Harmonically excited orbital variations
Morgan, T.
1985-08-06
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.
Cowell, David M J; Smith, Peter R; Freear, Steven
2013-06-01
Switched-mode operation allows the miniaturization of excitation circuitry but suffers from high harmonic distortion. This paper presents a method of phase-inversion-based selective harmonic elimination (PI-SHE) and the use of multiple switching levels. PI-SHE is shown to enable multiples of any selected harmonic to be eliminated through controlled timing of the transition between different excitation voltage levels. Multiples of the third harmonic are shown to be eliminated in three-level tone waveforms. In addition, multiples of the fifth harmonic are shown to be eliminated using five-level tone waveforms. A method of calculating the expected amplitude of each harmonic is presented. The application of PI-SHE in linear frequency-modulated (LFM) excitation is proposed. A heuristic derivation of the spectral properties of multilevel switched LFM waveforms is presented. The performance of the proposed PI-SHE method is confirmed through experimental measurement of the harmonics present in an ultrasound wave using two, three, and five levels for both tone and LFM excitation. The proposed method of controlling harmonics through the use of multilevel switched excitation is especially suitable for applications in which portability, high channel counts, and precise harmonic control are required.
NASA Astrophysics Data System (ADS)
Weber, F.
2014-09-01
The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.
Abraham, Thomas; Wadsworth, Samuel; Carthy, Jon M; Pechkovsky, Dmitri V; McManus, Bruce
2011-01-01
For translational respiratory research including in the development of clinical diagnostic tools, a minimally invasive imaging method, which can provide both cellular and extracellular structural details with sufficient specificity, sensitivity and spatial resolution, is particularly useful. Multiphoton microscopy causes excitation of endogenously fluorescent macromolecular systems and induces highly specific second harmonic generation signals from non-centrosymmetric macromolecules such as fibrillar collagens. Both these signals can be captured simultaneously to provide spatially resolved 3D structural organization of extracellular matrix as well as the cellular morphologies in their native states. Besides briefly discussing the fundamentals of multiphoton excitation fluorescence and harmonic generation signals and the instrumentation details, this review focuses on the specific applications of these imaging modalities in lung structural imaging, particularly morphological features of alveolar structures, visualizing and quantifying extracellular matrix remodelling accompanying emphysematous destructions as well as the IPF, detecting lung cancers and the potential use in the tissue engineering applications.
Excitation with quantum light. I. Exciting a harmonic oscillator
NASA Astrophysics Data System (ADS)
Carreño, J. C. López; Laussy, F. P.
2016-12-01
We present a two-part study of the excitation of an optical target by quantum light. In this first part, we introduce the problematic and address the first case of interest, that of exciting the quantum harmonic oscillator, corresponding to, e.g., a single-mode passive cavity or a noninteracting bosonic field. We introduce a mapping of the Hilbert space that allows to chart usefully the accessible regions. We then consider the quantum excitation from single-photon sources in the form of a two-level system under various regimes of (classical) pumping: incoherent, coherent, and in the Mollow triplet regime. We close this first part with an overview of the material to be covered in the subsequent work.
Role of Excited States In High-order Harmonic Generation.
Beaulieu, S; Camp, S; Descamps, D; Comby, A; Wanie, V; Petit, S; Légaré, F; Schafer, K J; Gaarde, M B; Catoire, F; Mairesse, Y
2016-11-11
We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
Role of Excited States In High-order Harmonic Generation
NASA Astrophysics Data System (ADS)
Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.
2016-11-01
We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without
NASA Astrophysics Data System (ADS)
Xiong, S. Y.; Yang, J. G.; Zhuang, J.
2011-10-01
In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.
Second and third harmonic waves excited by focused Gaussian beams.
Levy, Uri; Silberberg, Yaron
2015-10-19
Harmonic generation by tightly-focused Gaussian beams is finding important applications, primarily in nonlinear microscopy. It is often naively assumed that the nonlinear signal is generated predominantly in the focal region. However, the intensity of Gaussian-excited electromagnetic harmonic waves is sensitive to the excitation geometry and to the phase matching condition, and may depend on quite an extended region of the material away from the focal plane. Here we solve analytically the amplitude integral for second harmonic and third harmonic waves and study the generated harmonic intensities vs. focal-plane position within the material. We find that maximum intensity for positive wave-vector mismatch values, for both second harmonic and third harmonic waves, is achieved when the fundamental Gaussian is focused few Rayleigh lengths beyond the front surface. Harmonic-generation theory predicts strong intensity oscillations with thickness if the material is very thin. We reproduced these intensity oscillations in glass slabs pumped at 1550nm. From the oscillations of the 517nm third-harmonic waves with slab thickness we estimate the wave-vector mismatch in a Soda-lime glass as Δk(H)= -0.249μm(-1).
Excitation of electron Langmuir frequency harmonics in the solar atmosphere
Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.
2013-05-15
An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.
An analysis of cochlear response harmonics: Contribution of neural excitation
Chertoff, M. E.; Kamerer, A. M.; Peppi, M.; Lichtenhan, J. T.
2015-01-01
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (fTr). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo fTr. From gerbil ears, estimates of fTr were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of fTr before and after inducing auditory neuropathy—loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain—showed that the neural excitation from low-frequency tones contributes to the magnitude of fTr but not the sigmoidal, saturating, nonlinear morphology. PMID:26627769
Self-Excitation and Harmonics in Wind Power Generation
Muljadi, E.; Butterfield, C. P.; Romanowitz, H.; Yinger, R.
2005-11-01
Traditional wind turbines are commonly equipped with induction generators because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate; capacitor compensation is often used. Because the level of required reactive power varies with the output power, the capacitor compensation must be adjusted as the output power varies. The interactions among the wind turbine, the power network, and the capacitor compensation are important aspects of wind generation that may result in self-excitation and higher harmonic content in the output current. This paper examines the factors that control these phenomena and gives some guidelines on how they can be controlled or eliminated.
Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation
NASA Astrophysics Data System (ADS)
Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel
2016-07-01
Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.
Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation
Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel
2016-01-01
Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390
NASA Astrophysics Data System (ADS)
Barzda, Virginijus; Greenhalgh, Catherine; Aus der Au, Juerg; Squier, Jeffrey A.; Elmore, Steven; van Beek, Johannes H.
2004-06-01
Simultaneous detection of second harmonic generation (SHG), third harmonic generation (THG) and multiphoton excitation fluorescence with ultrafast laser pulses from a Nd:Glass laser was used to image isolated adult rat cardiomyocytes. The simultaneous detection enabled visualization of different organelles of cardiomyocytes, based on the different contrast mechanisms. It was found that SHG signal depicted characteristic patterns of sarcomeres in a myofilament lattice. The regular pattern of the THG signal, which was anticorrelated with the SHG signal, suggested that the third harmonic is generated within mitochondria. By labeling the cardiomyocytes with the mitochondrial dye tetramethylrhodamine methyl ester (TMRM), comparisons could be made between the TMRM fluorescence, THG, and SHG images. The TMRM fluorescence had significant correlation with THG signal confirming that part of the THG signal originates from mitochondria.
Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations
Serpico, C.; Quercia, A.; Perna, S.; Bertotti, G.; Ansalone, P.; D'Aquino, M.; Mayergoyz, I.
2015-05-07
Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.
Particle current on flexible surfaces excited by harmonic waves.
Verma, Neeta; DasGupta, Anirvan
2013-11-01
In this paper, a study on the directed particle current on flexible surfaces excited by a harmonic wave is reported. The proposed theory considers three different models for the kinematics of the surface, namely the Euler-Bernoulli, Timoshenko, and Rayleigh surface wave models. The particle-surface interaction terms in the theory incorporate Coulomb friction and inelastic collision between the particle and the surface. Three possible phases of motion, namely sticking, sliding, and jumping, are considered, and the phase transition boundaries are estimated analytically for a general surface model. The effect of various parameters on the particle current and certain statistical features of the particle motion are then studied numerically. Remarkably, the particle current spectra exhibit, in addition to resonance modes, antiresonance and secondary resonance modes and transversal zero crossings. These features have interesting implications for the particle dynamics in terms of dynamic jamming states and particle eddies, which are pointed out. Under certain restricted conditions, averaging calculations are also performed and compared with the corresponding numerical simulations.
NASA Astrophysics Data System (ADS)
Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier
2001-04-01
The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of
Discrete Excitation Spectrum of a Classical Harmonic Oscillator in Zero-Point Radiation
NASA Astrophysics Data System (ADS)
Huang, Wayne Cheng-Wei; Batelaan, Herman
2015-03-01
We report that upon excitation by a single pulse, a classical harmonic oscillator immersed in the classical electromagnetic zero-point radiation exhibits a discrete harmonic spectrum in agreement with that of its quantum counterpart. This result is interesting in view of the fact that the vacuum field is needed in the classical calculation to obtain the agreement.
Low-cost facile interferometer for displacement mapping of harmonically excited MEMS
NASA Astrophysics Data System (ADS)
Mądzik, Mateusz; Viegas, Jaime
2016-03-01
In this work, we present a simple, assembled from readily available components, low cost, imaging vibrometer based on a Twyman-Green interferometer with digital interferogram acquisition, allowing to map displacement contour levels of a harmonically excited piezoelectric membrane, on the principle of exposure integration. We experimentally demonstrate the capabilities of our setup on imaging the 4th mechanical mode of vibration of a 200 micrometer radius piezoelectric micromachined ultrasonic transducer membrane vibrating at 842 kHz, with an out-of-plane amplitude of 475 nm. Our results allow a direct visualization of the influence of etching trenches onto the vibrating membrane, in excellent agreement with FEM simulations.
Golay-encoded excitation for dual-frequency harmonic detection of ultrasonic contrast agents.
Shen, Che-Chou; Shi, Tai-Yu
2011-02-01
Golay-encoded excitation in combination with the third harmonic (3f₀) transmit phasing is examined for both signal-to-noise ratio (SNR) and contrast-to-tissue ratio (CTR) improvements in harmonic imaging of contrast microbubbles. To produce the cancellation pair of tissue harmonic signal in 3f₀ transmit phasing, the phase of the bit waveform is properly designed for both the fundamental and the 3f₀ transmit signals to provide the Golay encoding of the received harmonic responses. Results indicate that the proposed Golay excitation can effectively suppress the tissue harmonic amplitude to increase CTR. Meanwhile, the SNR of the contrast harmonic signal also improves because of the elongated waveform of Golay excitation. Nevertheless, the generation of marked range side-lobes of the bubble region would degrade the achievable SNR improvement and the image contrast, especially when the bit of Golay excitation increases. The range side-lobes could result from the nonlinear resonance of the microbubbles that interferes with the phase modulation of the Golay encoding.
On the excitation of cyclotron harmonic waves by newborn heavy ions
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
Wave measurements in planetary foreshocks and cometary environments show the sporadic occurrence of magnetic spectra with harmonic structure related to ion-cyclotron frequencies. Dilute populations of anisotropic and/or drifting charged particles can excite obliquely propagating modes with spacecraft frequencies close to the observed harmonics. Previous analyses of this generation mechanism are extended to drifting and nondrifting loss-cone-type distributions of heavy ions in a dense hydrogen magnetoplasma, characterizing the complex (real frequency and growth rate) dispersion, polarization, and compressibility of the unstable cyclotron harmonic waves. Solution of the full kinetic dispersion equation shows that it is possible to attain harmonic excitation, both in the drifting and nondrifting regimes. However, the bandwidth inherent to frequency Doppler shifts of obliquely propagating waves might preclude the observation of spectral structure in the spacecraft frame. The Giotto observations in the upstream region of comet Halley provide a reference to discuss the results.
Sepehri Javan, N.
2015-08-21
This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonates with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.
Tang, Sai Chun; Clement, Gregory T
2008-02-01
The aim of this study is to evaluate the feasibility of using harmonic cancellation for a therapeutic ultrasound transducer excited by a switched-mode power converter without an additional output filter. A switching waveform without the third harmonic was created by cascading two switched-mode power inverter modules at which their output waveforms were pi/3 phase shifted from each other. A PSPICE simulation model for the power converter output stage was developed. The simulated results were in good agreement with the measurement. The waveform and harmonic contents of the acoustic pressure generated by a 1-MHz, self-focused piezoelectric transducer with and without harmonic cancellation have been evaluated. Measured results indicated that the acoustic third harmonicto- fundamental ratio at the focus was small (-48 dB) with harmonic cancellation, compared to that without harmonic cancellation (-20 dB). The measured acoustic levels of the fifth harmonic for both cases with and without harmonic cancellation also were small (-46 dB) compared to the fundamental. This study shows that it is viable to drive a piezoelectric ultrasound transducer using a switched-mode power converter without the requirement of an additional output filter in many high-intensity focused ultrasound (HIFU) applications.
Design of chirp excitation waveform for dual-frequency harmonic contrast detection.
Shen, Che-Chou; Chiu, Yi-Yuan
2009-10-01
Tissue background suppression is essential for harmonic detection of ultrasonic contrast microbubbles. To reduce the tissue harmonic amplitude for improvement of contrast-to-tissue ratio (CTR), the method of third harmonic (3f(0)) transmit phasing uses an additional 3f(0) transmit signal to provide mutual cancellation between the frequency-sum component and the frequency-difference component of tissue harmonic signal. Chirp excitation can further improve the SNR in harmonic imaging without requiring an excessive transmit pressure and thus reduce potential bubble destruction. However, for effective suppression of tissue harmonic background in 3f(0) transmit phasing, the 3f(0) chirp waveform has to be carefully designed for the generation of spectrally matched cancellation pairs over the entire second harmonic band. In this study, we proposed a chirp waveform suitable for the method of 3f(0) transmit phasing, the different-bandwidth chirp signal (DBCS). With the DBCS waveform, the frequency-difference component of tissue harmonic signal becomes a chirp signal similar to its frequency-sum counterpart. Thus, the combination of the DBCS waveform with the 3f(0) transmit phasing can markedly suppress the tissue harmonic amplitude for CTR improvement together with effective SNR increase of contrast harmonic signal. Our results indicate that, as compared with the conventional Gaussian pulse, the DBCS waveform can provide 6-dB improvement of SNR in 3f(0) transmit phasing with a CTR increase of 3 dB. Nevertheless, the limitation of available transmit bandwidth and the frequency-dependent attenuation can degrade the performance of the DBCS waveform in tissue suppression. The design of the DBCS waveform is also applicable to other dual-frequency imaging techniques that rely on the harmonic generation at the difference frequency.
Excitation of Electron Cyclotron Harmonic Waves in Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Zhang, Xiaojia
This dissertation investigates the generation mechanism, spatial distribution and characteristics of electrostatic electron cyclotron harmonic (ECH) waves under different plasma sheet conditions, and quantifies the role of these waves in producing the diffuse aurora. THEMIS observations from five magnetotail seasons, along with ray-tracing, and electron diffusion codes have been utilized towards that goal. By modeling the wave growth and quasi-linear pitch-angle diffusion of electrons with realistic parameters for the magnetic field, loss-cone distribution and wave intensity (obtained from observations as a function of magnetotail location), we estimate the loss-cone fill ratio and the contribution of auroral energy flux from wave-induced electron precipitation. We conclude that ECH waves are the dominant driver of electron precipitation in the middle to outer magnetotail.
