTr. From gerbil ears, estimates of fTr were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of fTr before and after inducing auditory neuropathy—loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain—showed that the neural excitation from low-frequency tones contributes to the magnitude of fTr but not the sigmoidal, saturating, nonlinear morphology. PMID:26627769
NASA Astrophysics Data System (ADS)
Patton, Lydia
2004-03-01
Dirichlet's Problem concerns the boundary conditions for certain harmonic functions. Dirichlet's Principle gives a solution to the Dirichlet problem for the Laplacian by reducing the problem to a minimization problem in a Hilbert space. At the time that he proposed it Dirichlet's problem caused an interesting historical rift between mathematicians such as Karl Weierstrass who pressed for more rigor in distinguishing between a minimum and a greatest lower bound, and physicists such as Hermann von Helmholtz who argued that for any given physical solution the above distinction is immaterial. I will present the historical context of the problem leading up to its eventual solution (for certain limited cases) by David Hilbert. In so doing I will underline how Hilbert was able to identify certain functions for which Dirichlet's Principle holds true, and will evaluate the historical significance of Hilbert's solution for analytic and harmonic function theory in physics.
A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities
O. Kononenko
2015-02-17
ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)
A three-phase converter model for harmonic analysis of HVDC systems
Xu, W.; Drakos, J.E.; Mansour, Y.; Chang, A. )
1994-07-01
An equivalent circuit model is presented to model bridge converters for three-phase HVDC harmonic power flow analysis. The validity and accuracy of the model are verified by comparing simulation results against field test results. The model is interfaced with a multiphase harmonic load flow program to investigate the generation of non-characteristic harmonics from HVDC links and the flow of HVDC harmonics in a real system.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Harmonic analysis tools for stochastic magnetohydrodynamics equations in Besov spaces
NASA Astrophysics Data System (ADS)
Sango, Mamadou; Tegegn, Tesfalem Abate
2016-08-01
We establish a regularity result for stochastic heat equations in probabilistic evolution spaces of Besov type and we use it to prove a global in time existence and uniqueness of solution to a stochastic magnetohydrodynamics equation. The existence result holds with a positive probability which can be made arbitrarily close to one. The work is carried out by blending harmonic analysis tools such as Littlewood-Paley decomposition, Jean-Micheal Bony paradifferential calculus and stochastic calculus. The law of large numbers is a key tool in our investigation. Our global existence result is new in three-dimensional spaces.
Altucci, C.; Bruzzese, R.; De Lisio, C.; Nisoli, M.; Priori, E.; Stagira, S.; Pascolini, M.; Poletto, L.; Villoresi, P.; Tosa, V.; Midorikawa, K.
2003-09-01
We describe a very simple physical model that allows the analysis of high-order harmonic generation in gases when the pumping laser beam has an intensity profile that is not Gaussian but truncated Bessel. This is the typical experimental condition when sub-10-fs pump-laser pulses, generated by the hollow fiber compression technique, are used. This model is based on the analysis of the phase-matching conditions for the harmonic generation process revisited in view of the new spatial mode of the fundamental beam. In particular, the role of the atomic dipole phase and the geometric phase terms are evidenced both for harmonics generated in the plateau and in the cutoff spectral regions. The influence of dispersion introduced by free electrons produced by laser ionization has also been discussed in some detail. Spatial patterns of far-field harmonics are then obtained by means of a simplified algorithm which allows one to avoid the numerical integration of the harmonic beam propagation equation. Experimental spatial distributions and divergence angles of high-order harmonics generated in Ne with 7-fs titanium-sapphire pulses are compared with numerical simulations in various experimental conditions. The agreement between measurements and calculated results is found to be very satisfactory.
Quantitative analysis of harmonic convergence in mosquito auditory interactions.
Aldersley, Andrew; Champneys, Alan; Homer, Martin; Robert, Daniel
2016-04-01
This article analyses the hearing and behaviour of mosquitoes in the context of inter-individual acoustic interactions. The acoustic interactions of tethered live pairs of Aedes aegypti mosquitoes, from same and opposite sex mosquitoes of the species, are recorded on independent and unique audio channels, together with the response of tethered individual mosquitoes to playbacks of pre-recorded flight tones of lone or paired individuals. A time-dependent representation of each mosquito's non-stationary wing beat frequency signature is constructed, based on Hilbert spectral analysis. A range of algorithmic tools is developed to automatically analyse these data, and used to perform a robust quantitative identification of the 'harmonic convergence' phenomenon. The results suggest that harmonic convergence is an active phenomenon, which does not occur by chance. It occurs for live pairs, as well as for lone individuals responding to playback recordings, whether from the same or opposite sex. Male-female behaviour is dominated by frequency convergence at a wider range of harmonic combinations than previously reported, and requires participation from both partners in the duet. New evidence is found to show that male-male interactions are more varied than strict frequency avoidance. Rather, they can be divided into two groups: convergent pairs, typified by tightly bound wing beat frequencies, and divergent pairs, that remain widely spaced in the frequency domain. Overall, the results reveal that mosquito acoustic interaction is a delicate and intricate time-dependent active process that involves both individuals, takes place at many different frequencies, and which merits further enquiry.
Quantitative analysis of harmonic convergence in mosquito auditory interactions
Aldersley, Andrew; Champneys, Alan; Robert, Daniel
2016-01-01
This article analyses the hearing and behaviour of mosquitoes in the context of inter-individual acoustic interactions. The acoustic interactions of tethered live pairs of Aedes aegypti mosquitoes, from same and opposite sex mosquitoes of the species, are recorded on independent and unique audio channels, together with the response of tethered individual mosquitoes to playbacks of pre-recorded flight tones of lone or paired individuals. A time-dependent representation of each mosquito's non-stationary wing beat frequency signature is constructed, based on Hilbert spectral analysis. A range of algorithmic tools is developed to automatically analyse these data, and used to perform a robust quantitative identification of the ‘harmonic convergence’ phenomenon. The results suggest that harmonic convergence is an active phenomenon, which does not occur by chance. It occurs for live pairs, as well as for lone individuals responding to playback recordings, whether from the same or opposite sex. Male–female behaviour is dominated by frequency convergence at a wider range of harmonic combinations than previously reported, and requires participation from both partners in the duet. New evidence is found to show that male–male interactions are more varied than strict frequency avoidance. Rather, they can be divided into two groups: convergent pairs, typified by tightly bound wing beat frequencies, and divergent pairs, that remain widely spaced in the frequency domain. Overall, the results reveal that mosquito acoustic interaction is a delicate and intricate time-dependent active process that involves both individuals, takes place at many different frequencies, and which merits further enquiry. PMID:27053654
Identifying aquifer type in fractured rock aquifers using harmonic analysis.
Rahi, Khayyun A; Halihan, Todd
2013-01-01
Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type.
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Analysis of rotor vibratory loads using higher harmonic pitch control
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.
1992-01-01
Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.
Non-homogeneous harmonic analysis: 16 years of development
NASA Astrophysics Data System (ADS)
Volberg, A. L.; Èiderman, V. Ya
2013-12-01
This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles.
Harmonic analysis of spacecraft power systems using a personal computer
NASA Technical Reports Server (NTRS)
Williamson, Frank; Sheble, Gerald B.
1989-01-01
The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.
Gaussian-Schell analysis of the transverse spatial properties of high-harmonic beams
Lloyd, David T.; O’Keeffe, Kevin; Anderson, Patrick N.; Hooker, Simon M.
2016-01-01
High harmonic generation (HHG) is an established means of producing coherent, short wavelength, ultrafast pulses from a compact set-up. Table-top high-harmonic sources are increasingly being used to image physical and biological systems using emerging techniques such as coherent diffraction imaging and ptychography. These novel imaging methods require coherent illumination, and it is therefore important to both characterize the spatial coherence of high-harmonic beams and understand the processes which limit this property. Here we investigate the near- and far-field spatial properties of high-harmonic radiation generated in a gas cell. The variation with harmonic order of the intensity profile, wavefront curvature, and complex coherence factor is measured in the far-field by the SCIMITAR technique. Using the Gaussian-Schell model, the properties of the harmonic beam in the plane of generation are deduced. Our results show that the order-dependence of the harmonic spatial coherence is consistent with partial coherence induced by both variation of the intensity-dependent dipole phase as well as finite spatial coherence of the driving radiation. These findings are used to suggest ways in which the coherence of harmonic beams could be increased further, which would have direct benefits to imaging with high-harmonic radiation. PMID:27465654
Gaussian-Schell analysis of the transverse spatial properties of high-harmonic beams.
Lloyd, David T; O'Keeffe, Kevin; Anderson, Patrick N; Hooker, Simon M
2016-07-28
High harmonic generation (HHG) is an established means of producing coherent, short wavelength, ultrafast pulses from a compact set-up. Table-top high-harmonic sources are increasingly being used to image physical and biological systems using emerging techniques such as coherent diffraction imaging and ptychography. These novel imaging methods require coherent illumination, and it is therefore important to both characterize the spatial coherence of high-harmonic beams and understand the processes which limit this property. Here we investigate the near- and far-field spatial properties of high-harmonic radiation generated in a gas cell. The variation with harmonic order of the intensity profile, wavefront curvature, and complex coherence factor is measured in the far-field by the SCIMITAR technique. Using the Gaussian-Schell model, the properties of the harmonic beam in the plane of generation are deduced. Our results show that the order-dependence of the harmonic spatial coherence is consistent with partial coherence induced by both variation of the intensity-dependent dipole phase as well as finite spatial coherence of the driving radiation. These findings are used to suggest ways in which the coherence of harmonic beams could be increased further, which would have direct benefits to imaging with high-harmonic radiation.
Harmonizing Physics & Cosmology With Everything Else in the Universe(s)
NASA Astrophysics Data System (ADS)
Asija, Pal
2006-03-01
This paper postulates a theory of everything including our known finite physical universe within and as sub-set of an infinite virtual invisible universe occupying some of the same space and time. It attempts to harmonize astrophysics with everything else including life. It compares and contrasts properties, similarities, differences and relationships between the two universe(s). A particular attention is paid to the interface between the two and the challenges of building and/or traversing bridges between them. A number of inflection points between the two are identified. The paper also delineates their relationship to big bang, theory of evolution, gravity, dark matter, black holes, time travel, speed of light, theory of relativity and string theory just to name a few. Several new terms are introduced and defined to discuss proper relationship, transition and interface between the body, soul and spirit as well as their relationship to brain and mind. Physical bodies & beings are compared with virtual, meta and ultra bodies and beings and how the ``Virtual Inside'' relates to people, pets, plants and particles and their micro constituents as well as macro sets. The past, present, and potential of the concurrent universe(s) is compared and contrasted along with many myths and misconceptions of the meta physics as well as modern physics.
Fluhler, Eric; Vazvaei, Faye; Singhal, Puran; Vinck, Petra; Li, Wenkui; Bhatt, Jignesh; de Boer, Theo; Chaudhary, Ajai; Tangiuchi, Masahiro; Rezende, Vinicius; Zhong, Dafang
2014-11-01
The A7 harmonization team (A7 HT), a part of the Global Bioanalysis Consortium (GBC), focused on reviewing best practices for repeat analysis and incurred sample reanalysis (ISR) as applied during regulated bioanalysis. With international representation from Europe, Latin America, North America, and the Asia Pacific region, the team first collated common practices and guidance recommendations and assessed their suitability from both a scientific and logistical perspective. Subsequently, team members developed best practice recommendations and refined them through discussions and presentations with industry experts at scientific meetings. This review summarizes the team findings and best practice recommendations. The few topics where no consensus could be reached are also discussed. The A7 HT recommendations, together with those from the other GBC teams, provide the basis for future international harmonization of regulated bioanalytical practices.
Non-Harmonic Fourier Analysis for bladed wheels damage detection
NASA Astrophysics Data System (ADS)
Neri, P.; Peeters, B.
2015-11-01
The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.
Analysis of Crustal Magnetisation in Cartesian Vector Harmonics
NASA Astrophysics Data System (ADS)
Gubbins, D.; Ivers, D.; Williams, S.
2015-12-01
We present a new set of functions, Vector Cartesian Harmonics (VCH), analogous to the Vector Spherical Harmonics that we have applied recently to global models of crustal and lithospheric magnetisation. Like their spherical counterpart, the VCH form a complete, orthogonal set: planar models of magnetisation can be expanded in them. There are 3 distinct types of VCH, one representing that part of the magnetisation which generates the potential magnetic field above the surface, another the potential magnetic field below the surface, and a toroidal function that generates only a non-potential field. One function therefore describes the magnetisation detected by observations of the magnetic anomaly while the other two describe the null space of an inversion of magnetic observations for magnetisation. The formalism is therefore ideal for analysing the results of inversions for magnetic structures in plane layers such as local or regional surveys where Earth's curvature can be ignored. The null space is in general very large, being an arbitrary combination of a doubly-infinite set of vector functions. However, in the absence of remanence and when the inducing field is uniform the null space reduces to only 2 types of structure, uniform susceptibility (Runcorn's Theorem) and a pattern of susceptibility induced by a uniform field, the null space is restricted to uniform magnetisation and 1D patterns of susceptibility aligned with a horizontal inducing field. Both these cases are already well known, but this analysis shows them to be the ONLY members of the null space. We also give results for familiar text-book structures to show the nature of the null space in each case. Curiously, inversion of the magnetic field from a buried dipole returns exactly half the correct magnitude plus a spurious distributed magnetisation. A more complex application is the topographic structure based on the Bishop formation in California (Fairhead and Williams, SEG exp. abstr. 25, 845, 2006
Analysis of cyclotron harmonic emissions at the outer planets
NASA Technical Reports Server (NTRS)
Roth, I.; Hudson, M. K.
1992-01-01
The flyby missions of Voyagers 1 and 2 at Jupiter, Saturn and Uranus revealed intense waves above the electron gyrofrequency. Observation of waves at the upper hybrid frequency is often accompanied by power at adjacent electron Bernstein harmonics, and the relative power in these modes depends both on the density and temperature ratios of the cold background electron population and the hot magnetospheric electrons which drive the instability. A model of electron distributions which is consistent with observations is used for analysis of the excited waves, their dependence upon plasma parameters, and the time scales of the saturation processes. It is shown that in the presence of two-temperature electron distributions the linear excitation is due to a fluidlike coupling of two eigenmodes for perpendicular propagation and to kinetic destalization of oblique modes. The dependence of linear growth rates on propagation angle is presented, along with results from particle simulations. A quasi-linear diffusion time for relaxing the hot electron loss cone is calculated and compared with simulation results. This time scale is faster than for local saturation by heating the cold population, and also the convective amplification time scale, suggesting that the waves saturate at quasi-linear levels, while being convectively localized to the equatorial regions of the outer planetary magnetospheres.
Spherical harmonic analysis of steady photospheric flows. II
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1992-01-01
The use of the spherical harmonic functions to analyze the nearly steady flows in the solar photosphere is extended to situations in which B(0) the latitude at disk center, is nonzero and spurious velocities are present. The procedures for extracting the rotation profile and meridional circulation are altered to account for the seasonal tilt of the sun's rotation axis toward and away from the observer. A more robust and accurate method for separating the limb shift and meridional circulation signals is described. The analysis procedures include the ability to mask out areas containing spurious velocities (velocity-like signals that do not represent true flow velocities in the photosphere). The procedures are shown to work well in extracting the various flow components from realistic artificial data with a broad, continuous spectrum for the supergranulation. The presence of this supergranulation signal introduces errors of a few m/s in the measurements of the rotation profile, meridional circulation, and limb shift from a single Doppler image.
Optical coherence tomography imaging based on non-harmonic analysis
NASA Astrophysics Data System (ADS)
Cao, Xu; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya
2009-11-01
A new processing technique called Non-Harmonic Analysis (NHA) is proposed for OCT imaging. Conventional Fourier-Domain OCT relies on the FFT calculation which depends on the window function and length. Axial resolution is counter proportional to the frame length of FFT that is limited by the swept range of the swept source in SS-OCT, or the pixel counts of CCD in SD-OCT degraded in FD-OCT. However, NHA process is intrinsically free from this trade-offs; NHA can resolve high frequency without being influenced by window function or frame length of sampled data. In this study, NHA process is explained and applied to OCT imaging and compared with OCT images based on FFT. In order to validate the benefit of NHA in OCT, we carried out OCT imaging based on NHA with the three different sample of onion-skin,human-skin and pig-eye. The results show that NHA process can realize practical image resolution that is equivalent to 100nm swept range only with less than half-reduced wavelength range.
Applied and computational harmonic analysis on graphs and networks
NASA Astrophysics Data System (ADS)
Irion, Jeff; Saito, Naoki
2015-09-01
In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.
Mei, Liang; Svanberg, Sune
2015-03-20
This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.
Harmonics elimination algorithm for operational modal analysis using random decrement technique
NASA Astrophysics Data System (ADS)
Modak, S. V.; Rawal, Chetan; Kundra, T. K.
2010-05-01
Operational modal analysis (OMA) extracts modal parameters of a structure using their output response, during operation in general. OMA, when applied to mechanical engineering structures is often faced with the problem of harmonics present in the output response, and can cause erroneous modal extraction. This paper demonstrates for the first time that the random decrement (RD) method can be efficiently employed to eliminate the harmonics from the randomdec signatures. Further, the research work shows effective elimination of large amplitude harmonics also by proposing inclusion of additional random excitation. This obviously need not be recorded for analysis, as is the case with any other OMA method. The free decays obtained from RD have been used for system modal identification using eigen-system realization algorithm (ERA). The proposed harmonic elimination method has an advantage over previous methods in that it does not require the harmonic frequencies to be known and can be used for multiple harmonics, including periodic signals. The theory behind harmonic elimination is first developed and validated. The effectiveness of the method is demonstrated through a simulated study and then by experimental studies on a beam and a more complex F-shape structure, which resembles in shape to the skeleton of a drilling or milling machine tool. Cases with presence of single and multiple harmonics in the response are considered.
Analysis of second harmonic instability for the Chateauguay HVDC/SVC scheme
Hammad, A.E. )
1992-01-01
The Chateauguay HVDC back-to-back scheme with interconnections to the 765 kV transmission to U.S.A. and to Beauharnois generators can exhibit, under certain operating conditions, second harmonic resonance problems. This paper presents a thorough analysis of the problem using an eigenvalue and frequency domain approach. The analysis explains the mechanism of exciting the second harmonic instability by the presence of HVDC converters. The influence of changing the control parameters of the static VAR compensatory at the Chateauguay terminal is also studied. Finally, an assessment is made for the effectiveness of present countermeasure schemes, namely; the auxiliary dc stabilizing controls and the installation of second harmonic filters.
Cammi, R; Cappelli, C; Mennucci, B; Tomasi, J
2012-10-21
We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.
Harmonic analysis of the Euclidean group in three-space. II
NASA Astrophysics Data System (ADS)
Rno, Jung Sik
1985-09-01
We develop the harmonic analysis for spinor functions which are defined by the matrix elements of the unitary irreducible representations of E(3) with the representation space on the translation subgroup.
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light.
Farhat, Mohamed; Cheng, Mark M C; Le, Khai Q; Chen, Pai-Yen
2015-10-16
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Cheng, Mark M. C.; Le, Khai Q.; Chen, Pai-Yen
2015-10-01
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the ‘Internet of Nano-Things’.
Completion report harmonic analysis of electrical distribution systems
Tolbert, L.M.
1996-03-01
Harmonic currents have increased dramatically in electrical distribution systems in the last few years due to the growth in non-linear loads found in most electronic devices. Because electrical systems have been designed for linear voltage and current waveforms; (i.e. nearly sinusoidal), non-linear loads can cause serious problems such as overheating conductors or transformers, capacitor failures, inadvertent circuit breaker tripping, or malfunction of electronic equipment. The U.S. Army Center for Public Works has proposed a study to determine what devices are best for reducing or eliminating the effects of harmonics on power systems typical of those existing in their Command, Control, Communication and Intelligence (C3I) sites.
Analysis of harmonic spline gravity models for Venus and Mars
NASA Technical Reports Server (NTRS)
Bowin, Carl
1986-01-01
Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.
Analysis of higher harmonic contamination with a modified approach using a grating analyser.
Gupta, Rajkumar; Modi, Mohammed H; Kumar, M; Chakera, J A; Lodha, G S
2014-04-01
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50-360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90-180 Å. The total harmonic contribution increases from 6%-60% in the wavelength range of 150-260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120-360 Å wavelength range.
Analysis of higher harmonic contamination with a modified approach using a grating analyser
Gupta, Rajkumar Modi, Mohammed H.; Lodha, G. S.; Kumar, M.; Chakera, J. A.
2014-04-15
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50–360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90–180 Å. The total harmonic contribution increases from 6%–60% in the wavelength range of 150–260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120–360 Å wavelength range.
Signal Reconstruction and Analysis Via New Techniques in Harmonic and Complex Analysis
2005-08-31
June 30th, 2005 1.) FORWARD We have used tools from theory of harmonic analysis and number theory to extend existing theories and develop new approaches...likelihood estimates for the sparse data sets on which our methods work. We are also working on extending our work to multiply periodic processes. We...deconvolution and sampling to radial domains, exploiting coprime relationships among zero sets of Bessel functions. We have also discussed applications
Kunz, P.F.
1991-04-01
There are many tools used in analysis in High Energy Physics (HEP). They range from low level tools such as a programming language to high level such as a detector simulation package. This paper will discuss some aspects of these tools that are directly associated with the process of analyzing HEP data. Physics analysis tools cover the whole range from the simulation of the interactions of particles to the display and fitting of statistical data. For purposes of this paper, the stages of analysis is broken down to five main stages. The categories are also classified as areas of generation, reconstruction, and analysis. Different detector groups use different terms for these stages thus it is useful to define what is meant by them in this paper. The particle generation stage is a simulation of the initial interaction, the production of particles, and the decay of the short lived particles. The detector simulation stage simulates the behavior of an event in a detector. The track reconstruction stage does pattern recognition on the measured or simulated space points, calorimeter information, etc., and reconstructs track segments of the original event. The event reconstruction stage takes the reconstructed tracks, along with particle identification information and assigns masses to produce 4-vectors. Finally the display and fit stage displays statistical data accumulated in the preceding stages in the form of histograms, scatter plots, etc. The remainder of this paper will consider what analysis tools are available today, and what one might expect in the future. In each stage, the integration of the tools with other stages and the portability of the tool will be analyzed.
Data harmonization and federated analysis of population-based studies: the BioSHaRE project
2013-01-01
Abstracts Background Individual-level data pooling of large population-based studies across research centres in international research projects faces many hurdles. The BioSHaRE (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project aims to address these issues by building a collaborative group of investigators and developing tools for data harmonization, database integration and federated data analyses. Methods Eight population-based studies in six European countries were recruited to participate in the BioSHaRE project. Through workshops, teleconferences and electronic communications, participating investigators identified a set of 96 variables targeted for harmonization to answer research questions of interest. Using each study’s questionnaires, standard operating procedures, and data dictionaries, harmonization potential was assessed. Whenever harmonization was deemed possible, processing algorithms were developed and implemented in an open-source software infrastructure to transform study-specific data into the target (i.e. harmonized) format. Harmonized datasets located on server in each research centres across Europe were interconnected through a federated database system to perform statistical analysis. Results Retrospective harmonization led to the generation of common format variables for 73% of matches considered (96 targeted variables across 8 studies). Authenticated investigators can now perform complex statistical analyses of harmonized datasets stored on distributed servers without actually sharing individual-level data using the DataSHIELD method. Conclusion New Internet-based networking technologies and database management systems are providing the means to support collaborative, multi-center research in an efficient and secure manner. The results from this pilot project show that, given a strong collaborative relationship between participating studies, it is possible to seamlessly co
Analysis of transonic flow about harmonically oscillating airfoils and wings
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.
1980-01-01
A finite difference method for analyzing the unsteady transonic flow about harmonically oscillating wings is discussed. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting partial differential equations for small disturbances. Initial solutions were obtained using relaxation procedures, but the solution range proved to be limited in terms of Mach number and reduced frequency. Recent two-dimensional results are presented which have been obtained with direct solution procedures in which the difference equations are solved 'all at once' and these provide reasonable correlation for practical values of Mach number and reduced frequency.
Spherical navigator registration using harmonic analysis for prospective motion correction.
Wyatt, C L; Ari, N; Kraft, R A
2005-01-01
Spherical navigators are an attractive approach to motion compensation in Magnetic Resonance Imaging. Because they can be acquired quickly, spherical navigators have the potential to measure and correct for rigid motion during image acquisition (prospectively as opposed to retrospectively). A limiting factor to prospective use of navigators is the time required to estimate the motion parameters. This estimation problem can be separated into a rotational and translational component. Recovery of the rotational motion can be cast as a registration of functions defined on a sphere. Previous methods for solving this registration problem are based on optimization strategies that are iterative and require k-space interpolation. Such approaches have undesirable convergence behavior for prospective use since the estimation complexity depends on both the number of samples and the amount of rotation. We propose and demonstrate an efficient algorithm for recovery of rotational motion using spherical navigators. We decompose the navigator magnitude using the spherical harmonic transform. In this framework, rigid rotations can be recovered from an over-constrained system of equations, leading to a computationally efficient algorithm for prospective motion compensation. The resulting algorithm is compared to existing approaches in simulated and actual navigator data. These results show that the spherical harmonic based estimation algorithm is significantly faster than existing methods and so is suited for prospective motion correction.
Weighted Hardy-Littlewood Theorems for Conjugate A-Harmonic Tensors
NASA Astrophysics Data System (ADS)
Wen, Haiyu
2014-11-01
In this paper, we establish some versions of A( φ 1( x), φ 2( x), τ, Ω)-weighted Hardy-Littlewood inequalities for conjugate A-harmonic tensors, the theory of harmonic analysis and A-harmonic differential forms largely pertain to applications in mathematical physics, quantum field theory, elementary particle physics, etc.
Relations between harmonic analysis associated with two differential operators of different orders
NASA Astrophysics Data System (ADS)
Ben Cheikh, Youssèf
2003-04-01
The transmutation operators were introduced by Delsarte and Lions to state relations between harmonic analysis (generalized translation operators, generalized convolution, generalized Fourier transform and generalized Paley-Wiener theorem) associated with two differential operators of the same order in the complex domain. In this paper, we discuss the analogous problem for differential operators having different orders. More precisely, we consider a suitable class of differential operators Lz in the complex domain and from harmonic analysis associated with Lz, we state the corresponding one associated with Lzn, n being an arbitrary positive integer. Our analysis is based on Ricci's decomposition. Some particular cases are singled out.
The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid
NASA Astrophysics Data System (ADS)
Heidarian, T.; Joorabian, M.; Reza, A.
2015-12-01
In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.
NASA Astrophysics Data System (ADS)
Modak, S. V.
2013-12-01
Operational Modal Analysis (OMA) is used to extract modal parameters of a structure on the basis of their output response measured during operation. OMA, when applied to mechanical engineering structures is often faced with the problem of harmonics present in the output response. A complex structure may have many dominant frequency components in its response frequency spectrum. These may contain frequency components associated with resonant frequencies of the structure, which and the associated mode shapes and the damping factors represent the data of interest, but may also contain frequencies or harmonics associated with the excitation sources. Since in OMA the characteristics of the excitation sources are not known, one of the problems lies in separating the resonant frequencies from the harmonic excitation frequencies. Any error in this regard may lead to an error in modal identification with the consequence that a harmonic may be construed as a structural mode and vice versa. This issue is addressed in this paper and a method is presented for separating resonant frequencies from harmonic excitation frequencies using random decrement of the response. The principle of the method is presented using an analytical study on a single degree of freedom system. The effectiveness of the method is then demonstrated through numerical studies on a lumped parameter multi-degree of freedom system and a simulated plate structure. Detection of single and multiple harmonics in the response that are well separated as well as close to resonant frequencies are considered.
Pack, Brian W; Montgomery, Laura L; Hetrick, Evan M
2015-10-01
Color measurements, including physical appearance, are important yet often misunderstood and underappreciated aspects of a control strategy for drug substances and drug products. From a patient safety perspective, color can be an important control point for detecting contamination, impurities, and degradation products, with human visual acuity often more sensitive for colored impurities than instrumental techniques such as HPLC. Physical appearance tests and solution color tests can also serve an important role in ensuring that appropriate steps are taken such that clinical trials do not become unblinded when the active material is compared with another product or a placebo. Despite the importance of color tests, compendial visual tests are not harmonized across the major pharmacopoeias, which results in ambiguous specifications of little value, difficult communication of true sample color, and significant extra work required for global registration. Some pharmacopoeias have not yet recognized or adopted technical advances in the instrumental measurement of color and appearance, whereas others begin to acknowledge the advantage of instrumental colorimetry, yet leave implementation of the technology ambiguous. This commentary will highlight the above-mentioned inconsistencies, provide an avenue toward harmonization and modernization, and outline a scientifically sound approach for implementing quantitative technologies for improved measurement, communication, and control of color and appearance for both solutions and solids. Importantly, this manuscript, for the first time, outlines a color method validation approach that is consistent with the International Conference on Harmonization's guidance on the topic of method validation.
Analysis of vibrational resonance in bi-harmonically driven plasma
NASA Astrophysics Data System (ADS)
Roy-Layinde, T. O.; Laoye, J. A.; Popoola, O. O.; Vincent, U. E.
2016-09-01
The phenomenon of vibrational resonance (VR) is examined and analyzed in a bi-harmonically driven two-fluid plasma model with nonlinear dissipation. An equation for the slow oscillations of the system is analytically derived in terms of the parameters of the fast signal using the method of direct separation of motion. The presence of a high frequency externally applied electric field is found to significantly modify the system's dynamics, and consequently, induce VR. The origin of the VR in the plasma model has been identified, not only from the effective plasma potential but also from the contributions of the effective nonlinear dissipation. Beside several dynamical changes, including multiple symmetry-breaking bifurcations, attractor escapes, and reversed period-doubling bifurcations, numerical simulations also revealed the occurrence of single and double resonances induced by symmetry breaking bifurcations.
Automated cardiac sarcomere analysis from second harmonic generation images
NASA Astrophysics Data System (ADS)
Garcia-Canadilla, Patricia; Gonzalez-Tendero, Anna; Iruretagoyena, Igor; Crispi, Fatima; Torre, Iratxe; Amat-Roldan, Ivan; Bijnens, Bart H.; Gratacos, Eduard
2014-05-01
Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.
Linear harmonic analysis for Stirling machines and second law analysis of four important losses
Chen, N.C.J.; Griffin, F.P.; West, C.D.
1984-01-01
A simple thermodynamic theory for Stirling machine performance has been developed. By representing variables in terms of harmonic oscillations and representing the nonharmonic terms in the conservation equations with truncated Fourier series, the equations can be solved in a semi-closed form, leading to a better understanding of Stirling engine behavior. The theory further includes a Second Law analysis; therefore, the efficiency and power losses resulting from effects of adiabatic cylinders, transient heat transfer, pressure drop, and seal leakage can be allocated unambiguously, and the degree of loss coupling can be assessed. 9 references.
Linear harmonic analysis for Stirling machines and second law analysis of four important losses
Chen, N.C.J.; Griffin, F.P.; West, C.D.
1984-08-01
A simple thermodynamic theory for Stirling machine performance has been developed. By representing variables in terms of harmonic oscillations and representing the nonharmonic terms in the conservation equations with truncated Fourier series, the equations can be solved in a semi-closed form, leading to a better understanding of Stirling engine behavior. The theory further includes a Second Law analysis; therefore, the efficiency and power losses resulting from effects of adiabatic cylinders, transient heat transfer, pressure drop, and seal leakage can be allocated unambiguously, and the degree of loss coupling can be assessed.
The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion
ERIC Educational Resources Information Center
Triana, C. A.; Fajardo, F.
2012-01-01
The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…
ERIC Educational Resources Information Center
Richardson, Tim H.; Brittle, Stuart A.
2012-01-01
This paper describes a set of experiments aimed at overcoming some of the difficulties experienced by students learning about the topics of moments of inertia and simple harmonic motion, both of which are often perceived to be complex topics amongst students during their first-year university courses. By combining both subjects in a discussion…
ERIC Educational Resources Information Center
Grable-Wallace, Lisa; And Others
1989-01-01
Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)
Workshop on Harmonic Oscillators
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)
1993-01-01
Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.