Speech perception in noise with a harmonic complex excited vocoder.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Ihlefeld, Antje; Litovsky, Ruth Y
2014-04-01
A cochlear implant (CI) presents band-pass-filtered acoustic envelope information by modulating current pulse train levels. Similarly, a vocoder presents envelope information by modulating an acoustic carrier. By studying how normal hearing (NH) listeners are able to understand degraded speech signals with a vocoder, the parameters that best simulate electric hearing and factors that might contribute to the NH-CI performance difference may be better understood. A vocoder with harmonic complex carriers (fundamental frequency, f0 = 100 Hz) was used to study the effect of carrier phase dispersion on speech envelopes and intelligibility. The starting phases of the harmonic components were randomly dispersed to varying degrees prior to carrier filtering and modulation. NH listeners were tested on recognition of a closed set of vocoded words in background noise. Two sets of synthesis filters simulated different amounts of current spread in CIs. Results showed that the speech vocoded with carriers whose starting phases were maximally dispersed was the most intelligible. Superior speech understanding may have been a result of the flattening of the dispersed-phase carrier's intrinsic temporal envelopes produced by the large number of interacting components in the high-frequency channels. Cross-correlogram analyses of auditory nerve model simulations confirmed that randomly dispersing the carrier's component starting phases resulted in better neural envelope representation. However, neural metrics extracted from these analyses were not found to accurately predict speech recognition scores for all vocoded speech conditions. It is possible that central speech understanding mechanisms are insensitive to the envelope-fine structure dichotomy exploited by vocoders.
Radio-frequency excitation of harmonic microwave radiation from a Penning reflex discharge
Tate, J.P.; Wharton, C.B. )
1993-04-01
Experimental results on multiple-harmonic emission at 8.8 GHz from a Penning reflex discharge (PRD) are reported. Observations of the frequency spectra of microwave emission showed copius harmonic generation of frequencies having two completely different origins: (1) spontaneously excited high harmonics of the electron cyclotron frequency and (2) high harmonics of the frequency of an injected signal independent of the magnetic field strength, a phenomenon reported here for the first time. For spontaneous harmonic emission there was a current threshold, whose magnitude depended on gas pressure and magnetic field strength. When a signal was injected, however, high harmonics (up to the 18th) could be seen at discharge currents well below this threshold value. Comparisons between the two types of radiation are made and discussion of possible mechanisms is provided. It is concluded that the coupling efficiency of the radio-frequency (rf)-excited emission is dependent on the relationship between the rf drive frequency and the electron cyclotron frequency. Finite Larmor radius effects may also influence this coupling. The plasma sheath size will also be a factor in the transfer of energy from the probe to the bulk plasma. Results which seek to elucidate these effects are presented.
Behaviour of a system under harmonic excitation inside an equilibrium zone
NASA Astrophysics Data System (ADS)
Klepp, H. J.
A multi-body-system in form of a deformable parallelogram with friction affected constraints is considered. The system possesses an equilibrium zone. Under the action of a harmonic excitation the system migrates inside the zone. By numerical simulation it is found that the directions and speeds of migration are indicated by the shifting tendency functions established for the equilibrium zone.
Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.
Chacón, Ricardo
2006-09-15
A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.
Self Excitation and Harmonics in Wind Power Generation: Preprint
Muljadi, E.; Butterfield, C. P.; Romanowitz, H.; Yinger, R.
2004-11-01
Traditional wind turbines are equipped with induction generators. Induction generators are preferred because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate. Because reactive power varies with the output power, the terminal voltage at the generator may become too low to compensate the induction generator. The interactions among the wind turbine, the power network, and the capacitor compensation, are important aspects of wind generation. In this paper, we will show the interactions among the induction generator, capacitor compensation, power system network, and magnetic saturations and examine the cause of resonance conditions and self-excitation.
Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.
Shen, Che-Chou; Lin, Chin-Hsiang
2012-11-01
Dual-frequency (DF) transmit waveforms comprise signals at two different frequencies. With a DF transmit waveform operating at both fundamental frequency (f(0)) and second-harmonic frequency (2f(0)), tissue harmonic imaging can be simultaneously performed using not only the conventional 2f(0) second-harmonic signal but also using the f(0 )frequency-difference harmonic signal. Nonetheless, when chirp excitation is incorporated into the DF transmit waveform for harmonic SNR improvement, a particular waveform design is required to maintain the bandwidth of the f(0) harmonic signal. In this study, two different DF chirp waveforms are proposed to produce equal harmonic bandwidth at both the f(0) and 2f(0) frequencies to achieve speckle reduction by harmonic spectral compounding and to increase harmonic SNR for enhanced penetration and sensitivity. The UU13 waveform comprises an up-sweeping f(0) chirp and an up-sweeping 2f(0) chirp with triple bandwidth, whereas the UD11 waveform includes an up-sweeping f(0) chirp and a down-sweeping 2f(0) chirp with equal bandwidth. Experimental results indicate that the UU13 tends to suffer from a high range side lobe level resulting from 3f(0) interference. Consequently, the 2f(0) harmonic envelopes of the UD11 and the UU13 waveforms have compression qualities of 87% and 77%, respectively, when the signal bandwidth is 30%. When the bandwidth increases to 50%, the compression quality of the 2f(0) harmonic envelope degrades to 78% and 54%, respectively, for the UD11 and the UU13 waveforms. The compression quality value of the f0 harmonic envelope remains similar between the two DF transmit waveforms for all signal bandwidths. B-mode harmonic images also show that the UD11 is less contaminated by range side lobe artifacts than is the UU13. Compared with a short pulse with equal bandwidth, the UD11 waveform not only preserves the same spatial resolution after compression but also improves the image SNR by about 10 dB. Moreover, the image
Harmonic Golay coded excitation using mutually orthogonal Golay codes and pulse inversion
NASA Astrophysics Data System (ADS)
Kim, Sang-Min; Song, Jae-Hee; Song, Tai-Kyong
2009-02-01
Coded excitation can improve the performance factors, such as SNR and CTR, of harmonic imaging with a low voltage transmit waveform. For these purposes, harmonic imaging methods using Golay codes with advantages in range sidelobe levels and implementation simplicity have been proposed. However, they require four transmit-receive (T/R) events to form each scan line. This work describes a new harmonic Golay coded excitation technique to overcome this problem. The proposed method can produce two scan lines through four T/R events using four pairs of codes. On the first T/R cycle, the first pair of codes is fired sequentially, one at a time, along each of the two scan lines, where the two codes are designed such that their second harmonic components are mutually orthogonal Golay codes. The same transmit sequence is carried out with the second pair of codes, each of which being 180 degrees out of phase with the corresponding one of the first pair of codes to remove the fundamental components by simply adding the two resulting received signals. The third and fourth T/R cycles are followed in the same manner, but with the codes whose harmonic components are composed of the complementary set of the mutually orthogonal Golay codes used in the first T/R cycle and their sign inverted codes, respectively. Consequently, the mutually orthogonal Golay codes and their complementary set of codes representing only the harmonic components are obtained after four T/R events. Finally, using the orthogonal and complementary properties, the coded harmonic signals along each scan line can easily be separated and compressed. Computer simulation results show that the proposed method can successfully perform pulse-inversion harmonic imaging to produce two scan lines simultaneously after four T/R events with coded sequences.
Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers.
Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben; Fiutowski, Jacek; Rubahn, Horst-Günter; Bozhevolnyi, Sergey I; Pedersen, Kjeld
2015-06-15
Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative to the silver film surface.
NASA Astrophysics Data System (ADS)
Duan, Chengwu; Singh, Rajendra
2005-08-01
The nonlinear frequency response characteristics of a two-degree-of-freedom torsional system with a significant dry friction controlled path are studied, when excited by sinusoidal torque under a mean load. An analytical solution is first developed for a simplified system subjected to continuous slipping motions. The nature of super-harmonic peaks as generated by the dry friction nonlinearity is efficiently found. The effect of a non-zero mean load is also determined and qualitatively understood. Further, a refined multi-term harmonic balance method (MHBM) is proposed that includes up to 12 terms. It is used to study an automotive drive train system that experiences significant stick-slip motions. Associated computational issues including the selection of initial conditions are addressed. Studies show that the mean load could induce asymmetric stick-slip motions and accordingly it has significant effect on time and frequency domain responses. Reasons for the occurrence of super-harmonic resonant peaks and transitional peaks are investigated. Finally, our MHBM is applied to the conventional single-degree-of-freedom system where the spring path exists in parallel with a dry friction damper (Den Hartog's problem). Our predictions match well with Den Hartog's analytical solution. Den Hartog's system differs, in terms of the dynamic behavior, from our torsional system (with a sole dry friction path).
Active control of an aircraft tail subject to harmonic excitation
NASA Astrophysics Data System (ADS)
Eissa, M.; Bauomy, H. S.; Amer, Y. A.
2007-08-01
Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is, active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differential equations having both quadratic and cubic nonlinearties. The system describes the vibration of an aircraft tail. The system is subjected to multi-external excitation forces. The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approximate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are studied numerically. Various resonance cases are investigated. A comparison is made with the available published work.
NASA Astrophysics Data System (ADS)
Zhang, Dong; Xi, Xiaoyu; Zhang, Zhe; Gong, Xiufen; Chen, Gong; Wu, Junru
2009-07-01
Sub-harmonic imaging using encapsulated microbubbles (EMs) improves the contrast of ultrasound imaging by taking advantage of increased contrast to the tissue signal. A dual-frequency excitation technique (DFET) is proposed for enhancing the sub-harmonic emission from EMs as compared with the conventional single frequency sinusoidal excitation technique (SFSET). This study includes theoretical simulation and in vitro experimental verification. A dual-frequency signal (2 and 4 MHz) is used to insonate EMs developed in our laboratory. Both theoretical and experimental studies indicate that the DFET may be able to improve the amplitude of the sub-harmonic component up to 13 dB over the SFSET. Increasing the value of the pulse repetition frequency or the number of cycles of ultrasound tone burst in the application of the DFET may increase the sub-harmonic emission. Furthermore, it is confirmed that the amplitude ratio of the second frequency (4 MHz) to the first frequency (2 MHz) and phase shift of the second frequency with respect to the first frequency also play an important role in sub-harmonic emission. A ratio of 0.5 and a phase shift around 180° are found to be the optimum values.
NASA Technical Reports Server (NTRS)
Klimas, Alexander J.
1990-01-01
The Vlasov simulation is used to examine the trapping saturation of the bump-on-tail instability both with and without mode-mode coupling and subsequent harmonic excitation. It is found that adding the pumped harmonic modes leads to a significant difference in the behavior of the phase-space distribution function near the unstable bump at the saturation time of the instability. The pumped modes permit rapid plateau formation on the space-averaged velocity distribution, in effect preventing the onset of the quasi-linear velocity-diffusion saturation mechanism.
Harmonic pulsed excitation and motion detection of a vibrating reflective target.
Urban, Matthew W; Greenleaf, James F
2008-01-01
Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.
Contrast harmonic detection with chirp excitation in 3f0 transmit phasing.
Shen, Che-Chou; Wang, Hong-Wei; Chiu, Yi-Yuan
2008-10-01
The method of third harmonic (3f0 transmit phasing is capable of providing effective tissue background suppression for contrast-to-tissue ratio (CTR) improvement in harmonic imaging. With the additional 3f0 transmit signal to generate both the frequency-sum and the frequency-difference components of harmonic signal, the tissue suppression is achieved when the two components are opposite in phase and mutually cancel out. One major problem in 3f0 transmit phasing is the limited signal-to-noise ratio (SNR) due to the constraint on transmit amplitude. Chirp excitation can be applied in contrast harmonic imaging to enhance the SNR with minimal destruction of the microbubbles. In this paper, the effect of chirp waveform in combination with the 3f0 transmit phasing was studied using both in-vitro experiments and simulations. Our results indicate that, though the chirp transmit pulse can increase the SNR of harmonic imaging in 3f0 transmit phasing (3 dB, p < 0.001), it suffers from degraded tissue harmonic suppression and thus provides less CTR improvement as compared to a conventional pulse. The spectral mismatch between the frequency-sum and the frequency-difference components of tissue harmonic signal is particularly evident in the off-center region of second harmonic band, leading to significant residue tissue background. Consequently, with the chirp waveform, the improvement of CTR decreases from 9.5 dB to 5.9 dB (p < 0.0006) and thus a tradeoff exists between the SNR improvement and the CTR improvement in 3f0 transmit phasing.
Excitation of ion-cyclotron harmonic waves in lower-hybrid heating
NASA Astrophysics Data System (ADS)
Villalon, E.
1981-06-01
The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.
Saytashev, Ilyas; Glenn, Rachel; Murashova, Gabrielle A.; Osseiran, Sam; Spence, Dana; Evans, Conor L.; Dantus, Marcos
2016-01-01
Red blood cells (RBC) in two-photon excited fluorescence (TPEF) microscopy usually appear as dark disks because of their low fluorescent signal. Here we use 15fs 800nm pulses for TPEF, 45fs 1060nm pulses for three-photon excited fluorescence, and third harmonic generation (THG) imaging. We find sufficient fluorescent signal that we attribute to hemoglobin fluorescence after comparing time and wavelength resolved spectra of other expected RBC endogenous fluorophores: NADH, FAD, biliverdin, and bilirubin. We find that both TPEF and THG microscopy can be used to examine erythrocyte morphology non-invasively without breaching a blood storage bag. PMID:27699111
Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator
Chen Xi; Muga, J. G.
2010-11-15
We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.
Zhou, Shiwei; Reynolds, Paul; Hossack, John
2004-11-01
Microelectromechanical systems (MEMS) electrostatic-based transducers inherently produce harmonics as the electrostatic force generated in the transmit mode is approximately proportional to the square of the applied voltage signal. This characteristic precludes them from being effectively used for harmonic imaging (either with or without the addition of microbubble-based contrast agents). The harmonic signal that is nonlinearly generated by tissue (or contrast agent) cannot be distinguished from the inherent transmitted harmonic signal. We investigated two precompensation methods to cancel this inherent harmonic generation in electrostatic transducers. A combination of finite element analysis (FEA) and experimental results are presented. The first approach relies on a calculation, or measurement, of the transducer's linear transfer function, which is valid for small signal levels. Using this transfer function and a measurement of the undesired harmonic signal, a predistorted transmit signal was calculated to cancel the harmonic inherently generated by the transducer. Due to the lack of perfect linearity, the approach does hot work completely in a single iteration. However, with subsequent iterations, the problem becomes more linear and converges toward a very satisfactory result (a 18.6 dB harmonic reduction was achieved in FEA simulations and a 20.7 dB reduction was measured in a prototype experiment). The second approach tested involves defining a desired function [including a direct current (DC) offset], then taking the square root of this function to determine the shape of the required input function. A 5.5 dB reduction of transmitted harmonic was obtained in both FEA simulation and experimental prototypes test.
NASA Astrophysics Data System (ADS)
Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend; Pradas, Marc; Kalliadasis, Serafim; Markides, Christos
2016-11-01
We investigate the hydrodynamic characteristics of harmonically excited liquid-films flowing down a 20circ; incline by simultaneous application of Particle Tracking Velocimetry and Planar Laser-Induced Fluorescence (PLIF) imaging, complemented by Direct Numerical Simulations. By simultaneously implementing the above two optical techniques, instantaneous and highly localised flow-rate data were also retrieved, based on which the effect of local film topology on the flow-field underneath the wavy interface is studied in detail. Our main result is that the instantaneous flow rate varies linearly with the instantaneous film-height, as confirmed by both experiments and simulations. Furthermore, both experimental and numerical flow-rate data are closely approximated by a simple analytical relationship, which is reported here for the first time, with only minor deviations. This relationship includes the wave speed c and mean flow-rate Q , both of which can be obtained by simple and inexpensive measurement techniques, thus allowing for spatiotemporally resolved flow-rate predictions to be made without requiring any knowledge of the full flow-field from below the wavy interface.
Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation
NASA Astrophysics Data System (ADS)
Silveira, M.; Wahi, P.; Fernandes, J. C. M.
2017-02-01
The objective of this work is to study the dynamical behavior of vehicle suspension systems employing asymmetrical viscous damping, with a focus on improving passenger comfort. Previous studies have shown that the use of asymmetrical dampers in these types of systems can be advantageous with regard to comfort of the passengers. The modeling and the behavior of a quarter-car model with asymmetrical viscous damping under harmonic excitation is presented. The response is obtained with an analytical approximation via the method of Harmonic Balance. The choice of the asymmetry ratio diminishes the effects that the uneven road causes on the displacement and acceleration of the sprung mass. Although current systems usually adopt larger damping during the expansion phase, it is shown in this work that, for lower frequencies, smaller damping in this phase results in better comfort.
NASA Technical Reports Server (NTRS)
Johnson, E. H.
1975-01-01
The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.
NASA Astrophysics Data System (ADS)
Walsh, Gary F.; Trevino, Jacob T.; Pecora, Emanuele Francesco; Dal Negro, Luca
2015-09-01
Scattering by plasmon resonances of metallic nanoparticles can be tailored by particle material, size, shape, and local as well as long-range order. In this presentation we discuss a series of experiments in which long-range Fano-type coupling between grating resonances and localized surface palsmon (LSP) resonances were studied using second harmonic excitation (SH-E) spectroscopy. By tuning the excitation wavelength of a femtosecond laser and measuring the relative second harmonic (SH) signal we demonstrated that when long-range grating resonances spectrally overlap with those of the LSPs, electromagnetic field enhancement occurs on the surface of the nanoparticles leading to an increase in nonlinear scattering. This effect has been demonstrated for periodic arrays of monomers and dimers, bi-periodic antenna arrays for multi-spectral focusing to a single point, and chirped nanoparticle structures for broadband field enhancement. Results are supported by finite difference time domain simulations showing that electromagnetic fields are enhanced close on the surface of the nanoparticles when long-range structural resonances are excited. These studies have revealed design principles for engineering the interplay of photonic and plasmonic coupling for future linear and nonlinear plasmonic devices.
NASA Astrophysics Data System (ADS)
Tang, Shuo; Krasieva, Tatiana B.; Chen, Zhongping; Tempea, Gabriel; Tromberg, Bruce J.
2006-02-01
Multiphoton microscopy (MPM) has become an important tool for high-resolution and non-invasive imaging in biological tissues. However, the efficiencies of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) are relatively low because of their nonlinear nature. Therefore, it is critical to optimize laser parameters for most efficient excitation of MPM. Reducing the pulse duration can increase the peak intensity of excitation and thus potentially increase the excitation efficiency. In this paper, a multiphoton microscopy system using a 12 fs Ti:Sapphire laser is reported. With adjustable dispersion pre-compensation, the pulse duration at the sample location can be varied from 400 fs to sub-20 fs. The efficiencies of TPEF and SHG are studied for the various pulse durations, respectively. Both TPEF and SHG are found to increase proportionally to the inverse of the pulse duration for the entire tested range. To transmit most of the SHG and TPEF signals, the spectral transmission widow of the detection optics needs to be carefully considered. Limitation from phase-matching in SHG generation is not significant because the effective interaction length for SHG is less than 10 μm at the focal depth of the objectives. These results are important in improving MPM excitation efficiency using ultrashort pulses. MPM images from human artery wall are also demonstrated.
Laser dyes excited by high PRR Nd:YAG laser second-harmonic radiation
NASA Astrophysics Data System (ADS)
Soldatov, A. N.; Donin, V. I.; Jakovin, D. V.; Reimer, I. V.
2008-01-01
The lasing characteristics of red-emitting dyes in ethanol excited by Nd:YAG laser second-harmonic radiation are examined. The Nd:YAG laser was pumped by a diode matrix. The pump pulse repetition rates (PRRs) were 2.5 - 10 kHz and the pulse duration was 60 - 300 ns. The following dyes were evaluated: oxazine 17, DCM, DCM sp, and pyridine 1. The conversion efficiency for oxazine was 25 % without wavelength selection and 15 % with wavelength selection over the tuning range from 630 to 700 nm. The Nd:YAG and dye laser designs used are described elsewhere [1,2].
Voltage harmonic elimination with RLC based interface smoothing filter
NASA Astrophysics Data System (ADS)
Chandrasekaran, K.; Ramachandaramurthy, V. K.
2015-04-01
A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented.
NASA Astrophysics Data System (ADS)
Chong, C.; Kim, E.; Charalampidis, E. G.; Kim, H.; Li, F.; Kevrekidis, P. G.; Lydon, J.; Daraio, C.; Yang, J.
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments.
Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode.
Grinblat, Gustavo; Li, Yi; Nielsen, Michael P; Oulton, Rupert F; Maier, Stefan A
2016-07-13
We present an all-dielectric germanium nanosystem exhibiting a strong third order nonlinear response and efficient third harmonic generation in the optical regime. A thin germanium nanodisk shows a pronounced valley in its scattering cross section at the dark anapole mode, while the electric field energy inside the disk is maximized due to high confinement within the dielectric. We investigate the dependence of the third harmonic signal on disk size and pump wavelength to reveal the nature of the anapole mode. Each germanium nanodisk generates a high effective third order susceptibility of χ((3)) = 4.3 × 10(-9) esu, corresponding to an associated third harmonic conversion efficiency of 0.0001% at an excitation wavelength of 1650 nm, which is 4 orders of magnitude greater than the case of an unstructured germanium reference film. Furthermore, the nonlinear conversion via the anapole mode outperforms that via the radiative dipolar resonances by about 1 order of magnitude, which is consistent with our numerical simulations. These findings open new possibilities for the optimization of upconversion processes on the nanoscale through the appropriate engineering of suitable dielectric materials.
NASA Astrophysics Data System (ADS)
Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.
2014-05-01
The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.
NASA Astrophysics Data System (ADS)
Wang, Yi-Ze; Li, Feng-Ming
2016-08-01
Structures under parametric load can be induced to the parametric instability in which the excitation frequency is located the instability region. In the present work, the parametric instability of double-walled carbon nanotubes is studied. The axial harmonic excitation is considered and the nonlocal continuum theory is applied. The critical equation is derived as the Mathieu form by the Galerkin's theory and the instability condition is presented with the Bolotin's method. Numerical calculations are performed and it can be seen that the van der Waals interaction can enhance the stability of double-walled nanotubes under the parametric excitation. The parametric instability becomes more obvious with the matrix stiffness decreasing and small scale coefficient increasing. The parametric instability is going to be more significant for higher mode numbers. For the nanosystem with the soft matrix and higher mode number, the small scale coefficient and the ratio of the length to the diameter have obvious influences on the starting point of the instability region.
Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J
2011-01-15
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
Brackmann, Christian; Nygren, Jenny; Bai, Xiao; Li, Zhongshan; Bladh, Henrik; Axelsson, Boman; Denbratt, Ingemar; Koopmans, Lucien; Bengtsson, Per-Erik; Aldén, Marcus
2003-12-01
Formaldehyde (CH2O) is an important intermediate species in combustion processes and it can through laser-induced fluorescence measurements be used for instantaneous flame front detection. The present study has focussed on the use of the third harmonic of a Nd:YAG laser at 355 nm as excitation wavelength for formaldehyde, and different dimethyl ether (C2H6O) flames were used as sources of formaldehyde in the experiments. The investigations included studies of the overlap between the laser profile and the absorption lines of formaldehyde, saturation effects and the potential occurrence of laser-induced photochemistry. The technique was applied for detection of formaldehyde in an internal combustion engine operated both as a spark ignition engine and as a homogenous charge compression ignition engine.
NASA Astrophysics Data System (ADS)
Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai
2017-02-01
Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.
NASA Astrophysics Data System (ADS)
Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.
2017-01-01
We present results from the simultaneous application of planar laser-induced fluorescence (PLIF), particle image velocimetry (PIV) and particle tracking velocimetry (PTV), complemented by direct numerical simulations, aimed at the detailed hydrodynamic characterization of harmonically excited liquid-film flows falling under the action of gravity. The experimental campaign comprises four different aqueous-glycerol solutions corresponding to four Kapitza numbers (Ka=14 , 85, 350, 1800), spanning the Reynolds number range Re=2.3 -320 , and with forcing frequencies fw=7 and 10 Hz . PLIF was employed to generate spatiotemporally resolved film-height measurements, and PIV and PTV to generate two-dimensional velocity-vector maps of the flow field underneath the wavy film interface. The latter allows for instantaneous, highly localized velocity-profile, bulk-velocity, and flow-rate data to be retrieved, based on which the effect of local film topology on the flow field underneath the waves is studied in detail. Temporal sequences of instantaneous and local film height and bulk velocity are generated and combined into bulk flow-rate time series. The time-mean flow rates are then decomposed into steady and unsteady components, the former represented by the product of the mean film height and mean bulk velocity and the latter by the covariance of the film-height and bulk-velocity fluctuations. The steady terms are found to vary linearly with the flow Re, with the best-fit gradients approximated closely by the kinematic viscosities of the three examined liquids. The unsteady terms, typically amounting to 5 %-10 % of the mean and peaking at approximately 20 % , are found to scale linearly with the film-height variance. And, interestingly, the instantaneous flow rate is found to vary linearly with the instantaneous film height. Both experimental and numerical flow-rate data are closely approximated by a simple analytical relationship with only minor deviations. This relationship
NASA Astrophysics Data System (ADS)
Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi
2015-10-01
Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.
NASA Astrophysics Data System (ADS)
Browne, Michael; Palazzolo, Alan
2009-06-01
Typical industrial vibration problem solving includes utilization of linear vibration measurement and analysis techniques. These techniques have appeared to be sufficient with most vibration problem solving requirements. This is partially due to the lack of proper identification of the nonlinear dynamic response in measured data of actual engineering systems. Therefore, as an example, a vehicle driveshaft exhibits a nonlinear super harmonic jump due to universal joint excitations. This phenomenon is partially responsible for objectionable audible noise in the vehicle. Previously documented measurements or analytical predictions of vehicle driveshaft systems do not indicate nonlinear jump as a typical vibration mode. Physical measurements of the phenomena will be provided with subsequent analysis. Second, the secondary moment exciting the driveshaft system is derived with subsequent analysis showing the harmonic and super harmonic excitations. Third, a derivation of a model incorporating the linear and nonlinear modeling of a large degree of freedom system is introduced. Finally, simulations with the derived model with the universal joint excitations will be presented showing the correlation to physical test results. Therefore, a typical automotive driveshaft system is capable of producing nonlinear response, and thus the assumption of linearity is not sufficient for design validation or problem resolution in this case.
Ruiz-Cabello, F J Montes; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2011-07-19
Currently, there is no conclusive evidence regarding the global equilibrium condition of vibrated drops. However, it is well-known that vibration of sessile drops effectively reduces the contact angle hysteresis. In this work, applying a recent methodology for evaluating the most-stable contact angle, we examined the impact of the type of excitation signal (random signal versus periodical signal) on the values of the most-stable contact angle for polymer surfaces. Using harmonic signals, the oscillation frequency affected the postvibration contact angle. Instead, the white noise signal enabled sessile drops to relax regardless of their initial configuration. In spite of that, the values of most-stable contact angle obtained with different signals mostly agreed. We concluded that not only the amount of relaxation can be important for relaxing a sessile drop but also the rate of relaxation. Together with receding contact angle, most-stable contact angle, measured with the proposed methodology, was able to capture the thermodynamic changes of "wetted" polymer surfaces.
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-07-06
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.
Motion artifacts of pulse inversion-based tissue harmonic imaging.
Shen, Che-Chou; Li, Pai-Chi
2002-09-01
Motion artifacts of the pulse inversion technique were studied for finite amplitude distortion-based harmonic imaging. Motion in both the axial and the lateral directions was considered. Two performance issues were investigated. One is the harmonic signal intensity relative to the fundamental intensity and the other is the potential image quality degradation resulting from spectral leakage. A one-dimensional (1-D) correlation-based correction scheme also was used to compensate for motion artifacts. Results indicated that the tissue harmonic signal is significantly affected by tissue motion. For axial motion, the tissue harmonic intensity decreases much more rapidly than with lateral motion. The fundamental signal increases for both axial and lateral motion. Thus, filtering is still required to remove the fundamental signal, even if the pulse inversion technique is applied. The motion also potentially decreases contrast resolution because of the uncancelled spectral leakage. Also, it was indicated that 1-D motion correction is not adequate if nonaxial motion is present.
Zhang Pei; Baboi, Nicoleta; Jones, Roger M.; Shinton, Ian R. R.; Flisgen, Thomas; Glock, Hans-Walter
2012-08-15
We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.
Zhang, Pei; Baboi, Nicoleta; Jones, Roger M; Shinton, Ian R R; Flisgen, Thomas; Glock, Hans-Walter
2012-08-01
We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.
Improved Active Harmonic Current Elimination Based on Voltage Detection.
Tan, Tianyuan; Dong, Shuan; Huang, Yingwei; Liu, Jian; Le, Jian; Liu, Kaipei
2016-01-01
With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD) and harmonic voltage compensator (HVC) based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF) algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles' trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control.
Improved Active Harmonic Current Elimination Based on Voltage Detection
Tan, Tianyuan; Dong, Shuan; Huang, Yingwei; Liu, Jian; Le, Jian; Liu, Kaipei
2016-01-01
With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD) and harmonic voltage compensator (HVC) based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF) algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles’ trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control. PMID:27295213
NASA Astrophysics Data System (ADS)
Ivanovich Aptekarev, Alexander; Nikolaevich Tulyakov, Dmitry; Valero Toranzo, Irene; Sanchez Dehesa, Jesús
2016-03-01
The Rényi entropies Rp [ ρ ], p> 0, ≠ 1 of the highly-excited quantum states of the D-dimensional isotropic harmonic oscillator are analytically determined by use of the strong asymptotics of the orthogonal polynomials which control the wavefunctions of these states, the Laguerre polynomials. This Rydberg energetic region is where the transition from classical to quantum correspondence takes place. We first realize that these entropies are closely connected to the entropic moments of the quantum-mechanical probability ρn(r) density of the Rydberg wavefunctions Ψn,l, { μ }(r); so, to the ℒp-norms of the associated Laguerre polynomials. Then, we determine the asymptotics n → ∞ of these norms by use of modern techniques of approximation theory based on the strong Laguerre asymptotics. Finally, we determine the dominant term of the Rényi entropies of the Rydberg states explicitly in terms of the hyperquantum numbers (n,l), the parameter order p and the universe dimensionality D for all possible cases D ≥ 1. We find that (a) the Rényi entropy power decreases monotonically as the order p is increasing and (b) the disequilibrium (closely related to the second order Rényi entropy), which quantifies the separation of the electron distribution from equiprobability, has a quasi-Gaussian behavior in terms of D.
NASA Astrophysics Data System (ADS)
Aptekarev, Alexander Ivanovich; Tulyakov, Dmitry Nikolaevich; Toranzo, Irene Valero; Dehesa, Jesús Sanchez
2016-03-01
The Rényi entropies R p [ ρ ], p> 0, ≠ 1 of the highly-excited quantum states of the D-dimensional isotropic harmonic oscillator are analytically determined by use of the strong asymptotics of the orthogonal polynomials which control the wavefunctions of these states, the Laguerre polynomials. This Rydberg energetic region is where the transition from classical to quantum correspondence takes place. We first realize that these entropies are closely connected to the entropic moments of the quantum-mechanical probability ρ n (r) density of the Rydberg wavefunctions Ψ n,l, { μ }(r); so, to the ℒ p -norms of the associated Laguerre polynomials. Then, we determine the asymptotics n → ∞ of these norms by use of modern techniques of approximation theory based on the strong Laguerre asymptotics. Finally, we determine the dominant term of the Rényi entropies of the Rydberg states explicitly in terms of the hyperquantum numbers (n,l), the parameter order p and the universe dimensionality D for all possible cases D ≥ 1. We find that (a) the Rényi entropy power decreases monotonically as the order p is increasing and (b) the disequilibrium (closely related to the second order Rényi entropy), which quantifies the separation of the electron distribution from equiprobability, has a quasi-Gaussian behavior in terms of D.
Multiphoton excitation of fluorescent DNA base analogs.