Full vector spherical harmonic analysis of the Holocene geomagnetic field
NASA Astrophysics Data System (ADS)
Richardson, Marcia
High-quality time-series paleomagnetic measurements have been used to derive spherical harmonic models of Earth's magnetic field for the past 2,000 years. A newly-developed data compilation, PSVMOD2.0 consists of time-series directional and intensity records that significantly improve the data quality and global distribution used to develop previous spherical harmonic models. PSVMOD2.0 consists of 185 paleomagnetic time series records from 85 global sites, including 30 full-vector records (inclination, declination and intensity). It includes data from additional sites in the Southern Hemisphere and Arctic and includes globally distributed sediment relative paleointensity records, significantly improving global coverage over previous models. PSVMOD2.0 records have been assessed in a series of 7 regional intercomparison studies, four in the Northern Hemisphere and 3 in the southern hemisphere. Comparisons on a regional basis have improved the quality and chronology of the data and allowed investigation of spatial coherence and the scale length associated with paleomagnetic secular variation (PSV) features. We have developed a modeling methodology based on nonlinear inversion of the PSVMOD2.0 directional and intensity records. Models of the geomagnetic field in 100-year snapshots have been derived for the past 2,000 with the ultimate goal of developing models spanning the past 8,000 years. We validate the models and the methodology by comparing with the GUFM1 historical models during the 400-year period of overlap. We find that the spatial distribution of sites and quality of data are sufficient to derive models that agree with GUFM1 in the large-scale characteristics of the field. We use the the models derived in this study to downward continue the field to the core-mantle boundary and examine characteristics of the large-scale structure of the magnetic field at the source region. The derived models are temporally consistent from one epoch to the next and exhibit
A method of spherical harmonic analysis in the geosciences via hierarchical Bayesian inference
NASA Astrophysics Data System (ADS)
Muir, J. B.; Tkalčić, H.
2015-11-01
The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.
Harmonic analysis of wrist mechanism of robot manipulator
NASA Astrophysics Data System (ADS)
Akbar, Shaik; Navuri, Karteek; Eswara Kumar, A.; Prakash, D.
2016-09-01
Wrist mechanism is a part of robot manipulator which is used to provide the pitch and yaw motions to the end effectors for orienting the loads carried by the end effectors. The wrist mechanism is subjected to different types of vibrations because of the various working conditions. Due to these vibrations wrist mechanism experience higher deformations and stresses; this causes failure of wrist mechanism. It is important to study the dynamic behaviour of the wrist mechanism under different loads before adopting in the application. The structure of the wrist mechanism is modelled in the ANSYS Workbench software and analysed for harmonic loads. Proper boundary conditions, mesh and connections between links& pins are assigned to the wrist mechanism assembly. From the present work, peak deformations of links and pins are occurred at 569.83Hz. Further, the link are analysed with 3D composites those are carbon epoxy and E-glass epoxy. It is observed that carbon epoxy shows better stiffness than E-Glass epoxy and it has weight reduction of 13.76% compared with metals.
Limitations in Using Multiple Imputation to Harmonize Individual Participant Data for Meta-Analysis.
Siddique, Juned; de Chavez, Peter J; Howe, George; Cruden, Gracelyn; Brown, C Hendricks
2017-02-27
Individual participant data (IPD) meta-analysis is a meta-analysis in which the individual-level data for each study are obtained and used for synthesis. A common challenge in IPD meta-analysis is when variables of interest are measured differently in different studies. The term harmonization has been coined to describe the procedure of placing variables on the same scale in order to permit pooling of data from a large number of studies. Using data from an IPD meta-analysis of 19 adolescent depression trials, we describe a multiple imputation approach for harmonizing 10 depression measures across the 19 trials by treating those depression measures that were not used in a study as missing data. We then apply diagnostics to address the fit of our imputation model. Even after reducing the scale of our application, we were still unable to produce accurate imputations of the missing values. We describe those features of the data that made it difficult to harmonize the depression measures and provide some guidelines for using multiple imputation for harmonization in IPD meta-analysis.
High-harmonic spectroscopy of aligned molecules
NASA Astrophysics Data System (ADS)
Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee
2017-01-01
High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.
NASA Astrophysics Data System (ADS)
Im, Dong-Kyun; Choi, Seongim; Hyuck Kwon, Jang
2015-01-01
The diagonally implicit harmonic balance method is developed in an overset mesh topology and applied to unsteady rotor flows analysis. Its efficiency is by reducing the complexity of a fully implicit harmonic balance method which becomes more flexible in handling the higher harmonics of the flow solutions. Applied to the overset mesh topology, the efficiency of the method becomes greater by reducing the number of solution interpolations required during the entire solution procedure as the method reduces the unsteady computation into periodic steady state. To verify the accuracy and efficiency of the method, both hovering and unsteady forward flight of Caradonna and Tung and AH-1G rotors are solved. Compared with wind-tunnel experiments, the numerical results demonstrate good agreements at computational cost an order of magnitude more efficient than the conventional time-accurate computation method. The proposed method has great potential in other engineering applications, including flapping wing vehicles, turbo-machinery, wind-turbines, etc.
Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U
J. Spaleta; R. Majeski; C.K. Phillips; R.J. Dumont; R. Kaita; V. Soukhanovskii; L. Zakharov
2003-07-14
Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* {approx} 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species.
Green, M.I.; Barale, P.J.; Gilbert, W.S.; Hassenzahl, W.V.; Nelson, D.H.; Taylor, C.E.; Travis, N.J.; Van Dyke, D.A.
1987-09-01
Specialized hardware and software have been developed to facilitate harmonic error analysis measurements of one-meter-long Superconducting Super Collider (SSC) model dipole and quadrupole magnets. Cold bore measurements feature cryogenic search-coil arrays with high bucking ratios that also have sufficient sensitivity to make room-temperature measurements at the low magnet currents of approx.10 A. Three sets of search coils allow measurements of the center, either end, and/or the axially integrated field. Signals from the search coils are digitally integrated by means of a voltage-to-frequency converter feeding an up-down counter. The data are drift corrected, Fourier analyzed, converted to physical quantities, and printed and plotted. A cycle of measurements including data acquisition, processing, and the generation of tabular and graphic output requires 80 seconds. The vast amount of data generated (several hundred measurement cycles for each magnet) has led to the development of postprocessing programs and procedures. Spreadsheets allow easy manipulation and comparison of results within a test series and between magnets. 8 refs., 4 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Wingeier, B. M.; Nunez, P. L.; Silberstein, R. B.
2001-11-01
We demonstrate an application of spherical harmonic decomposition to the analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to the analysis of hemispherical, irregularly sampled data. Spatial sampling requirements and performance of the methods are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wave-number relationship in some bands.
Harmonic versus LigaSure hemostasis technique in thyroid surgery: A meta-analysis.
Upadhyaya, Arun; Hu, Tianpeng; Meng, Zhaowei; Li, Xue; He, Xianghui; Tian, Weijun; Jia, Qiang; Tan, Jian
2016-08-01
Harmonic scalpel and LigaSure vessel sealing systems have been suggested as options for saving surgical time and reducing postoperative complications. The aim of the present meta-analysis was to compare surgical time, postoperative complications and other parameters between them in for the open thyroidectomy procedure. Studies were retrieved from MEDLINE, Cochrane Library, EMBASE and ISI Web of Science until December 2015. All the randomized controlled trials (RCTs) comparing Harmonic scalpel and LigaSure during open thyroidectomy were selected. Following data extraction, statistical analyses were performed. Among the 24 studies that were evaluated for eligibility, 7 RCTs with 981 patients were included. The Harmonic scalpel significantly reduced surgical time compared with LigaSure techniques (8.79 min; 95% confidence interval, -15.91 to -1.67; P=0.02). However, no significant difference was observed for the intraoperative blood loss, postoperative blood loss, duration of hospital stay, thyroid weight and serum calcium level postoperatively in either group. The present meta-analysis indicated superiority of Harmonic Scalpel only in terms of surgical time compared with LigaSure hemostasis techniques in open thyroid surgery.
Harmonic Analysis on the Space-Time Gauge Continuum
NASA Astrophysics Data System (ADS)
Bleecker, David D.
1983-06-01
The classical Kaluza-Klein unified field theory has previously been extended to unify and geometrize gravitational and gauge fields, through a study of the geometry of a bundle space P over space-time. Here, we examine the physical relevance of the Laplace operator on the complex-valued functions on P. The spectrum and eigenspaces are shown (via the Peter-Weyl theorem) to determine the possible masses of any type of particle field. In the Euclidean case, we prove that zero-mass particles necessarily come in infinite families. Also, lower bounds on masses of particles of a given type are obtained in terms of the curvature of P.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.
1982-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.
Dickmander, D.L.; Peterson, K.J.
1989-04-01
The harmonic analysis of the dc-side of an HVDC line transmission requires realistic models of the converters, the dc line, and other relevant equipment. These models must include all important paths for harmonic current, and appropriate sources of harmonic voltage generation. The classical converter modeling technique has been demonstrated to be insufficient in field measurements and analysis of the harmonic spectra found on recent HVDC line transmission. For this reason, a new model of the converter bridge which takes into account the major stray capacitances in the converter (the three-pulse model) has been developed, and is described in detail elsewhere. This paper presents comparisons between the classical and three-pulse calculations for the Intermountain Power Project (IPP) HVDC transmission. The calculation results from the three-pulse model agree favorably with the harmonics found in field measurements.
Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic
NASA Astrophysics Data System (ADS)
Wittwer, Tobias; Klees, Roland; Seitz, Kurt; Heck, Bernhard
2008-04-01
We present software for spherical harmonic analysis (SHA) and spherical harmonic synthesis (SHS), which can be used for essentially arbitrary degrees and all co-latitudes in the interval (0°, 180°). The routines use extended-range floating-point arithmetic, in particular for the computation of the associated Legendre functions. The price to be paid is an increased computation time; for degree 3,000, the extended-range arithmetic SHS program takes 49 times longer than its standard arithmetic counterpart. The extended-range SHS and SHA routines allow us to test existing routines for SHA and SHS. A comparison with the publicly available SHS routine GEOGFG18 by Wenzel and HARMONIC SYNTH by Holmes and Pavlis confirms what is known about the stability of these programs. GEOGFG18 gives errors <1 mm for latitudes [-89°57.5', 89°57.5'] and maximum degree 1,800. Higher degrees significantly limit the range of acceptable latitudes for a given accuracy. HARMONIC SYNTH gives good results up to degree 2,700 for almost the whole latitude range. The errors increase towards the North pole and exceed 1 mm at latitude 82° for degree 2,700. For a maximum degree 3,000, HARMONIC SYNTH produces errors exceeding 1 mm at latitudes of about 60°, whereas GEOGFG18 is limited to latitudes below 45°. Further extending the latitudinal band towards the poles may produce errors of several metres for both programs. A SHA of a uniform random signal on the sphere shows significant errors beyond degree 1,700 for the SHA program SHA by Heck and Seitz.
Numerical Methods for Harmonic Analysis on the Sphere
1981-03-01
numbers,much as a Montecarlo -type of analysis is conducted. The seeds were chosen widely apart, to ensure that the correlation between "trials" would be...estimate, where the sampling part Is the result of a Montecarlo -like approach, is much easier to obtain than the theoretical one that involves setting up...likely errors in the potential coefficients obtained from 10 x 1 mean anom- alies using the quadratures formula 6 = - - f:0 ’ U1 0,)da g• The Montecarlo
NASA Technical Reports Server (NTRS)
Fiske, David R.
2004-01-01
In an earlier paper, Misner (2004, Class. Quant. Grav., 21, S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid. I extend Misner s original analysis by making detailed error estimates of the numerical errors accrued by the algorithm, by using symmetry arguments to suggest a more efficient implementation scheme, and by explaining how the algorithm can be applied efficiently on data with explicit reflection symmetries.
Celik, Hasan; Shaka, A J; Mandelshtam, V A
2010-09-01
We consider the harmonic inversion problem, and the associated spectral estimation problem, both of which are key numerical problems in NMR data analysis. Under certain conditions (in particular, in exact arithmetic) these problems have unique solutions. Therefore, these solutions must not depend on the inversion algorithm, as long as it is exact in principle. In this paper, we are not concerned with the algorithmic aspects of harmonic inversion, but rather with the sensitivity of the solutions of the problem to perturbations of the time-domain data. A sensitivity analysis was performed and the counterintuitive results call into question the common assumption made in "super-resolution" methods using non-uniform data sampling, namely, that the data should be sampled more often where the time signal has the largest signal-to-noise ratio. The numerical analysis herein demonstrates that the spectral parameters (such as the peak positions and amplitudes) resulting from the solution of the harmonic inversion problem are least susceptible to the perturbations in the values of data points at the edges of the time interval and most susceptible to the perturbations in the values at intermediate times.
Harmonic Analysis of Sedimentary Cyclic Sequences in Kansas, Midcontinent, USA
Merriam, D.F.; Robinson, J.E.
1997-01-01
Several stratigraphic sequences in the Upper Carboniferous (Pennsylvanian) in Kansas (Midcontinent, USA) were analyzed quantitatively for periodic repetitions. The sequences were coded by lithologic type into strings of datasets. The strings then were analyzed by an adaptation of a one-dimensional Fourier transform analysis and examined for evidence of periodicity. The method was tested using different states in coding to determine the robustness of the method and data. The most persistent response is in multiples of 8-10 ft (2.5-3.0 m) and probably is dependent on the depositional thickness of the original lithologic units. Other cyclicities occurred in multiples of the basic frequency of 8-10 with persistent ones at 22 and 30 feet (6.5-9.0 m) and large ones at 80 and 160 feet (25-50 m). These levels of thickness relate well to the basic cyclothem and megacyclothem as measured on outcrop. We propose that this approach is a suitable one for analyzing cyclic events in the stratigraphic record.
Tosa, V.; Kim, H.T.; Kim, I.J.; Nam, C.H.
2005-06-15
We present a time-dependent analysis of high-order harmonics generated by a self-guided femtosecond laser pulse propagating through a long gas jet. A three-dimensional model is used to calculate the harmonic fields generated by laser pulses, which only differ by the sign of their initial chirp. The time-frequency distributions of the single-atom dipole and harmonic field reveal the dynamics of harmonic generation in the cutoff. A time-dependent phase-matching calculation was performed, taking into account the self-phase modulation of the laser field. Good phase matching holds for only few optical cycles, being dependent on the electron trajectory. When the cutoff trajectory is phase matched, emitted harmonics are locked in phase and the emission intensity is maximized.
On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
NASA Astrophysics Data System (ADS)
Nowak, Adam; Stempak, Krzysztof; Szarek, Tomasz Z.
2016-09-01
We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Z_2^d. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calderón-Zygmund theory we prove that these operators are bounded on weighted L^p spaces, 1 < p < ∞, and from weighted L^1 to weighted weak L^1. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
NASA Astrophysics Data System (ADS)
Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.
2013-04-01
The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.
A method for the harmonic removal in operational modal analysis of rotating blades
NASA Astrophysics Data System (ADS)
Agneni, Alessandro; Coppotelli, Giuliano; Grappasonni, Chiara
2012-02-01
The operational modal analysis, OMA, allows estimating the dynamic properties of a structure, natural frequencies, damping ratios, and mode shapes, without measuring the input forces. According to the main hypothesis concerning the input excitation, i.e., stochastic with frequency independent spectra (at least in the frequency band of interest), it is not theoretically possible to apply the OMA procedures in structures characterized by the presence of harmonic components in the excitation loading. In this paper, an approach capable to identify the presence of harmonic excitations, acting together with a broad band stochastic loading, and then to remove their effects in the modal parameter estimate is presented. The approach is based on the joint use of the statistical parameter called "entropy" and the already developed output-only procedure based on the application of the Hilbert transform properties to the output response signals. The capability to improve the OMA procedures is investigated numerically and through whirl tower experimental tests of a rotating blade in which both stochastic and harmonic contributions to the dynamic excitations have been provided by the perturbations arising from the operative conditions. A sensitivity analysis has been also performed to evaluate the effects of the filtered responses, in the time domain, on the statistical characterization, required to distinguish the operational frequencies from the natural ones.
Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment
Taylor, G.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Podesta, M.; Valeo, E. J.; Wilson, J. R.; Ahn, J-W.; Chen, G.; Green, D. L.; Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Wilgen, J. B.; Heidbrink, W. W.; Liu, D.; Bonoli, P. T.; Brecht, T.; Choi, M.
2010-05-15
Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile was measured in NBI-fuelled plasmas when HHFW heating was applied.
Advances in High-harmonic Fast Wave Physics in the National Spherical Torus Experiment
Taylor, G; Hosea, J C; LeBlanc, B P; Phillips, C K; Podesta, M; Valeo, E J; Wilson, J R; Ahn, J -W; Chen, G; Green, D L; Jaeger, E F; Maingi, R; Ryan, P M; Wilgen, J B; Heidbrink, W W; Liu, D; Bonoli, P T; Brecht, T; Choi, M
2009-12-01
Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up, has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile were measured in NBI-fuelled plasmas when HHFW heating was applied. __________________________________________________
Advances in High-Harmonic Fast Wave Physics in the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Taylor, Gary
2009-11-01
Improved core high-harmonic fast wave (HHFW) heating, particularly at longer wavelengths and during low-density start-up and current ramp-up, has now been obtained by lowering the edge density with lithium conditioning, thereby moving the propagation onset away from the vessel wall. Significant core electron heating of deuterium neutral beam injection (NBI) fuelled H-modes has been observed for the first time over a range of launched wavelengths. The observed broadening of the electron heating profile in H-mode relative to L-mode plasmas is consistent with simulations obtained with ray tracing and full wave models. Newly taken camera images indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFW-generated parametric decay instabilities that drive ions in the edge onto direct loss orbits that intersect the wall, and may be the cause for an observed drag on edge toroidal rotation in combined HHFW and NBI discharges. Fast-Ion D-alpha emission clearly shows fast-ion profile broadening in the plasma core that is much greater than predicted by Fokker-Planck modeling when HHFW power is applied to NBI-fuelled plasmas, pointing to the need for a full-orbit treatment in the simulation. Large ELMs have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. RF power has been successfully applied during large ELMs by setting the source reflection coefficient trip levels to relatively high values -- an approach potentially important for ITER ICRF heating. Plans for an HHFW ELM-resilience upgrade will be presented.
NASA Technical Reports Server (NTRS)
Graham, M. L.; Clemmons, R. E.; Miller, R. D.
1979-01-01
Volume 2 of a two volume document is presented. A computer program, L222 (TEV 156), available for execution on the CDC 6600 computer is described. The program is capable of calculating steady-state solutions for linear second-order differential equations due to sinusoidal forcing functions. From this, steady-state solutions, generalized coordinates, and load frequency responses may be determined. Statistical characteristics of loads for the forcing function spectral shape may also be calculated using random harmonic analysis techniques. The particular field of application of the program is the analysis of airplane response and loads due to continuous random air turbulence.
Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes
Price, J. S.; Giebink, N. C.
2015-06-29
Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.
Inter-annual variation of NDVI over Korea Peninsula using harmonic analysis
NASA Astrophysics Data System (ADS)
Kim, In-hwan; Han, Kyung-Soo; Pi, Kyoung-Jin; Park, Soo-Jae; Kim, Sang-Il
2010-10-01
Global warming and climatic changes due to human activities impact on marine and terrestrial ecosystems, which feedbacks to climate system. These negative feedbacks amplify or accelerate again global climate change. In particular, life cycle of vegetation sensitively vary according to global climate change. This study attempts to analyze quantitatively vegetation change in Korea peninsula using harmonic analysis. Satellite data was extracted from SPOT/VEGETATION S10 MVC (Maximum Value Composite) NDVI (Normalized Difference Vegetation Index) products during 10 years (1999 to 2008) around Korea peninsula. This NDVI data set was pre-processed to correct noise pixels cause by cloud and ground wetness. Variation of vegetation life cycle was analyzed through amplitudes and phases of annual harmonic components (first harmonic components) per year for two land cover types (cropland and forest). The results clearly show that the peak of vegetation life cycle in Korea peninsula is brought forward to early. Especially, it represents that the phases over low latitudes area between 32.8°N and 38°N steadily decrease every year both forest and cropland. The study estimated that phase values moved up approximately 0.5 day per year in cropland and 0.8 day per year in forest.
Teaching Harmonic Motion in Trigonometry: Inductive Inquiry Supported by Physics Simulations
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Rackley, Robin
2011-01-01
In this article, the authors present a lesson whose goal is to utilise a scientific environment to immerse a trigonometry student in the process of mathematical modelling. The scientific environment utilised during this activity is a physics simulation called "Wave on a String" created by the PhET Interactive Simulations Project at…
Recent Developments in High-Harmonic Fast Wave Physics in NSTX
B.P. LeBlanc, R.E. Bell, P. Bonoli, R. Harvey, W.W. Heidbrink, J.C. Hosea, S.M. Kaye, D. Liu, R. Maingi, S.S. Medley, M. Ono, M. Podestà, C.K. Phillips, P.M. Ryan, A.L. Roquemore, G. Taylor, J.R. Wilson and the NSTX Team
2010-10-06
Understanding the interaction between ion cyclotron range of frequency (ICRF) fast waves and the fast-ions created by neutral beam injection (NBI) is critical for future devices such as ITER, which rely on a combination ICRF and NBI. Experiments in NSTX which use 30 MHz High-Harmonic Fast-Wave (HHFW) ICRF and NBI heating show a competition between electron heating via Landau damping and transit-time magnetic pumping, and radio-frequency wave acceleration of NBI generated fast ions. Understanding and mitigating some of the power loss mechanisms outside the last closed flux surface (LCFS) has resulted in improved HHFW heating inside the LCFS. Nevertheless a significant fraction of the HHFW power is diverted away from the enclosed plasma. Part of this power is observed locally on the divertor. Experimental observations point toward the radio-frequency (RF) excitation of surface waves, which disperse wave power outside the LCFS, as a leading loss mechanism. Lithium coatings lower the density at the antenna, thereby moving the critical density for perpendicular fast-wave propagation away from the antenna and surrounding material surfaces. Visible and infrared imaging reveal flows of RF power along open field lines into the divertor region. In L-mode -- low average NBI power -- conditions, the fast-ion D-alpha (FIDA) diagnostic measures a near doubling and broadening of the density profile of the upper energetic level of the fast ions concurrent with the presence of HHFW power launched with k// =-8m-1. We are able to heat NBI-induced H-mode plasmas with HHFW. The captured power is expected to be split between absorption by the electrons and absorption by the fast ions, based on TORIC calculation. In the case discussed here the Te increases over the whole profile when ~2MW of HHFW power with antenna k// =13m-1 is applied after the H-mode transition.. But somewhat unexpectedly fast-ion diagnostics do not observe a change between the HHFW heated NBI discharge and the
Three-dimensional analysis of harmonic generation in self-amplified spontaneous emission.
Huang, Z.; Kim, K.-J.
1999-09-01
In a high-gain free-electron laser, strong bunching at the fundamental wavelength can drive substantial harmonic bunching and sizable power levels at the harmonic frequencies. In this paper, we investigate the three-dimensional evolution of the harmonic fields based on the coupled Maxwell-Vlasov equations that take into account the nonlinear harmonic interaction. Each harmonic field is the sum of a self-amplified term and a term driven by the nonlinear harmonic interaction. In the exponential gain regime, the growth rate of the dominant nonlinear term is much faster than that of the self-amplified harmonic field. As a result, the gain length and the transverse profile of the first few harmonics are completely determined by those of the fundamental. A percentage of the fundamental power level is found at the third harmonic frequency right before saturation for the current self-amplified spontaneous emission projects.
NASA Technical Reports Server (NTRS)
Naiman, Irven
1945-01-01
Finite trigonometric series is fitted by harmonic analysis as an approximation function to the psi function of the Theodorsen arbitrary-airfoil potential theory. By harmonic synthesis, the corresponding conjugate trigonometric series is used as an approximation to the epsilon function. A set of coefficients of particularly simple form is obtained algebraically for direct calculation of the epsilon values from the corresponding set of psi values. Complete derivation of this process is presented.
Application of abstract harmonic analysis to the high-speed recognition of images
NASA Technical Reports Server (NTRS)
Usikov, D. A.
1979-01-01
Methods are constructed for rapidly computing correlation functions using the theory of abstract harmonic analysis. The theory developed includes as a particular case the familiar Fourier transform method for a correlation function which makes it possible to find images which are independent of their translation in the plane. Two examples of the application of the general theory described are the search for images, independent of their rotation and scale, and the search for images which are independent of their translations and rotations in the plane.
Harmonic Analysis and H2-Functions on Siegel Domains of Type II
Ogden, R. D.; Vági, S.
1972-01-01
It is known that the distinguished boundary of a Siegel domain of type II can be identified with a simply connected nilpotent Lie group of step two. The Plancherel formula for this group and the irreducible unitary representations which enter into that formula are determined. The H2-space of the domain and its Szegö kernel are characterized in terms of the harmonic analysis of the above group, in particular, the integral representations for H2-functions due to Gindikin and Korányi-Stein are shown to be instances of the Fourier inversion formula. PMID:16591961
Effective medium multipolar tensor analysis of second-harmonic generation from metal nanoparticles
NASA Astrophysics Data System (ADS)
Zdanowicz, Mariusz; Kujala, Sami; Husu, Hannu; Kauranen, Martti
2011-02-01
We present a detailed multipolar tensor analysis of second-harmonic (SH) generation from arrays of L-shaped gold nanoparticles. We define three effective nonlinear tensors, which include electric dipoles only (Aeee) and lowest-order magnetic (and quadrupole) effects at the fundamental (Aeem) and the SH (Amee) frequency. The components of the various tensors are distinguished through their different transformations as the experimental geometry is varied. The response is dominated by electric-dipole effects. However, the higher multipoles also play a significant role and are more important at the fundamental frequency than at the SH frequency. The results correlate well with the particles' plasmonic resonances and symmetry rules.
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
NASA Astrophysics Data System (ADS)
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
Oguz, H Kagan; Olcum, Selim; Senlik, Muhammed N; Taş, Vahdettin; Atalar, Abdullah; Köymen, Hayrettin
2010-01-01
Finite element method (FEM) is used for transient dynamic analysis of capacitive micromachined ultrasonic transducers (CMUT) and is particularly useful when the membranes are driven in the nonlinear regime. One major disadvantage of FEM is the excessive time required for simulation. Harmonic balance (HB) analysis, on the other hand, provides an accurate estimate of the steady-state response of nonlinear circuits very quickly. It is common to use Mason's equivalent circuit to model the mechanical section of CMUT. However, it is not appropriate to terminate Mason's mechanical LC section by a rigid piston's radiation impedance, especially for an immersed CMUT. We studied the membrane behavior using a transient FEM analysis and found out that for a wide range of harmonics around the series resonance, the membrane displacement can be modeled as a clamped radiator. We considered the root mean square of the velocity distribution on the membrane surface as the circuit variable rather than the average velocity. With this definition, the kinetic energy of the membrane mass is the same as that in the model. We derived the force and current equations for a clamped radiator and implemented them using a commercial HB simulator. We observed much better agreement between FEM and the proposed equivalent model, compared with the conventional model.
Chang, Chi-Wei; Chen, Jiang-Ming; Wang, Wei-Kung
2015-01-01
This study was aimed to establish a standard protocol and to quantitatively assess the reliability of harmonic analysis of the radial pulse wave measured by a harmonic wave analyzer (TD01C system). Both intraobserver and interobserver assessments were conducted to investigate whether the values of harmonics are stable in successive measurements. An intraclass correlation coefficient (ICC) and a Bland-Altman plot were used for this purpose. For the reliability assessments of the intraobserver and the interobserver, 22 subjects (mean age 45 ± 14 years; 14 males and 8 females) were enrolled. The first eleven harmonics of the radial pulse wave presented excellent repeatability ([Formula: see text] and [Formula: see text]) for the intraobserver assessment and high reproducibility (ICCs range from 0.83 to 0.96 and [Formula: see text]) for the interobserver assessment. The Bland-Altman plot indicated that more than 90% of harmonic values fell within two standard deviations of the mean difference. Thus, we concluded that the harmonic analysis of the radial pulse wave using the TD01C system is a feasible and reliable method to assess a hemodynamic characteristic in clinical trial.
ERIC Educational Resources Information Center
Andrews, David L.; Romero, Luciana C. Davila
2009-01-01
The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…
Texture analysis applied to second harmonic generation image data for ovarian cancer classification.
Wen, Bruce L; Brewer, Molly A; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R; Campagnola, Paul J
2014-09-01
Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of “textons”—frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations—is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.
Texture analysis applied to second harmonic generation image data for ovarian cancer classification
NASA Astrophysics Data System (ADS)
Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.
2014-09-01
Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.
Fox, Ronald F.; Vela-Arevalo, Luz V.
2002-11-01
The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances.
NASA Astrophysics Data System (ADS)
Shan, Mao
2016-10-01
In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.
NASA Astrophysics Data System (ADS)
Wu, J.; Augstein, B. B.; Figueira de Morisson Faria, C.
2013-12-01
We perform a Bohmian-trajectory analysis of high-order-harmonic generation (HHG), focusing on the fact that typical HHG spectra are best reproduced by the Bohmian trajectory starting at the innermost part of the core [J. Wu, B. B. Augstein, and C. Figueira de Morisson Faria, Phys. Rev. A 88, 023415 (2013), 10.1103/PhysRevA.88.023415]. Using ensemble averages around this central trajectory, we show that for the high-plateau and cutoff harmonics, small ensembles of Bohmian trajectories are sufficient for a quantitative agreement with the numerical solution of the time-dependent Schrödinger equation (TDSE), while larger ensembles are necessary in the low-plateau region. Furthermore, we relate the Bohmian trajectories to the short and long trajectories encountered in the strong-field approximation (SFA) and show that the time-frequency maps from the central Bohmian trajectory overestimate the contributions of the long SFA trajectory, in comparison to the outcome of the TDSE computations. We also discuss how the time-frequency profile of the central trajectory may be influenced nonlocally by degrading the wave-packet propagation far from the core.
Wei, Bih-Rong; Simpson, R Mark
2014-03-01
Standardization of biorepository best practices will enhance the quality of translational biomedical research utilizing patient-derived biobank specimens. Harmonization of pathology quality assurance procedures for biobank accessions has lagged behind other avenues of biospecimen research and biobank development. Comprehension of the cellular content of biorepository specimens is important for discovery of tissue-specific clinically relevant biomarkers for diagnosis and treatment. While rapidly emerging technologies in molecular analyses and data mining create focus on appropriate measures for minimizing pre-analytic artifact-inducing variables, less attention gets paid to annotating the constituent makeup of biospecimens for more effective specimen selection by biobank clients. Both pre-analytic tissue processing and specimen composition influence acquisition of relevant macromolecules for downstream assays. Pathologist review of biorepository submissions, particularly tissues as part of quality assurance procedures, helps to ensure that the intended target cells are present and in sufficient quantity in accessioned specimens. This manual procedure can be tedious and subjective. Incorporating digital pathology into biobank quality assurance procedures, using automated pattern recognition morphometric image analysis to quantify tissue feature areas in digital whole slide images of tissue sections, can minimize variability and subjectivity associated with routine pathologic evaluations in biorepositories. Whole-slide images and pathologist-reviewed morphometric analyses can be provided to researchers to guide specimen selection. Harmonization of pathology quality assurance methods that minimize subjectivity and improve reproducibility among collections would facilitate research-relevant specimen selection by investigators and could facilitate information sharing in an integrated network approach to biobanking.
Flood detection from multi-temporal SAR data using harmonic analysis and change detection
NASA Astrophysics Data System (ADS)
Schlaffer, Stefan; Matgen, Patrick; Hollaus, Markus; Wagner, Wolfgang
2015-06-01
Flood mapping from Synthetic Aperture Radar (SAR) data has attracted considerable attention in recent years. Most available algorithms typically focus on single-image techniques which do not take into account the backscatter signature of a land surface under non-flooded conditions. In this study, harmonic analysis of a multi-temporal time series of >500 ENVISAT Advanced SAR (ASAR) scenes with a spatial resolution of 150 m was used to characterise the seasonality in backscatter under non-flooded conditions. Pixels which were inundated during a large-scale flood event during the summer 2007 floods of the River Severn (United Kingdom) showed strong deviations from normal seasonal behaviour as inferred from the harmonic model. The residuals were classified by means of an automatic threshold optimisation algorithm after masking out areas which are unlikely to be flooded using a topography-derived index. The results were validated against a reference dataset derived from high-resolution airborne imagery. For the water class, accuracies > 80% were found for non-urban land uses. A slight underestimation of the reference flood extent can be seen, mostly due to the lower spatial resolution of the ASAR imagery. Finally, an outlook for the proposed algorithm is given in the light of the Sentinel-1 mission.
Physics: A New Reactor Physics Analysis Toolkit
C. Rabiti; Y. Wang; G. Palmiotti; H. Hiruta; J. Cogliati; A. Alfonsi
2011-06-01
In the last year INL has internally pursued the development of a new reactor analysis tool: PHISICS. The software is built in a modular approach to simplify the independent development of modules by different teams and future maintenance. Most of the modules at the time of this summary are still under development (time dependent transport driver, depletion, cross section I/O and interpolation, generalized perturbation theory), while the transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) has already been widely used1, 2, 3, 4. For this reason we will focus mainly on the presentation of the transport solver INSTANT
NASA Technical Reports Server (NTRS)
Takahashi, H.; Yahagi, N.
1985-01-01
The spherical harmonic analysis of cosmic ray neutron data from the worldwide network neutron monitor stations during the years, 1966 to 1969 was carried out. The second zonal harmonic component obtained from the analysis corresponds to the Pole-Equator anisotropy of the cosmic ray neutron intensity. Such an anisotropy makes a semiannual variation. In addition to this, it is shown that the Pole-Equator anisotropy makes a variation depending on the interplanetary magnetic field (IMF) sector polarities around the passages of the IMF sector boundary. A mechanism to interpret these results is also discussed.
Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; García-Márquez, Jorge
2012-04-01
From generalized phase-shifting equations, we propose a simple linear system analysis for algorithms with equally and nonequally spaced phase shifts. The presence of a finite number of harmonic components in the fringes of the intensity patterns is taken into account to obtain algorithms insensitive to these harmonics. The insensitivity to detuning for the fundamental frequency is also considered as part of the description of this study. Linear systems are employed to recover the desired insensitivity properties that can compensate linear phase shift errors. The analysis of the wrapped phase equation is carried out in the Fourier frequency domain.
Nonlinear circuit analysis of harmonic currents in a floating Langmuir probe with a capacitive load
NASA Astrophysics Data System (ADS)
Kim, Kyung-Hyun; Kim, Dong-Hwan; Chung, Chin-Wook
2017-02-01
Plasma diagnostics using the floating harmonic technique were first used to obtain the electron temperature in a tokamak plasma. In this technique, the electron temperature depends on the ratio of the harmonic currents in a resistive sheath. Because these harmonic currents are determined by a modulated sheath voltage, calculation of the exact modulated voltage across the sheath is important; in general, the voltage is calculated using a phase of the first harmonic current. However, when a series load capacitance is present, the second harmonic currents are abnormally reduced compared to those expected by the conventional floating harmonic model, resulting in an unreliable measurement of the electron temperature. To describe this phenomenon, we used a modified floating harmonic model by applying the harmonic balance technique, a method that analyzes nonlinear circuits. Theoretical prediction of the harmonic current obtained from the modified model was compared with the experimental results, and they are in good agreement. In addition, the degrees of sheath nonlinearity, defined as the ratio of the second harmonic current (or voltage) to the fundamental current (or voltage), are discussed.
Experiment Design and Analysis Guide - Neutronics & Physics
Misti A Lillo
2014-06-01
The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.
Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure
Chen, Xiyi; Nadiarynkh, Oleg; Plotnikov, Sergey; Campagnola, Paul J
2013-01-01
Second-harmonic generation (SHG) microscopy has emerged as a powerful modality for imaging fibrillar collagen in a diverse range of tissues. Because of its underlying physical origin, it is highly sensitive to the collagen fibril/fiber structure, and, importantly, to changes that occur in diseases such as cancer, fibrosis and connective tissue disorders. We discuss how SHG can be used to obtain more structural information on the assembly of collagen in tissues than is possible by other microscopy techniques. We first provide an overview of the state of the art and the physical background of SHG microscopy, and then describe the optical modifications that need to be made to a laser-scanning microscope to enable the measurements. Crucial aspects for biomedical applications are the capabilities and limitations of the different experimental configurations. We estimate that the setup and calibration of the SHG instrument from its component parts will require 2–4 weeks, depending on the level of the user’s experience. PMID:22402635
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor
Modal and harmonic response analysis of cutter head of juice extractor
NASA Astrophysics Data System (ADS)
Li, Jinkuan; Liu, Zaixin; Zhou, Dingli; Li, Zhao
2017-01-01
A cutter head is one of the most important parts in juice extractor, because whether the juice extractor is reliable or secure enough is directly to the cutter head natural frequency as well as its mode shape size. Cutter head is took as an example in this paper. By establishing the vibration dynamics equations and using finite element method, the 6 modal of the cutter head is analyzed. The range of the rotate speed to keep safety is obtained when it is working. The result shows that the highest rotate speed of the cutter head is far lower than its first order critical speed which avoids the sympathetic vibration efficiently, and the cutter head is designed relatively rational. The harmonic response of the cutter head is analyzed based on the result of modal analysis. The resonant frequency and amplitude of cutter head are obtained. They can provide a theoretical basis for the further design optimization of the cutter head.
Harmonic finite-element thermoelastic analysis of space frames and trusses
Givoli, D.; Rand, O. )
1993-09-01
A numerical procedure is devised for the thermoelastic analysis of three-dimensional frame- or truss-type space structures exposed to solar radiation. Thin-walled frame or truss members with cross sections of arbitrary shape are considered. Tension-compression, bending, shear, and torsional effects due to the temperature distribution induced by the solar radiation are all taken into account. The procedure proposed involves finite element discretization in the axial direction and a harmonic analysts in the circumferential direction of each member. This procedure is an extension of the one employed previously to obtain the temperature field in trusses. A multibay frame structure serves as a model to demonstrate the performance of the proposed method. The temperature, displacement, and stress fields in the frame are found in various cases. 23 refs.
Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever
NASA Astrophysics Data System (ADS)
Solares, Santiago D.; Hölscher, Hendrik
2010-02-01
A spectral analysis method has been recently introduced by Stark et al (2002 Proc. Natl Acad. Sci. USA 99 8473-8) and implemented by Sahin et al (2007 Nat. Nanotechnol. 2 507-14) using a T-shaped cantilever design, the torsional harmonic cantilever (THC), which is capable of performing simultaneous tapping-mode atomic force microscopy imaging and force spectroscopy. Here we report on numerical simulations of the THC system using a simple dual-mass flexural-torsional model, which is applied in combination with Fourier data processing software to illustrate the spectroscopy process for quality factors corresponding to liquid, air and vacuum environments. We also illustrate the acquisition of enhanced topographical images and deformed surface contours under the application of uniform forces, and compare the results to those obtained with a previously reported linear dual-spring-mass model.
NASA Astrophysics Data System (ADS)
Lang, Xuye; Lyubovitsky, Julia
2015-07-01
Collagen hydrogels are natural biomaterials that comprise 3D networks of high water content and have viscoelastic properties and biocompatibility similar to native tissues. Consequently, these materials play an important role in tissue engineering and regenerative medicine for quite some time. Second harmonic generation (SHG) and two-photon fluorescence (TPF) contrasts transpire as valuable label-free spectroscopic probes for analysis of these biomaterials and this presentation will report the structural, mechanical and physicochemical parameters leading to the observed optical SHG and TPF effects in synthesized 3D collagen hydrogels. We will present results regarding understanding the dependency of collagen fiber formation on ion types, new results regarding strengthening of these biomaterials with a nontoxic chemical cross-linker genipin and polarization selection of collagen fibers' orientations.
NASA Astrophysics Data System (ADS)
Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai
2017-02-01
Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.
Bueno, Juan M; Palacios, Raquel; Chessey, Mary K; Ginis, Harilaos
2013-07-01
The spatial organization of stromal collagen of ex-vivo corneas has been quantified in adaptive-optics second harmonic generation (SHG) images by means of an optimized Fourier transform (FT) based analysis. At a particular depth location, adjacent lamellae often present similar orientations and run parallel to the corneal surface. However this pattern might be combined with interweaved collagen bundles leading to crosshatched structures with different orientations. The procedure here reported provides us with both principal and crosshatched angles. This is also able to automatically distinguish a random distribution from a cross-shaped one, since it uses the ratio of the axes lengths of the best-fitted ellipse of the FT data as an auxiliary parameter. The technique has successfully been applied to SHG images of healthy corneas (both stroma and Bowman's layer) of different species and to corneas undergoing cross-linking treatment.
NASA Astrophysics Data System (ADS)
Giebink, Noel C.
2015-10-01
Exciton annihilation processes impact both the lifetime and efficiency roll-off of organic light emitting diodes (OLEDs), however it is notoriously difficult to identify the dominant mode of annihilation in operating devices (exciton-exciton vs. exciton-charge carrier) and subsequently to disentangle its magnitude from competing roll-off processes such as charge imbalance. Here, we introduce a simple analytical method to directly identify and extract OLED annihilation rates from standard light-current-voltage (LIV) measurement data. The foundation of this approach lies in a frequency domain EQE analysis and is most easily understood in analogy to impedance spectroscopy, where in this case both the current (J) and electroluminescence intensity (L) are measured using a lock-in amplifier at different harmonics of the sinusoidal dither superimposed on the DC device bias. In the presence of annihilation, the relationship between recombination current and light output (proportional to exciton density) becomes nonlinear, thereby mixing the different EQE harmonics in a manner that depends uniquely on the type and magnitude of annihilation. We derive simple expressions to extract different annihilation rate coefficients and apply this technique to a variety of OLEDs. For example, in devices dominated by triplet-triplet annihilation, the annihilation rate coefficient, K_TT, is obtained directly from the linear slope that results from plotting EQE_DC-EQE_1ω versus L_DC (2EQE_1ω-EQE_DC). We go on to show that, in certain cases it is sufficient to calculate EQE_1ω directly from the slope of the DC light versus current curve [i.e. via (dL_DC)/(dJ_DC )], thus enabling this analysis to be conducted solely from common LIV measurement data.
An Analysis of Shot Noise Propagation and Amplificationin Harmonic Cascade FELs
Huang, Z.; /SLAC
2006-12-11
The harmonic generation process in a harmonic cascade (HC) FEL is subject to noise degradation which is proportional to the square of the total harmonic order. In this paper, we study the shot noise evolution in the first-stage modulator and radiator of a HC FEL that produces the dominant noise contributions. We derive the effective input noise for a modulator operating in the low-gain regime, and analyze the radiator noise for a density-modulated beam. The significance of these noise sources in different harmonic cascade designs is also discussed.
Fourier Analysis in Introductory Physics
ERIC Educational Resources Information Center
Huggins, Elisha
2007-01-01
In an after-dinner talk at the fall 2005 meeting of the New England chapter of the AAPT, Professor Robert Arns drew an analogy between classical physics and Classic Coke. To generations of physics teachers and textbook writers, classical physics was the real thing. Modern physics, which in introductory textbooks "appears in one or more extra…
NASA Astrophysics Data System (ADS)
Lewandowski, Mirosław
2010-01-01
The mathematical model of vehicle supply system as well as the mathematical model of main circuit of locomotive with asynchronous motors have been described in this article. The necessity of analysis of disturbances caused by distorted current run of drive motors emerged together with the introduction of high power vehicles with power electronic converters. Analysis of the compatibility of traction high current circuits with circuits of the signal and traffic control systems requires the knowledge of current spectrum in a catenary, which has been taken by a vehicle. The author has described the algebraic method of calculating of the spectrum amplitudes in a catenary. It does not require laborious and time-consuming simulations of a system, which considerably decreases preliminary costs of designation and dimensioning of a vehicle drive system.
NASA Astrophysics Data System (ADS)
Heo, YongHwa; Kim, Kwang-joon
2015-02-01
While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.
Cheng, Hang; Hsiao, Chia-Wen; Clymer, Jeffrey W; Schwiers, Michael L; Tibensky, Bryanna N; Patel, Leena; Ferko, Nicole C; Chekan, Edward
2015-01-01
The ultrasonic Harmonic scalpel has demonstrated clinical and surgical benefits in dissection and coagulation. To evaluate its use in gastrectomy, we conducted a systematic review and meta-analysis of randomized controlled trials comparing the Harmonic scalpel to conventional techniques in gastrectomy for patients with gastric cancer. International databases were searched without language restrictions for comparisons in open or laparoscopic gastrectomy and lymphadenectomy. The meta-analysis used a random-effects model for all outcomes; continuous variables were analyzed for mean differences and dichotomous variables were analyzed for risk ratios. Sensitivity analyses were conducted for study quality, type of conventional technique, and imputation of study results. Ten studies (N = 935) met the inclusion criteria. Compared with conventional hemostatic techniques, the Harmonic scalpel demonstrated significant reductions in operating time (-27.5 min; P < 0.001), intraoperative blood loss (-93.2 mL; P < 0.001), and drainage volume (-138.8 mL; P < 0.001). Results were numerically higher for conventional techniques for hospital length of stay, complication risk, and transfusions but did not reach statistical significance. Results remained robust to sensitivity analyses. This meta-analysis demonstrates the clear advantages of using the Harmonic scalpel compared to conventional techniques, with improvements demonstrated across several outcome measures for patients undergoing gastrectomy and lymphadenectomy.
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.
2014-05-01
Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.
Fourier Analysis in Introductory Physics
NASA Astrophysics Data System (ADS)
Huggins, Elisha
2007-01-01
In an after-dinner talk at the fall 2005 meeting of the New England chapter of the AAPT, Professor Robert Arns drew an analogy between classical physics and Classic Coke. To generations of physics teachers and textbook writers, classical physics was the real thing. Modern physics, which in introductory textbooks "appears in one or more extra chapters at the end of the book, … is a divertimento that we might get to if time permits." Modern physics is more like vanilla or lime Coke, probably a fad, while "Classic Coke is part of your life; you do not have to think about it twice."
Harmonic moment dynamics in Laplacian growth.
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B; Swinney, Harry L
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
NASA Astrophysics Data System (ADS)
Butet, Jérémy; Dutta-Gupta, Shourya; Martin, Olivier J. F.
2014-06-01
The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes of the nanoparticle clusters are first determined using an ab initio approach based on the Green's functions method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure can be used to optimize the generation of the second harmonic.
Spherical harmonic analysis of the sound radiation from omnidirectional loudspeaker arrays
NASA Astrophysics Data System (ADS)
Pasqual, A. M.
2014-09-01
Omnidirectional sound sources are widely used in room acoustics. These devices are made up of loudspeakers mounted on a spherical or polyhedral cabinet, where the dodecahedral shape prevails. Although such electroacoustic sources have been made readily available to acousticians by many manufacturers, an in-depth investigation of their vibroacoustic behavior has not been provided yet. In order to fulfill this lack, this paper presents a theoretical study of the sound radiation from omnidirectional loudspeaker arrays, which is carried out by using a mathematical model based on the spherical harmonic analysis. Eight different loudspeaker arrangements on the sphere are considered: the well-known five Platonic solid layouts and three extremal system layouts. The latter possess useful properties for spherical loudspeaker arrays used as directivity controlled sound sources, so that these layouts are included here in order to investigate whether or not they could be of interest as omnidirectional sources as well. It is shown through a comparative analysis that the dodecahedral array leads to the lowest error in producing an omnidirectional sound field and to the highest acoustic power, which corroborates the prevalence of such a layout. In addition, if a source with less than 12 loudspeakers is required, it is shown that tetrahedra or hexahedra can be used alternatively, whereas the extremal system layouts are not interesting choices for omnidirectional loudspeaker arrays.
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-01-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set. PMID:27767180
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
NASA Astrophysics Data System (ADS)
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-10-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
Tilbury, Karissa; Hocker, James; Wen, Bruce L.; Sandbo, Nathan; Singh, Vikas; Campagnola, Paul J.
2014-01-01
Abstract. Patients with idiopathic fibrosis (IPF) have poor long-term survival as there are limited diagnostic/prognostic tools or successful therapies. Remodeling of the extracellular matrix (ECM) has been implicated in IPF progression; however, the structural consequences on the collagen architecture have not received considerable attention. Here, we demonstrate that second harmonic generation (SHG) and multiphoton fluorescence microscopy can quantitatively differentiate normal and IPF human tissues. For SHG analysis, we developed a classifier based on wavelet transforms, principle component analysis, and a K-nearest-neighbor algorithm to classify the specific alterations of the collagen structure observed in IPF tissues. The resulting ROC curves obtained by varying the numbers of principal components and nearest neighbors yielded accuracies of >95%. In contrast, simpler metrics based on SHG intensity and collagen coverage in the image provided little or no discrimination. We also characterized the change in the elastin/collagen balance by simultaneously measuring the elastin autofluorescence and SHG intensities and found that the IPF tissues were less elastic relative to collagen. This is consistent with known mechanical consequences of the disease. Understanding ECM remodeling in IPF via nonlinear optical microscopy may enhance our ability to differentiate patients with rapid and slow progression and, thus, provide better prognostic information. PMID:25134793
RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo
2013-01-01
programmable gate arrays), and DSP (digital signal processing) elements. The fundamental computational algorithm de constructs 3D velocity distributions in terms of spherical harmonic spectral coefficients (which are analogous to a Fourier sine-cosine decomposition), but uses instead spherical harmonics Legendre polynomial orthogonal functions as a basis for the expansion, portraying each 2D angular distribution at every energy or, geometrically, spherical speed-shell swept by the particle spectrometer. Optionally, these spherical harmonic spectral coefficients may be telemetered to the ground. These will provide a smoothed description of the velocity distribution function whose quality will depend on the number of coefficients determined. Successfully implemented on the GSFC-developed processor, the capability to integrate the proposed methodology with both heritage and anticipated future plasma particle spectrometer designs is demonstrated (with sufficiently detailed design analysis to advance TRL) to show specific science relevancy with future HSD (Heliophysics Science Division) solar-interplanetary, planetary missions, sounding rockets and/or CubeSat missions.
Harmonic analysis for the characterization and correction of geometric distortion in MRI
Tadic, Tony Stanescu, Teodor; Jaffray, David A.
2014-11-01
Purpose: Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. Methods: The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace’s equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. Results: The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm
Computational-Model-Based Analysis of Context Effects on Harmonic Expectancy.
Morimoto, Satoshi; Remijn, Gerard B; Nakajima, Yoshitaka
2016-01-01
Expectancy for an upcoming musical chord, harmonic expectancy, is supposedly based on automatic activation of tonal knowledge. Since previous studies implicitly relied on interpretations based on Western music theory, the underlying computational processes involved in harmonic expectancy and how it relates to tonality need further clarification. In particular, short chord sequences which cannot lead to unique keys are difficult to interpret in music theory. In this study, we examined effects of preceding chords on harmonic expectancy from a computational perspective, using stochastic modeling. We conducted a behavioral experiment, in which participants listened to short chord sequences and evaluated the subjective relatedness of the last chord to the preceding ones. Based on these judgments, we built stochastic models of the computational process underlying harmonic expectancy. Following this, we compared the explanatory power of the models. Our results imply that, even when listening to short chord sequences, internally constructed and updated tonal assumptions determine the expectancy of the upcoming chord.
An Analysis of Canadian Physical Education Curricula
ERIC Educational Resources Information Center
Kilborn, Michelle; Lorusso, Jenna; Francis, Nancy
2016-01-01
There has been much international concern about the present and future status of school physical education. Recent research has employed surveys or case studies to examine the status of physical education but there is a dearth of in-depth physical education curriculum document analysis. The aim of this study is to contribute to the international…
NASA Astrophysics Data System (ADS)
Chou, Shuo-Yen; Ng, Hoi-Tou; Chen, Yi-Yin; Lee, Chien-Fu; Liu, Ru-Gun; Gau, Tsai-Sheng
2013-04-01
This paper discusses the CD Bossung tilt phenomena in low-k1 lithography using interference harmonics and rigorous EM spectrum analysis. Interference harmonics analysis is introduced to explain the interaction of diffraction orders in the focal region leading to this abnormal CD behavior. This method decomposes the vector image formula into a superposition of cosine components to describe the interference of diffraction orders. The symmetry properties of components of an optical projection system were investigated to find out three potential sources for the asymmetric Bossung behavior, namely mask 3D (M3D) effect, lens aberration, and wafer reflectivity. Under good lens aberration and substrate reflectivity controls, the M3D effect accounts for most of the CD Bossung tilt. A rigorous EM mask spectral analysis was performed to reveal the impact of mask topography on the near-field intensity of mask transmission and the far-field image formation. From the analysis, the asymmetric phase distribution in the mask spectrum is the root cause for CD Bossung tilt. Using both the interference harmonics and the rigorous EM spectrum analysis, the effect of various resolution enhancement techniques (RET) to the Bossung tilt is also studied to find the best RET combination for M3D immunity. In addition, a pupil optimization algorithm based on these two analyses is proposed to generate the phase compensation map for M3D effect counteraction.
Harmonic analysis of environmental time series with missing data or irregular sample spacing.
Dilmaghani, Shabnam; Henry, Isaac C; Soonthornnonda, Puripus; Christensen, Erik R; Henry, Ronald C
2007-10-15
The Lomb periodogram and discrete Fourier transform are described and applied to harmonic analysis of two typical data sets, one air quality time series and one water quality time series. The air quality data is a 13 year series of 24 hour average particulate elemental carbon data from the IMPROVE station in Washington, D.C. The water quality data are from the stormwater monitoring network in Milwaukee, WI and cover almost 2 years of precipitation events. These data have irregular sampling periods and missing data that preclude the straightforward application of the fast Fourier transform (FFT). In both cases, an anthropogenic periodicity is identified; a 7-day weekday/ weekend effect in the Washington elemental carbon series and a 1 month cycle in several constituents of stormwater. Practical aspects of application of the Lomb periodogram are discussed, particularly quantifying the effects of random noise. The proper application of the FFT to data that are irregularly spaced with missing values is demonstrated on the air quality data. Recommendations are given when to use the Lomb periodogram and when to use the FFT.
Kim, Won Hwa; Kim, Hyunwoo J; Adluru, Nagesh; Singh, Vikas
2016-06-01
A major goal of imaging studies such as the (ongoing) Human Connectome Project (HCP) is to characterize the structural network map of the human brain and identify its associations with covariates such as genotype, risk factors, and so on that correspond to an individual. But the set of image derived measures and the set of covariates are both large, so we must first estimate a 'parsimonious' set of relations between the measurements. For instance, a Gaussian graphical model will show conditional independences between the random variables, which can then be used to setup specific downstream analyses. But most such data involve a large list of 'latent' variables that remain unobserved, yet affect the 'observed' variables sustantially. Accounting for such latent variables is not directly addressed by standard precision matrix estimation, and is tackled via highly specialized optimization methods. This paper offers a unique harmonic analysis view of this problem. By casting the estimation of the precision matrix in terms of a composition of low-frequency latent variables and high-frequency sparse terms, we show how the problem can be formulated using a new wavelet-type expansion in non-Euclidean spaces. Our formulation poses the estimation problem in the frequency space and shows how it can be solved by a simple sub-gradient scheme. We provide a set of scientific results on ~500 scans from the recently released HCP data where our algorithm recovers highly interpretable and sparse conditional dependencies between brain connectivity pathways and well-known covariates.
Liao, Yi-Hua; Kuo, Wei-Cheng; Chou, Sin-Yo; Tsai, Cheng-Shiun; Lin, Guan-Liang; Tsai, Ming-Rung; Shih, Yuan-Ta; Lee, Gwo-Giun; Sun, Chi-Kuang
2014-01-01
Chronological skin aging is associated with flattening of the dermal-epidermal junction (DEJ), but to date no quantitative analysis focusing on the aging changes in the dermal papillae (DP) has been performed. The aim of the study is to determine the architectural changes and the collagen density related to chronological aging in the dermal papilla zone (DPZ) by in vivo harmonic generation microscopy (HGM) with a sub-femtoliter spatial resolution. We recruited 48 Asian subjects and obtained in vivo images on the sun-protected volar forearm. Six parameters were defined to quantify 3D morphological changes of the DPZ, which we analyzed both manually and computationally to study their correlation with age. The depth of DPZ, the average height of isolated DP, and the 3D interdigitation index decreased with age, while DP number density, DP volume, and the collagen density in DP remained constant over time. In vivo high-resolution HGM technology has uncovered chronological aging-related variations in DP, and sheds light on real-time quantitative skin fragility assessment and disease diagnostics based on collagen density and morphology. PMID:25401037
Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement
NASA Astrophysics Data System (ADS)
Zhou, Shengxi; Cao, Junyi; Inman, Daniel J.; Lin, Jing; Li, Dan
2016-07-01
Nonlinear energy harvesters are very sensitive to ambient vibrations. If the excitation level is too low, their large-amplitude oscillations for high-energy voltage output cannot be obtained. A nonlinear tristable energy harvester has been previously proposed to achieve more effective broadband energy harvesting for low-level excitations. However, the sensitivity of its dynamic characteristics to the system parameters remains uninvestigated. Therefore, this paper theoretically analyzes the influence of the external load, the external excitation, the internal system parameters and the equilibrium positions on the dynamic responses of nonlinear tristable energy harvesters by using the harmonic balance method. In addition, numerical acceleration excitation thresholds and basins of attraction are provided to investigate the potential for energy harvesting performance enhancement using the suitable equilibrium positions, appropriate initial conditions or external disturbances, due to high-energy interwell oscillations in the multi-solution ranges. More importantly, experimental voltage responses of a given tristable energy harvester versus the external excitation frequency and amplitude verify the existence of experimental multi-solution ranges and the effectiveness of the theoretical analysis. It is also revealed that achieving high-energy interwell oscillations in the multi-solution ranges of tristable energy harvesters will be feasible for improving energy harvesting from low-level ambient excitations.
Harmonic analysis of GaN-HEMTs at different temperatures and frequencies using Volterra power series
NASA Astrophysics Data System (ADS)
Yıldırım, Remzi; Karaarslan, Ahmet
2015-02-01
In this study, the detailed harmonic analysis of GaN high electron mobility transistor (HEMT) at different temperatures and frequencies is presented. Volterra power series and multi-dimensional Laplace transform are used as a method. The Volterra power series is also solved up to third degree, and the small signal transfer functions of kernels (H1, H2 and H3) are obtained. The relationship between drain inductance (Ld), gate-source voltage (Vgs), impedance (ZL) and the effect of frequency (Fr) to the output gain is identified. Besides, the nonlinear gains of H1, H2 and H3 kernels of the GaN-HEMT are obtained. The inverse relationship between the output gains of H1, H2 and H3 kernels are derived. An unsuitable situation has also been identified for sub-carrier inter-modulation systems. In addition, an asymmetric structure is also obtained between the output gain of H2 and side-band frequencies. The effects of other parameters are carried out for the output gain.
Harmonizing aerosol carbon measurements between two conventional thermal/optical analysis methods.
Zhi, Guorui; Chen, Yingjun; Sun, Junying; Chen, Laiguo; Tian, Wenjuan; Duan, Jingchun; Zhang, Gan; Chai, Fahe; Sheng, Guoying; Fu, Jiamo
2011-04-01
Although total carbon (TC) can be consistently quantified by various aerosol carbon measurement methods, the demarcation of TC into organic carbon (OC) and elemental carbon (EC) has long been inconsistent. The NIOSH and IMPROVE protocols are most widely used for thermal/optical analysis (TOA), but current knowledge rests in the description that the NIOSH protocol usually gives lower EC values than does the IMPROVE protocol. This study seeks to explore the possibility of quantitatively linking the difference between the two TOA protocols. Residential coal-burning samples that had been collected and analyzed following the NIOSH protocol in previous studies were directly reanalyzed following the IMPROVE protocol for this study. A comparison of each pair of NIOSH and IMPROVE EC values reveals the dynamic relation between the two protocols, which can be expressed as a regression equation, y=(1-x)/(1+4.86x2) (R2=0.96), where the independent x is the EC/TC ratio R(EC/TC) for the IMPROVE protocol, and the dependent y is the difference between IMPROVE and NIOSH REC/TC relative to IMPROVE REC/TC. This regression equation may be the first effort in formulating the relationship between the two TOA protocols, and it is very helpful in harmonizing inconsistent TOA measurements, for example, source characterization, ambient monitoring, and atmospheric modeling.
Adaptive Signal Recovery on Graphs via Harmonic Analysis for Experimental Design in Neuroimaging
Kim, Won Hwa; Hwang, Seong Jae; Adluru, Nagesh; Johnson, Sterling C.; Singh, Vikas
2016-01-01
Consider an experimental design of a neuroimaging study, where we need to obtain p measurements for each participant in a setting where p′ (< p) are cheaper and easier to acquire while the remaining (p – p′) are expensive. For example, the p′ measurements may include demographics, cognitive scores or routinely offered imaging scans while the (p – p′) measurements may correspond to more expensive types of brain image scans with a higher participant burden. In this scenario, it seems reasonable to seek an “adaptive” design for data acquisition so as to minimize the cost of the study without compromising statistical power. We show how this problem can be solved via harmonic analysis of a band-limited graph whose vertices correspond to participants and our goal is to fully recover a multi-variate signal on the nodes, given the full set of cheaper features and a partial set of more expensive measurements. This is accomplished using an adaptive query strategy derived from probing the properties of the graph in the frequency space. To demonstrate the benefits that this framework can provide, we present experimental evaluations on two independent neuroimaging studies and show that our proposed method can reliably recover the true signal with only partial observations directly yielding substantial financial savings. PMID:27807594
NASA Astrophysics Data System (ADS)
Kidd, Gerald; Mason, Christine R.; Brughera, Andrew; Chiu, Chung-Yiu Peter
2003-08-01
Simultaneous tones that are harmonically related tend to be grouped perceptually to form a unitary auditory image. A partial that is mistuned stands out from the other tones, and harmonic complexes with different fundamental frequencies can readily be perceived as separate auditory objects. These phenomena are evidence for the strong role of harmonicity in perceptual grouping and segregation of sounds. This study measured the discriminability of harmonicity directly. In a two interval, two alternative forced-choice (2I2AFC) paradigm, the listener chose which of two sounds, signal or foil, was composed of tones that more closely matched an exact harmonic relationship. In one experiment, the signal was varied from perfectly harmonic to highly inharmonic by adding frequency perturbation to each component. The foil always had 100% perturbation. Group mean performance decreased from greater than 90% correct for 0% signal perturbation to near chance for 80% signal perturbation. In the second experiment, adding a masker presented simultaneously with the signals and foils disrupted harmonicity. Both monaural and dichotic conditions were tested. Signal level was varied relative to masker level to obtain psychometric functions from which slopes and midpoints were estimated. Dichotic presentation of these audible stimuli improved performance by 3-10 dB, due primarily to a release from ``informational masking'' by the perceptual segregation of the signal from the masker.
NASA Astrophysics Data System (ADS)
Al-shyyab, A.; Kahraman, A.
2005-01-01
In this study, a non-linear time-varying dynamic model is used to investigate sub-harmonic and chaotic motions exhibited by a typical multi-mesh gear train. The purely torsional system is formed by three rigid shafts connected to each other by two spur gear pairs. The lumped parameter dynamic model includes both gear backlash clearances and parametric gear mesh stiffness fluctuations. Steady state period-one motions of the same system were studied in another by using a multi-term harmonic balance method in conjunction with discrete Fourier transforms. This study expands the same solution technique for an investigation of sub-harmonic resonances of the forced response. The accuracy of the predictions is demonstrated by comparing them to the direct numerical integration results. Effect of several system parameters such as alternating mesh stiffness amplitudes, gear mesh damping and static torque transmitted on sub-harmonic motions are described. It is shown that stable sub-harmonic motions mostly in the form of softening type resonances dictate the frequency ranges in which the period-one motions are unstable due to parametric excitations. Other non-linear phenomena including long sub-harmonic motions and period-doubling bifurcations leading to chaotic behavior are also predicted.
NASA Technical Reports Server (NTRS)
Jin, R. S.
1975-01-01
Power spectral density analysis using Burg's maximum entropy method was applied to the geomagnetic dipole field and its rate of change for the years 1901 to 1969. Both spectra indicate relative maxima at 0.015 cycles/year and its harmonics. These maxima correspond approximately to 66, 33, 22, 17, 13, 11, and 9-year spectral lines. The application of the same analysis techniques to the length-of-day (l.o.d) fluctuations for the period 1865 to 1961 reveal similar spectral characteristics. Although peaks were observed at higher harmonics of the fundamental frequency, the 22-year and 11-year lines are not attributed unambiguously to the solar magnetic cycle and the solar cycle. It is suggested that the similarity in the l.o.d fluctuations and the dipole field variations is related to the motion within the earth's fluid core during the past one hundred years.
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
Madsen, C. B.; Abu-samha, M.; Madsen, L. B.
2010-04-15
We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH{sub 4} and CD{sub 4} and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
Kim, Won Hwa; Kim, Hyunwoo J.; Adluru, Nagesh; Singh, Vikas
2016-01-01
A major goal of imaging studies such as the (ongoing) Human Connectome Project (HCP) is to characterize the structural network map of the human brain and identify its associations with covariates such as genotype, risk factors, and so on that correspond to an individual. But the set of image derived measures and the set of covariates are both large, so we must first estimate a ‘parsimonious’ set of relations between the measurements. For instance, a Gaussian graphical model will show conditional independences between the random variables, which can then be used to setup specific downstream analyses. But most such data involve a large list of ‘latent’ variables that remain unobserved, yet affect the ‘observed’ variables sustantially. Accounting for such latent variables is not directly addressed by standard precision matrix estimation, and is tackled via highly specialized optimization methods. This paper offers a unique harmonic analysis view of this problem. By casting the estimation of the precision matrix in terms of a composition of low-frequency latent variables and high-frequency sparse terms, we show how the problem can be formulated using a new wavelet-type expansion in non-Euclidean spaces. Our formulation poses the estimation problem in the frequency space and shows how it can be solved by a simple sub-gradient scheme. We provide a set of scientific results on ~500 scans from the recently released HCP data where our algorithm recovers highly interpretable and sparse conditional dependencies between brain connectivity pathways and well-known covariates. PMID:28255221
Deng, Mingxi; Xiang, Yanxun
2015-08-01
The effect of second-harmonic generation (SHG) by primary ultrasonic guided wave propagation is analyzed, where the nonlinear elastic, piezoelectric, and dielectric properties of the piezoelectric plate material are considered simultaneously. The formal solution of the corresponding second-harmonic displacement field is presented. Theoretical and numerical investigations clearly show that the SHG effect of primary guided wave propagation is highly sensitive to the electrical boundary conditions of the piezoelectric plate. The results obtained may provide a means through which the SHG efficiency of ultrasonic guided wave propagation can effectively be regulated by changing the electrical boundary conditions of the piezoelectric plate.