Katilius, Evaldas; Woodbury, Neal W
2006-01-01
Multiphoton excitation was used to investigate properties of the fluorescent DNA base analogs, 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI). 2-aminopurine, a fluorescent analog of adenine, was excited by three-photon absorption. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2AP for DNA-protein interaction studies. However, high excitation power and long integration times needed to acquire high signal-to-noise fluorescence correlation curves render three-photon excitation FCS of 2AP not very useful for studying DNA base dynamics. The fluorescence properties of 6-methylisoxanthopterin, a guanine analog, were investigated using two-photon excitation. The two-photon absorption cross-section of 6MI was estimated to be about 2.5 x 10(-50) cm(4)s (2.5 GM units) at 700 nm. The two-photon excitation spectrum was measured in the spectral region from 700 to 780 nm; in this region the shape of the two-photon excitation spectrum is very similar to the shape of single-photon excitation spectrum in the near-UV spectral region. Two-photon excitation of 6MI is suitable for fluorescence correlation measurements. Such measurements can be used to study DNA base dynamics and DNA-protein interactions over a broad range of time scales.
Suomi, Visa; Edwards, David; Cleveland, Robin
2015-12-01
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements.
Harmonics based detection of magnetic nanoparticle dynamics for multiparameter biosensing
NASA Astrophysics Data System (ADS)
Rauwerdink, Adam M.
Magnetic nanoparticles have an increasing role in the clinical and pharmaceutical realms where their physical properties can be exploited for imaging, biological and functional sensing, control of cellular processes, therapeutics, and an array of other applications. When excited by an alternating magnetic field, these particles will produce a series of harmonics. These harmonics have been exploited for in vitro particle detection and for in vivo imaging using magnetic particle imaging (MPI). Using a new technique, which we have termed magnetic spectroscopy of nanoparticle Brownian motion (MSB), we have shown how information about the physical environment of the particles can be extracted from this harmonic spectrum. A variety of physical effects have been detected and/or quantified including temperature, viscosity, nanoparticle binding, and aggregation. Further, we found these different environments to have a unique impact on the spectral signature of the nanoparticles which allows for simultaneous quantification of multiple environmental states. The thesis culminates with a study of MSB as a means for monitoring the cellular uptake of nanoparticles. Potential applications for MSB as a standalone technology and the potential for incorporation into MPI are discussed throughout.
Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.
2010-10-15
The dynamic process of fragmentation of CO{sup q+} excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C{sup +}-O{sup +} fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C{sup +}-O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.
Second-harmonic generation excited by a rotating Laguerre-Gaussian beam
Petrov, Dmitri
2010-09-15
Experimental data demonstrate that unlike linear optical processes, an optical Laguerre-Gaussian beam of frequency {omega}, with topological charge m, rotating with angular frequency {Omega}<<{omega}, may not be considered as a monochromatic beam with the shifted frequency {omega}+m{Omega} (Doppler angular shift) for the second-harmonic generation nonlinear process.
[A New HAC Unsupervised Classifier Based on Spectral Harmonic Analysis].
Yang, Ke-ming; Wei, Hua-feng; Shi, Gang-qiang; Sun, Yang-yang; Liu, Fei
2015-07-01
Hyperspectral images classification is one of the important methods to identify image information, which has great significance for feature identification, dynamic monitoring and thematic information extraction, etc. Unsupervised classification without prior knowledge is widely used in hyperspectral image classification. This article proposes a new hyperspectral images unsupervised classification algorithm based on harmonic analysis(HA), which is called the harmonic analysis classifer (HAC). First, the HAC algorithm counts the first harmonic component and draws the histogram, so it can determine the initial feature categories and the pixel of cluster centers according to the number and location of the peak. Then, the algorithm is to map the waveform information of pixels to be classified spectrum into the feature space made up of harmonic decomposition times, amplitude and phase, and the similar features can be gotten together in the feature space, these pixels will be classified according to the principle of minimum distance. Finally, the algorithm computes the Euclidean distance of these pixels between cluster center, and merges the initial classification by setting the distance threshold. so the HAC can achieve the purpose of hyperspectral images classification. The paper collects spectral curves of two feature categories, and obtains harmonic decomposition times, amplitude and phase after harmonic analysis, the distribution of HA components in the feature space verified the correctness of the HAC. While the HAC algorithm is applied to EO-1 satellite Hyperion hyperspectral image and obtains the results of classification. Comparing with the hyperspectral image classifying results of K-MEANS, ISODATA and HAC classifiers, the HAC, as a unsupervised classification method, is confirmed to have better application on hyperspectral image classification.
Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation
NASA Astrophysics Data System (ADS)
Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.
2015-11-01
Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Menikoff, Ralph
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
A wireless and passive pressure sensor system based on the magnetic higher-order harmonic field
NASA Astrophysics Data System (ADS)
Tan, Ee Lim
The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.
Nonlinear Analysis of Mechanical Systems Under Combined Harmonic and Stochastic Excitation
1993-05-27
autonomous system is studied. The effect of studied by several authors in the past ( Caprino et a]. periodic parametric excitations is examined on systems...Resonance," (in preparation). 3. Caprino , S., Maffei, C., and Negrini, P., 1984, "Hopf 17. Namachchivaya, N. Sri, and Malhotra, N., 1! Bifurcation with
NASA Astrophysics Data System (ADS)
Chenari, Reza Jamshidi; Bostani Taleshani, Shirin Aminzadeh
2016-06-01
Variation of shear-wave propagation velocity (SWV) with depth was studied by analyzing more than one hundred actual SWV profiles. Linear, power, and hyperbolic variation schemes were investigated to find the most representative form for naturally occurred alluvial deposits. It was found that hyperbolic (asymptotic) variation dominates the majority of cases and it can be reliably implemented in analytical or analytical-numerical procedures. Site response analyses for a one-layer heterogeneous stratum were conducted to find an equivalent homogeneous alternative which simplifies the analysis procedure but does not compromise the accuracy of the resonance and amplification responses. Harmonic average, arithmetic average and mid-value equivalents are chosen from the literature for investigation. Furthermore, full and partial depth averaging schemes were evaluated and compared in order to verify the validity of current practices which rely upon averaging shallow depths, viz., the first 30 m of the strata. Engineering bedrock concept was discussed and the results were compared.
Lan, C. B.; Qin, W. Y.
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Harmonic generalization based on the integrated geographic feature retrieval
NASA Astrophysics Data System (ADS)
Huang, Lina; Fei, Lifan; He, Jing
2009-10-01
Generalization is needed to describe relevant information on an appropriate level of detail. However, the harmony between different generalized geographic features are always difficult to be ensured even if the data sources come from the same topographic maps or geographic databases, as the generalization is carried out separately in the context of computer assisted cartography. This paper introduces a new approach for the harmonic generalization of terrain and water system based on the integrated geographic feature retrieval using 3D Douglas-Peucker algorithm. The advantage of the research is two folded: firstly, it focuses on the geographic nature of water system and terrain; secondly, the 3D Douglas-Peucker algorithm is developed to make this generalization of the two kinds of features possible. The spatial representation of water system in vector data and that of the terrain in DEMs are unitized into one set of general character points. Then the 3D Douglas-Peucker algorithm is performed for the features retrieval. After that, the result is returned to generate the abstracted terrain and the simplified water system. In this way, the harmonic registration between the generalized terrain and the generalized water system can be ensured. The preliminary experiments show that this harmonic generalization is a promising way both in cartography and GIS.
Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor.
Guo, Wei; Wang, Yuanyuan; Yu, Jinhua
2016-12-01
Tissue harmonic imaging (THI) utilizes harmonic signals generating within the tissue as the result of nonlinear acoustic wave propagation. With inadequate transmitting acoustic energy, THI is incapable to detect the small objects since poor harmonic signals have been generated. In most cases, high transmission energy cannot be guaranteed because of the imaging safety issue or specific imaging modality such as the plane wave imaging (PWI). Discrimination of small point targets such as calcification, however, is particularly important in the ultrasound diagnosis. Few efforts have been made to pursue the THI with high resolution and good small target visibility at the same time. In this paper, we proposed a new eigenspace-based coherence factor (ESBCF) beamformer to solve this problem. A new kind of coherence factor (CF), named as ESBCF, is firstly proposed to detect the point targets. The detected region-of-interest (ROI) is then enhanced adaptively by using a newly developed beamforming method. The ESBCF combines the information from signal eigenspace and coherence factor by expanding the CF to the covariance matrix of signal. Analogous to the image processing but in the radio frequency (RF) data domain, the proposed method fully utilizes the information from the fundamental and harmonic components. The performance of the proposed method is demonstrated by simulation and phantom experiments. The improvement of the point contrast ratio (PCR) is 7.6dB in the simulated data, and 6.0dB in the phantom experiment. Thanks to the improved small point detection ability of the ESBCF, the proposed beamforming algorithm can enhance the PCR considerably and maintain the high resolution of the THI at the same time.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
NASA Astrophysics Data System (ADS)
Abraham, Thomas; Carthy, Jon; McManus, Bruce
2009-02-01
Second harmonic generation (SHG), a nonlinear optical phenomenon, exhibits several in-common characteristics of twophoton excited fluorescence (TPEF) microscopy. These characteristics include identical equipment requirements from experiment to experiment and the intrinsic capability of generating 3-dimensional (D) high resolution images. Structural protein arrays that are highly ordered, such as collagen, produce strong SHG signals without the need for any exogenous label (stain). SHG and TPEF can be used together to provide information on structural rearrangements in 3D space of the collagen matrix associated with various physiological processes. In this study, we used SHG and TPEF to detect cellmediated structural reorganization of the extracellular collagen matrix in 3D space triggered by dimensional changes of embedded fibroblasts. These fibroblasts were cultured in native type I collagen gels and were stimulated to contract for a period of 24 hours. The gels were stained for cell nuclei with Hoechst and for actin with phalloidin conjugated to Alexa Fluor 488. We used non-de-scanned detectors and spectral scanning mode both in the reflection geometry for generating the 3D images and for SHG spectra, respectively. We used a tunable infrared laser with 100-fs pulses at a repetition rate of 80-MHz tuned to 800-nm for Hoechst and Alexa 488 excitations. We employed a broad range of excitation wavelengths (800 to 880-nm) with a scan interval of 10 nm to detect the SHG signal. We found that spectrally clean SHG signal peaked at 414-nm with excitation wavelength of 830-nm. The SHG spectrum has a full width half maximum (FWHM) bandwidth of 6.60-nm, which is consistent with its scaling relation to FWHM bandwidth 100-fs excitation pulses. When stimulated to contract, we found the fibroblasts to be highly elongated as well as interconnected in 2D space, and the collagen matrix, in the form of a visibly clear fibril structure, accumulated around the cells. In the absence of
Stokes vector formalism based second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Qiu, Jianjun; Mazumder, Nirmal; Tsai, Han-Ruei; Hu, Chih-Wei; Kao, Fu-Jen
2012-02-01
In this study, we have developed a four-channel Stokes vector formalism based second harmonic generation (SHG) microscopy to map and analyze SHG signal. A four-channel Stokesmeter setup is calibrated and integrated into a laser scanning microscope to measure and characterize the SH's corresponding Stokes parameters. We are demonstrating the use of SH and its Stokes parameters to visualize the birefringence and crystalline orientation of KDP and collagen. We believe the developed method can reveal unprecedented information for biomedical and biomaterial studies.
Ground state and excitations of a Bose gas: From a harmonic trap to a double well
Japha, Y.; Band, Y. B.
2011-09-15
We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.
Experiments on shells under base excitation
NASA Astrophysics Data System (ADS)
Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo
2016-05-01
The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.
Sarkar, Chitrakshya; Bhattacharyya, S S; Saha, Samir
2011-01-14
We have theoretically studied the role of high-lying molecular electronic states on the high harmonic generation (HHG) in H(2)(+) within the framework of a time-independent Hermitian nonperturbative three-dimensional Floquet technique for continuous wave monochromatic lasers of intensities of 2.59 × 10(13), 4.0 × 10(13), and 5.6 × 10(13) W∕cm(2), and wavelengths of 1064, 532, and 355 nm. To evaluate the HHG spectra, the resonance Floquet quasienergy and the Fourier components of the Floquet state corresponding to the initial vibrational-rotational level v = 0, J = 0 have been computed by solving the time-independent close-coupled Schrödinger equation following the Floquet method. The calculations include seven molecular electronic states in the basis set expansion of the Floquet state. The electronic states considered, apart from the two lowest 1sσ(g) and 2pσ(u) states, are 2pπ(u), 2sσ(g), 3pσ(u), 3dσ(g), and 4fσ(u). All the concerned higher excited molecular electronic states asymptotically degenerate into the atomic state H(2 l) with l = 0, 1. The computations reveal signature of significant oscillations in the HHG spectra due to the interference effect of the higher molecular electronic states for all the considered laser intensities and wavelengths. We have attempted to explain, without invoking any ionization, the dynamics of HHG in H(2)(+) within the framework of electronic transitions due to the electric dipole moments and the nuclear motions on the field coupled ground, the first and the higher excited electronic states of this one-electron molecular ion.
Accurate tempo estimation based on harmonic + noise decomposition
NASA Astrophysics Data System (ADS)
Alonso, Miguel; Richard, Gael; David, Bertrand
2006-12-01
We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.
Source distance determination based on the spherical harmonics
NASA Astrophysics Data System (ADS)
Koutny, Adam; Jiricek, Ondrej; Thomas, Jean-Hugh; Brothanek, Marek
2017-02-01
This paper deals with the processing of signals measured by a spherical microphone array, focusing on the utilization of near-field information of such an array. The processing, based on the spherical harmonics decomposition, is performed in order to investigate the radial-dependent spherical functions and extract their argument - distance to the source. Using the low-frequency approximation of these functions, the source distance is explicitly expressed. The source distance is also determined from the original equation (using no approximation) by comparing both sides of this equation. The applicability of both methods is first presented in the noise-less data simulation, then validated with data contaminated by the additive white noise of different signal-to-noise ratios. Finally, both methods are tested for real data measured by a rigid spherical microphone array of radius 0.15 m, consisting of 36 microphones for a point source represented by a small speaker. The possibility of determination of the source distance using low-order spherical harmonics is shown.
Infrared-based least-invasive third and second harmonic generation imaging of ocular tissues
NASA Astrophysics Data System (ADS)
Chen, Szu-Yu; Yu, Han-Chieh; Wang, I.-Jong; Sun, Chi-kuang
2009-02-01
Cornea functions as an outermost lens and plays an important role in vision. For cornea diagnosis and treatment, a microscopic imaging system with cellular resolution and high eye safety is strongly desired. Recently, the cell morphology of corneal epithelium and endothelium can be revealed by confocal or two-photon fluorescence microscopy, while the collagen fibers in the corneal stroma can be shown by second harmonic generation (SHG) microscopy. However, in most of the developed imaging tools, visible to near-infrared light sources were used. To increase the eye safety, a light source with longer wavelength would be needed. In this presentation, a study using an infrared laser based nonlinear microscopy to investigate the ocular tissues of a mouse eye will be demonstrated. Since most of autofluorescence was suppressed under infrared excitation, third harmonic generation (THG) microscopy was used to reveal the cellular morphology and ~700μm penetrability could be achieved. Combining SHG with THG, in an intact mouse eye, not only the cornea but also the upper half of the lens could be observed with cellular resolution. Our study indicated that infrared-based SHG and THG microscopy could provide a useful in vivo investigating tool for ophthalmology.
NASA Astrophysics Data System (ADS)
Yin, Tingyuan; Meng, Wanlin; Talebzadeh, Neda; Chen, Jun
2017-02-01
The objective of this paper is to characterize cracking progression of concrete samples subjected to sulfate attack cycles by employment of a nonlinear wave modulation technique. The sidebands in frequency domain (f1±f2) are produced due to the modulation of two ultrasonic waves (high frequency f1 and low frequency f2) and the relative amplitude of sidebands is defined as the nonlinear parameter considered as a caliber for structural damage. Different from previous work where the low frequency signal was generated by the instrumented hammer, the low frequency signal in this research is a harmonic wave produced by an electromagnetic exciter to avoid the uncertainty of man-made influence. Experimental results show that the nonlinear parameter presents an excellent correlation with the progress of material deterioration, indicating that the wave modulation method is capable of discriminating different states of damage. The work validates the feasibility and sensitivity of nonlinear wave modulation technique based on harmonic signals for the damage detection of concrete materials suffered from typical durability problems.
[The noise filtering and baseline correction for harmonic spectrum based on wavelet transform].
Guo, Yuan; Zhao, Xue-Hong; Zhang, Rui; Hu, Ya-Jun; Wang, Yan
2013-08-01
The problem of noise and baseline drift is a hot topic in infrared spectral harmonic detection system. This paper presents a new algorithm based on wavelet transform Mallet decomposition to solve the problem of eliminating a variety of complex noise and baseline drift in the harmonic detection. In the algorithm, the appropriate wavelet function and decomposition level were selected to decomposed the noise, baseline drift and useful signal in the harmonic curve into different frequency bands. the bands' information was analysed and a detecting band was set, then the information in useful frequency was reserved by zeroing method of treatment and the coefficient of the threshold. We can just use once transform and reconstruction to remove interference noise and baseline from double-harmonic signal by applying the wavelet transform technique to the harmonic detection spectrum pretreatment. Experiments show that the wavelet transform method can be used to different harmonic detection systems and has universal applicability.
Glamazda, A.; Lemmens, P.; Do, S. -H.; Choi, Y. S.; Choi, K. -Y.
2016-01-01
The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Using polarization-resolved Raman spectroscopy, we find that the dynamical Raman response of β- and γ-Li2IrO3 features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev–Heisenberg system. PMID:27457278
Martin-Gassin, Gaelle; Villamaina, Diego; Vauthey, Eric
2011-03-02
The excited-state dynamics of aminostilbazolium dyes is known to be dominated by nonradiative deactivation through large-amplitude motion. In order to identify the coordinate(s) responsible for this process, the excited-state lifetimes of two dialkylaminostyryl-methylpyridinium iodides have been measured at liquid-liquid interfaces using time-resolved surface second harmonic generation. We found that the decay time of the excited-states of both compounds was increasing with the viscosity of the apolar phase, consisting of n-alkanes of varying length, but was unaffected by that of the polar phase, made of water/glycerol mixtures. This indicates that the nonradiative deactivation is associated with the twist of the dialkylaniline group, which is located in the apolar part of the molecule.
Optical coherence tomography imaging based on non-harmonic analysis
NASA Astrophysics Data System (ADS)
Cao, Xu; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya
2009-11-01
A new processing technique called Non-Harmonic Analysis (NHA) is proposed for OCT imaging. Conventional Fourier-Domain OCT relies on the FFT calculation which depends on the window function and length. Axial resolution is counter proportional to the frame length of FFT that is limited by the swept range of the swept source in SS-OCT, or the pixel counts of CCD in SD-OCT degraded in FD-OCT. However, NHA process is intrinsically free from this trade-offs; NHA can resolve high frequency without being influenced by window function or frame length of sampled data. In this study, NHA process is explained and applied to OCT imaging and compared with OCT images based on FFT. In order to validate the benefit of NHA in OCT, we carried out OCT imaging based on NHA with the three different sample of onion-skin,human-skin and pig-eye. The results show that NHA process can realize practical image resolution that is equivalent to 100nm swept range only with less than half-reduced wavelength range.
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
Dahl, Jeremy; Jakovljevic, Marko; Pinton, Gianmarco F; Trahey, Gregg E
2012-04-01
We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.
NASA Astrophysics Data System (ADS)
Heo, YongHwa; Kim, Kwang-joon
2015-02-01
While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.
Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks.
Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D; Ravi, Sathya N; Bendlin, Barbara B; Johnson, Sterling C; Singh, Vikas
2016-01-01
There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points - quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer's disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant's brain connectivity into the future.
NASA Astrophysics Data System (ADS)
Erturk, A.; Inman, D. J.
2009-02-01
Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh-Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler-Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance
NASA Astrophysics Data System (ADS)
Tangtrongbenchasil, C.; Nonaka, K.
2008-11-01
Nano-focus beam applications of short wavelength approximately 220 nm now play important roles in engineering and industrial sections. At present, light sources at approximately 220 nm are commercially available but large size, difficult to maintain, and expensive. Compact wavelength tunable and cost effective light sources at approximately 220 nm are required. Laser diode with sum-frequency generation methods are employed to generated the shorter wavelength approximately 220 nm. This paper presents comparison of second harmonic generation schemes using a nonlinear optic crystal and two types of laser diode, which are a 440 nm single mode blue laser diode and a 450 nm multimode Fabry-Perot blue laser diode, has potential to generate wide tunable coherent deep ultraviolet-c at approximately 220 nm. Using the blue laser diode with the sum-frequency technique, a high second harmonic power is hardly observed due to low conversion efficiency. The best performance of second harmonic generation using blue laser diode, nonlinear optic crystal, and an high-Q external cavity laser diode was observed as 1.1 μW second harmonic ultraviolet-c power at 224.45 nm ultraviolet-c wavelength and 5.75 nm ultraviolet wavelength tunability. In addition, the improvement of increasing second harmonic power approximately 220 nm and the limitation of wavelength tuning of short wavelength are also theoretically discussed in this paper.
An algebraic cluster model based on the harmonic oscillator basis
NASA Technical Reports Server (NTRS)
Levai, Geza; Cseh, J.
1995-01-01
We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.
High frequency SAW devices based on third harmonic generation.
Le Brizoual, L; Elmazria, O; Sarry, F; El Hakiki, M; Talbi, A; Alnot, P
2006-12-01
We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K(2)) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.
Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka
2012-10-12
Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.
NASA Astrophysics Data System (ADS)
Zhu, Zhiwen; Zhang, Qingxin; Xu, Jia
2014-05-01
Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film-shape memory alloy (GMF-SMA) composite cantilever plate subjected to in-plane harmonic and stochastic excitation were studied. Van der Pol items were improved to interpret the hysteretic phenomena of both GMF and SMA, and the nonlinear dynamic model of a GMF-SMA composite cantilever plate subjected to in-plane harmonic and stochastic excitation was developed. The probability density function of the dynamic response of the system was obtained, and the conditions of stochastic Hopf bifurcation were analyzed. The conditions of noise-induced chaotic response were obtained in the stochastic Melnikov integral method, and the fractal boundary of the safe basin of the system was provided. Finally, the chaos control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that stochastic Hopf bifurcation and chaos appear in the parameter variation process. The boundary of the safe basin of the system has fractal characteristics, and its area decreases when the noise intensifies. The system reliability was improved through stochastic optimal control, and the safe basin area of the system increased.
Zhu, Zhiwen; Zhang, Qingxin Xu, Jia
2014-05-07
Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film–shape memory alloy (GMF–SMA) composite cantilever plate subjected to in-plane harmonic and stochastic excitation were studied. Van der Pol items were improved to interpret the hysteretic phenomena of both GMF and SMA, and the nonlinear dynamic model of a GMF–SMA composite cantilever plate subjected to in-plane harmonic and stochastic excitation was developed. The probability density function of the dynamic response of the system was obtained, and the conditions of stochastic Hopf bifurcation were analyzed. The conditions of noise-induced chaotic response were obtained in the stochastic Melnikov integral method, and the fractal boundary of the safe basin of the system was provided. Finally, the chaos control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that stochastic Hopf bifurcation and chaos appear in the parameter variation process. The boundary of the safe basin of the system has fractal characteristics, and its area decreases when the noise intensifies. The system reliability was improved through stochastic optimal control, and the safe basin area of the system increased.
Data harmonization and federated analysis of population-based studies: the BioSHaRE project
2013-01-01
Abstracts Background Individual-level data pooling of large population-based studies across research centres in international research projects faces many hurdles. The BioSHaRE (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project aims to address these issues by building a collaborative group of investigators and developing tools for data harmonization, database integration and federated data analyses. Methods Eight population-based studies in six European countries were recruited to participate in the BioSHaRE project. Through workshops, teleconferences and electronic communications, participating investigators identified a set of 96 variables targeted for harmonization to answer research questions of interest. Using each study’s questionnaires, standard operating procedures, and data dictionaries, harmonization potential was assessed. Whenever harmonization was deemed possible, processing algorithms were developed and implemented in an open-source software infrastructure to transform study-specific data into the target (i.e. harmonized) format. Harmonized datasets located on server in each research centres across Europe were interconnected through a federated database system to perform statistical analysis. Results Retrospective harmonization led to the generation of common format variables for 73% of matches considered (96 targeted variables across 8 studies). Authenticated investigators can now perform complex statistical analyses of harmonized datasets stored on distributed servers without actually sharing individual-level data using the DataSHIELD method. Conclusion New Internet-based networking technologies and database management systems are providing the means to support collaborative, multi-center research in an efficient and secure manner. The results from this pilot project show that, given a strong collaborative relationship between participating studies, it is possible to seamlessly co
Computational-Model-Based Analysis of Context Effects on Harmonic Expectancy.
Morimoto, Satoshi; Remijn, Gerard B; Nakajima, Yoshitaka
2016-01-01
Expectancy for an upcoming musical chord, harmonic expectancy, is supposedly based on automatic activation of tonal knowledge. Since previous studies implicitly relied on interpretations based on Western music theory, the underlying computational processes involved in harmonic expectancy and how it relates to tonality need further clarification. In particular, short chord sequences which cannot lead to unique keys are difficult to interpret in music theory. In this study, we examined effects of preceding chords on harmonic expectancy from a computational perspective, using stochastic modeling. We conducted a behavioral experiment, in which participants listened to short chord sequences and evaluated the subjective relatedness of the last chord to the preceding ones. Based on these judgments, we built stochastic models of the computational process underlying harmonic expectancy. Following this, we compared the explanatory power of the models. Our results imply that, even when listening to short chord sequences, internally constructed and updated tonal assumptions determine the expectancy of the upcoming chord.
Harmonic Nanoparticles for Regenerative Research
Ronzoni, Flavio; Magouroux, Thibaud; Vernet, Remi; Extermann, Jérôme; Crotty, Darragh; Prina-Mello, Adriele; Ciepielewski, Daniel; Volkov, Yuri; Bonacina, Luigi; Wolf, Jean-Pierre; Jaconi, Marisa
2014-01-01
In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed. PMID:24836220
Li, Yue-Jie; Tang, Si-Yuan; Wang, Li-Wei; Li, Song
2008-11-01
Based on the pulse-coded transmitting and wide-band receiving system, this paper describes A research of phase inversion technique to extract high-frequency ultrasonic tissue harmonic information by making use of wide-band ultrasonic transducer on frequency of 20 MHz, 35 MHz and 50 MHz. The results indicate that adopting the method in this paper is with better fundamental frequency inhibition and at the same time can increase the amplitude of second harmonic information effectively. This method is superior to that traditoncal one by using RF filter to extract tissue harmonic information.
Second and Third Harmonic Generation in Metal-Based Nanostructures
2010-01-01
electrons. It has been shown that contributions to second harmonic ( SH ) generation from bound charges can be significant [10]. Free and bound...complex dielectric function defined at the fundamental and the SH frequencies [7, 11]. Bound electrons contribute to the linear dielectric constant of...fundamental (800nm) and SH (400nm) fields was modeled using free electrons only. That kind of approach forces the use of two distinct, free-electron plasma
Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation
NASA Astrophysics Data System (ADS)
Rao, Ashutosh; Chiles, Jeff; Khan, Saeed; Toroghi, Seyfollah; Malinowski, Marcin; Camacho-González, Guillermo Fernando; Fathpour, Sasan
2017-03-01
Second-harmonic generation is demonstrated using grating-assisted quasi-phase matching, based on waveguide-width modulation or mode-shape modulation. Applicable to any thin-film integrated second-order nonlinear waveguide, the technique is demonstrated in compact lithium niobate ridge waveguides. Fabricated devices are characterized with pulsed-pumping in the near-infrared, showing second-harmonic generation at a signal wavelength of 784 nm and propagation loss of 1 dB/cm.
Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields.
Liao, Sheng-hui; Liu, Shi-jian; Zou, Bei-ji; Ding, Xi; Liang, Ye; Huang, Jun-hui
2015-01-01
An important preprocess in computer-aided orthodontics is to segment teeth from the dental models accurately, which should involve manual interactions as few as possible. But fully automatic partition of all teeth is not a trivial task, since teeth occur in different shapes and their arrangements vary substantially from one individual to another. The difficulty is exacerbated when severe teeth malocclusion and crowding problems occur, which is a common occurrence in clinical cases. Most published methods in this area either are inaccurate or require lots of manual interactions. Motivated by the state-of-the-art general mesh segmentation methods that adopted the theory of harmonic field to detect partition boundaries, this paper proposes a novel, dental-targeted segmentation framework for dental meshes. With a specially designed weighting scheme and a strategy of a priori knowledge to guide the assignment of harmonic constraints, this method can identify teeth partition boundaries effectively. Extensive experiments and quantitative analysis demonstrate that the proposed method is able to partition high-quality teeth automatically with robustness and efficiency.
Xu, Jinying; Zhang, Xiangdong
2012-01-16
The theory of second harmonic generation (SHG) in three-dimensional structures consisting of arbitrary distributions of metallic spheres made of centrosymmetric materials is developed by means of multiple scattering of electromagnetic multipole fields. The electromagnetic field at both the fundamental frequency and second harmonic, as well as the scattering cross section, are calculated in a series of particular cases such as a single metallic sphere, two metallic spheres, chains of metallic spheres, and other distributions of the metallic spheres. It is shown that the linear and nonlinear optical response of all ensembles of metallic spheres is strongly influenced by the excitation of localized surface plasmon-polariton resonances. The physical origin for such a phenomenon has also been analyzed.
Uncertainty-based internal quality control. Harmonization considerations.
Bonet-Domingo, E; Escuder-Gilabert, L; Medina-Hernandez, M J; Sagrado, S
2006-12-01
Three main quality aspects for analytical laboratories are internal method validation, internal quality control (IQC), and sample result uncertainty. Unfortunately, in the past they have been used in a nonharmonized way. The most universal IQC tool is the mean chart, but some criteria used to fix their control limits do not fit the real nature of analytical results. A new approach for fixing these limits is proposed (the u-approach). The key is the combined uncertainty, u, obtained from the method validation information, also used for estimating the sample result uncertainty. A comparative study on "in-control" simulated, bibliographic, and real laboratory data suggests that the u-approach is more reliable than other well-established criteria. In addition, the u-approach mean chart emerges as an IQC tool, consistent with chemical assays, which harmonizes the validation-control-uncertainty process.
Kwan, Alex C.; Duff, Karen; Gouras, Gunnar K.; Webb, Watt W.
2010-01-01
Intrinsic optical emissions, such as autofluorescence and second harmonic generation (SHG), are potentially useful for functional fluorescence imaging and biomedical disease diagnosis for neurodegenerative diseases such as Alzheimer’s disease (AD). Here, using multiphoton and SHG microscopy, we identified sources of intrinsic emissions in ex vivo, acute brain slices from AD transgenic mouse models. We observed autofluorescence and SHG at senile plaques as well as characterized their emission spectra. The utility of intrinsic emissions was demonstrated by imaging senile plaque autofluorescence in conjunction with SHG from microtubule arrays to assess the polarity of microtubules near pathological lesions. Our results suggest that tissues from AD transgenic models contain distinct intrinsic emissions, which can provide valuable information about the disease mechanisms. PMID:19259208
NASA Astrophysics Data System (ADS)
Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.
2017-02-01
Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the data set, and requires no prior knowledge about the harmonics. Modelling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modelling example, symmetry based noise removal improved signal-to-noise ratio in the data by 10 per cent. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multilayered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.
NASA Astrophysics Data System (ADS)
Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.
2016-11-01
Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the dataset, and requires no prior knowledge about the harmonics. Modeling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modeling example, symmetry based noise removal improved signal to noise ratio in the data by 10%. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multi-layered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.