Multielectron Correlation in High-Harmonic Generation: A 2D Model Analysis
Sukiasyan, Suren; McDonald, Chris; Destefani, Carlos; Brabec, Thomas; Ivanov, Misha Yu.
2009-06-05
We analyze the role of multielectron dynamics in high-harmonic generation spectroscopy, using an example of a two-electron system. We identify and systematically quantify the importance of correlation and exchange effects. One of the main sources for correlation is identified to be the polarization of the ion by the recombining continuum electron. This effect, which plays an important qualitative and quantitative role, seriously undermines the validity of the standard approaches to high-harmonic generation, which ignore the contribution of excited ionic states to the radiative recombination of the continuum electron.
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:
Harmonic Analysis of Exact Solutions Within the Nonlinear Wave Theory of Bounded Cold Plasmas
NASA Astrophysics Data System (ADS)
Gradov, O. M.
The nonlinear motions of plasma electrons are investigated for a semi-infinite cold plasma for the case when the one-dimensional limit is applicable. Nonlinear oscillations, where the frequency is a function of the amplitude, are found. The general relations between the magnitudes of the density perturbations and the values of the corresponding harmonic frequencies are determined.
Advanced analysis methods in particle physics
Bhat, Pushpalatha C.; /Fermilab
2010-10-01
Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.
NASA Astrophysics Data System (ADS)
Gonoskov, I. A.; Tsatrafyllis, N.; Kominis, I. K.; Tzallas, P.
2016-09-01
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
Gonoskov, I. A.; Tsatrafyllis, N.; Kominis, I. K.; Tzallas, P.
2016-01-01
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources. PMID:27601191
NASA Astrophysics Data System (ADS)
Yeh, Y. S.; Kao, W. J.; Li, L. J.; Guo, Y. W.
2017-01-01
The harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits magnetic field reduction and frequency multiplication. This study presents a comparative analysis of fourth-harmonic multiplying gyro-TWAs with three schemes of operation. An improved mode-selective circuit using circular waveguides with various radii provides the rejection points within the range of operating frequencies to suppress the competing modes of gyro-TWAs. The simulated results reveal that gyro-TWAs are the most susceptible to the fundamental-harmonic TE11 competing mode, regardless of the operating scheme, and that the mode-selective circuit can provide an attenuation of more than 20 dB to suppress the competing modes. The amplification of the waves in a gyro-TWA depends on the lengths of the sections, and the simulated results show that the gain increases for all schemes, as the length of the lossy section or the length of the copper section increases. All schemes exhibit nearly the same saturated output powers and bandwidths; however, the saturated gain of the scheme at a high frequency multiplication ratio is less than that of the scheme at a low frequency multiplication ratio. Extensive numerical calculations of power and gain scaling are conducted for all schemes.
2011-05-21
GPAC is a code that integrates open source libraries for element formulations, linear algebra, and I/O with two main LLNL-Written components: (i) a set of standard finite elements physics solvers for rersolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of contact both implicity and explicity, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic problems and problems involving hydraulic fracturing, where the mesh topology is dynamically changed. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GPAC also has interfaces to call external libraries for, e.g., material models and equations of state; however, LLNL-developed EOS and material models will not be part of the current release.
NASA Astrophysics Data System (ADS)
Wen, Lianggong
Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites
Cosmic physics data analysis program
NASA Technical Reports Server (NTRS)
Wilkes, R. Jeffrey
1993-01-01
A data analysis program was carried out to investigate the intensity, propagation, and origin of primary Cosmic Ray Galactic electrons. Scanning was carried out on two new balloon flight experiments as well as the border area of previous experiments. The identification and evaluation of the energies of the primary electrons were carried out. A new analysis of these data were incorporated into an overall evaluation of the roll of electrons in the problem of the origin of cosmic rays. Recent measurements indicate that the earth may be within the expanding Geminga supernova shock wave which is expected to have a major effect upon the propagation and the energy spectrum of galactic electrons. Calculations with the Geminga model indicate that the cut-off energy may be very close to the observed highest energy electrons in our analysis.
NASA Astrophysics Data System (ADS)
Weijtjens, Wout; Lataire, John; Devriendt, Christof; Guillaume, Patrick
2014-12-01
Periodical loads, such as waves and rotating machinery, form a problem for operational modal analysis (OMA). In OMA only the vibrations of a structure of interest are measured and little to nothing is known about the loads causing these vibrations. Therefore, it is often assumed that all dynamics in the measured data are linked to the system of interest. Periodical loads defy this assumption as their periodical behavior is often visible within the measured vibrations. As a consequence most OMA techniques falsely associate the dynamics of the periodical load with the system of interest. Without additional information about the load, one is not able to correctly differentiate between structural dynamics and the dynamics of the load. In several applications, e.g. turbines and helicopters, it was observed that because of periodical loads one was unable to correctly identify one or multiple modes. Transmissibility based OMA (TOMA) is a completely different approach to OMA. By using transmissibility functions to estimate the structural dynamics of the system of interest, all influence of the load-spectrum can be eliminated. TOMA therefore allows to identify the modal parameters without being influenced by the presence of periodical loads, such as harmonics. One of the difficulties of TOMA is that the analyst is required to find two independent datasets, each associated with a different loading condition of the system of interest. This poses a dilemma for TOMA; how can an analyst identify two different loading conditions when little is known about the loads on the system? This paper tackles that problem by assuming that the loading conditions vary continuously over time, e.g. the changing wind directions. From this assumption TOMA is developed into a time-varying framework. This development allows TOMA to not only cope with the continuously changing loading conditions. The time-varying framework also enables the identification of the modal parameters from a single dataset
2012-12-21
GPAC is a code that integrates open source libraries for element formulations, linear algebra, and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, fault rupture and earthquake nucleation, and fluid-mediated fracturing, including resolution of physcial behaviors both implicity and explicity, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic problems; ploblems involving hydraulic fracturing, where the mesh topology is dynamically changed; fault rupture modeling and seismic risk assessment; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GPAC also has interfaces to call external libraries for , e.g., material models and equations of state; however, LLNL-developed EOS and material models will not be part of the current release. CPAC's secondary applications include modeling fault evolution for predicting the statistical distribution of earthquake events and to capture granular materials behavior under different load paths.
Compact standing-wave Fourier-transform interferometer with harmonic spectral analysis
NASA Astrophysics Data System (ADS)
Fu, Junxian; Yu, Xiaojun; Zhang, Bingyang; Harris, James S., Jr.
2006-02-01
A new technique utilizing harmonic Fourier spectra created by the non-linear properties of a compact Fourier transform infrared interferometer (FTIR) was proposed and realized to improve the system resolution. The compact standing wave FTIR (SWFTIR) system consists of a partial transparent hetero-junction bipolar phototransistor (HPT) and a free scanning highly reflective mirror. The overall size of the system is less than 5×5×5cm 3, and the resolution at 1.5μm is better than 37.5cm -1 at the 5 th harmonic spectral component. The SWFTIR array system has theoretical resolution of better than 1cm -1 covering the whole near-infrared region with potential compact portable applications.
Shooting with degree theory: Analysis of some weighted poly-harmonic systems
NASA Astrophysics Data System (ADS)
Villavert, John
2014-08-01
In this paper, the author establishes the existence of positive entire solutions to a general class of semilinear poly-harmonic systems, which includes equations and systems of the weighted Hardy-Littlewood-Sobolev type. The novel method used implements the classical shooting method enhanced by topological degree theory. The key steps of the method are to first construct a target map which aims the shooting method and the non-degeneracy conditions guarantee the continuity of this map. With the continuity of the target map, a topological argument is used to show the existence of zeros of the target map. The existence of zeros of the map along with a non-existence theorem for the corresponding Navier boundary value problem imply the existence of positive solutions for the class of poly-harmonic systems.
Harmonic analysis of tides and tidal currents in South San Francisco Bay, California
Cheng, R.T.; Gartner, J.W.
1985-01-01
Water level observations from tide stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each tide station, 13 harmonic constituents have been computed by a least-squares regression without inference. Tides in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal tide. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.
Response analysis of dielectric elastomer spherical membrane to harmonic voltage and random pressure
NASA Astrophysics Data System (ADS)
Jin, Xiaoling; Wang, Yong; Chen, Michael Z. Q.; Huang, Zhilong
2017-03-01
Spherical membranes consisting of dielectric elastomer play important roles in flexible and stretchable devices, such as flexible actuators, sensors and loudspeakers. Executing various functions of devices depends on the dynamical behaviors of dielectric elastomer spherical membranes to external electrical and/or mechanical excitations. This manuscript concentrates on the random aspect of dielectric elastomer spherical membranes, i.e., the random response to combined excitations of harmonic voltage and random pressure. To analytically evaluate the response statistics of the stretch ratio, a specific transformation and stochastic averaging technique are successively adopted to solve the strongly nonlinear equation with respect to the stretch ratio. The stochastic differential equations for the system first integral and the phase difference between harmonic excitation and response are first derived through this transformation. The Fokker-Planck-Kolmogorov equation with respect to the stationary probability density of the system first integral and the phase difference is obtained. The stationary probability densities and the response statistics of the stretch ratio and its rate of change are then subsequently calculated. The phenomenon of stochastic jumps is found and the stochastic jump bifurcates with the variations of the frequency and the amplitude of the harmonic voltage and the intensity of the random pressure. The efficacy and accuracy of the analytical results are verified by comparing with the results from Monte Carlo simulation. Besides, the reliability of the dielectric elastomer spherical membrane is discussed briefly. The obtained results could provide options in implementing and designing dielectric elastomer structures for dynamic applications.
ERIC Educational Resources Information Center
Parnis, J. Mark; Thompson, Matthew G. K.
2004-01-01
An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.
Digital Movement Analysis in Physical Education
ERIC Educational Resources Information Center
Trout, Josh
2013-01-01
Mobile devices such as smartphones and tablets offer applications (apps) that make digital movement analysis simple and efficient in physical education. Highly sophisticated movement analysis software has been available for many years but has mainly appealed to coaches of elite athletes and biomechanists. Apps on mobile devices are less expensive…
NASA Astrophysics Data System (ADS)
Kamiya, Munehiro; Awata, Hideya; Miura, Tetsuya; Yagyu, Yasuhide; Kosaka, Takashi; Matsui, Nobuyuki
In this paper, we investigate into an approach to predict the magnet temperature in interior permanent magnet synchronous generator for mass-produced front engine rear drive hybrid vehicles. To achieve an accurate thermal analysis, the generator losses under PWM converter drive are firstly calculated by 3D-FEM using measured current waveform including PWM carrier harmonics. As an approach for thermal analysis, a lumped capacitance model is proposed, which makes it possible to estimate the magnet temperature with fast computation. The thermal analysis is executed using the calculated losses and the experimentally obtained thermal resistance as the inputs. The calculated magnet temperature characteristics are in good agreement with the measured ones. As a result, it is verified that the proposed thermal analysis is effective for estimating the magnet temperature in this kind of application.
Advanced Software Methods for Physics Analysis
NASA Astrophysics Data System (ADS)
Lista, L.
2006-01-01
Unprecedented data analysis complexity is experienced in modern High Energy Physics experiments. The complexity arises from the growing size of recorded data samples, the large number of data analyses performed by different users in each single experiment, and the level of complexity of each single analysis. For this reason, the requirements on software for data analysis impose a very high level of reliability. We present two concrete examples: the former from BaBar experience with the migration to a new Analysis Model with the definition of a new model for the Event Data Store, the latter about a toolkit for multivariate statistical and parametric Monte Carlo analysis developed using generic programming.
Local modes analysis of a rotating marine ship propeller with higher order harmonic elements
NASA Astrophysics Data System (ADS)
Feng, Chen; Yong, Chen; Hongxing, Hua
2016-09-01
An annular harmonic finite element for the computation of the local modes of a pretwisted ship propeller is developed. The elements take into account both the gyroscopic effect and centrifugal stiffening of the propeller blades. The displacement field is expressed by a truncated Fourier series along the angle and by polynomial shape functions in the radial direction. As an example, the dynamic behaviour, i.e. the nature frequency and local modes, of a ship propeller is studied, and compared with ANSYS, both of which have good consistency.
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation
Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.
2007-07-15
We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle.
Lin, Bihong; Chen, Jincan
2003-11-01
An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscillators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes. The general performance characteristics of the cycle are investigated, based on the quantum master equation and the semigroup approach. The expressions for several important performance parameters such as the coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be equivalent to a classical Brayton cycle.
NASA Technical Reports Server (NTRS)
Chao, B. F.
1983-01-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
NASA Technical Reports Server (NTRS)
Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)
1982-01-01
Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents.
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis.
Biedron, S. G.; Freund, H. P.; Yu, L.-H.
1999-09-10
One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through a radiative section, an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to remove noise and can be at a much lower subharmonic of the output radiation, thus eliminating the concerns found in self-amplified spontaneous emission (SASE) and seeded FELs, respectively. Recently, a 3D code that includes multiple frequencies, multiple undulatory (both in quantity and/or type), quadruple magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed.
Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl
2016-08-01
The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.
Xiang, Yanxun; Deng, Mingxi; Xuan, Fu-Zhen; Liu, Chang-Jun
2011-12-01
The cumulative second-harmonic analysis of ultrasonic Lamb wave has been performed to study the precipitation kinetics and microvoid initiation of ferritic Cr-Ni alloy steel during the ageing process. Ageing of ferritic Cr-Ni alloy materials have been done at 1223 K and 1173 K for different degradation time intervals and air cooled. The results show that the normalized acoustic nonlinearity of Lamb wave increases with the formation of fine precipitates at the early stage of ageing till about 1000 h and keeps as a plateau with the precipitates dynamic balance for a long-term ageing, and then decreases gradually at the final holding time with the coarsening of precipitates and initiation of microvoids. The results also show that the variation of nonlinear Lamb wave follows the same trend as that of hardness in materials. Therefore, the cumulative second-harmonic of ultrasonic Lamb waves has been found to be strongly sensitive to the precipitates behavior and microstructure evolution during the thermal ageing of ferritic Cr-Ni alloy steel.
NASA Astrophysics Data System (ADS)
Matteini, P.; Rossi, F.; Ratto, F.; Cicchi, R.; Kapsokalyvas, D.; Pavone, F. S.; Pini, R.
2010-02-01
Thermal modifications induced in the corneal stroma were investigated by means of second harmonic generation (SHG) imaging. Whole fresh cornea samples were heated in a water bath at temperatures in the 35-80 °C range for a 4-min time. SHG images of the structural modifications induced at each temperature were acquired from different areas of cross-sectioned corneal stroma by using an 880 nm linearly- and circularly-polarized excitation light emitted by a mode-locked Ti:Sapphire laser. The SHG images were then analyzed by means of both an empirical approach and a 2D-theoretical model. The proposed analyses provide a detailed description of the changes occurring in the structural architecture of the cornea during the thermal treatment. Our results allow us to depict a temperature-dependent biochemical model for the progressive destructuration occurring to collagen fibrils and nonfibrillar components of the stroma.
Electromechanical analysis for a piezo-optical fiber subjected to harmonic loading
NASA Astrophysics Data System (ADS)
Huang, Jin H.; Ding, Desheng
2007-09-01
This article investigates the electromechanical responses of a piezocoated optical fiber subjected to time-harmonic excitation of mechanical load as a sensor or to electric voltages as an actuator. Piezoelectric coatings, functioning as sensors or actuators, have potential in the development of acousto-optic devices. Despite the growing demand for optical fibers coated with piezoelectric materials, pertinent research work on their electromechanical responses in integrated systems still remains very scarce indeed. By application of Hamilton's principle to piezoelectric fundamentals, the equations of motion under dynamic excitations are solved with proper boundary conditions to give the analytical forms of the integrated system's electromechanical responses. For numerical illustration of the responses, an example is investigated to give the instantaneous response for the direct and converse effects.
Earth zonal harmonics from rapid numerical analysis of long satellite arcs
NASA Technical Reports Server (NTRS)
Wagner, C. A.
1972-01-01
A zonal geopotential is presented to degree 21 from evaluation of mean elements for 21 satellites including 2 of low inclination. Each satellite is represented by an arc of at least one apsidal rotation. The lengths range from 200 to 800 days. Differential correction of the initial elements in all of the arcs, together with radiation pressure and atmospheric drag coefficients, was accomplished simultaneously with the correction for the zonal harmonics. The satellite orbits and their variations are generated by numerical integration of the Lagrange equations for mean elements. Disturbances due to precession and nutation of the earth's pole, atmospheric drag, radiation pressure and luni-solar gravity are added at from 1- to 8-day intervals in the integrated orbits. The results agree well with recent solutions from other authors using different methods and different satellite sets.
Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Ghazaryan, Ara; Tsai, Halley F.; Hayrapetyan, Gor; Chen, Wei-Liang; Chen, Yang-Fang; Jeong, Myung Yung; Kim, Chang-Seok; Chen, Shean-Jen; Dong, Chen-Yuan
2013-03-01
We present an automated and systematic two-dimensional discrete Fourier transform (2D-FFT) approach to analyze collagen fiber organization through the use of second harmonic generation (SHG) microscopy. Average orientations of individual domains and Ising-like order parameters introduced to characterize the correlation between orientations of adjacent domains may be used to quantitatively characterize fibrous tissues. Our approach was applied to analyze tissues including rat tail tendon, mouse skin, bovine corneas, and human corneas. We also show that collagen fiber organization in normal and keratokonus human corneas may be distinguished. The current approach may be used for the quantitative differentiation of SHG collagen fiber morphology in different tissues and may be applied for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Xiong, Huai; Kong, Xianren; Li, Haiqin; Yang, Zhenguo
2017-01-01
This paper considers dynamics of bilinear hysteretic systems, which are widely used for vibration control and vibration absorption such as magneto-rheological damper, metal-rubber. The method of incremental harmonic balance (IHB) technique that hysteresis is considered in the corrective term is improved in order to determine periodic solutions of bilinear hysteretic systems. The improved continuation method called two points tracing algorithm which is stable to the turning point makes the calculation more efficient for tracing amplitude-frequency response. Precise Hsu's method for analysing the stability of periodic solutions is introduced. The effects of different parameters of bilinear hysteretic oscillator on the response are discussed numerically. Some numerical simulations of considered bilinear hysteretic systems, including a single DOF and a 2DOF system, are effectively obtained by the modified IHB method and the results compare very well with the 4-oder Runge-Kutta method.
The Joint Physics Analysis Center: Recent results
NASA Astrophysics Data System (ADS)
Fernández-Ramírez, César
2016-10-01
We review some of the recent achievements of the Joint Physics Analysis Center, a theoretical collaboration with ties to experimental collaborations, that aims to provide amplitudes suitable for the analysis of the current and forthcoming experimental data on hadron physics. Since its foundation in 2013, the group is focused on hadron spectroscopy in preparation for the forthcoming high statistics and high precision experimental data from BELLEII, BESIII, CLAS12, COMPASS, GlueX, LHCb and (hopefully) PANDA collaborations. So far, we have developed amplitudes for πN scattering, KN scattering, pion and J/ψ photoproduction, two kaon photoproduction and three-body decays of light mesons (η, ω, ϕ). The codes for the amplitudes are available to download from the group web page and can be straightforwardly incorporated to the analysis of the experimental data.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Good relationships between computational image analysis and radiological physics
NASA Astrophysics Data System (ADS)
Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen
2015-09-01
Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.
Good relationships between computational image analysis and radiological physics
Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen
2015-09-30
Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.
Harmonic analysis approach to the 'TunneLadder' - A modified Karp circuit for millimeter-wave TWTA's
NASA Technical Reports Server (NTRS)
Kosmahl, H. G.; Palmer, R. W.
1982-01-01
A field approach to the summed harmonic analysis of the TunneLadder structure, or modified forward-wave Karp circuit, is developed by combining TM(01) and TE(11) modes. Results suggest the suitability of this structure as a high-impedance, about 1-% bandwidth circuit, millimeter-wave forward-wave-type amplifier that is voltage tunable over about a 5-% frequency range and has excellent power handling ability. Theory gives good agreement with experimental results obtained by Karp in omega-beta dispersion and predicts qualitatively the appearances of the antisymmetric mode discussed and of the so called Hightron mode that was discussed earlier in White, Enderby and Birdsall (1964), and Enderby (1964), in addition to the desired symmetric mode.
Harmonic analysis approach to the 'TunneLadder' - A modified Karp circuit for millimeter-wave TWTA's
NASA Astrophysics Data System (ADS)
Kosmahl, H. G.; Palmer, R. W.
1982-05-01
A field approach to the summed harmonic analysis of the TunneLadder structure, or modified forward-wave Karp circuit, is developed by combining TM(01) and TE(11) modes. Results suggest the suitability of this structure as a high-impedance, about 1-% bandwidth circuit, millimeter-wave forward-wave-type amplifier that is voltage tunable over about a 5-% frequency range and has excellent power handling ability. Theory gives good agreement with experimental results obtained by Karp in omega-beta dispersion and predicts qualitatively the appearances of the antisymmetric mode discussed and of the so called Hightron mode that was discussed earlier in White, Enderby and Birdsall (1964), and Enderby (1964), in addition to the desired symmetric mode.
NASA Astrophysics Data System (ADS)
Pakos, Wojciech
2015-09-01
The paper presents numerical analysis of harmonically excited vibration of a cable-stayed footbridge caused by a load function simulating crouching (squats) while changing the static tension in chosen cables. The intentional synchronized motion (e.g., squats) of a single person or group of persons on the footbridge with a frequency close to the natural frequency of the structure may lead to the resonant vibrations with large amplitudes. The appropriate tension changes in some cables cause detuning of resonance on account of stiffness changes of structures and hence detuning in the natural frequency that is close to the excitation frequency. The research was carried out on a 3D computer model of a real structure - a cable-stayed steel footbridge in Leśnica, a quarter of Wrocław, Poland, with the help of standard computer software based on FEM COSMOS/M System.
Analysis and projections of physics in Chile
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutiérrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio
2008-11-01
In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ~160 correspond to theoretical physicists and only ~40 to experimental physicists; ~178 are men and only ~22 are women. A more detailed analysis shows that ~160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y Tecnología (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is insufficient
Analysis of second-harmonic-generation microscopy in a mouse model of ovarian carcinoma.
Watson, Jennifer M; Rice, Photini F; Marion, Samuel L; Brewer, Molly A; Davis, John R; Rodriguez, Jeffrey J; Utzinger, Urs; Hoyer, Patricia B; Barton, Jennifer K
2012-07-01
Second-harmonic-generation (SHG) imaging of mouse ovaries ex vivo was used to detect collagen structure changes accompanying ovarian cancer development. Dosing with 4-vinylcyclohexene diepoxide and 7,12-dimethylbenz[a]anthracene resulted in histologically confirmed cases of normal, benign abnormality, dysplasia, and carcinoma. Parameters for each SHG image were calculated using the Fourier transform matrix and gray-level co-occurrence matrix (GLCM). Cancer versus normal and cancer versus all other diagnoses showed the greatest separation using the parameters derived from power in the highest-frequency region and GLCM energy. Mixed effects models showed that these parameters were significantly different between cancer and normal (P<0.008). Images were classified with a support vector machine, using 25% of the data for training and 75% for testing. Utilizing all images with signal greater than the noise level, cancer versus not-cancer specimens were classified with 81.2% sensitivity and 80.0% specificity, and cancer versus normal specimens were classified with 77.8% sensitivity and 79.3% specificity. Utilizing only images with greater than of 75% of the field of view containing signal improved sensitivity and specificity for cancer versus normal to 81.5% and 81.1%. These results suggest that using SHG to visualize collagen structure in ovaries could help with early cancer detection.
Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections
Tinyakov, P. G. Urban, F. R.
2015-03-15
The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C{sub l} are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.
Analysis of second-harmonic-generation microscopy in a mouse model of ovarian carcinoma
Watson, Jennifer M.; Rice, Photini F.; Marion, Samuel L.; Brewer, Molly A.; Davis, John R.; Rodriguez, Jeffrey J.; Utzinger, Urs; Hoyer, Patricia B.
2012-01-01
Abstract. Second-harmonic-generation (SHG) imaging of mouse ovaries ex vivo was used to detect collagen structure changes accompanying ovarian cancer development. Dosing with 4-vinylcyclohexene diepoxide and 7,12-dimethylbenz[a]anthracene resulted in histologically confirmed cases of normal, benign abnormality, dysplasia, and carcinoma. Parameters for each SHG image were calculated using the Fourier transform matrix and gray-level co-occurrence matrix (GLCM). Cancer versus normal and cancer versus all other diagnoses showed the greatest separation using the parameters derived from power in the highest-frequency region and GLCM energy. Mixed effects models showed that these parameters were significantly different between cancer and normal (P<0.008). Images were classified with a support vector machine, using 25% of the data for training and 75% for testing. Utilizing all images with signal greater than the noise level, cancer versus not-cancer specimens were classified with 81.2% sensitivity and 80.0% specificity, and cancer versus normal specimens were classified with 77.8% sensitivity and 79.3% specificity. Utilizing only images with greater than of 75% of the field of view containing signal improved sensitivity and specificity for cancer versus normal to 81.5% and 81.1%. These results suggest that using SHG to visualize collagen structure in ovaries could help with early cancer detection. PMID:22894485
Spherical Harmonic Analysis of Redshift Space Distortions in the IRAS PSCZ Redshift Survey
NASA Astrophysics Data System (ADS)
Tadros, H.; Ballinger, W.; Heavens, A.; Taylor, A.; Efstathiou, G.; Saunders, W.; Frenk, C.; Keeble, O.; McMahon, R.; Maddox, S.; Oliver, S.; Rowan-Robinson, M.; Sutherland, W.; White, S.
We apply the formalism of spherical harmonic decomposition to the galaxy density field of the IRAS PSCz redshift survey. Taking into account the first order distortion of the galaxy pattern due to redshift coordinates, we have measured the degree of distortion, parameterised by the distortion parameter beta ~ Omega^{0.6}/b, using maximum likelihood methods. We simultaneously measure either the undistorted amplitude of perturbations in the galaxy distribution when a parameterised power spectrum is assumed, or the shape and amplitude of the real--space power spectrum if the band--power in a set of passbands is measured in a step--wise fashion. We find that in the case of a parameterised power spectrum beta=0.59 +/- 0.26 and the amplitude of the power at wavenumber k=0.1h{Mpc}^{-1} is Delta_{0.1}=0.48 +/- 0.04 (marginal errors). Freeing the shape of the power spectrum we find that beta=0.61 +/- 0.2, and Delta_{0.1}=0.48 +/- 0.04 (conditional errors).
Di Tillio-Gonzalez, Dannie; Fischbach, Ruth L
2008-12-01
This article aims to compare the national legal systems that regulate biomedical research in an industrialized country (United States) and a developing country (Venezuela). A new international order is emerging in which Europe, Japan and the United States (US) are revising common guidelines and harmonizing standards. In this article, we analyze - as an example - the US system. This system is controlled by a federal agency structured to regulate research funded by the federal government uniformly, either in the US or abroad. In contrast, in Venezuela, a developing country, the creation of a centralized system is a slow process. Different types of ethical committees review research projects using non-uniform criteria. Consequently, various parallel organizations that conduct biomedical research, such as universities, research institutes and private hospitals have diverse regulations operating at a local level. Thus, the most relevant difference between the Venezuelan and the US systems is the degree of standardization. In the US, the review process is performed by institutional review boards (IRBs), which have a similar organization and maintain relationships with a centralized agency, following standard regulations. Although new proposals for establishing national regulations are currently being considered in Venezuela, the success of these initiatives will depend on promoting governmental efforts to create a more structured centralized system supported by a national regulatory framework. This system will need governmental financial support at all levels. This article proposes an integrated system to regulate research with human participants in Venezuela and other developing countries.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data
NASA Astrophysics Data System (ADS)
Feng, Yan; Jiang, Yong; Jiang, Yi; Liu, Bao-Jia; Jiang, Jin; Liu, Zhong-Wei; Ye, Mei-Chen; Wang, Hong-Shen; Li, Xiu-Ming
2016-09-01
We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over mainland China. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of Δ X, Δ Y, and Δ Z and X, Y, and Z, we established the truncation level at K max = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation of F at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators
NASA Astrophysics Data System (ADS)
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
NASA Technical Reports Server (NTRS)
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Visual physics analysis - from desktop to physics analysis at your fingertips
NASA Astrophysics Data System (ADS)
Bretz, H.-P.; Erdmann, M.; Fischer, R.; Hinzmann, A.; Klingebiel, D.; Komm, M.; Lingemann, J.; Rieger, M.; Müller, G.; Steggemann, J.; Winchen, T.
2012-06-01
Visual Physics Analysis (VISPA) is an analysis environment with applications in high energy and astroparticle physics. Based on a data-flow-driven paradigm, it allows users to combine graphical steering with self-written C++ and Python modules. This contribution presents new concepts integrated in VISPA: layers, convenient analysis execution, and web-based physics analysis. While the convenient execution offers full flexibility to vary settings for the execution phase of an analysis, layers allow to create different views of the analysis already during its design phase. Thus, one application of layers is to define different stages of an analysis (e.g. event selection and statistical analysis). However, there are other use cases such as to independently optimize settings for different types of input data in order to guide all data through the same analysis flow. The new execution feature makes job submission to local clusters as well as the LHC Computing Grid possible directly from VISPA. Web-based physics analysis is realized in the VISPA@Web project, which represents a whole new way to design and execute analyses via a standard web browser.
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Killing vector fields and harmonic superfield theories
NASA Astrophysics Data System (ADS)
Groeger, Josua
2014-09-01
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Gender and Physics: a Theoretical Analysis
NASA Astrophysics Data System (ADS)
Rolin, Kristina
This article argues that the objections raised by Koertge (1998), Gross and Levitt (1994), and Weinberg (1996) against feminist scholarship on gender and physics are unwarranted. The objections are that feminist science studies perpetuate gender stereotypes, are irrelevant to the content of physics, or promote epistemic relativism. In the first part of this article I argue that the concept of gender, as it has been developed in feminist theory, is a key to understanding why the first objection is misguided. Instead of reinforcing gender stereotypes, feminist science studies scholars can formulate empirically testable hypotheses regarding local and contested beliefs about gender. In the second part of this article I argue that a social analysis of scientific knowledge is a key to understanding why the second and the third objections are misguided. The concept of gender is relevant for understanding the social practice of physics, and the social practice of physics can be of epistemic importance. Instead of advancing epistemic relativism, feminist science studies scholars can make important contributions to a subfield of philosophy called social epistemology.
BESIU Physical Analysis on Hadoop Platform
NASA Astrophysics Data System (ADS)
Huo, Jing; Zang, Dongsong; Lei, Xiaofeng; Li, Qiang; Sun, Gongxing
2014-06-01
In the past 20 years, computing cluster has been widely used for High Energy Physics data processing. The jobs running on the traditional cluster with a Data-to-Computing structure, have to read large volumes of data via the network to the computing nodes for analysis, thereby making the I/O latency become a bottleneck of the whole system. The new distributed computing technology based on the MapReduce programming model has many advantages, such as high concurrency, high scalability and high fault tolerance, and it can benefit us in dealing with Big Data. This paper brings the idea of using MapReduce model to do BESIII physical analysis, and presents a new data analysis system structure based on Hadoop platform, which not only greatly improve the efficiency of data analysis, but also reduces the cost of system building. Moreover, this paper establishes an event pre-selection system based on the event level metadata(TAGs) database to optimize the data analyzing procedure.
Analysis of the harmonic content of the tidal flow waveforms in infants.
Frey, U; Silverman, M; Suki, B
2001-10-01
The aim of this study was to examine whether the spectral characteristics of tidal flow waveform reflect the interaction between the control of breathing and lung mechanics in 10 healthy infants (H), 10 infants with a history of wheezing disorders (W), and 10 infants with chronic lung disease (CLD). From the flow waveform, we calculated a shape index, the harmonic distortion (k(d)), which quantifies the extent to which a periodic signal deviates from a sine wave. The k(d) of the entire tidal flow waveform did not significantly discriminate between diagnostic groups. However, k(d) was sensitive to maturation: it increased from 0.26 at 1 mo to 0.37 at 6 mo of age (P < 0.002). Furthermore, the frequency (f) spectra of the flow (V) amplitudes between 0.13 and 10 Hz followed a power law: V(f) approximately f(-s), where s (slope) is the exponent in the power law. The exponent of the healthy infants s(H) was 4.24 [95% confidence interval (CI) = 0.2] at 1 mo, 4.39 (CI = 0.16) at 6 mo, and 4.35 (CI = 0.19) at 12 mo and not significantly changing with age. The mean value of s(W) was marginally lower (4.09 +/- 0.28; P < 0.05) than that of s(H). The mean s(CLD) was significantly lower (3.04 +/- 0.31; P < 0.001). Lower values of s and higher values of k(d) indicate an increased complexity of the feedback mechanisms determining tidal flow waveform and may be associated with disease.
Spatial Harmonic Decomposition as a tool for unsteady flow phenomena analysis
NASA Astrophysics Data System (ADS)
Duparchy, A.; Guillozet, J.; De Colombel, T.; Bornard, L.