NASA Astrophysics Data System (ADS)
Qu, Dong-sheng; Hong, Yan-ji; Wang, Guang-yu; Wang, Ming-dong
2016-10-01
In order to improve the measurement based on the wavelength modulation spectroscopy technology, a new simulation method of harmonic signals is analyzed and studied. After choosing one H2O absorption line (7185.60cm-1), the transmitted laser signals can be simulated using the measured incident laser signals and fitted laser frequency signals. The simulation of harmonic signals can be realized after creating the lock-in amplifier and calibrated using measured second-harmonic signal. The reliability of this method can be verified according to compare the simulation results with experiment results. At last, the application of this method in the flow field diagnosis is analyzed. It can lay the foundation of engineering application based on wavelength modulation spectroscopy.
Ciliae-based actuator with piezoelectric excitation
NASA Astrophysics Data System (ADS)
Pott, Peter P.; Carrasco, Alvaro; Schlaak, Helmut F.
2012-06-01
Small actuators based on the inverse piezoelectric effect are successfully deployed in commercial applications. Usually, ultrasonic motors are used. Based on resonance effects these motors provide a pronounced nonlinearity at low speeds and thus put high demands on the control algorithm. In contrast, piezoelectric stepping motors are mechanically complex and provide only low speeds. The contribution at hand describes a proposed design for a new piezoelectric motor based on cilia friction that can be manufactured at low costs. The cilia are made from uniaxial carbon-fibre reinforced plastics. The derived CFRP-brushes are pressed perpendicularly to the rotor surface to produce force or torque. First experiments prove the feasibility of the concept. A net pushing force of 500 mN is achieved.
Finite element based inversion for time-harmonic electromagnetic problems
NASA Astrophysics Data System (ADS)
Schwarzbach, Christoph; Haber, Eldad
2013-05-01
In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine
Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming
2016-09-01
A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.
Stochastic averaging based on generalized harmonic functions for energy harvesting systems
NASA Astrophysics Data System (ADS)
Jiang, Wen-An; Chen, Li-Qun
2016-09-01
A stochastic averaging method is proposed for nonlinear vibration energy harvesters subject to Gaussian white noise excitation. The generalized harmonic transformation scheme is applied to decouple the electromechanical equations, and then obtained an equivalent nonlinear system which is uncoupled to an electric circuit. The frequency function is given through the equivalent potential energy which is independent of the total energy. The stochastic averaging method is developed by using the generalized harmonic functions. The averaged Itô equations are derived via the proposed procedure, and the Fokker-Planck-Kolmogorov (FPK) equations of the decoupled system are established. The exact stationary solution of the averaged FPK equation is used to determine the probability densities of the amplitude and the power of the stationary response. The procedure is applied to three different type Duffing vibration energy harvesters under Gaussian white excitations. The effects of the system parameters on the mean-square voltage and the output power are examined. It is demonstrated that quadratic nonlinearity only and quadratic combined with properly cubic nonlinearities can increase the mean-square voltage and the output power, respectively. The approximate analytical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulations.
Computer-Based Recognition of Perceptual Patterns in Harmonic Dictation Exercises.
ERIC Educational Resources Information Center
Hofstetter, Fred T.
During the 1975-76 academic year student response data were saved for a group of 17 freshman music majors as they worked through 15 units of harmonic dictation exercises delivered on the University of Delaware's Graded Units for Interactive Dictation Operation (GUIDO) system. Analysis of the student data base led to the identification of seven…
Color harmonization for images
NASA Astrophysics Data System (ADS)
Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei
2011-04-01
Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2015-05-01
In the framework of the self-interaction-free time-dependent density functional theory (TDDFT), we have performed an ab initio all-electron study of subcycle structure, dynamics, and spectra of high harmonic generation (HHG) processes of Ar atoms in the presence of extreme ultraviolet (XUV) attosecond pulses and near-infrared (NIR) laser fields. The TDDFT equations are solved accurately and efficiently via the time-dependent generalized pseudospectral (TDGPS) method. We focus on the subcycle (with respect to NIR field) temporal behavior of the level shift of the excited energy levels and related dynamics of harmonic photon emission. We observe and identify the subcycle shifts in the harmonic emission spectrum as a function of the time delay between the XUV and NIR pulses. We present and analyze the harmonic emission spectra from 3snp0, 3p0ns, 3p1nd1,3p1np1, 3p0nd0, 3p0np0, and 3p0ns excited states and the 3p04p0-virtual state as functions of the time delay. In addition, we explore the subcycle a.c. Stark shift phenomenon in NIR fields and its influence on the harmonic emission process. Our analysis reveals several novel features of the subcycle HHG dynamics and spectra as well as temporal energy level shift. This work was partially supported by DOE.
NASA Astrophysics Data System (ADS)
Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin
2015-09-01
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)-based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SPN). Coupling the SPN and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin
2015-01-01
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)–based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SP(N)). Coupling the SP(N) and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.
The design of a multi-harmonic step-tunable gyrotron
NASA Astrophysics Data System (ADS)
Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun
2017-03-01
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.
Harmonic chirp imaging method for ultrasound contrast agent.
Borsboom, Jerome M G; Chin, Chien Ting; Bouakaz, Ayache; Versluis, Michel; de Jong, Nico
2005-02-01
Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.
NASA Astrophysics Data System (ADS)
Silin, Viktor P.; Silin, Pavel V.
2005-06-01
The polarisation properties of the third harmonic of the pump field are considered in a plasma produced upon ionisation of excited hydrogen-like atoms, taking into account l degeneration. These properties depend on the degree of circular polarisation and intensity of the pump field. The threshold nature of the total circular polarisation of the third harmonic appearing in the case of partial circular polarisation of the pump is established. This effect represents the bifurcation of the total circular polarisation. The conditions required to confirm experimentally the predicted polarisation properties of radiation are discussed.
Regional Multi-Fluid-Based Geophysical Excitation of Polar Motion
NASA Technical Reports Server (NTRS)
Nastula, Jolanta; Salstein, David A.; Gross, Richard
2011-01-01
By analyzing geophysical fluids geographic distribution, we can isolate the regional provenance for some of the important signals in polar motion. An understanding of such will enable us to determine whether certain climate signals can have an impact on polar motion. Here we have compared regional patterns of three surficial fluids: the atmosphere, ocean and land-based hydrosphere. The oceanic excitation function of polar motion was estimated with the ECCO/JPL data - assimilating model, and the atmospheric excitation function was determined from NCEP/NCAR reanalyses. The excitation function due to land hydrology was estimated from the Gravity Recovery and Climate Experiment (GRACE) data by an indirect approach that determines water thickness. Our attention focuses on the regional distribution of atmospheric and oceanic excitation of the annual and Chandler wobbles during 1993-2010, and on hydrologic excitation of these wobbles during 2002.9-2011.5. It is found that the regions of maximum fractional covariance (those exceeding a value of 3 .10 -3) for the annual band are over south Asia, southeast Asia and south central Indian ocean, for hydrology, atmosphere and ocean respectively; and for the Chandler period, areas over North America, Asia, and South America; and scattered across the southern oceans for the atmosphere and oceans respectively
Graphene circular polarization analyzer based on unidirectional excitation of plasmons.
Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Wu, Beilei; Wan, Chenglong; Jian, Shuisheng
2015-12-14
In this paper we propose a method of unidirectional excitation of graphene plasmons via metal nanoantenna arrays and reveal its application in a circular polarization analyzer. For nanoantenna pairs with orthogonal orientations, the graphene plasmons are excited through antenna resonances with the direction of propagation can be controlled by incident polarization. On the other hand, based on the spiral shape distribution of antenna arrays, a circular polarization analyzer can be obtained via the interaction of geometric phase effect of antenna arrays and the chirality carried by incident polarization. By utilizing the unidirectional excitation of plasmons, the extinction ratio of analyzer can be improved to over 10^{3}, which is at least an order of magnitude larger than the result of antenna pairs with same orientations or antenna arrays with closed circular shape formation. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.
NASA Astrophysics Data System (ADS)
Salvi, Jonathan; Giaralis, Agathoklis
2016-09-01
A novel dynamic vibration absorber (DVA) configuration is introduced for simultaneous vibration suppression and energy harvesting from oscillations typically exhibited by large-scale low-frequency engineering structures and structural components. The proposed configuration, termed energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) comprises a mass grounded via an in-series electromagnetic motor (energy harvester)-inerter layout, and attached to the primary structure through linear spring and damper in parallel connection. The governing equations of motion are derived and solved in the frequency domain, for the case of harmonically-excited primary structures, here modelled as damped single-degree- of-freedom (SDOF) systems. Comprehensive parametric analyses proved that by varying the mass amplification property of the grounded inerter, and by adjusting the stiffness and the damping coefficients using simple optimum tuning formulae, enhanced vibration suppression (in terms of primary structure peak displacement) and energy harvesting (in terms of relative velocity at the terminals of the energy harvester) may be achieved concurrently and at nearresonance frequencies, for a fixed attached mass. Hence, the proposed EH-TMDI allows for relaxing the trade-off between vibration control and energy harvesting purposes, and renders a dual-objective optimisation a practically-feasible, reliable task.
NASA Astrophysics Data System (ADS)
Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.
2012-03-01
We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.
All-optical digital processor based on harmonic generation phenomena
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Rakovsky, Vsevolod Y.
1990-07-01
Digital optical processors are designed to combine ultra- parallel data procesing capabilities of optical aystems cnd high accur&cy of performed computations. The ultimate limit of the processing rate can be anticipated from all-optical parcllel erchitecturea based on networks o logic gates using materials exibiting strong electronic nonlinearities with response times less than 1O seconds1.
Wind turbine blade testing system using base excitation
Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay
2014-03-25
An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).
Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs
NASA Astrophysics Data System (ADS)
Špirko, Vladimír; Šponer, Jiří; Hobza, Pavel
1997-01-01
Intermolecular vibrational modes of the H-bonded adenine…thymine Watson-Crick (AT) base pair were studied for the first time using multidimensional nonharmonic treatment. Relying on a Born-Oppenheimer-like separation of the fast and slow vibrational motions, the complete multidimensional vibrational problem is reduced to a six-dimensional subproblem in which all rearrangements between the pair fragments (i.e., adenine and thymine) can be described. Following the Hougen-Bunker-Johns approach and using appropriate vibrational coordinates, a nonrigid reference is defined which covers all motions on the low-lying part of the intermolecular potential surface and which facilitates the derivation of a suitable model Hamiltonian. The potential energy surface is determined at the ab initio Hartree-Fock level with minimal basis set (HF/MINI-1) and an analytic potential energy function is obtained by fitting to the ab initio data. This function is used to calculate vibrational energy levels and effective geometries within the framework of the model Hamiltonian, disregarding the role of the kinematic and potential (in-plane)-(out-of-plane) interactions. The calculations are in reasonable agreement with the normal coordinate analysis (harmonic treatment) thus indicating physical correctness of this standard approach for an approximate description of the lowest vibrational states of the AT base pair. In addition, to get a deeper insight, harmonic vibrational frequencies of the AT pair and 28 other base pairs are evaluated at the same and higher levels of theory [ab initio Hartree-Fock level with split-valence basis set (HF/6-31G**)]. The HF/MINI-1 and HF/6-31G** intermolecular harmonic vibrational frequencies differ by less than 30%. For all the base pairs, the buckle and propeller vibrational modes [for definition and nomenclature see R. E. Dickerson et al., EMBO J. 8, 1 (1989)] are the lowest ones, all being in the narrow interval (from 4 to 30 cm-1 in the harmonic
Small infrared target detection based on harmonic and sparse matrix decomposition
NASA Astrophysics Data System (ADS)
Zheng, Cheng-yong; Li, Hong
2013-06-01
Background suppressing is the main technology for infrared target detection. We present a new small infrared target detection (SIRTD) method that is also based on background suppressing. First, a new matrix decomposition model, named harmonic and sparse matrix decomposition (HSMD), is put forward for decomposing an image into a harmonic and a sparse component, which are seen as a background component and a small target component, respectively. Then, an algorithm based on augmented Lagrangian alternating direction method (ALADM) for solving HSMD is described. The main computational cost of the proposed algorithm in each iteration is that of a fast Fourier transform (FFT), which makes the proposed algorithm very fast. By searching for the maximum local energy regions in the target component, the infrared targets can be easily and accurately located. Experimental results on some infrared images show that HSMD solved by ALADM is very suitable for real-time infrared image decomposing and SIRTD.
Laser-based excitation and diagnostics of planar fractures
NASA Astrophysics Data System (ADS)
Blum, T. E.; Van Wijk, K.; Snieder, R.; Willis, M. E.
2011-12-01
Faults are of interest not only to earth science, but also at different scales in the non-destructive testing (NDT) community. Remote sensing of faults is of interest to both communities, with the idea of inverting for the fracture properties in a non-invasive way. Alternatively, the wave field directly excited at the fracture is of interest to both communities because the waves thus radiated are equivalent to those emitted by acoustic emissions or micro-earthquakes. Much can be learned from recording of elastic waves excited at the the fracture. Based on technology developed for NDT, we use laser ultrasonics in the laboratory to excite and detect elastic waves, in order to determine the properties of fractures or faults in laboratory rock and synthetic samples. We show examples of wave propagation in a clear Poly(methyl methacrylate) cylinder. By focusing a high power infrared (IR) laser inside the cylinder we create a visible single disk-shaped fracture near the center of the sample. The laser generates a short pulse (~20 ns) of infrared light that is absorbed by the sample material at the focal point and is converted into heat. The sudden thermal expansion generates stress and forms a fracture parallel to the cylindrical axis. We excite elastic waves at the surface of the sample using the same high-power pulsed laser, but at a much lower energy setting, and with an unfocused beam. We measure the direct and scattered wave field from the fracture with a laser interferometer, and also excite the fracture directly with a fraction of the source laser energy impinging directly on the fracture. A comparison of the direct excitation and the elastic scattered wavefields, including studies of the tip diffractions from the fracture, shows strong agreement. The measured tip diffractions carry information about the stress concentration near the crack tips, which is crucial for understanding rupture processes. This novel laboratory technique allows us to measure the source
Robust and accurate fundamental frequency estimation based on dominant harmonic components.
Nakatani, Tomohiro; Irino, Toshio
2004-12-01
This paper presents a new method for robust and accurate fundamental frequency (F0) estimation in the presence of background noise and spectral distortion. Degree of dominance and dominance spectrum are defined based on instantaneous frequencies. The degree of dominance allows one to evaluate the magnitude of individual harmonic components of the speech signals relative to background noise while reducing the influence of spectral distortion. The fundamental frequency is more accurately estimated from reliable harmonic components which are easy to select given the dominance spectra. Experiments are performed using white and babble background noise with and without spectral distortion as produced by a SRAEN filter. The results show that the present method is better than previously reported methods in terms of both gross and fine F0 errors.
A WRB based harmonized digital soil map of the Carpathian-basin
NASA Astrophysics Data System (ADS)
Dobos, Endre; Vadnai, Péter; Pásztor, László; Micheli, Erika; Kovács, Károly; Bertóti, Diána
2016-04-01
There is an increasing need for harmonized, cross-border soil datasets for several applications. The internationally accepted common nomenclature for soil classification is the WRB. Therefore the most typical way to derive international soil datasets is to translate the national systems into WRB. However, this approach necessarily neglects important details, such as none recorded or generalized soil information of the input soil datasets, so the output WRB class is just an expert knowledge based assumption. The geometry of the input datasets are often directly imported, taken as it is in the national datasets, regardless of the differences of the class definitions between the two systems. So the border lines are necessarily different from the ones the translated maps should use. Due to these potential problems, no accurate harmonized maps can be compiled using the traditional approaches. An alternative approach is to use derived property information required for the classification process and build a digital soil mapping based approach and a quantitative classification methodology to spatially define the different soil classes. Of course these methods require unbiased covariates like, DEM and satellite data, and several harmonized input calibration datasets. The e-SOTER project developed a novel approach to develop and present categorical information this way, using digital soil mapping tools, digital elevation modeling and remote sensing - mainly MODIS - tools together with a harmonized training-calibration dataset of soil properties. This slightly modified procedure was used to develop a soil database to support the Danube-region data development initiative. The resulting dataset covers the Carpathian-basin and has several layers of occurrence probabilities of WRB diagnostic horizons/features/properties and an additional layer of the reference soil group (RSG) of the WRB system. This paper describes this novel approach for the development of digital soil datasets
2014-09-17
Harmonics Interrogation for Structural Damage Detection FA9550-11-1-0072 Kon-Well Wang and Jiong Tang The Regents of the University of Michigan, 3003...Well Wang 734-764-8464 1 Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency Harmonics Interrogation for Structural Damage Detection...limitations. This research explores damage identification via advancing a third type of approach: high-frequency harmonic excitation-based self
Graphics processing unit-based quantitative second-harmonic generation imaging
NASA Astrophysics Data System (ADS)
Kabir, Mohammad Mahfuzul; Jonayat, ASM; Patel, Sanjay; Toussaint, Kimani C., Jr.