2014-03-01
Hydropower is already the largest single renewable electricity source today but its further development will face new deployment constraints such as large-scale projects in emerging economies and the growth of intermittent renewable energy technologies. The potential role of hydropower as a grid stabilizer leads to operating hydro power plants in "off-design" zones. As a result, new methods of analyzing associated unsteady phenomena are needed to improve the design of hydraulic turbines. The key idea of the development is to compute a spatial description of a phenomenon by using a combination from several sensor signals. The spatial harmonic decomposition (SHD) extends the concept of so-called synchronous and asynchronous pulsations by projecting sensor signals on a linearly independent set of a modal scheme. This mathematical approach is very generic as it can be applied on any linear distribution of a scalar quantity defined on a closed curve. After a mathematical description of SHD, this paper will discuss the impact of instrumentation and provide tools to understand SHD signals. Then, as an example of a practical application, SHD is applied on a model test measurement in order to capture and describe dynamic pressure fields. Particularly, the spatial description of the phenomena provides new tools to separate the part of pressure fluctuations that contribute to output power instability or mechanical stresses. The study of the machine stability in partial load operating range in turbine mode or the comparison between the gap pressure field and radial thrust behavior during turbine brake operation are both relevant illustrations of SHD contribution.
Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu
2013-01-01
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.
NASA Astrophysics Data System (ADS)
Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.
2013-01-01
In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.
Video Analysis and Modeling in Physics Education
NASA Astrophysics Data System (ADS)
Brown, Doug
2008-03-01
The Tracker video analysis program allows users to overlay simple dynamical models on a video clip. Video modeling offers advantages over both traditional video analysis and animation-only modeling. In traditional video analysis, for example, students measure ``g'' by tracking a dropped or tossed ball, constructing a position or velocity vs. time graph, and interpreting the graphs to obtain initial conditions and acceleration. In video modeling, by contrast, the students interactively construct theoretical force expressions and define initial conditions for a dynamical particle model that synchs with and draws itself on the video. The behavior of the model is thus compared directly with that of the real-world motion. Tracker uses the Open Source Physics code library so sophisticated models are possible. I will demonstrate and compare video modeling with video analysis and I will discuss the advantages of video modeling over animation-only modeling. The Tracker video analysis program is available at: http://www.cabrillo.edu/˜dbrown/tracker/.
Covariant harmonic oscillators: 1973 revisited
NASA Technical Reports Server (NTRS)
Noz, M. E.
1993-01-01
Using the relativistic harmonic oscillator, a physical basis is given to the phenomenological wave function of Yukawa which is covariant and normalizable. It is shown that this wave function can be interpreted in terms of the unitary irreducible representations of the Poincare group. The transformation properties of these covariant wave functions are also demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Xiaofan; Li, Liang; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2016-11-01
We investigate the polarization properties of high harmonics generated with the bichromatic counter-rotating circularly polarized (BCCP) laser fields by numerically solving the time-dependent Schrödinger equation (TDSE). It is found that the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser fields.
Random harmonic analysis program, L221 (TEV156). Volume 1: Engineering and usage
NASA Technical Reports Server (NTRS)
Miller, R. D.; Graham, M. L.
1979-01-01
A digital computer program capable of calculating steady state solutions for linear second order differential equations due to sinusoidal forcing functions is described. The field of application of the program, the analysis of airplane response and loads due to continuous random air turbulence, is discussed. Optional capabilities including frequency dependent input matrices, feedback damping, gradual gust penetration, multiple excitation forcing functions, and a static elastic solution are described. Program usage and a description of the analysis used are presented.
Harmonic Oscillators as Bridges between Theories
NASA Astrophysics Data System (ADS)
Kim, Y. S.; Noz, Marilyn E.
2005-03-01
Other than scattering problems where perturbation theory is applicable, there are basically two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators, and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method then becomes a powerful research tool to cover many different branches of physics. Indeed, the concept and methodology in one branch of physics can be translated into another through the common mathematical formalism. It is noted that the present form of quantum mechanics is largely a physics of harmonic oscillators. Special relativity is the physics of the Lorentz group which can be represented by the group of by two-by-two matrices commonly called SL(2, c). Thus the coupled harmonic oscillators can therefore play the role of combining quantum mechanics with special relativity. Both Paul A. M. Dirac and Richard P. Feynman were fond of harmonic oscillators, while they used different approaches to physical problems. Both were also keenly interested in making quantum mechanics compatible with special relativity. It is shown that the coupled harmonic oscillators can bridge these two different approaches to physics.
Fundamental Neutron Physics: Theory and Analysis
Gudkov, Vladimir
2016-10-31
The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity and time reversal invariance violating processes in neutron induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity and time reversal violating effects in the consistent way. A major emphasis of our research during the funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.
The methodology of semantic analysis for extracting physical effects
NASA Astrophysics Data System (ADS)
Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.
2017-01-01
The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.
Color harmonization for images
NASA Astrophysics Data System (ADS)
Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei
2011-04-01
Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.
Analysis of star pair latitudes. [earth tides tesseral harmonics, and polar wandering
NASA Technical Reports Server (NTRS)
Graber, M. A.
1978-01-01
Star pair latitude observations forming the basis for the pole positions reported by the International Polar Motion Service (IPMS) are processed to produce a mean pole position. However, the time series of raw observations contains high frequency information which is lost in the calculation of the mean pole. Analysis of 2931 star pair observations reveals a possible large excitation at one cycle per solar day. The average power level in the frequency band of the tesseral tides is seen to be high, although the peaks do not occur at the expected tidal frequencies.
Repressing the effects of variable speed harmonic orders in operational modal analysis
NASA Astrophysics Data System (ADS)
Randall, R. B.; Coats, M. D.; Smith, W. A.
2016-10-01
Discrete frequency components such as machine shaft orders can disrupt the operation of normal Operational Modal Analysis (OMA) algorithms. With constant speed machines, they have been removed using time synchronous averaging (TSA). This paper compares two approaches for varying speed machines. In one method, signals are transformed into the order domain, and after the removal of shaft speed related components by a cepstral notching method, are transformed back to the time domain to allow normal OMA. In the other simpler approach an exponential shortpass lifter is applied directly in the time domain cepstrum to enhance the modal information at the expense of other disturbances. For simulated gear signals with speed variations of both ±5% and ±15%, the simpler approach was found to give better results The TSA method is shown not to work in either case. The paper compares the results with those obtained using a stationary random excitation.
Parallel-Connected Photovoltaic Inverters: Zero Frequency Sequence Harmonic Analysis and Solution
NASA Astrophysics Data System (ADS)
Carmeli, Maria Stefania; Mauri, Marco; Frosio, Luisa; Bezzolato, Alberto; Marchegiani, Gabriele
2013-05-01
High-power photovoltaic (PV) plants are usually constituted of the connection of different PV subfields, each of them with its interface transformer. Different solutions have been studied to improve the efficiency of the whole generation system. In particular, transformerless configurations are the more attractive one from efficiency and costs point of view. This paper focuses on transformerless PV configurations characterised by the parallel connection of interface inverters. The problem of zero sequence current due to both the parallel connection and the presence of undesirable parasitic earth capacitances is considered and a solution, which consists of the synchronisation of pulse-width modulation triangular carrier, is proposed and theoretically analysed. The theoretical analysis has been validated through simulation and experimental results.
Design and Error Analysis of a Vehicular AR System with Auto-Harmonization.
Foxlin, Eric; Calloway, Thomas; Zhang, Hongsheng
2015-12-01
This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and "swim". The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.
Next generation data harmonization
NASA Astrophysics Data System (ADS)
Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg
2015-05-01
Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.
Polarization-fan high-order harmonics
NASA Astrophysics Data System (ADS)
Fleischer, Avner; Bordo, Eliyahu; Kfir, Ofer; Sidorenko, Pavel; Cohen, Oren
2017-02-01
We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies with frequency continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics where each harmonic in the spectrum has the following property: it is nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Also, we show that polarization-fan high harmonics with modulated ellipticity are obtained when elliptical drivers are used. Polarization-fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles in a two-dimensional plane. The use of bichromatic drivers with close central frequencies largely preserves the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized. Thus, it should offer several attracting features, including (i) a direct route for extending the maximal photon energy of observed helical high harmonics to keV by using bichromatic drivers only in the mid-IR region and (ii) utilizing phase matching methods that were developed for ‘ordinary’ high harmonic generation driven by quasi-monochromatic pulses (e.g. pressure tuning phase matching). These polarization-fan harmonics may be utilized for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot.
ERIC Educational Resources Information Center
Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.
2015-01-01
In this meta-analysis, we synthesize the results of 24 studies using the Colorado Learning Attitudes about Science Survey (CLASS) and the Maryland Physics Expectations Survey (MPEX) to answer several questions: (1) How does physics instruction impact students' beliefs? (2) When do physics majors develop expert-like beliefs? and (3) How do…
Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation
NASA Astrophysics Data System (ADS)
Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.
2015-11-01
Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
NASA Astrophysics Data System (ADS)
Xiang, Yanxun; Zhu, Wujun; Deng, Mingxi; Xuan, Fu-Zhen; Liu, Chang-Jun
2016-11-01
The generation of second-harmonic Lamb waves in a homogeneous, isotropic, stress-free elastic plate is analytically and experimentally investigated. The numerical analyses show that whether the matching condition of the group velocity is satisfied or not, the integrated amplitude of a second-harmonic Lamb wave accumulates with the propagation distance when both the finite duration of the primary Lamb wave tone burst and the phase velocity matching are given. The theoretical analyses are validated by experimental measurements of an aluminium plate. Our conclusions are different from those of the previous works that reported that the group velocity matching is required for the generation of the cumulative second-harmonic Lamb waves with the finite duration of tone bursts.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Nomura, M.; Shimada, T.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.; Schnase, A.
2016-11-01
An rf cavity in the J-PARC RCS not only covers the frequency range of a fundamental acceleration pattern but also generates multi-harmonic rf voltage because it has a broadband impedance. However, analyzing the vacuum tube operation in the case of multi-harmonics is very complicated because many variables must be solved in a self-consistent manner. We developed a method to analyze the vacuum tube operation using a well-known formula and which includes the dependence on anode current for some variables. The calculation method is verified with beam tests, and the results indicate that it is efficient under condition of multi-harmonics with a heavy beam loading effect.
Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming
2015-01-01
Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933
NASA Astrophysics Data System (ADS)
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
Sridharan, Anush; Eisenbrey, John R; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F; Wallace, Kirk; Chalek, Carl L; Thomenius, Kai E; Forsberg, Flemming
2015-03-01
Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions.
Spherical Harmonic Analysis of Mountain and Volcanic Center Distributions on Io
NASA Astrophysics Data System (ADS)
Kirchoff, M. R.; McKinnon, W. B.; Schenk, P.
2003-12-01
Mountains and volcanic centers on Io are broadly zonally concentrated and the two distributions are anticorrelated (e.g., Schenk et al. 2001, JGR 106, 33,201-33,222). The mountains are tectonic in origin and the interplay between volcanism and tectonism is key to understanding their origin (McKinnon et al. 2001, Geology 29, 103-106; McEwen et al. 2003, in press in Jupiter - The Planet, Satellites and Magnetosphere). Here we extend previous analyses of these distributions beyond simple (but informative!) smoothing by means of counting circles. We initially assign equal weighting to each mountain (n = 115) and volcanic center (n = 541) in the global data sets. Spectral power analysis for the mountains shows a strong peak at l = 2 and a smaller one at l = 1, little power at l = 3, and the rest of the spectrum is "white" (flat). The volcanic center distribution shows an even stronger l = 2 peak, a modest peak at l = 1, and low spectral power for l >3. The result is that two concentrations of mountains are located at ˜ 30° N, 80° W and 30° S, 260° W, with the first being substantially larger. The two volcanic center concentrations are more nearly equatorial and quite close to the sub- and antijovian points, at ˜ 5° N, 170° W and 15° S, 345° W, again with the first being larger. We also weighted the mountains by mountain length, length x width, polygonal area (footprint), and area x height (a proxy for volume). For weighting by length, the peak at l = 1 increased slightly and the peak at l = 2 decreased, but both remained statistically significant compared with a random distribution. Power spectra of the distributions weighted by length x width or polygonal area lose much of their statistical significance at l = 1 and 2, however, due to several mountains of large areal extent outside the regions of concentration above. Nevertheless, mountain concentration positions (summing low degree terms) remain virtually the same for all weightings. Volume weighting is
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Nishihama, Masahiro
1997-01-01
Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.
Leary, S P; Pilgrim, S M
1998-01-01
The polarization response of a ferroelectric ceramic displays nonlinear behavior at high applied fields due to saturation effects. Weak-field dielectric aging imposes additional nonlinearity on the hysteresis loops of these materials. Harmonic analysis using a discrete Fourier transform (DFT) permitted an observation of the change in the polarization frequency spectrum as Pb(Mg(1/3)Nb(2/3))O (3)-based relaxor ceramics aged. It also facilitated the calculation of ac current, power, and "internal bias field". The results show that particular harmonics in the polarization signal are sensitive indications of aging behavior. The average power dissipated at weak ac fields was found to decrease with aging time; and the power dissipated at strong fields tended to increase.
NASA Astrophysics Data System (ADS)
Xu, Zhi; Zhang, Fengfeng; Zhang, Shenjin; Wang, Zhimin; Yang, Feng; Xu, Fengliang; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Wang, Xiaoyang; Chen, Chuangtian; Xu, Zuyan
2014-06-01
We reported on an experimental investigation and theoretical analysis of pulse repetition rate (PRR) adjustable deep ultraviolet (DUV) picosecond (ps) radiation by second harmonic generation (SHG) in KBe2BO3F2 (KBBF) crystal. Third harmonic radiation at 355 nm of a ps Nd:YVO4 laser output with PRR of 200 kHz-1 MHz was employed as the pump source. The dependence of the 177.3 nm output power on the 355 nm pump power was measured at different PRRs, and the maximum 177.3 nm average output power of 695 μW was obtained at the PRR of 200 kHz. The measured data agreed well with the results of the ps KBBF SHG theoretical simulations. Using simulations, the pulse width and the spectral bandwidth of the generated radiation at 177.3 nm were estimated to be 5.88 ps and 7.84 pm, respectively.
Harmonization of Biodiesel Specifications
Alleman, T. L.
2008-02-01
Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.
Yang, M.-J.; /Fermilab
1995-01-01
To understand the effect of Main Ring harmonic quadruple correctors. Previous data taken with the harmonic quads did not agree well with the SYNCH calculation. The ultimate goal of this study was to be able to change the harmonic quads and verify the changes in lattice function.
Steinschneider, Mitchell; Micheyl, Christophe
2014-01-01
The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate “auditory objects” with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the “object-related negativity” recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch. PMID:25209282
Fishman, Yonatan I; Steinschneider, Mitchell; Micheyl, Christophe
2014-09-10
The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.
Extraction of small boat harmonic signatures from passive sonar.
Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E
2011-06-01
This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.
Harmonic Nanoparticles for Regenerative Research
Ronzoni, Flavio; Magouroux, Thibaud; Vernet, Remi; Extermann, Jérôme; Crotty, Darragh; Prina-Mello, Adriele; Ciepielewski, Daniel; Volkov, Yuri; Bonacina, Luigi; Wolf, Jean-Pierre; Jaconi, Marisa
2014-01-01
In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed. PMID:24836220
Astrostatistical Analysis in Solar and Stellar Physics
NASA Astrophysics Data System (ADS)
Stenning, David Craig
the solar cycle that are missed when the model is fit using only the sunspot numbers. In Part II of this dissertation we focus on two related lines of research involving Bayesian analysis of stellar evolution. We first focus on modeling multiple stellar populations in star clusters. It has long been assumed that all star clusters are comprised of single stellar populations---stars that formed at roughly the same time from a common molecular cloud. However, recent studies have produced evidence that some clusters host multiple populations, which has far-reaching scientific implications. We develop a Bayesian hierarchical model for multiple-population star clusters, extending earlier statistical models of stellar evolution (e.g., van Dyk et al. 2009, Stein et al. 2013). We also devise an adaptive Markov chain Monte Carlo algorithm to explore the complex posterior distribution. We use numerical studies to demonstrate that our method can recover parameters of multiple-population clusters, and also show how model misspecification can be diagnosed. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We also explore statistical properties of the estimators and determine that the influence of the prior distribution does not diminish with larger sample sizes, leading to non-standard asymptotics. In a final line of research, we present the first-ever attempt to estimate the carbon fraction of white dwarfs. This quantity has important implications for both astrophysics and fundamental nuclear physics, but is currently unknown. We use a numerical study to demonstrate that assuming an incorrect value for the carbon fraction leads to incorrect white-dwarf ages of star clusters. Finally, we present our attempt to estimate the carbon fraction of the white dwarfs in the well-studied star cluster 47 Tucanae.
NASA Astrophysics Data System (ADS)
Lanci, Luca; Kissel, Catherine; Leonhardt, Roman; Laj, Carlo
2008-08-01
Based on 5 published marine high-resolution sedimentary records of the Iceland Basin Excursion [IBE; Channell, J.E.T., Hodell, D.A., Lehman, B., 1997. Relative geomagnetic paleointensity and ∂ 18O at ODP Site 983/Gardar Drift, North Atlantic since 350 ka. Earth Planet. Sci. Lett. 153, 103-118; Laj, C., Kissel, C., Roberts, A., 2006. Geomagnetic field behavior during the Iceland Basin and Laschamp geomagnetic excursions: a simple transitional field geometry? Geochem. Geophys. Geosystems. 7, Q03004, doi:10.1029/2005GC001122] dated around 186-190 kyr, we present models of the excursional geomagnetic field at the Earth's surface using two different approaches. First a spherical harmonics analysis is performed after synchronization of the records using their paleointensity profiles. Second, we have used an iterative Bayesian inversion procedure, calibrated using the single volcanic data available so far. Both modeling approaches suffer from imperfections of the paleomagnetic signals and mostly from the still poor geographical distribution of detailed records, presently available only from the North Atlantic and the West Pacific. For these reasons, our modeling results should only be regarded as preliminary models of the geomagnetic field during the IBE, susceptible to improvements when including results from future paleomagnetic studies. Nevertheless, both approaches show distinct similarities and are stable against moderate variations of modeling parameters. The general picture is that of a dipole field undergoing a strong reduction, but remaining higher than the non-dipole field all through the excursional process, except for a very short interval of time corresponding to the dipole minimum at the center of the excursion. On the other hand, some differences exist between the results of the two models with each other and with the real data when the virtual geomagnetic pole (VGP) paths are considered. The non-dipole field does not appear to undergo very significant
The physics analysis tools project for the ATLAS experiment
NASA Astrophysics Data System (ADS)
Lenzi, Bruno; Atlas Collaboration
2012-12-01
The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≈1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis toolkits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework.
An SQL-based approach to physics analysis
NASA Astrophysics Data System (ADS)
Limper, Maaike, Dr
2014-06-01
As part of the CERN openlab collaboration a study was made into the possibility of performing analysis of the data collected by the experiments at the Large Hadron Collider (LHC) through SQL-queries on data stored in a relational database. Currently LHC physics analysis is done using data stored in centrally produced "ROOT-ntuple" files that are distributed through the LHC computing grid. The SQL-based approach to LHC physics analysis presented in this paper allows calculations in the analysis to be done at the database and can make use of the database's in-built parallelism features. Using this approach it was possible to reproduce results for several physics analysis benchmarks. The study shows the capability of the database to handle complex analysis tasks but also illustrates the limits of using row-based storage for storing physics analysis data, as performance was limited by the I/O read speed of the system.
Twenty-four tuba harmonics using a single pipe length
NASA Astrophysics Data System (ADS)
Holmes, Bud; Ruiz, Michael J.
2017-03-01
Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 YouTube: Tuba Harmonics (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the harmonics, measured with the free software program Audacity, fall excellently on a linear fit using a spreadsheet. The skillful musical production of so many harmonics with a fixed pipe length is an extraordinary illustration of physics.
NASA Astrophysics Data System (ADS)
Roebber, Elinore; Holder, Gilbert
2017-01-01
I will discuss an alternate framework for treating the angular information in the nanohertz gravitational wave background (GWB). Population models suggest that the GWB produced by binary supermassive black holes will be mostly confused, but that individual frequency bins may be dominated by a single loud source. We consider two toy models to span the range of resolvable to confused GWBs: a single source and a statistically isotropic Gaussian random field. In our alternate framework we treat both cases consistently by analyzing the full-sky redshift field induced by the GWs at the earth in harmonic space. As an example of the utility of this approach, the power spectrum of the redshift maps is the harmonic space analogue of the Hellings and Downs curve. Variance in the redshift power spectrum allows us to characterize the expected variance around the Hellings and Downs curve.
2014-09-01
The concept of nonlinear radar has been explored within the radio-frequency identification ( RFID ) community: associated applications range from...Comput. Electron. Agr. 2002;35:151–169. 7 Nikitin PV, Rao KVS. Harmonic scattering from passive UHF RFID tags. Proc. IEEE Antennas and Propagat. Soc...Symp. 2009. 8 Vera GA, Duroc Y, Tedjini S. RFID test platform: Nonlinear characterization. IEEE Trans. Instrum. M. 2014. 9 Schuman HK. Time-domain
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Synchronous Discrete Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Antippa, Adel F.; Dubois, Daniel M.
2008-10-01
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2π in phase space, is an integral multiple N of the discrete time step Δt. It is fully synchronous when N is even. It is pseudo-synchronous when T/Δt is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is "blue shifted" relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval Δt. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)
None
2016-07-12
This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.
Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)
2010-01-20
This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.
ERIC Educational Resources Information Center
McEvilly, Nollaig; Verheul, Martine; Atencio, Matthew; Jess, Mike
2014-01-01
This paper provides an analysis of the discourses associated with physical education in Scotland's "Curriculum for Excellence". We implement a poststructural perspective in order to identify the discourses that underpin the physical education sections of the "Curriculum for Excellence" "health and well-being"…
High order harmonic generation in rare gases
Budil, Kimberly Susan
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
NASA Astrophysics Data System (ADS)
Al-shyyab, A.; Kahraman, A.
2005-06-01
A non-linear time-varying dynamic model of a typical multi-mesh gear train is proposed in this study. The physical system includes three rigid shafts coupled by two gear pairs. The lumped parameter dynamic model includes the gear backlash in the form of clearance-type displacement functions and parametric variation of gear mesh stiffness values dictated by the gear contact ratios. The system is reduced to a two-degree-of-freedom definite model by using the relative gear mesh displacements as the coordinates. Dimensionless equations of motion are solved for the steady-state period-1 response by using a multi-term Harmonic Balance Method (HBM) in conjunction with discrete Fourier Transforms and a Parametric Continuation scheme. The accuracy of the HBM solutions is demonstrated by comparing them to direct numerical integration solutions. Floquet theory is applied to determine the stability of the steady-state harmonic balance solutions. An example gear train is used to investigate the influence of key system parameters including alternating mesh stiffness amplitudes, gear mesh damping, static torque transmitted, and the gear mesh frequency ratio.
Atmospheric cloud physics thermal systems analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.
NASA Astrophysics Data System (ADS)
Weiss, Ray
Harmon Craig, one of the great pioneers of isotope geochemistry died on 14 March after suffering a massive heart attack at his home in La Jolla, California. He was one day shy of his 77th birthday. Through an academic career of more than fifty years, Craig—or simply “Harmon,” as he was known throughout the world of geochemistry—made a remarkable number of fundamental and far-reaching contributions in a wide range of important areas concerned with the chemical and physical processes by which the solid Earth, the oceans, the atmosphere, and the solar system interact. While his research was broad in scope, it was also characterized by a strong emphasis on meticulous field and laboratory work, and on original and insightful interpretations of the resulting observations.
Dimensional Analysis in Physics and the Buckingham Theorem
ERIC Educational Resources Information Center
Misic, Tatjana; Najdanovic-Lukic, Marina; Nesic, Ljubisa
2010-01-01
Dimensional analysis is a simple, clear and intuitive method for determining the functional dependence of physical quantities that are of importance to a certain process. However, in physics textbooks, very little space is usually given to this approach and it is often presented only as a diagnostic tool used to determine the validity of…
Exploratory versus Confirmatory Factor Analysis of Collegiate Physical Fitness.
ERIC Educational Resources Information Center
Mead, Tim P.; Legg, David L.
Twenty-one variables believed to be important indicators of health related physical fitness were measured on male and female college students between 1991 and 1993 (n=433). Exploratory and confirmatory factor analytic techniques were used in an attempt to derive important components of physical fitness. The exploratory factor analysis identified…
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
Covariant harmonic oscillators and coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, Daesoo; Kim, Young S.; Noz, Marilyn E.
1995-01-01
It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.
Perturbative High Harmonic Wave Front Control
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Brown, Graham; Ko, Dong Hyuk; Kong, Fanqi; Arissian, Ladan; Corkum, P. B.
2017-01-01
We pattern the wave front of a high harmonic beam by intersecting the intense driving laser pulse that generates the high harmonic with a weak control pulse. To illustrate the potential of wave-front control, we imprint a Fresnel zone plate pattern on a harmonic beam, causing the harmonics to focus and defocus. The quality of the focus that we achieve is measured using the spectral wave-front optical reconstruction by diffraction method. We will show that it is possible to enhance the peak intensity by orders of magnitude without a physical optical element in the path of the extreme ultraviolet (XUV) beam. Through perturbative wave-front control, XUV beams can be created with a flexibility approaching what technology allows for visible and infrared light.
Analysis Contracts for Cyber-Physical Systems
2014-09-30
without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use...Selected Voltage Cell Interconnects Thermal Runaway Analysis 6 Analysis Contracts Sensor Sampling PID Controller Actuator Controller Sensor...Discharge Charge Battery Sched Te m p Thermal runaway Assumption Guarantee Read/write Read/write R ea d/ w rit e R ea d/ w rit e deadlock Model
NASA Astrophysics Data System (ADS)
Nuij, P. W. J. M.; Bosgra, O. H.; Steinbuch, M.
2006-11-01
For high-precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The sinusoidal input describing function theory represents an approximative mathematical framework for analysing non-linear system behaviour. This theory, however, limits the description of the non-linear system behaviour to a quasi-linear amplitude-dependent relation between sinusoidal excitation and sinusoidal response. In this paper, an extension to higher-order describing functions is realised by introducing the concept of the harmonics generator. The resulting higher-order sinusoidal input describing functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic response of the system to the magnitude and phase of a sinusoidal excitation. Based on this extension two techniques to measure HOSIDFs are presented. The first technique is FFT based. The second technique is based on IQ (in-phase/quadrature-phase) demodulation. In a simulation, the measurement techniques have been tested by comparing the simulation results to analytically derived results from a known (backlash) non-linearity. In a subsequent practical case study both techniques are used to measure the changes in dynamic behaviour as a function of drive level due to friction in an electric motor. Both methods prove successful for measuring HOSIDFs.
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
More physics in the laundromat
NASA Astrophysics Data System (ADS)
Denny, Mark
2010-12-01
The physics of a washing machine spin cycle is extended to include the spin-up and spin-down phases. We show that, for realistic parameters, an adiabatic approximation applies, and thus the familiar forced, damped harmonic oscillator analysis can be applied to these phases.
Geomagnetic local and regional harmonic analyses.
Alldredge, L.R.
1982-01-01
Procedures are developed for using rectangular and cylindrical harmonic analyses in local and regional areas. Both the linear least squares analysis, applicable when component data are available, and the nonlinear least squares analysis, applicable when only total field data are available, are treated. When component data are available, it is advantageous to work with residual fields obtained by subtracting components derived from a harmonic potential from the observed components. When only total field intensity data are available, they must be used directly. Residual values cannot be used. Cylindrical harmonic analyses are indicated when fields tend toward cylindrical symmetry; otherwise, rectangular harmonic analyses will be more advantageous. Examples illustrating each type of analysis are given.-Author
Simulation of 100-300 GHz solid-state harmonic sources
NASA Technical Reports Server (NTRS)
Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.
1995-01-01
Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.
Relativistic harmonic oscillator revisited
Bars, Itzhak
2009-02-15
The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.
High-order harmonic generation of CO2 with different vibrational modes in an intense laser field
NASA Astrophysics Data System (ADS)
Du, Hui; Zhang, Hong-Dan; Zhang, Jun; Liu, Hai-Feng; Pan, Xue-Fei; Guo, Jing; Liu, Xue-Shen
2016-11-01
We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes (balance vibration, bending vibration, and stretching vibration) driven by an intense laser field. The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes, and the high harmonic efficiency with stretching vibrational mode is the strongest. The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis. Finally, we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated. Project supported by the National Natural Science Foundation of China (Grant Nos. 61575077, 11271158, and 11574117).
Zhang, Lei; Li, Namei; Yang, Xuemei; Chen, Jie
2017-01-01
Abstract Background: LigaSure (LS) Small Jaw is a surgical hemostasis equipment that is newly introduced in thyroid surgery. The objective of this study is to assess the short-term efficacy and safety outcomes of LS Small Jaw compared with clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy. Methods: A literature search was performed in the PubMed and Embase databases (until June 12, 2016) that reported the comparisons between LS Small Jaw and other techniques in thyroidectomy. Quality assessments were performed according to The Cochrane Collaboration's risk of bias tool and a modification of the Newcastle-Ottawa Scale in randomized controlled trials (RCTs) and non-RCTs, respectively. All statistical analyses were conducted using RevMan 5.3. Results: Finally, 7 studies with 813 patients were included into the meta-analysis, and all included studies were comparable with moderate-to-high quality. There was significant reduced operative time in LS Small Jaw, compared with clamp-and-tie (mean difference [MD] = −17.49, 95% confidence interval [CI]: −22.20 to 12.77, P < 0.00001) or Harmonic Focus Scalpel (MD = −2.29, 95% CI: −3.19 to 1.39, P < 0.00001). Besides, other perioperative outcomes including intraoperative blood loss and postoperative blood loss favored LS Small Jaw compared with clamp-and-tie. In terms of complications, less-temporary hypocalcemia rate was observed in LS Small Jaw compared with clamp-and-tie (odds ratio [OR] = 0.49, 95% CI: 0.27–0.90, P = 0.02), although no significant difference was detected compared with Harmonic Focus Scalpel (OR = 0.47, 95% CI: 0.14–1.56, P = 0.22). Other complications such as length of hospital stay, permanent hypocalcemia, temporary or permanent recurrent laryngeal nerve palsy, and hematomas were not significant. Conclusion: In conclusion, LS Small Jaw is more favorable than clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy. PMID:28296728
Gender and Physics: A Theoretical Analysis.
ERIC Educational Resources Information Center
Rolin, Kristina
2001-01-01
Argues that objections raised by Koertge, Gross and Levitt, and Weinberg against feminist scholarship are unwarranted. The concept of gender, as it has been developed in feminist theory, is key to understanding why the first objection is misguided. Social analysis of scientific knowledge is key to understanding why the second and third objections…
A physical analysis of nucleosome positioning
NASA Astrophysics Data System (ADS)
Gerland, Ulrich
2015-03-01
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.
Stevenson, Gareth P; Baker, Ruth E; Kennedy, Gareth F; Bond, Alan M; Gavaghan, David J; Gillow, Kathryn
2013-02-14
The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.
Houle, Marie-Andrée; Couture, Charles-André; Bancelin, Stéphane; Van der Kolk, Jarno; Auger, Etienne; Brown, Cameron; Popov, Konstantin; Ramunno, Lora; Légaré, François
2015-11-01
Collagen ultrastructure plays a central role in the function of a wide range of connective tissues. Studying collagen structure at the microscopic scale is therefore of considerable interest to understand the mechanisms of tissue pathologies. Here, we use second harmonic generation microscopy to characterize collagen structure within bone and articular cartilage in human knees. We analyze the intensity dependence on polarization and discuss the differences between Forward and Backward images in both tissues. Focusing on articular cartilage, we observe an increase in Forward/Backward ratio from the cartilage surface to the bone. Coupling these results to numerical simulations reveals the evolution of collagen fibril diameter and spatial organization as a function of depth within cartilage.
High-Speed Video Analysis in a Conceptual Physics Class
ERIC Educational Resources Information Center
Desbien, Dwain M.
2011-01-01
The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software. Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting…
Offline Forensic Analysis Of Microsoft Windows XP Physical Memory
2006-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. OFFLINE FORENSIC...ANALYSIS OF MICROSOFT® WINDOWS® XP PHYSICAL MEMORY by John S. Schultz September 2006 Thesis Advisor: Chris Eagle Second Reader: George...REPORT DATE September 2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Offline Forensic Analysis Of Microsoft
Plasma physics analysis of SERT-2 operation
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1980-01-01
An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.
Optical High Harmonic Generation in C60
NASA Astrophysics Data System (ADS)
Zhang, Guoping
2005-03-01
C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).
Second International Workshop on Harmonic Oscillators
NASA Technical Reports Server (NTRS)
Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)
1995-01-01
The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.
Harmonic distortion in microwave photonic filters.
Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José
2012-04-09
We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.
Time-Variant Least Squares Harmonic Modeling
2003-01-01
SNR situations. We show applicability to high accuracy speech pitch and heart sound beat epoch estimation. 1. INTRODUCTION Harmonic modeling...techniques have been successfully used for low bit-rate speech coding; however their performance degrades at low SNR . The LSH model is capable of...producing more accurate and robust harmonic analysis, even at very low SNR ; however, as will be shown, its performance degrades significantly with rapid
Time-harmonic optical chirality in inhomogeneous space
NASA Astrophysics Data System (ADS)
Gutsche, Philipp; Poulikakos, Lisa V.; Hammerschmidt, Martin; Burger, Sven; Schmidt, Frank
2016-03-01
Optical chirality has been recently suggested to complement the physically relevant conserved quantities of the well-known Maxwell's equations. This time-even pseudoscalar is expected to provide further insight in polarization phenomena of electrodynamics such as spectroscopy of chiral molecules. Previously, the corresponding continuity equation was stated for homogeneous lossless media only. We extend the underlying theory to arbitrary setups and analyse piecewise-constant material distributions in particular. Our implementation in a Finite Element Method framework is applied to illustrative examples in order to introduce this novel tool for the analysis of time-harmonic simulations of nano-optical devices.
HEPDOOP: High-Energy Physics Analysis using Hadoop
NASA Astrophysics Data System (ADS)
Bhimji, W.; Bristow, T.; Washbrook, A.
2014-06-01
We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.
Spatial Mode Control of High-Order Harmonics
Mercer, I.; Mevel, E.; Zerne, R.; LHuillier, A.; Antoine, P.; Wahlstroem, C. |
1996-08-01
We demonstrate that the spatial mode of high-order harmonics can be continuously controlled. The control is achieved by spatially modulating the degree of elliptical polarization of the fundamental field using birefringent optics. A highly sensitive relationship between the efficiency of harmonic generation and the degree of laser elliptical polarization leads to atoms emitting harmonics only in regions of linear polarization. The harmonics are emitted as annular beams whose angles of divergence can be continuously varied. {copyright} {ital 1996 The American Physical Society.}
Harmonic generation with multiple wiggler schemes
Bonifacio, R.; De Salvo, L.; Pierini, P.
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Braun, J; Buntkowsky, G; Bernarding, J; Tolxdorff, T; Sack, I
2001-06-01
New methods for simulating and analyzing Magnetic Resonance Elastography (MRE) images are introduced. To simulate a two-dimensional shear wave pattern, the wave equation is solved for a field of coupled harmonic oscillators with spatially varying coupling and damping coefficients in the presence of an external force. The spatial distribution of the coupling and the damping constants are derived from an MR image of the investigated object. To validate the simulation as well as to derive the elasticity modules from experimental MRE images, the wave patterns are analyzed using a Local Frequency Estimation (LFE) algorithm based on Gauss filter functions with variable bandwidths. The algorithms are tested using an Agar gel phantom with spatially varying elasticity constants. Simulated wave patterns and LFE results show a high agreement with experimental data. Furthermore, brain images with estimated elasticities for gray and white matter as well as for exemplary tumor tissue are used to simulate experimental MRE data. The calculations show that already small distributions of pathologically changed brain tissue should be detectable by MRE even within the limit of relatively low shear wave excitation frequency around 0.2 kHz.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Astrophysics Data System (ADS)
Makarov, V. V.; Murphy, D. W.
2007-07-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (VX,VY,VZ)=(10.5,18.5,7.3)+/-0.1 km s-1 not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (VX,VY,VZ)=(9.9,15.6,6.9)+/-0.2 km s-1. The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0+/-1.4, B=-13.1+/-1.2, K=1.1+/-1.8, and C=-2.9+/-1.4 km s-1 kpc-1. The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at ~-20 km s-1 kpc-1. A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z>1 kpc), but here we surmise its existence in the thin disk at z<200 pc. The most unexpected and unexplained term within
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc
NASA Astrophysics Data System (ADS)
Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.
2015-06-01
In this meta-analysis, we synthesize the results of 24 studies using the Colorado Learning Attitudes about Science Survey (CLASS) and the Maryland Physics Expectations Survey (MPEX) to answer several questions: (1) How does physics instruction impact students' beliefs? (2) When do physics majors develop expert-like beliefs? and (3) How do students' beliefs impact their learning of physics? We report that in typical physics classes, students' beliefs deteriorate or at best stay the same. There are a few types of interventions, including an explicit focus on model-building and (or) developing expertlike beliefs that lead to significant improvements in beliefs. Further, small courses and those for elementary education and nonscience majors also result in improved beliefs. However, because the available data oversamples certain types of classes, it is unclear whether these improvements are actually due to the interventions, or due to the small class size, or student populations typical of the kinds of classes in which these interventions are most often used. Physics majors tend to enter their undergraduate education with more expertlike beliefs than nonmajors and these beliefs remain relatively stable throughout their undergraduate careers. Thus, typical physics courses appear to be selecting students who already have strong beliefs, rather than supporting students in developing strong beliefs. There is a small correlation between students' incoming beliefs about physics and their gains on conceptual mechanics surveys. This suggests that students with more expertlike incoming beliefs may learn more in their physics courses, but this finding should be further explored and replicated. Some unanswered questions remain. To answer these questions, we advocate several specific types of future studies: measuring students' beliefs in courses with a wider range of class sizes, student populations, and teaching methods, especially large classes with very innovative pedagogy and
NASA Astrophysics Data System (ADS)
First, Leili K.
This dissertation investigates the intersections and interactions of factors which enhance and inhibit creativity in theoretical physics research, using a situational analysis of the fifth Solvay Council on Physics of 1927 (Solvay 1927), a pivotal point in the history of quantum physics. Situational analysis is a postmodern variant of the grounded theory method which views a situation as the unit of analysis and adds situational mapping as an analytic tool. This method specifically works against normalizing or simplifying the points of view, instead drawing out diversity, complexity, and contradiction. It results in "theorizing" rather than theory. This research differs from other analyses of the development of quantum mechanics in looking at technical issues as well as individual, collective, and societal factors. Data examined in this historical analysis includes theoretical papers, conference proceedings, personal letters, and commentary and analysis, both contemporaneous and modern. Literature related to scientific creativity was also consulted. Mapping the situation as a master discourse of Niels Bohr overlapping and interacting with co-existent major discourses on matrix mechanics/Copenhagen interpretation, wave mechanics, and the pilot-wave theory resulted in the most descriptive illustration of the factors influencing scientific creativity before and after Solvay 1927. The master discourse strongly influenced the major discourses and generated the "Copenhagen spirit" which effectively marginalized discourses other than matrix mechanics/Copenhagen interpretation after Solvay 1927.
Physics Metacognition Inventory Part Ii: Confirmatory Factor Analysis and Rasch Analysis
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Bailey, MarLynn; Farley, John
2015-01-01
The Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. In one of our earlier studies, an exploratory factor analysis provided evidence of preliminary construct validity, revealing six components of students' metacognition when solving physics problems including knowledge of cognition,…
Physics-based deformable organisms for medical image analysis
NASA Astrophysics Data System (ADS)
Hamarneh, Ghassan; McIntosh, Chris
2005-04-01
Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.
The design of a multi-harmonic step-tunable gyrotron
NASA Astrophysics Data System (ADS)
Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun
2017-03-01
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.
Ego Network Analysis of Upper Division Physics Student Survey
NASA Astrophysics Data System (ADS)
Brewe, Eric
2017-01-01
We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.
Disability in Physical Education Textbooks: An Analysis of Image Content
ERIC Educational Resources Information Center
Taboas-Pais, Maria Ines; Rey-Cao, Ana
2012-01-01
The aim of this paper is to show how images of disability are portrayed in physical education textbooks for secondary schools in Spain. The sample was composed of 3,316 images published in 36 textbooks by 10 publishing houses. A content analysis was carried out using a coding scheme based on categories employed in other similar studies and adapted…
Physics Metacognition Inventory Part II: Confirmatory factor analysis and Rasch analysis
NASA Astrophysics Data System (ADS)
Taasoobshirazi, Gita; Bailey, MarLynn; Farley, John
2015-11-01
The Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. In one of our earlier studies, an exploratory factor analysis provided evidence of preliminary construct validity, revealing six components of students' metacognition when solving physics problems including knowledge of cognition, planning, monitoring, evaluation, debugging, and information management. The college students' scores on the inventory were found to be reliable and related to students' physics motivation and physics grade. However, the results of the exploratory factor analysis indicated that the questionnaire could be revised to improve its construct validity. The goal of this study was to revise the questionnaire and establish its construct validity through a confirmatory factor analysis. In addition, a Rasch analysis was applied to the data to better understand the psychometric properties of the inventory and to further evaluate the construct validity. Results indicated that the final, revised inventory is a valid, reliable, and efficient tool for assessing student metacognition for physics problem solving.
Light and harmonicity: the golden section
NASA Astrophysics Data System (ADS)
Raftopoulos, Dionysios G.
2015-09-01
Adhering to Werner Heisenberg's and to the school of Copenhagen's physical philosophy we introduce the localized observer as an absolutely necessary element of a consistent physical description of nature. Thus we have synthesized the theory of the harmonicity of the field of light, which attempts to present a new approach to the events in the human perceptible space. It is an axiomatic theory based on the selection of the projective space as the geometrical space of choice, while its first fundamental hypothesis is none other than special relativity theory's second hypothesis, properly modified. The result is that all our observations and measurements of physical entities always refer not to their present state but rather to a previous one, a conclusion evocative of the "shadows" paradigm in Plato's cave allegory. In the kinematics of a material point this previous state we call "conjugate position", which has been called the "retarded position" by Richard Feynman. We prove that the relation of the present position with its conjugate is ruled by a harmonic tetrad. Thus the relation of the elements of the geometrical (noetic) and the perceptible space is harmonic. In this work we show a consequence of this harmonic relation: the golden section.
Summers, Mark A.; Eimerl, David; Boyd, Robert D.
1985-01-01
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").
Summers, M.A.; Eimerl, D.; Boyd, R.D.
1982-06-10
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).
Identification and tracking of harmonic sources in a power system using a Kalman filter
Ma, H.; Girgis, A.A.
1996-07-01
In this paper, two problems have been addressed on harmonic sources identification: the optimal locations of a limited number of harmonic meters and the optimal dynamic estimates of harmonic source locations and their injections in unbalanced three-phase power systems. A Kalman filtering is used to attack these problems. System error covariance analysis by the Kalman filter associated with a harmonic injection estimate determines the optimal arrangement of limited harmonic meters. Based on the optimally-arranged harmonic metering locations, the Kalman filter then yields the optimal dynamic estimates of harmonic injections with a few noisy harmonic measurements. The method is dynamic and has the capability of identifying, analyzing and tracking each harmonic injection at all buses in unbalanced three-phase power systems. Actual recorded harmonic measurements and simulated data in a power distribution system are provided to prove the efficiency of this approach.
Superresonant Radiation Stimulated by Higher Harmonics
NASA Astrophysics Data System (ADS)
Lourés, Cristian Redondo; Roger, Thomas; Faccio, Daniele; Biancalana, Fabio
2017-01-01
Solitons propagating in media with higher-order dispersion will shed radiation known as resonant radiation, with applications in frequency broadening, deep UV sources for spectroscopy, and fundamental studies of soliton physics. Using a recently proposed equation that models the behavior of ultrashort optical pulses in nonlinear media using the analytic signal, we find that the resonant radiation associated with the third-harmonic generation term of the equation is parametrically stimulated with an unprecedented gain. Resonant radiation levels, typically only a small fraction of the soliton, are now as intense as the soliton itself. The mechanism is universal and works also in normal dispersion and with harmonics higher than the third. We report experimental hints of this superresonant radiation stimulated by the fifth harmonic in diamond.
Dynamics and ergodicity of the infinite harmonic crystal
NASA Astrophysics Data System (ADS)
van Hemmen, J. L.
1980-10-01
This is a comprehensive, relatively formal study of the a priori infinite harmonic crystal. A phase space is introduced and the equations of motion of a harmonic crystal, which need not be a primitive one, are explicitly solved by several methods. The crystal is taken infinite right at the beginni ng. Exploiting the fact that the dynamics is known we derive the thermal equilibrium state of the infinite system. In so doing we use the classical Kubo-Martin-Schwinger (KMS) condition. The thermal equilibrium state is a, so-called, gaussian measure on the phase space. The traditional procedure of the thermodynamic limit is considered as well. In both cases we exploit the advantages of the technique of Fourier transforms of measures. This technique is elucidated in a separate section, where the many connections with Euclidean quantum field theory are also indicated. Finally we settle the problem of the existence of a crystalline state in its appropriate setting: the infinite system. The system is a “crystal” only if it is three-dimensional. The three essential ingredients of the ergodic analysis are a phase space, a dynamics, and an invariant state, here the thermal equilibrium state. A system is ergodic when the time average of any observable equals its phase average. There are, however, stronger notions of ergodicity which are classified in an “ergodic hierarchy”. When a system is Bernoulli it is at the top of this hierarchy. A finite harmonic system is never ergodic. Here it is shown that, generally speaking, a perfect, infinite harmonic crystal in thermal equilibrium has to be Bernoulli. A detailed discussion of the physical relevance of this result has been included.
NASA Astrophysics Data System (ADS)
Tadros, H.; Ballinger, W. E.; Taylor, A. N.; Heavens, A. F.; Efstathiou, G.; Saunders, W.; Frenk, C. S.; Keeble, O.; McMahon, R.; Maddox, S. J.; Oliver, S.; Rowan-Robinson, M.; Sutherland, W. J.; White, S. D. M.
1999-05-01
We apply the formalism of spherical harmonic decomposition to the galaxy density field of the IRAS PSCz redshift survey. The PSCz redshift survey has almost all-sky coverage and includes IRAS galaxies to a flux limit of 0.6 Jy. Using maximum likelihood methods to examine (to first order) the distortion of the galaxy pattern resulting from redshift coordinates, we have measured the parameter beta=Omega^{0.6}/b. We also simultaneously measure either (a) the undistorted amplitude of perturbations in the galaxy distribution when a parametrized power spectrum is assumed, or (b) the shape and amplitude of the real-space power spectrum if the band-power in a set of passbands is measured in a step-wise fashion. These methods are extensively tested on a series of CDM, Lambda CDM and MDM simulations and are found to be unbiased. We obtain consistent results for the subset of the PSCz catalogue with flux above 0.75 Jy, but inclusion of galaxies to the formal flux limit of the catalogue gives variations which are larger than our internal errors. For the 0.75-Jy catalogue we find, in the case of a parametrized power spectrum, beta=0.58+/-0.26 and the amplitude of the real-space power measured at wavenumber k=0.1h Mpc^-1 is Delta_0.1=0.42+/-0.03. Freeing the shape of the power spectrum we find that beta=0.47+/-0.16 (conditional error) and Delta_0.1=0.47+/-0.03. The shape of the real-space power spectrum is consistent with a Gamma=0.2 CDM-like model, but does not strongly rule out a number of other models. Finally by combining our estimate of the amplitude of galaxy clustering and the distortion parameter we find the amplitude of mass fluctuations on a scale k=0.1h Mpc^-1 is Delta_rho=0.24Omega_0^-0.6, with an uncertainty of 50 per cent.
Game theoretic analysis of physical protection system design
Canion, B.; Schneider, E.; Bickel, E.; Hadlock, C.; Morton, D.
2013-07-01
The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.
Data management, archiving, visualization and analysis of space physics data
NASA Technical Reports Server (NTRS)
Russell, C. T.
1995-01-01
A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
A narrative analysis of spiritual distress in geriatric physical rehabilitation.
Mundle, Robert
2015-03-01
Drawing upon narrative data generated in a semi-structured interview with an 82-year-old female patient in geriatric physical rehabilitation, this clinical case study provides a detailed example of recognizing, assessing, and addressing spiritual distress as a symptom of physical pain. Data analysis focused on narrative content as well as on the interactive and performative aspects of narrating spiritual health issues in a close reading of two "attachment narratives." Results support the "narrative turn" in healthcare, including the therapeutic benefits of empathic listening as "narrative care" in geriatric rehabilitation and in healthcare in general.
NASA Astrophysics Data System (ADS)
Song, Ting; Ma, Qin; Sun, Xiao-Wei; Liu, Zi-Jiang; Wei, Xiao-Ping; Tian, Jun-Hong
2017-02-01
First-principles calculations based on density functional theory and quasi-harmonic Debye model are used to investigate the high-pressure and high-temperature physical properties, including the lattice constant, magnetic moment, density of states, pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter for the new Mn-based full-Heusler alloy Mn2RuSi in CuHg2Ti-type structure. The optimized equilibrium lattice constant is consistent with experimental and other theoretical results. The calculated total spin magnetic moment remains an integral value of 2.0 μB in the lattice constant range of 5.454-5.758 Å, and then decreases very slowly with the decrease of lattice constant to 5.333 Å. By the spin resolved density of states calculations, we have shown that Mn2RuSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The effects of temperature and pressure on bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter are opposite, which are consistent with a compression rate of volume. Furthermore, the results show that the effect of temperature is larger than pressure for heat capacity and the effect of high temperature and pressure on thermal expansion coefficient is small. All the properties of Mn2RuSi alloy are summarized in the pressure range of 0-100 GPa and the temperature up to 1200 K.
Kirchberger, Martin
2016-01-01
A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122
Booster Double Harmonic Setup Notes
Gardner, C. J.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
Reactor Physics Methods and Analysis Capabilities in SCALE
DeHart, Mark D; Bowman, Stephen M
2011-01-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
Reactor Physics Methods and Analysis Capabilities in SCALE
Mark D. DeHart; Stephen M. Bowman
2011-05-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
A Global Sensitivity Analysis Methodology for Multi-physics Applications
Tong, C H; Graziani, F R
2007-02-02
Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.
Theoretical and experimental analysis of the physics of water rockets
NASA Astrophysics Data System (ADS)
Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernández-Francos, J.; Galdo-Vega, M.
2010-09-01
A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several mathematical models have been proposed to investigate and predict their physics. However, the real equations that describe the physics of the rockets are so complicated that certain assumptions are usually made to obtain models that are easier to use. These models provide relatively good predictions but fail in describing the complex physics of the flow. This paper presents a detailed theoretical analysis of the physics of water rockets that concludes with the proposal of a physical model. The validity of the model is checked by a series of field tests. The tests showed maximum differences with predictions of about 6%. The proposed model is finally used to investigate the temporal evolution of some significant variables during the propulsion and flight of the rocket. The experience and procedure described in this paper can be proposed to graduate students and also at undergraduate level if certain simplifications are assumed in the general equations.
QA/QC requirements for physical properties sampling and analysis
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories also measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.
Synchronisation and coupling analysis: applied cardiovascular physics in sleep medicine.
Wessel, Niels; Riedl, Maik; Kramer, Jan; Muller, Andreas; Penzel, Thomas; Kurths, Jurgen
2013-01-01
Sleep is a physiological process with an internal program of a number of well defined sleep stages and intermediate wakefulness periods. The sleep stages modulate the autonomous nervous system and thereby the sleep stages are accompanied by different regulation regimes for the cardiovascular and respiratory system. The differences in regulation can be distinguished by new techniques of cardiovascular physics. The number of patients suffering from sleep disorders increases unproportionally with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop highly-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Methods of cardiovascular physics are used to analyze heart rate, blood pressure and respiration to detect changes of the autonomous nervous system in different diseases. Data driven modeling analysis, synchronization and coupling analysis and their applications to biosignals in healthy subjects and patients with different sleep disorders are presented. Newly derived methods of cardiovascular physics can help to find indicators for these health risks.
Influence of a harmonic in the response on randomdec signature
NASA Astrophysics Data System (ADS)
Modak, S. V.
2011-10-01
Operational Modal Analysis (OMA) extracts modal parameters of a structure using their output response, during operation in general. OMA, when applied to mechanical engineering structures is often faced with the problem of harmonics present in the output response, and can cause erroneous modal extraction. The random decrement (RD) method of OMA helps extract randomdec signature data that can be further processed to obtain modal parameters of a structure. This paper for the first time analyses influence of a harmonic in the response on randomdec signature. Fundamental equations based on probability are derived for analyzing the influence of a harmonic on randomdec signature. These probabilistic equations are then used to predict the amplitude of the harmonic in randomdec signature. Randomdec signature of a pure harmonic signal is also derived and it is shown that it is of the same frequency as that of the harmonic signal, but has an amplitude equal to the trigger level used to find the randomdec. Based on the developed theory, new insights into the influence of harmonic on randomdec are presented based on an example. It is shown that the influence of the harmonic on randomdec is characterized by the conditional probability density function of the harmonic. It is found that more unsymmetrical is this PDF, more is the amplitude of the harmonic that is present in the randomdec signature. The amplitude of the harmonic in the randomdec is shown to be the conditional expected value of the harmonic. It is also shown that as the random component of the response increases then the amplitude of the harmonic in the randomdec decreases and in the limit can be completely eliminated.
Coherent harmonic production using a two-section undulator FEL
Jaroszynski, D.A.; Prazeres, R.; Glotin, F.
1995-12-31
We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.
Renuga, S; Muthu, S
2014-01-24
Density functional theory (DFT) computations have become an efficient tool in the prediction of molecular structure, harmonic force fields, vibrational wave numbers as well as the IR and Raman intensities of pharmaceutically important molecule. In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide. The solid phase FT-IR and FT-Raman spectra of (S)-2-(2-oxopyrrolidin-1-yl) butanamide were recorded in the region 4000-450 cm(-1) and 4000-50 cm(-1) respectively. Harmonic frequencies of this compound were determined and analyzed by DFT utilizing 6-31G(d,p), 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the σ(*) and π(*) antibonding orbital's and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The observed and calculated wave numbers are found to be in good agreement. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.
NASA Astrophysics Data System (ADS)
Renuga, S.; Muthu, S.
2014-01-01
Density functional theory (DFT) computations have become an efficient tool in the prediction of molecular structure, harmonic force fields, vibrational wave numbers as well as the IR and Raman intensities of pharmaceutically important molecule. In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis and detonation properties of (S)-2-(2-oxopyrrolidin-1-yl) butanamide. The solid phase FT-IR and FT-Raman spectra of (S)-2-(2-oxopyrrolidin-1-yl) butanamide were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Harmonic frequencies of this compound were determined and analyzed by DFT utilizing 6-31G(d,p), 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the σ* and π* antibonding orbital's and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The observed and calculated wave numbers are found to be in good agreement. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.
Ultrafast adiabatic second harmonic generation
NASA Astrophysics Data System (ADS)
Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim
2017-03-01
We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.
Ultrafast adiabatic second harmonic generation.
Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim
2017-03-01
We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.
Extended range harmonic filter
NASA Technical Reports Server (NTRS)
Jankowski, H.; Geia, A. J.; Allen, C. C.
1973-01-01
Two types of filters, leaky-wall and open-guide, are combined into single component. Combination gives 10 db or greater additional attenuation to fourth and higher harmonics, at expense of increasing loss of fundamental frequency by perhaps 0.05 to 0.08 db. Filter is applicable to all high power microwave transmitters, but is especially desirable for satellite transmitters.
Harmonically excited orbital variations
Morgan, T.
1985-08-06
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.
ERIC Educational Resources Information Center
Pruitt, Kathryn Ringler
2012-01-01
This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…
Introducing Simple Harmonic Motion.
ERIC Educational Resources Information Center
Roche, John
2002-01-01
Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)
ERIC Educational Resources Information Center
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Living with power system harmonics
Palko, E.
1992-06-18
This paper reports the effect of harmonics on electronic equipment in manufacturing plants which was essentially a nonproblem as recently as nine years ago. In years past, harmonics were essentially a problem experienced by electric utility companies, with a relatively few types of industries impressing a serous degree of harmonics onto the utility system. Utilities typically solved their harmonic problems by imposing limits on the amount of harmonics that a customer was permitted to reflect onto the utility system, and assessing heavy financial penalties for noncompliance. Today's electronic equipment creates a problem that feeds on itself: solid-state electronic equipment is a flagrant generator of harmonics, and solid-state equipment is, itself, intolerant of harmonics and is susceptible to malfunction and failure when served from a harmonic-laden power source.
Tissue Characterization on Ultrasound Harmonic Signals using Nakagami Statistics
NASA Astrophysics Data System (ADS)
Lin, Fanglue; Cristea, Anca; Cachard, Christian; Basset, Olivier
Quantitative ultrasound (QUS) imaging provides a way to characterize biological tissue. The QUS estimates can be obtained from the envelope statistics. Previous studies are mainly based on the whole backscattered signals analysis. However, the ultrasound propagation is a nonlinear process and the harmonic signals can therefore reveal the nonlinear nature of a biological medium. The present study investigates the statistics of harmonic signal envelopes to relate the distribution parameters to the nonlinear coefficients. The main results demonstrate that the distributions exhibit a different behavior for fundamental and harmonic signals and that media with different nonlinearities can be distinguished, when using Nakagami statistics on the harmonic signal envelopes.
Young children's harmonic perception.
Costa-Giomi, Eugenia
2003-11-01
Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.
Harmonization, Trade, and the Environment.
ERIC Educational Resources Information Center
Stevens, Candice
1993-01-01
Discusses the harmonization of international methods for the development and administration of product standards. Defines the term "harmonization" and discusses the harmonization of environmental policies and purposes involving product standards; environmental regulations on production methods, technologies, and practices; and life-cycle…
Physics-Based Simulator for NEO Exploration Analysis & Simulation
NASA Technical Reports Server (NTRS)
Balaram, J.; Cameron, J.; Jain, A.; Kline, H.; Lim, C.; Mazhar, H.; Myint, S.; Nayar, H.; Patton, R.; Pomerantz, M.; Quadrelli, M.; Shakkotai, P.; Tso, K.
2011-01-01
As part of the Space Exploration Analysis and Simulation (SEAS) task, the National Aeronautics and Space Administration (NASA) is using physics-based simulations at NASA's Jet Propulsion Laboratory (JPL) to explore potential surface and near-surface mission operations at Near Earth Objects (NEOs). The simulator is under development at JPL and can be used to provide detailed analysis of various surface and near-surface NEO robotic and human exploration concepts. In this paper we describe the SEAS simulator and provide examples of recent mission systems and operations concepts investigated using the simulation. We also present related analysis work and tools developed for both the SEAS task as well as general modeling, analysis and simulation capabilites for asteroid/small-body objects.
Second harmonic inversion for ultrasound contrast harmonic imaging.
Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L M J; Cachard, Christian; van der Steen, Antonius F W; Basset, Olivier; de Jong, Nico
2011-06-07
Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p″, of the same frequency f(0) and the same amplitude P(0) to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.
Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling
2012-02-01
Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology.
NASA Astrophysics Data System (ADS)
Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling
2012-02-01
Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology.
NASA Astrophysics Data System (ADS)
Weismann, Martin; Panoiu, Nicolae C.
2016-07-01
Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which rely on nonlinear optical effects in these 2D materials. This paper introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials.
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution.
Vasudevan, R K; Okatan, M Baris; Rajapaksa, I; Kim, Y; Marincel, D; Trolier-McKinstry, S; Jesse, S; Valanoor, N; Kalinin, S V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr(1-x)Ti(x))O₃ (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of n(th) order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials.
Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC
2012-02-15
Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.
Lee, Gwo Giun; Lin, Huan-Hsiang; Tsai, Ming-Rung; Chou, Sin-Yo; Lee, Wen-Jeng; Liao, Yi-Hua; Sun, Chi-Kuang; Chen, Chun-Fu
2013-04-01
Traditional biopsy procedures require invasive tissue removal from a living subject, followed by time-consuming and complicated processes, so noninvasive in vivo virtual biopsy, which possesses the ability to obtain exhaustive tissue images without removing tissues, is highly desired. Some sets of in vivo virtual biopsy images provided by healthy volunteers were processed by the proposed cell segmentation approach, which is based on the watershed-based approach and the concept of convergence index filter for automatic cell segmentation. Experimental results suggest that the proposed algorithm not only reveals high accuracy for cell segmentation but also has dramatic potential for noninvasive analysis of cell nuclear-to-cytoplasmic ratio (NC ratio), which is important in identifying or detecting early symptoms of diseases with abnormal NC ratios, such as skin cancers during clinical diagnosis via medical imaging analysis.
Ho, Derek; Lugo, Miguel R; Merrill, A Rod
2013-02-15
The pre-channel state of helices 6, 7, and 10 (Val(447)-Gly(475) and Ile(508)-Ile(522)) of colicin E1 was investigated by a site-directed fluorescence labeling technique. A total of 44 cysteine variants were purified and covalently labeled with monobromobimane fluorescent probe. A variety of fluorescence properties of the bimane fluorophore were measured for both the soluble and membrane-bound states of the channel peptide, including the fluorescence emission maximum, fluorescence anisotropy, and membrane bilayer penetration depth. Using site-directed fluorescence labeling combined with our novel helical periodicity analysis method, the data revealed that helices 6, 7, and 10 are separate amphipathic α-helices with a calculated periodicity of T = 3.34 ± 0.08 for helix 6, T = 3.56 ± 0.03 for helix 7, and T = 2.99 ± 0.12 for helix 10 in the soluble state. In the membrane-bound state, the helical periodicity was determined to be T = 3.00 ± 0.15 for helix 6, T = 3.68 ± 0.03 for helix 7, and T = 3.47 ± 0.04 for helix 10. Dual fluorescence quencher analysis showed that both helices 6 and 7 adopt a tilted topology that correlates well with the analysis based on the fluorescence anisotropy profile. These data provide further support for the umbrella model of the colicin E1 channel domain.
Kitchen Physics: Lessons in Fluid Pressure and Error Analysis
NASA Astrophysics Data System (ADS)
Vieyra, Rebecca Elizabeth; Vieyra, Chrystian; Macchia, Stefano
2017-02-01
Although the advent and popularization of the "flipped classroom" tends to center around at-home video lectures, teachers are increasingly turning to at-home labs for enhanced student engagement. This paper describes two simple at-home experiments that can be accomplished in the kitchen. The first experiment analyzes the density of four liquids using a waterproof case and a smartphone barometer in a container, sink, or tub. The second experiment determines the relationship between pressure and temperature of an ideal gas in a constant volume container placed momentarily in a refrigerator freezer. These experiences provide a ripe opportunity both for learning fundamental physics concepts as well as to investigate a variety of error analysis techniques that are frequently overlooked in introductory physics courses.
Introduction to the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, J. L. (Editor); Peters, D. J. (Editor)
1985-01-01
The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
Degradation in finite-harmonic subcarrier demodulation
NASA Technical Reports Server (NTRS)
Feria, Y.; Townes, S.; Pham, T.
1995-01-01
Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.
Theory of harmonic dissipation in disordered solids
NASA Astrophysics Data System (ADS)
Damart, T.; Tanguy, A.; Rodney, D.
2017-02-01
Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
High Harmonic Generation at Long Wavelengths
Sheehy, B.; Martin, J. D. D.; DiMauro, L. F.; Agostini, P.; Schafer, K. J.; Gaarde, M. B.; Kulander, K. C.
1999-12-20
High harmonic radiation spectra up to 19th order in alkali metal vapors excited by an intense, picosecond mid-infrared (3-4 {mu} m ) laser are reported and compared to theory. The strong-field dynamics in the alkali metal atoms exhibit significant differences from all previously studied systems due to the strong coupling between their ground and first excited states. (c) 1999 The American Physical Society.
Driven harmonic oscillator as a quantum simulator for open systems
Piilo, Jyrki; Maniscalco, Sabrina
2006-09-15
We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.
Physical explosion analysis in heat exchanger network design
NASA Astrophysics Data System (ADS)
Pasha, M.; Zaini, D.; Shariff, A. M.
2016-06-01
The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.
Computational particle physics for event generators and data analysis
NASA Astrophysics Data System (ADS)
Perret-Gallix, Denis
2013-08-01
High-energy physics data analysis relies heavily on the comparison between experimental and simulated data as stressed lately by the Higgs search at LHC and the recent identification of a Higgs-like new boson. The first link in the full simulation chain is the event generation both for background and for expected signals. Nowadays event generators are based on the automatic computation of matrix element or amplitude for each process of interest. Moreover, recent analysis techniques based on the matrix element likelihood method assign probabilities for every event to belong to any of a given set of possible processes. This method originally used for the top mass measurement, although computing intensive, has shown its efficiency at LHC to extract the new boson signal from the background. Serving both needs, the automatic calculation of matrix element is therefore more than ever of prime importance for particle physics. Initiated in the 80's, the techniques have matured for the lowest order calculations (tree-level), but become complex and CPU time consuming when higher order calculations involving loop diagrams are necessary like for QCD processes at LHC. New calculation techniques for next-to-leading order (NLO) have surfaced making possible the generation of processes with many final state particles (up to 6). If NLO calculations are in many cases under control, although not yet fully automatic, even higher precision calculations involving processes at 2-loops or more remain a big challenge. After a short introduction to particle physics and to the related theoretical framework, we will review some of the computing techniques that have been developed to make these calculations automatic. The main available packages and some of the most important applications for simulation and data analysis, in particular at LHC will also be summarized (see CCP2012 slides [1]).
Management of the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, James L.; Thomas, Valerie L.; Butler, Todd F.; Peters, David J.; Sisson, Patricia L.