2014-09-01
We adapt a graphics processing unit (GPU) to dynamic quantitative second-harmonic generation imaging. We demonstrate the temporal advantage of the GPU-based approach by computing the number of frames analyzed per second from SHG image videos showing varying fiber orientations. In comparison to our previously reported CPU-based approach, our GPU-based image analysis results in ˜10× improvement in computational time. This work can be adapted to other quantitative, nonlinear imaging techniques and provides a significant step toward obtaining quantitative information from fast in vivo biological processes.
Clerico, Aldo; Ripoli, Andrea; Zucchelli, Gian Carlo; Plebani, Mario
2015-02-01
The lack of interchangeable laboratory results and consensus in current practices has underpinned greater attention to standardization and harmonization projects. In the area of method standardization and harmonization, there is considerable debate about how best to achieve comparability of measurement for immunoassays, and in particular heterogeneous proteins. The term standardization should be used only when comparable results among measurement procedures are based on calibration traceability to the International System of Units (SI unit) using a reference measurement procedure (RMP). Recently, it has been promoted the harmonization of methods for many immunoassays, and in particular for thyreotropin (TSH), as accepted RMPs are not available. In a recent paper published in this journal, a group of well-recognized authors used a complex statistical approach in order to reduce variability between the results observed with the 14 TSH immunoassay methods tested in their study. Here we provide data demonstrating that data from an external quality assessment (EQA) study allow similar results to those obtained using the reported statistical approach.
Yu, Xiaozhi; Ren, Jindong; Zhang, Qian; Liu, Qun; Liu, Honghao
2017-04-01
Reach envelopes are very useful for the design and layout of controls. In building reach envelopes, one of the key problems is to represent the reach limits accurately and conveniently. Spherical harmonics are proved to be accurate and convenient method for fitting of the reach capability envelopes. However, extensive study are required on what components of spherical harmonics are needed in fitting the envelope surfaces. For applications in the vehicle industry, an inevitable issue is to construct reach limit surfaces with consideration of the seating positions of the drivers, and it is desirable to use population envelopes rather than individual envelopes. However, it is relatively inconvenient to acquire reach envelopes via a test considering the seating positions of the drivers. In addition, the acquired envelopes are usually unsuitable for use with other vehicle models because they are dependent on the current cab packaging parameters. Therefore, it is of great significance to construct reach envelopes for real vehicle conditions based on individual capability data considering seating positions. Moreover, traditional reach envelopes provide little information regarding the assessment of reach difficulty. The application of reach envelopes will improve design quality by providing difficulty-rating information about reach operations. In this paper, using the laboratory data of seated reach with consideration of the subjective difficulty ratings, the method of modeling reach envelopes is studied based on spherical harmonics. The surface fitting using spherical harmonics is conducted for circumstances both with and without seat adjustments. For use with adjustable seat, the seating position model is introduced to re-locate the test data. The surface fitting is conducted for both population and individual reach envelopes, as well as for boundary envelopes. Comparison of the envelopes of adjustable seat and the SAE J287 control reach envelope shows that the latter
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Piezoelectric compliant mechanism energy harvesters under large base excitations
NASA Astrophysics Data System (ADS)
Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.
2016-09-01
A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.
Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity.
Yamada, Shota; Song, Bong-Shik; Jeon, Seungwoo; Upham, Jeremy; Tanaka, Yoshinori; Asano, Takashi; Noda, Susumu
2014-04-01
We demonstrate second-harmonic generation (SHG) in a silicon-carbide (SiC)-based heterostructure photonic crystal nanocavity by using a pulsed laser. We observe SHG light radiated from the SiC nanocavity and estimate the conversion efficiency in the cavity to be 2.59×10(-5) (=0.15 W(-1)) at an average input power of 0.17 mW. The near-field patterns and polarization characteristics of the SHG light are investigated experimentally and theoretically, and the results are in qualitatively good agreement.
Pascual-Marqui, R D; Gonzalez-Andino, S L; Valdes-Sosa, P A; Biscay-Lirio, R
1988-12-01
A method for the spatial analysis of EEG and EP data, based on the spherical harmonic Fourier expansion (SHE) of scalp potential measurements, is described. This model provides efficient and accurate formulas for: (1) the computation of the surface Laplacian and (2) the interpolation of electrical potentials, current source densities, test statistics and other derived variables. Physiologically based simulation experiments show that the SHE method gives better estimates of the surface Laplacian than the commonly used finite difference method. Cross-validation studies for the objective comparison of different interpolation methods demonstrate the superiority of the SHE over the commonly used methods based on the weighted (inverse distance) average of the nearest three and four neighbor values.
Two-photon microscopy using fiber-based nanosecond excitation
Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert
2016-01-01
Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements. PMID:27446680
Two-photon microscopy using fiber-based nanosecond excitation.
Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert
2016-07-01
Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.
Spin excitations in hole-overdoped iron-based superconductors
Horigane, K.; Kihou, K.; Fujita, K.; Kajimoto, R.; Ikeuchi, K.; Ji, S.; Akimitsu, J.; Lee, C. H.
2016-01-01
Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors. PMID:27615691
Spin excitations in hole-overdoped iron-based superconductors.
Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H
2016-09-12
Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.
Localized and propagating surface plasmon resonances in aperture-based third harmonic generation.
Nezami, Mohammadreza S; Gordon, Reuven
2015-12-14
We investigate the influence of localized and propagating surface plasmons on third harmonic generation from rectangular apertures in metal films. We designed optimal aperture array structures by using finite-difference time-domain simulations with nonlinear scattering theory. From this design space, we fabricated and measured the third harmonic in the region of maximal performance. We find the highest third harmonic conversion efficiency when the localized resonance is tuned to the fundamental wavelength and the propagating (Bragg) resonance is tuned to the third harmonic; this is 2.5 times larger than the case where the both localized and propagating are tuned to the fundamental wavelength. The two remaining configurations where also investigated with much lower conversion efficiency. When the Bragg resonance is tuned to the third harmonic, directivity improves the collection of third harmonic emission. On the other hand, due to the inherent absorption of gold at the third harmonic, tuning the localized surface plasmon resonance to the third harmonic is less beneficial. All cases showed quantitative agreement with the original theoretical analysis. This work points towards an optimal design criterion for harmonic generation from thin plasmonic metasurfaces.
NASA Astrophysics Data System (ADS)
Mönkölä, Sanna
2013-06-01
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.
Two-photon excited photoconversion of cyanine-based dyes.
Kwok, Sheldon J J; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-03-31
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.
Two-photon excited photoconversion of cyanine-based dyes
Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-01-01
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue. PMID:27029524
Two-photon excited photoconversion of cyanine-based dyes
NASA Astrophysics Data System (ADS)
Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-03-01
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.
NASA Astrophysics Data System (ADS)
Makarov, Vladimir V.; Maksimenko, Vladimir A.; Ponomarenko, Vladimir I.; Khramova, Marina V.; Pavlov, Alexey N.; Prokhorov, Mikhail D.; Karavaev, Anatoly S.
2016-04-01
The data transmission method using the highest harmonics of semiconductor superlattice-based microwave generator has been proposed for biomedical applications. Semiconductor superlattice operated in charge domain formation regime is characterized by the rich high-harmonics power spectrum. The numerical modeling of modulation and detection of the THz range signals using the highest harmonics of the fundamental frequency of the superlattice-based generator was carried out. We have shown effectiveness of the proposed method and discussed the possible applications.
Enhancement of second harmonic generation in nanocrystalline SiC films based natural microcavities
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Skorik, S. N.; Jedryka, J.; Ozga, K.; Kityk, I. V.
2017-01-01
We explore second harmonic generation (SHG) features of nanocrystalline SiC films based natural microcavities (MC) with resonance modes in the vicinity of the fundamental radiation at 1064 nm wavelength for nanocrystalline films of 24R, 27R polytypes characterized by high radiation doubling frequency coefficients. The natural walls of the SiC NC serve a role of cavities. To learn the nonlinear resonance features of the MC near the fundamental wavelength 1064 nm three series of the nc-SiC films indicated as 7495, 7517 and 7522 with thicknesses varying within 250-600 nm were fabricated. The role of the coherent and non-coherent contributions with taking into an account of cavity resonance modes is discussed. The giant increase of the SHG was achieved which may be used for further fabrication of the frequency transducers and nonlinear optical triggers.
Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG.
Liu, S; Lu, D; Zhang, R; Zhao, L; Wang, W; Broeke, R; Ji, C
2016-05-02
We report a monolithically integrated synchronized four wavelength channel mode-locked semiconductor laser chip based on arrayed waveguide grating and fabricated in the InP material system. Device fabrication was completed in a multiproject wafer foundry run on the Joint European Platform for Photonic Integration of Components and Circuits. The integrated photonic chip demonstrated 5th harmonic electrical hybrid mode-locking operation with four 400 GHz spacing wavelength channels and synchronized to a 12.7 GHz RF clock, for nearly transform-limited optical pulse trains from a single output waveguide. A low timing jitter of 0.349 ps, and RF frequency locking range of ~50 MHz were also achieved.
Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera
Zheng, Wanqiu; Zou, Beiji
2017-01-01
Purpose. This study examined the influence of anisotropic material for human sclera. Method. First, the individual geometry of patient-specific sclera was reproduced from a laser scan. Then, high quality finite element modeling of individual sclera was performed using a convenient automatic hexahedral mesh generator based on harmonic field and integrated with anisotropic material assignment function. Finally, comparison experiments were designed to investigate the effects of anisotropy on finite element modeling of sclera biomechanics. Results. The experimental results show that the presented approach can generate high quality anisotropic hexahedral mesh for patient-specific sclera. Conclusion. The anisotropy shows significant differences for stresses and strain distribution and careful consideration should be given to its use in biomechanical FE studies. PMID:28271067
Rigatos, Gerasimos G.
2007-09-06
Neural computation based on principles of quantum mechanics can provide improved models of memory processes and brain functioning and is of importance for the realization of quantum computing machines. To this end, this paper studies neural structures with weights that follow the model of the quantum harmonic oscillator. These weights correspond to diffusing particles, which interact to each other as the theory of Brownian motion predicts. The learning of the stochastic weights (convergence of the diffusing particles to an equilibrium) is analyzed. In the case of associative memories the proposed neural model results in an exponential increase of the number of attractors. Spectral analysis shows that the stochastic weights satisfy an equation which is analogous to the principle of uncertainty.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Use of polyphase continuous excitation based on the Frank sequence in EPR.
Tseitlin, Mark; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R
2011-08-01
Polyphase continuous excitation based on the Frank sequence is suggested as an alternative to single pulse excitation in EPR. The method allows reduction of the source power, while preserving the excitation bandwidth of a single pulse. For practical EPR implementation the use of a cross-loop resonator is essential to provide isolation between the spin system and the resonator responses to the excitation. Provided that a line broadening of about 5% is acceptable, the cumulative turning angle of the magnetization vector generated by the excitation sequence can be quite large and can produce signal amplitudes that are comparable to that achieved with a higher power 90° pulse.
NASA Astrophysics Data System (ADS)
Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji
2006-07-01
Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Ma, Wanzhuo; Liu, Peng; Zhang, Peng; Bo, Baoxue; Zhang, Yan
2016-10-01
A simple approach to generate passively harmonic mode-locked pulse trains in thulium-doped fiber laser based on nonlinear polarization rotation is proposed and demonstrated. Three different ways of mode-locked techniques have been employed in our structure to generate passively high-order harmonic mode-locked pulse trains; 128th-order passively harmonic mode-locked pulse train is achieved in the experiment and the repetition rate is 406.8 MHz. With the increase of the pump power, multiwavelength output can be tuned. A segment of dispersion compensation fiber is used to compensate the dispersion in the cavity; thus, the single pulse width is compressed from 617 to 48 ps.
NASA Astrophysics Data System (ADS)
Samimi, A.; Scales, W.; Cruz, M.; Isham, B.; Bernhardt, P. A.
2012-12-01
Recent experimental observations of the stimulated electromagnetic emission (SEE) spectrum during heating at the second electron gyro-harmonic show structures ordered by ion gyro-frequency. The proposed generation mechanism considers parametric decay of a pump upper hybrid/electron Bernstein (UH/EB) wave into another UH/EB and a group of neutralized ion Bernstein waves. The presumption of the proposed mechanism is that the pump electromagnetic wave is converted into the UH/EB wave. This conversion process generates field aligned irregularity which exhibits hysteresis effect. The predicted ionospheric hysteresis effect is studied during the PARS 2012 at HAARP. The preliminary results are presented for the first time. Also, experimental study of the effects of 1) the transmitter beam angle and 2) the transmitter frequency offset relative to the second electron gyro-harmonic frequency on the ion gyro-harmonic structures in the SEE spectrum are provided. The aforementioned observations are compared to the predictions of the analytical model. Possible connection of the SEE spectral features and artificially generated ionospheric descending layer is also discussed
Gyrotron with a sectioned cavity based on excitation of a far-from-cutoff operating mode
Bandurkin, I. V.; Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.
2016-01-15
A typical problem of weakly relativistic low-power gyrotrons (especially in the case of operation at high cyclotron harmonics) is the use of long cavities ensuring extremely high diffraction Q-factors for the operating near-cutoff waves. As a result, a great share of the rf power radiated by electrons is spent in Ohmic losses. In this paper, we propose to use a sectioned cavity with π-shifts of the wave phase between sections. In such a cavity, a far-from-cutoff axial mode of the operating cavity having a decreased diffraction Q-factor is excited by the electron beam in a gyrotron-like regime.
High-order harmonic generation from C{sub 60}-rich plasma
Ganeev, R. A.; Elouga Bom, L. B.; Ozaki, T.; Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.; Redkin, P. V.
2009-10-15
We performed systematic investigation of high-order harmonic generation from fullerene-rich laser-produced plasmas. We studied harmonic generation by varying several experimental parameters, such as the delay between the ablation and driving pulses, and divergence and polarization of the pump laser. Enhancement of harmonic yield is observed near 20 eV, which is attributed to the influence of a broadband plasmon resonance of C{sub 60} on the nonlinear optical response of fullerene-rich plasma. This increase in the harmonic intensity occurs despite the increased absorption by C{sub 60} at these wavelengths. Using simulations based on time-dependent density-functional theory, we confirm that this effect is due to the influence of collective excitations. We compare harmonic generation from fullerenes using lasers with 793 nm and 396 nm wavelengths, which show the influence of plasmon resonance on the conversion efficiency of high-order harmonics for different laser wavelengths.
Guo, Jiun-Wen; Lee, Yu-Hsuan; Huang, Hsiau-Wen; Tzou, Mei-Chyun; Wang, Ying-Jan; Tsai, Jui-Chen
2014-01-01
Nanotechnology offers potential in pharmaceuticals and biomedical developments for improving drug delivery systems, medical imaging, diagnosis, cancer therapy, and regenerative medicine. Although there is no international regulation or legislation specifically for nanomedicine, it is agreed worldwide that considerably more attention should be paid to the quality, safety, and efficacy of nanotechnology-based drugs. The US Food and Drug Administration and the European Medicines Agency have provided several draft regulatory guidance and reflection papers to assist the development of nanomedicines. To cope with the impact of nanotechnology and to foster its pharmaceutical applications and development in Taiwan, this article reviews the trends of regulating nanotechnology-based pharmaceuticals in the international community and proposes strategies for Taiwan's regulation harmonized with international considerations. The draft regulatory measures include a chemistry, manufacturing, and controls (CMC) review checklist and guidance for CMC review of liposomal products. These have been submitted for discussion among an expert committee, with membership comprised of multidisciplinary academia, research institutions, the pharmaceutical industry, and regulators, and are currently approaching final consensus. Once a consensus is reached, these mechanisms will be recommended to the Taiwan Food and Drug Administration for jurisdiction and may be initiated as the starting point for regulating nanotechnology-based pharmaceuticals in Taiwan.