1990-01-01
Here, the purpose is to define the operational management structure and to delineate the responsibilities of key Space Physics Analysis Network (SPAN) individuals. The management structure must take into account the large NASA and ESA science research community by giving them a major voice in the operation of the system. Appropriate NASA and ESA interfaces must be provided so that there will be adequate communications facilities available when needed. Responsibilities are delineated for the Advisory Committee, the Steering Committee, the Project Scientist, the Project Manager, the SPAN Security Manager, the Internetwork Manager, the Network Operations Manager, the Remote Site Manager, and others.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab
2012-05-14
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis
Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.
2007-07-01
Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.
Hyperbolic Harmonic Mapping for Surface Registration.
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-05-12
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.
Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.
2009-09-01
This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.
Physics-based shape deformations for medical image analysis
NASA Astrophysics Data System (ADS)
Hamarneh, Ghassan; McInerney, Tim
2003-05-01
Powerful, flexible shape models of anatomical structures are required for robust, automatic analysis of medical images. In this paper we investigate a physics-based shape representation and deformation method in an effort to meet these requirements. Using a medial-based spring-mass mesh model, shape deformations are produced via the application of external forces or internal spring actuation. The range of deformations includes bulging, stretching, bending, and tapering at different locations, scales, and with varying amplitudes. Springs are actuated either by applying deformation operators or by activating statistical modes of variation obtained via a hierarchical regional principal component analysis. We demonstrate results on both synthetic data and on a spring-mass model of the corpus callosum, obtained from 2D mid-sagittal brain Magnetic Resonance (MR) Images.
Core physics analysis of 100% MOX Core in IRIS
Franceschini, F.; Petrovic, B.
2006-07-01
International Reactor Innovative and Secure (IRIS) is an advanced small-to-medium-size (1000 MWt) Pressurized Water Reactor (PWR), targeting deployment around 2015. Its reference core design is based on the current Westinghouse UO{sub 2} fuel with less than 5% {sup 235}U, and the analysis has been previously completed confirming good performance. The full MOX fuel core is currently under evaluation as one of the alternatives for the second wave of IRIS reactors. A full 3-D neutronic analysis has been performed to examine main core performance parameters, such as critical boron concentration, peaking factors, discharge burnup, etc. The enhanced moderation of the IRIS fuel lattice facilitates MOX core design, and all the obtained results are within the requirements, confirming viability of this option from the reactor physics standpoint. (authors)
Numerical generation of hyperspherical harmonics for tetra-atomic systems.
Lepetit, Bruno; Wang, Desheng; Kuppermann, Aron
2006-10-07
A numerical generation method of hyperspherical harmonics for tetra-atomic systems, in terms of row-orthonormal hyperspherical coordinates-a hyper-radius and eight angles-is presented. The nine-dimensional coordinate space is split into three three-dimensional spaces, the physical rotation, kinematic rotation, and kinematic invariant spaces. The eight-angle principal-axes-of-inertia hyperspherical harmonics are expanded in Wigner rotation matrices for the physical and kinematic rotation angles. The remaining two-angle harmonics defined in kinematic invariant space are expanded in a basis of trigonometric functions, and the diagonalization of the kinetic energy operator in this basis provides highly accurate harmonics. This trigonometric basis is chosen to provide a mathematically exact and finite expansion for the harmonics. Individually, each basis function does not satisfy appropriate boundary conditions at the poles of the kinetic energy operator; however, the numerically generated linear combination of these functions which constitutes the harmonic does. The size of this basis is minimized using the symmetries of the system, in particular, internal symmetries, involving different sets of coordinates in nine-dimensional space corresponding to the same physical configuration.
Positron emission tomography: physics, instrumentation, and image analysis.
Porenta, G
1994-01-01
Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center.
Physical Workload Analysis Among Small Industry Activities Using Postural Data.
Rabiul Ahasan, M; Väyrynen, Seppo; Kirvesoja, Heli
1996-01-01
Small industry workers are often involved in manual handling operations that require awkward body postures, therefore, musculoskeletal disorders and occupational injuries are a major problem. In this study, various types of tasks were recorded with a video camera to chart and analyze different postures by computerized OWAS (Ovako Working Posture Analysing System). Collected data showed that poor postures were adopted not only for lifting or hammering operation but also for other tasks; mostly with bent and twisted back. The main aim was to determine the physical workload by identifying harmful postures and to develop recommendations for improving the existing situation. Forty-eight male workers from eight different units (M age = 37 years) participated. The performed activities were then divided into 26 subtasks. Altogether, 1,534 postures were selected for analysis and then classified into different OAC (OWAS Action Categories). From all observations, unhealthy postures, for which corrective measures had to be considered immediately (i.e., 10.6% classified as OAC III, and 3.3% as OAC IV), were found. The applied method was useful in determining the physical workload by locating potential activities due to harmful postures, providing a detailed description with analysis, and suggesting successful means to reduce postural load.
Analysis of Radon Decay Data and its Implications for Physics, Geophysics, and Solar Physics.
NASA Astrophysics Data System (ADS)
Sturrock, Peter A.; Fischbach, E.; Jenkins, J. H.; Steinitz, G.
2012-05-01
We present an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis also reveals a number of periodicities, notably at 11.2 year-1 and 12.5 year-1, which we have found in other nuclear-decay data --including data acquired at the Brookhaven National Laboratory and the Physiklisch-Technische Bundesanstalt-- which we attribute to a solar influence. A distinct property of the GSI results is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. We speculate on possible interpretations of this curious result. Solar neutrinos remain our prime suspect as the agent responsible for beta-decay anomalies. These results have implications for physics (that nuclear decay rates are not constant and may be stimulated); for geophysics (that the variability of radon measurements cannot be ascribed entirely to atmospheric and solid-earth processes); and for solar physics (that the Sun contains an inner tachocline, separating a slowly rotating core from the radiative zone, which has properties similar to those of the outer tachocline separating the radiative zone from the convection zone). This work was supported by DOE grant DE-AC-02-76ER071428.
Second-harmonic radiating imaging probes and harmonic holography
NASA Astrophysics Data System (ADS)
Pu, Ye; Psaltis, Demetri
2016-10-01
Compared with other imaging probes such as fluorescent dyes and quantum dots, second-harmonic radiating imaging probes (SHRIMPs) provide a unique ultrafast, coherent optical contrast that is free of photobleaching and emission intermittency. Using the second-harmonic signal emitted from SHRIMPs, harmonic holography achieves threedimensional holographic imaging with a color contrast similar to fluorescence microscopy where the uninterested background scattering is efficiently suppressed by an optical filter. The coherent contrast provided by SHRIMPs also enables imaging through turbid media via digital phase conjugation. Here we review the developments and applications of SHRIMPs and harmonic holography.
ERIC Educational Resources Information Center
Bromley, D. Allan
1980-01-01
The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)
NASA Astrophysics Data System (ADS)
Rexer, Moritz; Hirt, Christian
2015-11-01
In geodesy and geophysics, spherical harmonic techniques are popular for modelling topography and potential fields with ever-increasing spatial resolution. For ultra-high-degree spherical harmonic modelling, i.e. degree 10,000 or more, classical algorithms need to be extended to avoid under- or overflow problems associated with the computation of associated Legendre functions (ALFs). In this work, two quadrature algorithms—the Gauss-Legendre (GL) quadrature and the quadrature following Driscoll/Healy (DH)—and their implementation for the purpose of ultra-high (surface) spherical harmonic analysis of spheroid functions are reviewed and modified for application to ultra-high degree. We extend the implementation of the algorithms in the SHTOOLS software package (v2.8) by (1) the X-number (or Extended Range Arithmetic) method for accurate computation of ALFs and (2) OpenMP directives enabling parallel processing within the analysis. Our modifications are shown to achieve feasible computation times and a very high precision: a degree-21,600 band-limited (=frequency limited) spheroid topographic function may be harmonically analysed with a maximum space-domain error of 3 × 10^{-5} and 5 × 10^{-5} m in 6 and 17 h using 14 CPUs for the GL and for the DH quadrature, respectively. While not being inferior in terms of precision, the GL quadrature outperforms the DH algorithm in terms of computation time. In the second part of the paper, we apply the modified quadrature algorithm to represent for—the first time—gridded topography models for Earth, Moon and Mars as ultra-high-degree series expansions comprising more than 2 billion coefficients. For the Earth's topography, we achieve a resolution of harmonic degree 43,200 (equivalent to 500 m in the space domain), for the Moon of degree 46,080 (equivalent to 120 m) and Mars to degree 23,040 (equivalent to 460 m). For the quality of the representation of the topographic functions in spherical harmonics, we use the
Towards automated biomedical ontology harmonization.
Uribe, Gustavo A; Lopez, Diego M; Blobel, Bernd
2014-01-01
The use of biomedical ontologies is increasing, especially in the context of health systems interoperability. Ontologies are key pieces to understand the semantics of information exchanged. However, given the diversity of biomedical ontologies, it is essential to develop tools that support harmonization processes amongst them. Several algorithms and tools are proposed by computer scientist for partially supporting ontology harmonization. However, these tools face several problems, especially in the biomedical domain where ontologies are large and complex. In the harmonization process, matching is a basic task. This paper explains the different ontology harmonization processes, analyzes existing matching tools, and proposes a prototype of an ontology harmonization service. The results demonstrate that there are many open issues in the field of biomedical ontology harmonization, such as: overcoming structural discrepancies between ontologies; the lack of semantic algorithms to automate the process; the low matching efficiency of existing algorithms; and the use of domain and top level ontologies in the matching process.
Ganeev, R A
2015-09-30
We discuss the emergence of interest in the high-order harmonic generation (HHG) of ultrashort pulses propagated through laser-produced plasmas. It is shown that, during the last few years, substantial amendments of plasma HHG allowed in some cases the characteristics of gas HHG to be surpassed. The attractiveness of a new approach in coherent extreme ultraviolet radiation generation is demonstrated, which can also be used as a tool for laser-ablation-induced HHG spectroscopy of a giant class of solids. We present general ideas and prospects for this relatively new field of nonlinear optics. (review)
2008-07-18
technologies © 2008 Carnegie Mellon University Harmonization: Multimodel Improvement in Practice 5 SEI Webinar Series Competition for implementation resources...4 and 5 ...‖ • ―[6S]... an enabler for measuring the value of... improvements‖ • ―Six Sigma provides a way to connect process improvement and...business value‖ • ―..conducting Level 5 SCAMPI appraisals in 5 -6 days…‖ Raytheon • CMMI + R6S + IPDS + DFSS • Escaping defects from 6/KSLOC to 1.16/KSLOC
Electron cyclotron harmonic wave acceleration
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.
1987-01-01
A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.
Loganathan, Muthukumaran; Bristow, Douglas A
2014-04-01
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
Loganathan, Muthukumaran; Bristow, Douglas A.
2014-04-15
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
XII Advanced Computing and Analysis Techniques in Physics Research
NASA Astrophysics Data System (ADS)
Speer, Thomas; Carminati, Federico; Werlen, Monique
November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666
High harmonic generation with fully tunable polarization by train of linearly polarized pulses
NASA Astrophysics Data System (ADS)
Neufeld, Ofer; Bordo, Eliyahu; Fleischer, Avner; Cohen, Oren
2017-02-01
We propose and demonstrate, analytically and numerically, a scheme for generation of high-order harmonics with fully tunable polarization, from circular through elliptic to linear, while barely changing the other properties of the high harmonic radiation and where the ellipticity values of all the harmonic orders essentially coincide. The high harmonics are driven by a train of quasi-monochromatic linearly polarized pulses that are identical except for their polarization angles, which is the tuning knob. This system gives rise to full control over the polarization of the harmonics while largely preserving the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized.
Harmonic generation at high intensities
Schafer, K.J.; Krause, J.L.; Kulander, K.C.
1993-06-01
Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.
Local dynamics in high-order-harmonic generation using Bohmian trajectories
NASA Astrophysics Data System (ADS)
Wu, J.; Augstein, B. B.; Figueira de Morisson Faria, C.
2013-08-01
We investigate high-order-harmonic generation from a Bohmian-mechanical perspective and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three-step model. In the Bohmian scenario, this physical picture builds up nonlocally near the core via the quantum mechanical phase of the wave function. This implies that the flow of the wave function far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.
Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo
2017-03-01
The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths.
Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs
NASA Astrophysics Data System (ADS)
Špirko, Vladimír; Šponer, Jiří; Hobza, Pavel
1997-01-01
Intermolecular vibrational modes of the H-bonded adenine…thymine Watson-Crick (AT) base pair were studied for the first time using multidimensional nonharmonic treatment. Relying on a Born-Oppenheimer-like separation of the fast and slow vibrational motions, the complete multidimensional vibrational problem is reduced to a six-dimensional subproblem in which all rearrangements between the pair fragments (i.e., adenine and thymine) can be described. Following the Hougen-Bunker-Johns approach and using appropriate vibrational coordinates, a nonrigid reference is defined which covers all motions on the low-lying part of the intermolecular potential surface and which facilitates the derivation of a suitable model Hamiltonian. The potential energy surface is determined at the ab initio Hartree-Fock level with minimal basis set (HF/MINI-1) and an analytic potential energy function is obtained by fitting to the ab initio data. This function is used to calculate vibrational energy levels and effective geometries within the framework of the model Hamiltonian, disregarding the role of the kinematic and potential (in-plane)-(out-of-plane) interactions. The calculations are in reasonable agreement with the normal coordinate analysis (harmonic treatment) thus indicating physical correctness of this standard approach for an approximate description of the lowest vibrational states of the AT base pair. In addition, to get a deeper insight, harmonic vibrational frequencies of the AT pair and 28 other base pairs are evaluated at the same and higher levels of theory [ab initio Hartree-Fock level with split-valence basis set (HF/6-31G**)]. The HF/MINI-1 and HF/6-31G** intermolecular harmonic vibrational frequencies differ by less than 30%. For all the base pairs, the buckle and propeller vibrational modes [for definition and nomenclature see R. E. Dickerson et al., EMBO J. 8, 1 (1989)] are the lowest ones, all being in the narrow interval (from 4 to 30 cm-1 in the harmonic
Harmonic Series Meets Fibonacci Sequence
ERIC Educational Resources Information Center
Chen, Hongwei; Kennedy, Chris
2012-01-01
The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?
MODEL HARMONIZATION POTENTIAL AND BENEFITS
The IPCS Harmonization Project, which is currently ongoing under the auspices of the WHO, in the context of chemical risk assessment or exposure modeling, does not imply global standardization. Instead, harmonization is thought of as an effort to strive for consistency among appr...
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Galilean covariant harmonic oscillator
NASA Technical Reports Server (NTRS)
Horzela, Andrzej; Kapuscik, Edward
1993-01-01
A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.
Nine Principles of Semantic Harmonization.
Cunningham, James A; Van Speybroeck, Michel; Kalra, Dipak; Verbeeck, Rudi
2016-01-01
Medical data is routinely collected, stored and recorded across different institutions and in a range of different formats. Semantic harmonization is the process of collating this data into a singular consistent logical view, with many approaches to harmonizing both possible and valid. The broad scope of possibilities for undertaking semantic harmonization do lead however to the development of bespoke and ad-hoc systems; this is particularly the case when it comes to cohort data, the format of which is often specific to a cohort's area of focus. Guided by work we have undertaken in developing the 'EMIF Knowledge Object Library', a semantic harmonization framework underpinning the collation of pan-European Alzheimer's cohort data, we have developed a set of nine generic guiding principles for developing semantic harmonization frameworks, the application of which will establish a solid base for constructing similar frameworks.
Nine Principles of Semantic Harmonization
Cunningham, James A.; Van Speybroeck, Michel; Kalra, Dipak; Verbeeck, Rudi
2016-01-01
Medical data is routinely collected, stored and recorded across different institutions and in a range of different formats. Semantic harmonization is the process of collating this data into a singular consistent logical view, with many approaches to harmonizing both possible and valid. The broad scope of possibilities for undertaking semantic harmonization do lead however to the development of bespoke and ad-hoc systems; this is particularly the case when it comes to cohort data, the format of which is often specific to a cohort’s area of focus. Guided by work we have undertaken in developing the ‘EMIF Knowledge Object Library’, a semantic harmonization framework underpinning the collation of pan-European Alzheimer’s cohort data, we have developed a set of nine generic guiding principles for developing semantic harmonization frameworks, the application of which will establish a solid base for constructing similar frameworks. PMID:28269840
Physical and Chemical Analytical Analysis: A key component of Bioforensics
Velsko, S P
2005-02-15
The anthrax letters event of 2001 has raised our awareness of the potential importance of non-biological measurements on samples of biological agents used in a terrorism incident. Such measurements include a variety of mass spectral, spectroscopic, and other instrumental techniques that are part of the current armamentarium of the modern materials analysis or analytical chemistry laboratory. They can provide morphological, trace element, isotopic, and other molecular ''fingerprints'' of the agent that may be key pieces of evidence, supplementing that obtained from genetic analysis or other biological properties. The generation and interpretation of such data represents a new domain of forensic science, closely aligned with other areas of ''microbial forensics''. This paper describes some major elements of the R&D agenda that will define this sub-field in the immediate future and provide the foundations for a coherent national capability. Data from chemical and physical analysis of BW materials can be useful to an investigation of a bio-terror event in two ways. First, it can be used to compare evidence samples collected at different locations where such incidents have occurred (e.g. between the powders in the New York and Washington letters in the Amerithrax investigation) or between the attack samples and those seized during the investigation of sites where it is suspected the material was manufactured (if such samples exist). Matching of sample properties can help establish the relatedness of disparate incidents, and mis-matches might exclude certain scenarios, or signify a more complex etiology of the events under investigation. Chemical and morphological analysis for sample matching has a long history in forensics, and is likely to be acceptable in principle in court, assuming that match criteria are well defined and derived from known limits of precision of the measurement techniques in question. Thus, apart from certain operational issues (such as how to
The Global Physical Inactivity Pandemic: An Analysis of Knowledge Production
ERIC Educational Resources Information Center
Piggin, Joe; Bairner, Alan
2016-01-01
In July 2012, "The Lancet" announced a pandemic of physical inactivity and a global call to action to effect change. The worldwide pandemic is said to be claiming millions of lives every year. Asserting that physical inactivity is pandemic is an important moment. Given the purported scale and significance of physical inactivity around…
Physical Disability on Children's Television Programming: A Content Analysis
ERIC Educational Resources Information Center
Bond, Bradley J.
2013-01-01
Research Findings: Media representations of physical disability can influence the attitudes of child audiences. In the current study, the depiction of physical disability was analyzed in more than 400 episodes of children's television programming to better understand how media depict physical disability to children and, in turn, how exposure may…
Harmonics and instabilities in switching circuits
Lasseter, R.H.; Dobson, I.; Jalali, S.G. . Coll. of Engineering)
1993-05-01
Over the last couple of years there has been significant activity in the development of Flexible AC Transmission Systems (FACTS). Much of this work has been directed towards advanced series compensation (ASC) systems based on a Thyristor Controlled Reactor (TCR) connected in parallel with a fixed capacitor. This results in a controllable series impedance element for use in transmission systems. FACTS devices generate harmonics which interact with the transmission system causing voltage distortions. These distortions can change the operation of such circuits. The authors have found new instabilities in both FACTS and static VAR circuits in which switching times change suddenly, or bifurcate as a system parameter varies slowly. The switching time bifurcation instabilities are explained and their mechanisms are illustrated by both analysis and simulation. The TCR is a periodically operated, nonlinear circuit which may be studied using a Poincare map. The Poincare map is computed and a simple formula for its Jacobian matrix is derived. This formula which describes the stability of the steady state periodic operation of the circuit is used to demonstrate that conventional bifurcations do not occur in this TCR example. The harmonic coupling solution method as developed by Bohmann and Lasseter has been extensively used to compute the steady state solutions of the TCR circuits. In this method, Fourier techniques are used to calculate the system harmonics. By expressing the TCR voltage and current as a Fourier series, a TCR harmonic admittance matrix is constructed and incorporated into a power system providing a general method of computing the power system harmonics. The authors have extended this method to single phase line commutated converters and shown how much circuit may have highly nonlinear and unexpected behavior.
Feasibility of 3D harmonic contrast imaging.
Voormolen, M M; Bouakaz, A; Krenning, B J; Lancée, C T; ten Cate, F J; de Jong, N
2004-04-01
Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suitable for contrast imaging. In this study the feasibility of 3D harmonic contrast imaging is evaluated in vitro. A commercially available tissue mimicking flow phantom was used in combination with Sonovue. Backscatter power spectra from a tissue and contrast region of interest were calculated from recorded radio frequency data. The spectra and the extracted contrast to tissue ratio from these spectra were used to optimize the excitation frequency, the pulse length and the receive filter settings of the transducer. Frequencies ranging from 1.66 to 2.35 MHz and pulse lengths of 1.5, 2 and 2.5 cycles were explored. An increase of more than 15 dB in the contrast to tissue ratio was found around the second harmonic compared with the fundamental level at an optimal excitation frequency of 1.74 MHz and a pulse length of 2.5 cycles. Using the optimal settings for 3D harmonic contrast recordings volume measurements of a left ventricular shaped agar phantom were performed. Without contrast the extracted volume data resulted in a volume error of 1.5%, with contrast an accuracy of 3.8% was achieved. The results show the feasibility of accurate volume measurements from 3D harmonic contrast images. Further investigations will include the clinical evaluation of the presented technique for improved assessment of the heart.
NASA Astrophysics Data System (ADS)
Oon, Pey-Tee; Subramaniam, R.
2013-01-01
Asian students often perform well in international science and mathematics assessments. Their attitude toward technical subjects, such as physics, remains curious for many. The present study examines Singapore school students' views on various aspects of physics according to whether they intend to choose physics as an advanced field of study. A sample of 1076 physics students, from 16 secondary schools and junior colleges, participated in this study. The students were categorized as physics choosers or non-choosers according to their indicated intention, as sought in the survey, to study or not to study physics as a major subject at university after their leaving level examinations. Rasch-anchored analysis was employed to interpret the results; the use of Rasch analysis has helped to overcome significantly the psychometric limitations inherent in the treatment of Likert scale type of data using traditional analysis. As expected, the image of physics as a difficult subject surfaced in the samples used in our study. The students recognized unequivocally the utilitarian value of physics: physics is said to enhance career options and is necessary for technological progress to occur in a country. They also showed high interest in school physics-this is so even for students who are not keen to study physics in the future, a finding which is at variance with other studies reported from Western countries. School physics is seen to be relevant, and physics teachers are viewed as being able to foster students' interest in physics. Laboratory work, enrichment activities, and physics textbooks were reported to be important in order to encourage students to like physics. Though the physics choosers showed greater intention in physics, they were generally not inclined to pursue physics-related careers after graduation. Parents and peers at school, on the other hand, are perceived to display unenthusiastic attitudes toward physics. Possible reasons for these are discussed along
Structural, Physical, and Compositional Analysis of Lunar Simulants and Regolith
NASA Technical Reports Server (NTRS)
Greenberg, Paul; Street, Kenneth W.; Gaier, James
2008-01-01
Relative to the prior manned Apollo and unmanned robotic missions, planned Lunar initiatives are comparatively complex and longer in duration. Individual crew rotations are envisioned to span several months, and various surface systems must function in the Lunar environment for periods of years. As a consequence, an increased understanding of the surface environment is required to engineer and test the associated materials, components, and systems necessary to sustain human habitation and surface operations. The effort described here concerns the analysis of existing simulant materials, with application to Lunar return samples. The interplay between these analyses fulfills the objective of ascertaining the critical properties of regolith itself, and the parallel objective of developing suitable stimulant materials for a variety of engineering applications. Presented here are measurements of the basic physical attributes, i.e. particle size distributions and general shape factors. Also discussed are structural and chemical properties, as determined through a variety of techniques, such as optical microscopy, SEM and TEM microscopy, Mossbauer Spectroscopy, X-ray diffraction, Raman microspectroscopy, inductively coupled argon plasma emission spectroscopy and energy dispersive X-ray fluorescence mapping. A comparative description of currently available stimulant materials is discussed, with implications for more detailed analyses, as well as the requirements for continued refinement of methods for simulant production.
Harmonization of laboratory testing - Current achievements and future strategies.
Tate, Jillian R; Johnson, Roger; Barth, Julian; Panteghini, Mauro
2014-05-15
Harmonization in laboratory testing is more far-reaching than merely analytical harmonization. It includes all aspects of the total testing process from the "pre-pre-analytical" phase through analysis to the "post-post-analytical" phase. Harmonizing the pre-analytical phase requires use of standardized operating procedures for correct test selection, sample collection and handling, while standardized test terminology, and units and traceability to ISO standard 17511 are required to ensure equivalency of measurement results. Use of harmonized reference intervals and decision limits for analytes where platforms share allowable bias requirements will reduce inaccurate clinical interpretation and unnecessary laboratory testing. In the post-analytical phase, harmonized procedures for the management of critical laboratory test results are required to improve service quality and ensure patient safety. Monitoring of the outcomes of harmonization activities is through surveillance by external quality assessment schemes that use commutable materials and auditing of the "pre-pre-analytical" and "post-post-analytical" phases. Successful implementation of harmonization in laboratory testing requires input by all stakeholders, including the clinical laboratory community, diagnostics industry, clinicians, professional societies, IT providers, consumer advocate groups and governmental bodies.
Jin, Jooyeon; Yun, Joonkoo
2013-07-01
The purpose of this study was to examine three frameworks, (a) process-product, (b) student mediation, and (c) classroom ecology, to understand physical activity (PA) behavior of adolescents with and without disabilities in middle school inclusive physical education (PE). A total of 13 physical educators teaching inclusive PE and their 503 students, including 22 students with different disabilities, participated in this study. A series of multilevel regression analyses indicated that physical educators' teaching behavior and students' implementation intentions play important roles in promoting the students' PA in middle school inclusive PE settings when gender, disability, lesson content, instructional model, and class location are considered simultaneously. The findings suggest that the ecological framework should be considered to effectively promote PA of adolescents with and without disabilities in middle school PE classes.
Harmonic Measure of Critical Curves
Bettelheim, E.; Rushkin, I.; Gruzberg, I.A.; Wiegmann, P.
2005-10-21
Fractal geometry of critical curves appearing in 2D critical systems is characterized by their harmonic measure. For systems described by conformal field theories with central charge c{<=}1, scaling exponents of the harmonic measure have been computed by Duplantier [Phys. Rev. Lett. 84, 1363 (2000)] by relating the problem to boundary two-dimensional gravity. We present a simple argument connecting the harmonic measure of critical curves to operators obtained by fusion of primary fields and compute characteristics of the fractal geometry by means of regular methods of conformal field theory. The method is not limited to theories with c{<=}1.
Harmonic or Fourier synthesis in the teaching laboratory
NASA Astrophysics Data System (ADS)
Whaite, Geoffrey; Wolfe, Joe
1990-05-01
The design of an electronic device that synthesizes and adds the low-order harmonics of a fundamental sine wave is described. Frequency and phase are digitally controlled to ensure stability, and amplitude is analog controlled. The harmonics are synthesized digitally and so the harmonic distortion is low (-48 dB). The device is used in the teaching laboratory of a course on the physics of music, where it shows clearly the effects of amplitude and phase of the spectral components on waveform and timbre. Because of the phase stability and low distortion inherent in the digital design, the device gives an effective demonstration of Fourier synthesis, and it is used as a lecture demonstration for students in introductory physics courses.
PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.
Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.
2004-03-31
Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the
Parallelization of the Physical-Space Statistical Analysis System (PSAS)
NASA Technical Reports Server (NTRS)
Larson, J. W.; Guo, J.; Lyster, P. M.
1999-01-01
Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational
Lattice harmonics expansion revisited
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
NASA Astrophysics Data System (ADS)
Nguyen, Vu-Hieu; Lemaire, Thibault; Naili, Salah
2009-05-01
Living bone is a tissue that is constantly renewed. It has been demonstrated that bone fluid flow and induced shear effects on the bone cells are important players in triggering and signaling bone formation and remodelling. This Note presents a model studying interstitial fluid flow in cortical bone under axial harmonic loads. These living tissues are considered as saturated anisotropic poroelastic material characterized by three-dimensional periodic groups of osteons. Using a frequency-domain analysis, the fluid shear stress variations are studied for various loading conditions and geometrical or physical bone matrix parameters. To cite this article: V.-H. Nguyen et al., C. R. Mecanique 337 (2009).
Harmonic oscillators and resonance series generated by a periodic unstable classical orbit
NASA Technical Reports Server (NTRS)
Kazansky, A. K.; Ostrovsky, Valentin N.
1995-01-01
The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.
Developing Skill-Analysis Competency in Physical Education Teachers
ERIC Educational Resources Information Center
Lounsbery, Monica; Coker, Cheryl
2008-01-01
Given the known relationship between physical inactivity and chronic disease (US Dept. of Health and Human Services [USDHHS], 2000, 2001), learning more about antecedents for physical activity engagement is an important research priority. In this vein, a number of studies have found a relationship between perceived and actual motor skill…
Applying Cluster Analysis to Physics Education Research Data
ERIC Educational Resources Information Center
Springuel, R. Padraic
2010-01-01
One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major…
NASA Astrophysics Data System (ADS)
Browne, Michael; Palazzolo, Alan
2009-06-01
Typical industrial vibration problem solving includes utilization of linear vibration measurement and analysis techniques. These techniques have appeared to be sufficient with most vibration problem solving requirements. This is partially due to the lack of proper identification of the nonlinear dynamic response in measured data of actual engineering systems. Therefore, as an example, a vehicle driveshaft exhibits a nonlinear super harmonic jump due to universal joint excitations. This phenomenon is partially responsible for objectionable audible noise in the vehicle. Previously documented measurements or analytical predictions of vehicle driveshaft systems do not indicate nonlinear jump as a typical vibration mode. Physical measurements of the phenomena will be provided with subsequent analysis. Second, the secondary moment exciting the driveshaft system is derived with subsequent analysis showing the harmonic and super harmonic excitations. Third, a derivation of a model incorporating the linear and nonlinear modeling of a large degree of freedom system is introduced. Finally, simulations with the derived model with the universal joint excitations will be presented showing the correlation to physical test results. Therefore, a typical automotive driveshaft system is capable of producing nonlinear response, and thus the assumption of linearity is not sufficient for design validation or problem resolution in this case.
High-order harmonic generation in alkanes
Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.
2006-04-15
We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.
Spherical harmonics and integration in superspace
NASA Astrophysics Data System (ADS)
DeBie, H.; Sommen, F.
2007-06-01
In this paper, the classical theory of spherical harmonics in {\\bb R}^m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral.
ERIC Educational Resources Information Center
Hoon, S. R.; Tanner, B. K.
1981-01-01
Suggests using musical instruments to demonstrate physics concepts. Topics include: pitch and frequency; string vibrations; string-resonator system; wind instruments; harmonic content; transients; scales and temperament; psycho-acoustical affects; and electronic music. (SK)
PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.
Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.
2003-08-26
Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated
Explaining the harmonic sequence paradox.
Schmidt, Ulrich; Zimper, Alexander
2012-05-01
According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced.
Pythagorean Triples from Harmonic Sequences.
ERIC Educational Resources Information Center
DiDomenico, Angelo S.; Tanner, Randy J.
2001-01-01
Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)
DiAntonio, C B; Williams, F A; Pilgrim, S M
2001-11-01
The electromechanical response of ceramics has long been described with Landau Devonshire phenomenology, wherein the strain response is linked to a polynomial expansion in electric field or dielectric displacement. Consequently, the electromechanical response has been modeled with a variety of basis functions. However, these models have failed to accommodate hysteresis and the harmonic response that arises with saturation phenomena. In addition, no quantitative criterion has been used to truncate the expansion. By implementing a discrete Fourier transform in conjunction with Devonshire phenomenology, these three problems can be overcome as demonstrated with a dielectrically aged, lead magnesium niobate relaxor ferroelectric well above its Tmax, i.e., operating in the electrostrictive regime.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Attosecond Pulse Trains Using High-Order Harmonics
Antoine, P.; LHuillier, A.; Lewenstein, M. ||
1996-08-01
We demonstrate that high-order harmonics generated by an atom in intense laser field form trains of ultrashort pulses corresponding to different trajectories of electrons that tunnel out of the atom and recombine. Propagation in an atomic jet allows us to select one of these trajectories, leading to a train of pulses of extremely short duration. {copyright} {ital 1996 The American Physical Society.}
A Simple Mechanical Model for the Isotropic Harmonic Oscillator
ERIC Educational Resources Information Center
Nita, Gelu M.
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)
Relation of squeezed states between damped harmonic and simple harmonic oscillators
NASA Technical Reports Server (NTRS)
Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.
1993-01-01
The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2015-09-30
Oceanographic and Acoustic Processes Timothy F. Duda Applied Ocean Physics and Engineering Department, MS 11 Woods Hole Oceanographic Institution Woods... Hole , MA 02543 phone: (508) 289-2495 fax: (508) 457-2194 email: tduda@whoi.edu James F. Lynch Applied Ocean Physics and Engineering...Department, MS 11 Woods Hole Oceanographic Institution Woods Hole , MA 02543 phone: (508) 289-2230 fax: (508) 457-2194 email: jlynch@whoi.edu Ying
Physics and Analysis at a Hadron Collider - An Introduction (1/3)
None
2016-07-12
This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.
The defect variance of random spherical harmonics
NASA Astrophysics Data System (ADS)
Marinucci, Domenico; Wigman, Igor
2011-09-01
The defect of a function f:M\\rightarrow {R} is defined as the difference between the measure of the positive and negative regions. In this paper, we begin the analysis of the distribution of defect of random Gaussian spherical harmonics. By an easy argument, the defect is non-trivial only for even degree and the expected value always vanishes. Our principal result is evaluating the defect variance, asymptotically in the high-frequency limit. As other geometric functionals of random eigenfunctions, the defect may be used as a tool to probe the statistical properties of spherical random fields, a topic of great interest for modern cosmological data analysis.
A parametric study of harmonic rotor hub loads
NASA Technical Reports Server (NTRS)
He, Chengjian
1993-01-01
A parametric study of vibratory rotor hub loads in a nonrotating system is presented. The study is based on a CAMRAD/JA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor model with high blade twist (-16 deg). The theoretical hub load predictions are validated by correlation with available measured data. Effects of various blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both low and high forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms for change in the harmonic rotor hub loads due to blade design variations.
Spatial Analysis of Crime Incidence and Adolescent Physical Activity
Robinson, Alyssa I.; Carnes, Fei
2016-01-01
Adolescents do not achieve recommended levels of physical activity. Crime is believed to be a barrier to physical activity among youth, but findings are inconsistent. This study compares the spatial distribution of crime incidences and moderate-to-vigorous physical activity (MVPA) among adolescents in Massachusetts between 2011 and 2012, and examines the correlation between crime and MVPA. Eighty adolescents provided objective physical activity (accelerometer) and location (Global Positioning Systems) data. Crime report data were obtained from the city police department. Data were mapped using geographic information systems, and crime and MVPA densities were calculated using kernel density estimations. Spearman’s correlation tested for associations between crime and MVPA. Overall, 1,694 reported crimes and 16,702 minutes of MVPA were included in analyses. A strong positive correlation was present between crime and adolescent MVPA (ρ=0.72, p<0.0001). Crime remained positively associated with MVPA in locations falling within the lowest quartile (ρ=0.43, p<0.0001) and highest quartile (ρ=0.32, p<0.0001) of crime density. This study found a strong positive association between crime and adolescent MVPA, despite research suggesting the opposite relationship. This counterintuitive finding may be explained by the logic of a common destination: neighborhood spaces which are desirable destinations and promote physical activity may likewise attract crime. PMID:26820115
Asymmetric Gaussian harmonic steering in second-harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2013-11-01
Intracavity second-harmonic generation is one of the simplest of the quantum optical processes and is well within the expertise of most optical laboratories. It is well understood and characterized, both theoretically and experimentally. We show that it can be a source of continuous-variable asymmetric Gaussian harmonic steering with fields which have a coherent excitation, hence combining the important effects of harmonic entanglement and asymmetric steering in one easily controllable device, adjustable by the simple means of tuning the cavity loss rates at the fundamental and harmonic frequencies. We find that whether quantum steering is available via the standard measurements of the Einstein-Podolsky-Rosen correlations can depend on which quadrature measurements are inferred from output spectral measurements of the fundamental and the harmonic. Altering the ratios of the cavity loss rates can be used to tune the regions where symmetric steering is available, with the results becoming asymmetric over all frequencies as the cavity damping at the fundamental frequency becomes significantly greater than at the harmonic. This asymmetry and its functional dependence on frequency is a potential new tool for experimental quantum information science, with possible utility for quantum key distribution. Although we show the effect here for Gaussian measurements of the quadratures, and cannot rule out a return of the steering symmetry for some class of non-Gaussian measurements, we note here that the system obeys Gaussian statistics in the operating regime investigated and Gaussian inference is at least as accurate as any other method for calculating the necessary correlations. Perhaps most importantly, this system is simpler than any other methods we are aware of which have been used or proposed to create asymmetric steering.
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Sun, Wei; Wang, Bo; Wen, Bangchun
2015-06-01
The dynamic behaviors and stability of the linear guide considering contact actions are studied by multi-term incremental harmonic balance method (IHBM). Based on fully considering the parameters of the linear guide, a static model is developed and the contact stiffness is calculated according to Hertz contact theory. A generalized time-varying and piecewise-nonlinear dynamic model of the linear guide is formulated to perform an accurate investigation on its dynamic behaviors and stability. The numerical simulation is used to confirm the feasibility of the approach. The effects of excitation force and mean load on the system are analyzed in low-order nonlinearity. Multi-term IHBM and numerical simulation are employed to the effect of high-order nonlinearity and show the transition to chaos. Additionally, the effects of preload, initial contact angle, the number and diameter of balls are discussed.
Digital Filter Design with Harmonics Estimation for Power Supplies
NASA Astrophysics Data System (ADS)
Shah, P. J.; Saxena, R.; Chawla, M. P. S.
2012-06-01
The quality of voltage waveforms is nowadays an issue of the utmost importance for power utilities and electronic equipment. Modern frequency power converters generate a wide spectrum of harmonic components, which deteriorate the quality of the delivered energy, increase the energy losses as well as decrease their liability of a power supplies. In large converters systems not only harmonics, but also considerable interharmonics strongly deteriorate the quality of the power supply voltage. The estimation of the components parameters is very important for control and protection tasks. Digital low pass filter overcome the voltage drift, temperature drift and time drift problems and can be used for harmonic detection for better utilization in real-time. Real-time detection of harmonics can be implemented using MATLAB software and developing simulation circuit set up. With the appropriate cutoff frequency f c and nth order of filter, low pass filter and band-pass filter for real-time harmonic detection can be analyzed. In this paper the aim is to design filters using different methods including Prony analysis. The monitoring of power system harmonics an important issue in the frame of modern power system management and control can be achieved easily using digital filters.
Inharmonicity Analysis: A Novel Physical Method for Acoustic Screening of Dysphonia
NASA Astrophysics Data System (ADS)
Matteson, Sam; Lu, Fang-Ling
2008-10-01
In the United States 6.8% of men, women, and children report current voice problems and approximately 29% will report some problems during their lifetime. Often this dysphonia is due to pathologies of the vocal folds. The authors (a physicist and a speech pathologist) describe an interdisciplinary approach that shows promise of detecting physiological abnormalities of the vocal folds from an analysis of the Fourier spectrum of spoken ``tokens.'' The underlying principle maintains that the normal human vocal fold is a linear oscillator that emits overtones that are very nearly precise integral values of the fundamental. Physiological problems of the vocal folds, however, introduce mechanical non-linearities that manifest themselves as frequency deviations from the ideal harmonic (that is, integral) values. The authors quantify this inharmonicity, describing and illustrating how one can obtain and analyze such data. They outline, as well, a proposed program to assess the clinical sensitivity and significance of the analysis discussed in this work.
Analysis of Risk Management in Adapted Physical Education Textbooks
ERIC Educational Resources Information Center
Murphy, Kelle L.; Donovan, Jacqueline B.; Berg, Dominck A.
2016-01-01
Physical education teacher education (PETE) programs vary on how the topics of safe teaching and risk management are addressed. Common practices to cover such issues include requiring textbooks, lesson planning, peer teaching, videotaping, reflecting, and reading case law analyses. We used a mixed methods design to examine how risk management is…
Glottal Waveform Analysis of Physical Task Stress Speech (Preprint)
2012-03-01
differences in distribution. This suggests that there are consistent vocal fold behavioral re- sponses to physical stress at least within a single session of a...explanatory factors did not suggest that they directly result in clustering of vocal fold behaviors. Instead, it was shown that within a single session of
A quantitative analysis of physics textbooks for scientific literacy themes
NASA Astrophysics Data System (ADS)
Wilkinson, John
1999-09-01
The purpose of this study was to examine the content of textbooks used in the Victorian Physics course between 1967 and 1997 for curriculum balance and emphasis on the following aspects of scientific literacy: (a) science as a body of knowledge, (b) science as a way of investigating, (c) science as a way of thinking, and (d) the interaction between science, technology and society. These themes were chosen because they are reflected in the aims of the current Victorian Certificate of Education (VCE) Physics course. The textbook is an important teaching aid in senior school physics in Victoria since it conveys some of the information that students receive and influences how students perceive the subject. The majority of the textbooks analysed stress science as a body of knowledge, place some emphasis on science as a way of investigating, and have little emphasis on science as a way of thinking. Texts produced for the new VCE Physics course (post 1990) were found to place more emphasis on the theme science, technology and society than texts produced prior to 1990.
Instrumental physical analysis of microwaved glycerol citrate foams
Technology Transfer Automated Retrieval System (TEKTRAN)
Solid polyester glyceride polymers generated by microwave cooking were further cured in a conventional oven at 100 oC for 0, 6, 24, 48, or 72 hr and their physical properties were tested. Curing polyester glycerides resulted in decreased moisture content (MC), altered color, increased hydrated polym...
Analysis of Self-Directed Mastery Learning of Honors Physics
ERIC Educational Resources Information Center
Athens, Wendy
2011-01-01
Self-directed learning (SDL) is an important life skill in a knowledge-based society and prepares students to persist, manage their time and resources, use logic to construct their knowledge, argue their views, and collaborate. The purpose of this study was to facilitate mastery of physics concepts through self-directedness in formative testing…
Reduction of harmonic pollution in distribution networks
Lawrance, W.B.; Michalik, G.; Mielczarski, W.; Szczepanik, J.
1995-12-31
The paper presents two new schemes of harmonic current reduction in distribution of harmonic current reduction in distribution circuits. The first scheme aims at the reduction of harmonics generated by six pulse bridge rectifiers which are common nonlinear load in industry. The new approach is based on injection of the third harmonic current into the transformer secondary. The current injected is generated in two passive filters connected between the outputs of the bridge and the common point of transformer secondary. The scheme is very effective reducing harmonic distortion in the supply current from 27% to 4--5%. The second scheme presented aims at the reduction of harmonic distortion caused by fluorescent lamp systems. It assumes the installation of a series filter in the neutral conductor. A specially designed filter provides a low impedance path for the first harmonic current and high impedance for higher harmonics. Simulation and laboratory tests show significant reduction of harmonics in the neutral and phase conductors.
Second Harmonic Breakdown in KSTAR
Bae, Y. S.; England, A. C.; Kwon, M.; Lee, G. S.
2007-09-28
An 84-GHz electron cyclotron heating (ECH) system is being installed on the KSTAR tokamak. KSTAR adopts ECH-assisted start-up for the flexibility and reliability of the KSTAR operation with the plasma breakdown voltage reduced. The available maximum power of the 84 GHz ECH system is presently 500 kW with maximum duration of 2 s. Currently, the second harmonic ECH-assisted start-up is under consideration because a low toroidal field of B{sub T}{approx}1.5 T is desirable for safety and also for the high-beta experiments in the initial operation phase. The studies in this paper are on the effectiveness of the second harmonic breakdown using a 0-D time dependent plasma evolution code and the comparison with the recent DIII-D experimental results on the second harmonic pre-ionization.
Even harmonic generation in isotropic media of dissociating homonuclear molecules
Silva, R. E. F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609
Parametric decay of an electromagnetic wave near electron cyclotron harmonics
Istomin, Y.N.; Leyser, T.B.
1995-06-01
A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Harmonic Generation from Solid Targets - Optmization of Source Parameters
NASA Astrophysics Data System (ADS)
Zepf, Matthew; Watts, I. F.; Dangor, A. E.; Norreys, P. A.; Chambers, D. M.; Machacek, A.; Wark, J. S.; Tsakiris, G. D.
1998-11-01
High harmonics from solid targets have received renewed interest over the last few years. Theoretical predictions using 1 1/2 D codes suggest that very high orders (>100 ) can be generated at conversion efficiencies in excess of 10-6 [1,2] at Iλ^2 > 10^19 W/cm^2. Experiments have since been performed with pulses varying from 100 fs to 2.5 ps in duration [3-6]. The steep density gradient necessary to generate the harmonics can be generated by either ponderomotive steepening or by using ultraclean pulses which preserve the initial solid vacuum boundary. The two regimes are compared in terms of their dependence on the laser parameters and the emitted harmonic radiation. Particular emphasis will be given to measurements of the holeboring velocity, the polarisation of the harmonics and the intensity scaling in the two regimes. This comparison enables us to find the ideal parameter range for the optimization of harmonic source. [1] R. Lichters et al., Physics of Plasmas 3, 3425, (1996). [2] P. Gibbon, IEEE J. of Q. Elec. 33, 1915 (1997). [3] S. Kohlweyer, et al., Optics Comm. 177, 431 (1995). [4] P. Norreys et al., Phys. Rev. Lett., 76, 1832 (1995). [5] D. von der Linde et al., Phys. Rev. A, 52, R25 (1995) [6] M. Zepf, et al., submitted for publication in Phys. Rev. Lett.
Analysis of self-directed mastery learning of honors physics
NASA Astrophysics Data System (ADS)
Athens, Wendy
Self-directed learning (SDL) is an important life skill in a knowledge-based society and prepares students to persist, manage their time and resources, use logic to construct their knowledge, argue their views, and collaborate. The purpose of this study was to facilitate mastery of physics concepts through self-directedness in formative testing with feedback, a choice of learning activities, and multiple forms of support. This study was conducted within two sections of honors physics at a private high school (N=24). Students' learning activity choices, time investments, and perceptions (assessed through a post survey) were tracked and analyzed. SDL readiness was linked to success in mastering physics concepts. The three research questions pursued in this study were: What SDL activities did honors physics students choose in their self-directed mastery learning environment? How many students achieved concept mastery and how did they spend their time? Did successful and unsuccessful students perceive the self-directed mastery learning environment differently? Only seven of 24 students were successful in passing the similar concept-based unit tests within four tries, and these seven students were separated into a "successful" group and the other 17 into an "unsuccessful" group. Differences between the two groups were analyzed. A profile of a self-directed secondary honors physics student emerged. A successful self-directed student invested more time learning from activities rather than simply completing them, focused on learning concepts more than rote operations, intentionally selected activities to fill in gaps of knowledge and practice concepts, actively constructed knowledge into a cognitive framework, engaged in academic discourse with instructor and peers as they made repeated attempts to master content and pass the test given constructive feedback, used a wide variety of learning resources, and managed their workload to meet deadlines. This capstone study found
Integrative Analysis of the Physical Transport Network into Australia
Cope, Robert C.; Ross, Joshua V.; Wittmann, Talia A.; Prowse, Thomas A. A.; Cassey, Phillip
2016-01-01
Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999–2012. Seaborne and air traffic were weighted to calculate a “weighted cumulative impact” score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy. PMID:26881782
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2014-09-30
in the abyssal oceans , where typically SIW/Stopo > 1 for tall seamounts and ridges , the entire bottom topography contributes to the generation of...internal waves. In contrast, for (a) (b) 18 moderate ocean depths (say less than 4 km), where typically SIW/Stopo < 1 for seamounts and ridges , the...Oceanographic and Acoustic Processes Timothy F. Duda Applied Ocean Physics and Engineering Department, MS 11 Woods Hole Oceanographic Institution, Woods
Analysis of physical demands during bulk bag closing and sealing.
Nasarwanji, Mahiyar F; Reardon, Leanna M; Heberger, John R; Dempsey, Patrick G
2016-05-01
Several tools are sold and recommended for closing and sealing flexible intermediate bulk containers (bulk bags) which are used to transport product that has been mined and processed. However, there is limited information on the risks, physical demands, or the benefits of using one tool over another. The purpose of this study was to evaluate the physical demands involved with two closing methods and several sealing tools in order to provide recommendations for selecting tools to reduce exposure to risk factors for work-related musculoskeletal disorders. In this study, twelve participants completed bag closing and sealing tasks using two different closing methods and eight sealing tools on two types of bulk bags. Physical demands and performance were evaluated using muscle activity, perceived exertion, subjective ratings of use, and time. Results indicate that using the "flowering" method to close bags required on average 32% less muscle activity, 30% less perceived exertion, 42% less time, and was preferred by participants compared to using the "snaking" method. For sealing, there was no single method significantly better across all measures; however, using a pneumatic cable tie gun consistently had the lowest muscle activity and perceived exertion ratings. The pneumatic cable tie gun did require approximately 33% more time to seal the bag compared to methods without a tool, but the amount of time to seal the bag was comparable to using other tools. Further, sealing a spout bulk bag required on average 13% less muscle activity, 18% less perceived exertion, 35% less time, and was preferred by participants compared to sealing a duffle bulk bag. The current results suggest that closing the spout bag using the flowering method and sealing the bag using the pneumatic cable tie gun that is installed with a tool balancer is ergonomically advantageous. Our findings can help organizations select methods and tools that pose the lowest physical demands when closing and
Integrative Analysis of the Physical Transport Network into Australia.
Cope, Robert C; Ross, Joshua V; Wittmann, Talia A; Prowse, Thomas A A; Cassey, Phillip
2016-01-01
Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy.
A problem in particle physics and its Bayesian analysis
NASA Astrophysics Data System (ADS)
Landon, Joshua
An up and coming field in contemporary nuclear and particle physics is "Lattice Quantum Chromodynamics", henceforth Lattice QCD. Indeed the 2004 Nobel Prize in Physics went to the developers of equations that describe QCD. In this dissertation, following a layperson's introduction to the structure of matter, we outline the statistical aspects of a problem in Lattice QCD faced by particle physicists, and point out the difficulties encountered by them in trying to address the problem. The difficulties stem from the fact that one is required to estimate a large -- conceptually infinite -- number of parameters based on a finite number of non-linear equations, each of which is a sum of exponential functions. We then present a plausible approach for solving the problem. Our approach is Bayesian and is driven by a computationally intensive Markov Chain Monte Carlo based solution. However, in order to invoke our approach we first look at the underlying anatomy of the problem and synthesize its essentials. These essentials reveal a pattern that can be harnessed via some assumptions, and this in turn enables us to outline a pathway towards a solution. We demonstrate the viability of our approach via simulated data, followed by its validation against real data provided to us by our physicist colleagues. Our approach yields results that in the past were not obtainable via alternate approaches. The contribution of this dissertation is two-fold. The first is a use of computationally intensive statistical technology to produce results in physics that could not be obtained using physics based techniques. Since the statistical architecture of the problem considered here can arise in other contexts as well, the second contribution of this dissertation is to indicate a plausible approach for addressing a generic class of problems wherein the number of parameters to be estimated exceeds the number of constraints, each constraint being a non-linear equation that is the sum of
The technical analysis of the stock exchange and physics: Japanese candlesticks for solar activity
NASA Astrophysics Data System (ADS)
Dineva, C.; Atanasov, V.
2013-09-01
In this article, we use the Japanese candlesticks, a method popular in the technical analysis of the Stock/Forex markets and apply it to a variable in physics-the solar activity. This method is invented and used exclusively for economic analysis and its application to a physical problem produced unexpected results. We found that the Japanese candlesticks are convenient tool in the analysis of the variables in the physics of the Sun. Based on our observations, we differentiated a new cycle in the solar activity.
Second harmonic generation from tyrosine containing peptides
NASA Astrophysics Data System (ADS)
Nasir, M. N.; Bergmann, E.; Benichou, E.; Russier-Antoine, I.; Lascoux, N.; Jonin, Ch.; Besson, F.; Brevet, P. F.
2013-10-01
The Second Harmonic Generation (SHG) response from Tyrosine-containing peptides at the air-water interface is presented. First, the quadratic hyperpolarizability of the aromatic amino acid Tyrosine obtained by Hyper Rayleigh Scattering is reported, demonstrating its potentiality as an endogenous molecular probe for SHG studies. Then, the single Tyrosine antimicrobial peptide Mycosubtilin is monitored at the air-water interface and compared to another peptide, Surfactin, lacking a Tyrosine residue. Adsorption kinetics and polarization analysis of the SHG intensity for the peptide monolayers clearly demonstrate that the SHG response from Mycosubtilin arises from Tyrosine. Besides, it confirms that indeed Tyrosine can be targeted as an endogenous molecular probe.
Gravitational harmonics from shallow resonant orbits
NASA Technical Reports Server (NTRS)
Wagner, C. A.; Klosko, S. M.
1977-01-01
Gravitational constraint (lumped coefficient) equations are derived from GEOS-2 data and a detailed analysis of the shallow resonance problem. The equations follow from elementary perturbation theory and show that all such lumped coefficients are harmonic in the argument of perigee. The best along-track constraints derived from them account for all but about 2% of the 13th-order resonant information in the tracking data. The equations are also in good agreement with recent comprehensive gravity models which use substantial amounts of GEOS-2 data.
Harmonic and Monogenic Potentials in Euclidean Halfspace
NASA Astrophysics Data System (ADS)
Brackx, F.; De Bie, H.; De Schepper, H.
2011-09-01
In the framework of Clifford analysis a chain of harmonic and monogenic potentials is constructed in the upper half of Euclidean space Rm+1. Their distributional limits at the boundary are computed, obtaining in this way well-known distributions in Rm such as the Dirac distribution, the Hilbert kernel, the square root of the negative Laplace operator, and the like. It is shown how each of those potentials may be recovered from an adjacent kernel in the chain by an appropriate convolution with such a distributional limit.
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
Mapping university students' epistemic framing of computational physics using network analysis
NASA Astrophysics Data System (ADS)
Bodin, Madelen
2012-06-01
Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.
A Discussion on an Expression Written about Dimensional Analysis in a Physics Textbook
ERIC Educational Resources Information Center
Yildiz, Ali
2015-01-01
The purpose of this study is to discuss a wrong statement written about dimensional analysis in a physics text book prepared for the students who are studying in science, engineering and teaching undergraduate programs at universities and who have to take compulsory physics courses, to analyse the use of the text book including the wrong…
Effectiveness of Physical Activity Interventions for Preschoolers: A Meta-Analysis
ERIC Educational Resources Information Center
Gordon, Elliott S.; Tucker, Patricia; Burke, Shauna M.; Carron, Albert V.
2013-01-01
Purpose: The purpose of the meta-analysis was to examine the effectiveness of physical activity interventions on physical activity participation among preschoolers. A secondary purpose was to investigate the influence of several possible moderator variables (e.g., intervention length, location, leadership, type) on moderate-to-vigorous physical…
Effects of Physical Exercise on Autism Spectrum Disorders: A Meta-Analysis
ERIC Educational Resources Information Center
Sowa, Michelle; Meulenbroek, Ruud
2012-01-01
It is generally agreed that regular physical exercise promotes physical and mental health, but what are the benefits in people with Autism Spectrum Disorders (ASD)? This meta-analysis evaluates 16 behavioural studies reporting on a total of 133 children and adults with various variants of the syndrome who were offered structured physical…
ERIC Educational Resources Information Center
Chiou, Guo-Li; Anderson, O. Roger
2010-01-01
This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…
ERIC Educational Resources Information Center
McEvilly, Nollaig
2014-01-01
This article provides an analysis of developmental discourses underpinning preschool physical education in Scotland's Curriculum for Excellence. Implementing a post-structural perspective, the article examines the preschool experiences and outcomes related to physical education as presented in the Curriculum for Excellence "health and…
Combined diplexer and harmonic filter
NASA Technical Reports Server (NTRS)
Allen, C. C.
1973-01-01
By using two directional filters having circular waveguide filter cavities, diplexing and harmonic filtering functions can be combined into a more compact integrated waveguide assembly. Device is filter which passes power within its pass band limits, but also has a directional characteristic so power transmitted into two-port output waveguide will travel in only one direction.
Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2015-06-28
By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.
Cui, Xiaojin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-12-21
By using displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we studied the carrier behavior in the indium-tin oxide (ITO)/Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/C60/Au(or Al) capacitors. Two DCM peaks appeared asymmetrically at around −35.5 V and +30.0 V in the dark. Correspondingly, the EFISHG response from the C60 layer was observed, but the peak positions were different with respect to DCM ones. The results show that the spontaneous polarization of the ferroelectric P(VDF-TrFE) polymeric layer directly affects the electric field in the C60 layer, and thus governs the carrier motion in this layer. As a result, the C60 layer serves like an insulator in the dark, while electrons and holes are captured and released at the interface in response to the turn-over of spontaneous polarization of ferroelectric layer. On the other hand, under white light illumination, C60 layer serves like a conductor due to the increase of photogenerated mobile carriers, and these carriers dominate the carrier motions therein. Our findings here will be helpful for analyzing carrier behaviors in organic electronic devices using ferroelectric polymers.
NASA Astrophysics Data System (ADS)
Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2016-03-01
By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.
NASA Astrophysics Data System (ADS)
Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2015-06-01
By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.
Han, S.-C.; Sauber, J.; Luthcke, S.B.; Ji, C.; Pollitz., F. F.
2008-01-01
We report Gravity Recovery and Climate Experiment (GRACE) satellite observations of coseismic displacements and postseismic transients from the great Sumatra-Andaman Islands (thrust event; Mw ???9.2) earthquake in December 2004. Instead of using global spherical harmonic solutions of monthly gravity fields, we estimated the gravity changes directly using intersatellite range-rate data with regionally concentrated spherical Slepian basis functions every 15-day interval. We found significant step-like (coseismic) and exponential-like (postseismic) behavior in the time series of estimated coefficients (from May 2003 to April 2007) for the spherical Slepian function's. After deriving coseismic slip estimates from seismic and geodetic data that spanned different time intervals, we estimated and evaluated postseismic relaxation mechanisms with alternate asthenosphere viscosity models. The large spatial coverage and uniform accuracy of our GRACE solution enabled us to clearly delineate a postseismic transient signal in the first 2 years of postearthquake GRACE data. Our preferred interpretation of the long-wavelength components of the postseismic avity change is biviscous viscoelastic flow. We estimated a transient viscosity of 5 ??17 Pa s and a steady state viscosity of 5 ?? 1018 - 1019 Pa s. Additional years of the GRACE observations should provide improved steady state viscosity estimates. In contrast to our interpretation of coseismic gravity change, the prominent postearthquake positive gravity change around the Nicobar Islands is accounted for by seafloor uplift with less postseismic perturbation in intrinsic density in the region surrounding the earthquake. Copyright 2008 by the American Geophysical Union.
Systematic harmonic power laws inter-relating multiple fundamental constants
NASA Astrophysics Data System (ADS)
Chakeres, Donald; Buckhanan, Wayne; Andrianarijaona, Vola
2017-01-01
Power laws and harmonic systems are ubiquitous in physics. We hypothesize that 2, π, the electron, Bohr radius, Rydberg constant, neutron, fine structure constant, Higgs boson, top quark, kaons, pions, muon, Tau, W, and Z when scaled in a common single unit are all inter-related by systematic harmonic powers laws. This implies that if the power law is known it is possible to derive a fundamental constant's scale in the absence of any direct experimental data of that constant. This is true for the case of the hydrogen constants. We created a power law search engine computer program that randomly generated possible positive or negative powers searching when the product of logical groups of constants equals 1, confirming they are physically valid. For 2, π, and the hydrogen constants the search engine found Planck's constant, Coulomb's energy law, and the kinetic energy law. The product of ratios defined by two constants each was the standard general format. The search engine found systematic resonant power laws based on partial harmonic fraction powers of the neutron for all of the constants with products near 1, within their known experimental precision, when utilized with appropriate hydrogen constants. We conclude that multiple fundamental constants are inter-related within a harmonic power law system.
A three-pulse model of d. c. side harmonic flow in HVDC systems
Shore, N.L.; Andersson, G.; Canelhas, A.P.; Asplund, G.
1989-07-01
A new model for analysis of d.c. side harmonics in HVDC systems is proposed. The model includes the stray capacitances of converter transformers and bushings and represents the 12-pulse converter as four three-pulse harmonic voltage sources. The appearance of ground mode triplen harmonics of troublesome magnitude in pole and electrode lines, as noted in recent site measurements, is explained, as is the increase in magnitude of the characteristic 12-pulse harmonics. The consequences for d.c. filter design and the specification of telephone interference criteria are also discussed.
Equity prices as a simple harmonic oscillator with noise
NASA Astrophysics Data System (ADS)
Ataullah, Ali; Tippett, Mark
2007-08-01
The centred return on the London Stock Exchange's FTSE All Share Index is modelled as a simple harmonic oscillator with noise over the period from 1 January, 1994 until 30 June 2006. Our empirical results are compatible with the hypothesis that there is a period in the FTSE All Share Index of between two and two and one half years. This means the centred return will on average continue to increase for about a year after reaching the minimum in its oscillatory cycle; alternatively, it will continue on average to decline for about a year after reaching a maximum. Our analysis also shows that there is potential to exploit the harmonic nature of the returns process to earn abnormal profits. Extending our analysis to the low energy states of a quantum harmonic oscillator is also suggested.
Singular Harmonic Maps and Applications to General Relativity
NASA Astrophysics Data System (ADS)
Nguyen, Luc
2011-01-01
The study of axially symmetric stationary multi-black-hole configurations and the force between co-axially rotating black holes involves, as a first step, an analysis on the "boundary regularity" of the so-called reduced singular harmonic maps. We carry out this analysis by considering those harmonic maps as solutions to some homogeneous divergence systems of partial differential equations with singular coefficients. Our results extend previous works by Weinstein (Comm Pure Appl Math 43:903-948, 1990; Comm Pure Appl Math 45:1183-1203, 1992) and by Li and Tian (Manu Math 73(1):83-89, 1991; Commun Math Phys 149:1-30, 1992; Differential geometry: PDE on manifolds, vol 54, pp. 317-326, 1993). This paper is based on the Ph.D. thesis of the author (Singular harmonic maps into hyperbolic spaces and applications to general relativity, PhD thesis, The State University of New Jersey, Rutgers, 2009).
Methods for Examining Small Literatures: Explication, Physical Analysis, and Citation Patterns.
ERIC Educational Resources Information Center
Akin, Lynn
1998-01-01
Analyzes literature on information overload research in library studies using explication, physical analysis, and citation patterns. Makes cross-discipline comparisons with consumer science and psychology/psychiatry. Contains 93 references. (PEN)
Verbeek, X A; Willigers, J M; Brands, P J; Ledoux, L A; Hoeks, A P
1999-01-01
Ultrasound contrast agents, i.e., small gas filled microbubbles, enhance the echogenicity of blood and have the potential to be used for tissue perfusion assessment. The contrast agents scatter ultrasound in a nonlinear manner and thereby introduce harmonics in the ultrasound signal. This property is exploited in new ultrasound techniques like harmonic imaging, which aims to display only the contrast agent presence. Much attention has already been given to the physical properties of the contrast agent. The present study focuses on practical aspects of the measurement of the intrinsic harmonic response of ultrasound contrast agents with single transducer pulse waved ultrasound systems. Furthermore, the consequences of two other sources of harmonics are discussed. These sources are the nonlinear distortion of ultrasound in a medium generating native harmonics, and the emitted signal itself which might contain contaminating harmonics. It is demonstrated conceptually and by experiments that optimization of the contrast agent harmonic response measured with a single transducer is governed by the transducer spectral sensitivity distribution rather than the resonance properties of the contrast agent. Both native and contaminating harmonics may be of considerable strength and can be misinterpreted as intrinsic harmonics of the contrast agent. Practical difficulties to filter out the harmonic component selectively, without deteriorating the image, may cause misinterpretation of the fundamental as a harmonic.
Applications of mathematical analysis of nonlinear physical systems
Frauenfelder, H.; Hagan, P.; Sobehart, J.; Ueda, Tetsuji
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In this project we have sought to acquire the basic theoretical and computational capabilities needed to advance our understanding of the physical sciences. We concentrated on physical systems governed by transport equations. Transport equations were chosen because they govern many critical technologies. They govern the flow of carriers in semiconductors, the dynamics of nuclear reactors, the transport of radiation in fusion experiments, and even the probability densities of stochastic equations. Besides being important in its own right, this research serves as an important paradigm for using computers to solve other key scientific problems. Transport problems are often characterized by mean free paths that are short compared to the other critical length scales of the system. We exploit this feature to both simplify the solution of transport equations and to gain insights into the results. To explore industrial applications of the science developed in this project, a workshop was sponsored highlighting eight to ten problems from industry. Promising research avenues were uncovered that might lead to potential collaborations with industry.
Harmonic undulator radiations with constant magnetic field
NASA Astrophysics Data System (ADS)
Jeevakhan, Hussain; Mishra, G.
2015-01-01
Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.
Application of Methods of Numerical Analysis to Physical and Engineering Data.
1980-10-15
for tbe estimated fo. Part E extends the method to include an arbitrary signal noise power function. Part F discusses a method for obtaining initial...7 AD-AI02 685 BEDFORD RESEARCH ASSOCIATES MA F/6 4/1APPLICATION OF METHODS OF NUMERICAL ANALYSIS TO PHYSICAL AND EN--ETC(U) OCT 80 R BOUCHER, T...APPLICATION OF METHODS OF NUMERICAL .) ANALYSIS TO PHYSICAL AND! ENGINEERING DATA R. Boucher T. Costello ~ P. Meehan J. Noonan Bedford Research Associates 2
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Harmonization. 26.48 Section 26.48 Food and Drugs... Provisions for Medical Devices § 26.48 Harmonization. During both the transitional and operational phases of... Harmonization Task Force (GHTF) and utilize the results of those activities to the extent possible....