Fan, Li; Ding, Jin; Zhu, Jun-jie; Chen, Zhe; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan
2015-10-01
A model of thermoacoustic refrigerator on the basis of an acoustic metamaterial is presented, in which an array of side pipes is adopted to suppress harmonic waves in the thermoacoustic resonator. The array of side pipes traps the acoustic waves with Fabry-Perot resonant frequencies and induces narrow forbidden bands of transmission. When the resonant frequency of the thermoacoustic refrigerator is chosen as the operating frequency, the harmonic wave can be exactly located in the forbidden band by properly adapting the structural parameters of the system. Therefore, the component of the harmonic wave in the thermoacoustic resonator can be efficiently suppressed.
Mei, Liang; Svanberg, Sune
2015-03-20
This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2014-05-01
In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2014-05-01
In the framework of the self-interaction-free time-dependent density functional theory, we have performed 3D ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the novel dynamical behavior of the sub-cycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of 1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the sub-cycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several new features of the sub-cycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra. This work was partially supported by DOE.
Miliordos, Evangelos; Xantheas, Sotiris S.
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C_{1} symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm^{–1} from those obtained from Cartesian coordinates.
Miliordos, Evangelos; Xantheas, Sotiris S
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. In all cases the frequencies based on internal coordinates differ on average by <1 cm(-1) from those obtained from Cartesian coordinates.
Wang, Daifa; He, Jin; Qiao, Huiting; Song, Xiaolei; Fan, Yubo; Li, Deyu
2014-01-01
Fluorescence molecular tomography in the near-infrared region is becoming a powerful modality for mapping the three-dimensional quantitative distributions of fluorochromes in live small animals. However, wider application of fluorescence molecular tomography still requires more accurate and stable reconstruction tools. We propose a shape-based reconstruction method that uses spherical harmonics parameterization, where fluorophores are assumed to be distributed as piecewise constants inside disjointed subdomains and the remaining background. The inverse problem is then formulated as a constrained nonlinear least-squares problem with respect to shape parameters, which decreases ill-posedness because of the significantly reduced number of unknowns. Since different shape parameters contribute differently to the boundary measurements, a two-step and modified block coordinate descent optimization algorithm is introduced to stabilize the reconstruction. We first evaluated our method using numerical simulations under various conditions for the noise level and fluorescent background; it showed significant superiority over conventional voxel-based methods in terms of the spatial resolution, reconstruction accuracy with regard to the morphology and intensity, and robustness against the initial estimated distribution. In our phantom experiment, our method again showed better spatial resolution and more accurate intensity reconstruction. Finally, the results of an in vivo experiment demonstrated its applicability to the imaging of mice. PMID:24732826
Nonlinear Resonance of Mechanically Excited Sessile Drops
NASA Astrophysics Data System (ADS)
Chang, Chun-Ti; Daniel, Susan; Steen, Paul
2013-11-01
The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.
NASA Astrophysics Data System (ADS)
Tong, Zhengrong; Wang, Zhiyong; En, De; Chen, Caihe; Li, Xuejiao; Xie, Xiaofang
2008-03-01
A kind of photo-electronic integrated acceleration seismic detecting technology, which is novel and precise based on waveguide M-Z interference, is presented. It provieds modern geologic prospect with a novel detection technology. The principle of the photo-electronic integrated acceleration seismic geophone is introduced in this paper. The core of the photo-electronic integrated acceleration is the silicon harmonic oscillator, which is supported by four silicon beams and integrated on the signal beam of the M-Z interferometer. When the seismic mass is subjected to a normal acceleration a z, the acceleration a z, will result in an inertial force F z, causing the mass to move up or down like the piston, until the counter force of the beam suspension equals this inertial force. The principle of the harmonic oscillator is briefly introduced, the factors influencing the anisotropic etching quality of the harmonic oscillator are analyzed in detail. In experiment, the fabrication technology was studied and improved. The high quality harmonic oscillator has been successfully fabricated. It has been applied in the integrated optical chip of "the theory and experiment research of photoelectric integrated acceleration seismic geophone technology".
Characterization of oral squamous cell carcinoma based on higher-harmonic generation microscopy.
Tsai, Ming-Rung; Shieh, Dar-Bin; Lou, Pei-Jen; Lin, Chih-Feng; Sun, Chi-Kuang
2012-05-01
In vivo higher-harmonic generation microscopy (HGM) performed on healthy human oral mucosa not only provides images with a <500 nm lateral resolution at a 280 μm penetration depth, but also leaves no photodamages in the tissues. These advantages suggest that HGM could serve as an ideal virtual biopsy tool for in vivo, in situ, and immediate histopathological diagnosis of oral cancer. However, translation of such mechanism for clinical cancer diagnosis requires evidence based algorithm capable to differentiate cancerous tissues from normal. It is thus critical to investigate if the endogenous contrast provided by the HGM would be high enough to differentiate cancerous versus normal tissues in human oral mucosa. In this report, ex vivo HGM study was performed on the cancerous mucosa from 10 patients with oral squamous cell carcinoma. Compared with histology, HGM revealed histopathological features including the cytological abnormalities, loss of differentiation, interruption of basement membrane, and irregular epithelial stratification in all 10 specimens. In addition, distinct patterns of collagen fibers and increased distribution area of actin filaments in tumor cells were noted. These results indicate HGM holds great potential for the optical biopsy screening of oral cancer lesions.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data
NASA Astrophysics Data System (ADS)
Feng, Yan; Jiang, Yong; Jiang, Yi; Liu, Bao-Jia; Jiang, Jin; Liu, Zhong-Wei; Ye, Mei-Chen; Wang, Hong-Shen; Li, Xiu-Ming
2016-09-01
We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over mainland China. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of Δ X, Δ Y, and Δ Z and X, Y, and Z, we established the truncation level at K max = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation of F at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin
2016-10-01
Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.
Direct dark mode excitation by symmetry matching of a single-particle-based metasurface
NASA Astrophysics Data System (ADS)
Burokur, Shah Nawaz; Lupu, Anatole; de Lustrac, André
2015-01-01
This paper provides evidence for a direct dark mode excitation mechanism in a metasurface structure. The dark mode excitation mechanism is entirely determined by structures' symmetry and does not depend on near-field coupling between elements. In our examples, we consider single-element based metasurface composed of two V antennas connected in an antisymmetric arrangement. Both experimental and modeling results show an efficient excitation of magnetic dipolar mode in such structures. The direct dark mode excitation mechanism provides a design that is more robust with respect to technology imperfections. The considered approach opens promising perspectives for new types of nanostructure designs and greatly relaxes fabrication constraints for the optical domain.
Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.
Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele
2016-04-01
Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.
Arduino Due based tool to facilitate in vivo two-photon excitation microscopy
Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele
2016-01-01
Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo. PMID:27446677
Luo, Zhi-Chao; Liu, Meng; Liu, Hao; Zheng, Xu-Wu; Luo, Ai-Ping; Zhao, Chu-Jun; Zhang, Han; Wen, Shuang-Chun; Xu, Wen-Cheng
2013-12-15
We report on the generation of passive harmonic mode locking of a fiber laser using a microfiber-based topological insulator (TI) Bi(2)Te(3) saturable absorber (SA). The optical deposition method was employed to fabricate the microfiber-based TISA. By virtue of the excellent nonlinear optical property of the proposed TISA, the fiber laser could operate at the pulse repetition rate of 2.04 GHz under a pump power of 126 mW, corresponding to the 418th harmonic of fundamental repetition frequency. The results demonstrate that the microfiber-based TI photonic device can operate as both the high nonlinear optical component and the SA in fiber lasers, and could also find other applications in the related fields of photonics.
NASA Astrophysics Data System (ADS)
Kidd, Gerald; Mason, Christine R.; Brughera, Andrew; Chiu, Chung-Yiu Peter
2003-08-01
Simultaneous tones that are harmonically related tend to be grouped perceptually to form a unitary auditory image. A partial that is mistuned stands out from the other tones, and harmonic complexes with different fundamental frequencies can readily be perceived as separate auditory objects. These phenomena are evidence for the strong role of harmonicity in perceptual grouping and segregation of sounds. This study measured the discriminability of harmonicity directly. In a two interval, two alternative forced-choice (2I2AFC) paradigm, the listener chose which of two sounds, signal or foil, was composed of tones that more closely matched an exact harmonic relationship. In one experiment, the signal was varied from perfectly harmonic to highly inharmonic by adding frequency perturbation to each component. The foil always had 100% perturbation. Group mean performance decreased from greater than 90% correct for 0% signal perturbation to near chance for 80% signal perturbation. In the second experiment, adding a masker presented simultaneously with the signals and foils disrupted harmonicity. Both monaural and dichotic conditions were tested. Signal level was varied relative to masker level to obtain psychometric functions from which slopes and midpoints were estimated. Dichotic presentation of these audible stimuli improved performance by 3-10 dB, due primarily to a release from ``informational masking'' by the perceptual segregation of the signal from the masker.
NASA Astrophysics Data System (ADS)
Wu, Jun; Fan, Ting-Bo; Xu, Di; Zhang, Dong
2014-10-01
Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.
Deep UV generation and direct DNA photo-interaction by harmonic nanoparticles in labelled samples
NASA Astrophysics Data System (ADS)
Staedler, Davide; Magouroux, Thibaud; Passemard, Solène; Schwung, Sebastian; Dubled, Marc; Schneiter, Guillaume Stéphane; Rytz, Daniel; Gerber-Lemaire, Sandrine; Bonacina, Luigi; Wolf, Jean-Pierre
2014-02-01
A biophotonics approach based on the nonlinear optical process of second harmonic generation is presented and demonstrated on malignant human cell lines labelled by harmonic nanoparticles. The method enables independent imaging and therapeutic action, selecting each modality by simply tuning the excitation laser wavelength from infrared to visible. In particular, the generation of deep ultraviolet radiation at 270 nm allows direct interaction with nuclear DNA in the absence of photosensitizing molecules.
An open-loop RFOG based on harmonic division technique to suppress LD's intensity modulation noise
NASA Astrophysics Data System (ADS)
Ying, Diqing; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe
2016-11-01
A harmonic division technique is proposed for an open-loop resonator fiber optic gyro (RFOG) to suppress semiconductor laser diode's (LD's) intensity modulation noise. The theoretical study indicates the RFOG with this technique is immune to the intensity noise. The simulation and experimental results show this technique would lead to a diminished linear region, which still could be acceptable for an RFOG applied to low rotation rate detection. The tests for the gyro output signal are carried out with/without noise suppressing methods, including the harmonic division technique and previously proposed signal compensation technique. With the harmonic division technique at the rotation rate of 10 deg/s, the stability of gyro output signal is improved from 1.07 deg/s to 0.0361 deg/s, whose noise suppressing ratio is more than 3 times as that of the signal compensation technique. And especially, a 3.12 deg/s signal jump is significantly removed with the harmonic division technique; in contrast, a residual 0.36 deg/s signal jump still exists with the signal compensation technique. It is concluded the harmonic division technique does work in intensity noise suppressing under dynamic condition, and it is superior to the signal compensation technique.
Harmonic tracking of acoustic radiation force-induced displacements.
Doherty, Joshua R; Dahl, Jeremy J; Trahey, Gregg E
2013-11-01
Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse-inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse-inversion techniques. The method is implemented with acoustic radiation force impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8-MHz harmonic images created using a band-pass filter approach and the fully sampled pulse-inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower- and higher-frequency methods suggests that any improvement resulting from the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse-inversion harmonic ARFI images. Within the lumen, the harmonic tracking
Harmonic Tracking of Acoustic Radiation Force Induced Displacements
Doherty, Joshua R.; Dahl, Jeremy J.; Trahey, Gregg E.
2014-01-01
Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse inversion techniques. The method is implemented with Acoustic Radiation Force Impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8 MHz harmonic images created using a bandpass filter approach and the fully sampled pulse inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower and higher frequency methods suggests that any improvement due to the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods
High harmonic generation based time resolved ARPES at 30 eV with 50 meV energy resolution
NASA Astrophysics Data System (ADS)
Rohwer, Timm; Sie, Edbert J.; Mahmood, Fahad; Gedik, Nuh
Angle-resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying equilibrium properties of complex electronic systems as well as their correlated dynamics. By using femtosecond high harmonic generation (HHG) pulses, this technique can be extended to monitor ultrafast changes in the electronic structure in response to an optical excitation. However, the broad bandwidth of the HHG pulses has been a major experimental limitation. In this contribution, we combine the HHG source with an off-axis Czerny-Turner XUV monochromator and a three-dimensional ``ARTOF'' photoelectron detector to achieve an unrivaled overall energy resolution of 50 meV in multiple harmonic energies. Moreover, the use of a stack of different gratings enables us to fine control both the photon energy and time vs. energy resolution to its particular needs. The performance of our setup is demonstrated by studies on the transition metal dichalcogenide IrTe2 which undergoes a first-order structural transition and accompanied reconstruction of the band structure upon cooling without the characteristic opening of an energy gap.
Rational harmonic mode-locked laser using a bismuth-oxide-based highly nonlinear erbium-doped fiber
NASA Astrophysics Data System (ADS)
Fukuchi, Yutaka; Hirata, Kouji; Muraguchi, Masahiro; Maeda, Joji
2017-01-01
We report a rational harmonic mode-locked fiber laser employing a bismuth-oxide-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF) with a length of 1.5 m. The Bi-HNL-EDF is used as a broadband gain medium and as a noise suppressor based on self-phase modulation. The amplitude of the rational harmonic mode-locked pulses can be regulated by properly tuning the modulation parameters of the intracavity modulator. The cavity length as short as 6 m enables generation of stable and clean short pulses with a repetition frequency up to 40 GHz over the wavelength range covering both the conventional and the longer bands.
NASA Astrophysics Data System (ADS)
Silin, Viktor P.; Silin, Pavel V.
2006-05-01
Within the framework of the Bethe ionisation model we considered theoretically the dependences of the degree of circular polarisation of the fifth and seventh pump-field harmonics, which are generated due to bremsstrahlung, on the electric intensity of the pump field, the degree of its circular polarisation, and the principal quantum number of the excited states of hydrogen-like atoms of a gas ionised by the pump field. A bifurcation of the circular polarisation of these harmonics was discovered, which confirms our previous hypothesis that this effect is common for harmonics generated due to the bremsstrahlung in the pump field when the plasma electrons oscillate in this field. We determined how the relationships under consideration are scaled with VEn/VZ, the product of electron oscillation velocity and the principal quantum number of the excited electron divided by the Coulomb velocity.
Nakano, M.; Kumagai, H.; Kumazawa, M.; Yamaoka, K.; Chouet, B.A.
1998-01-01
We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles
Development of high-order harmonic focusing system based on ellipsoidal mirror.
Motoyama, H; Sato, T; Iwasaki, A; Takei, Y; Kume, T; Egawa, S; Hiraguri, K; Hashizume, H; Yamanouchi, K; Mimura, H
2016-05-01
We have developed a focusing system for extreme ultraviolet light produced by high-order harmonic generation. An ellipsoidal mirror with a precise surface shape was fabricated and installed into the focusing system. A rigid mirror manipulator and a beam profiler were employed to perform precise and stable mirror alignment. As a demonstration of the focusing performance, high-order harmonics in the wavelength range of 13.5-19.5 nm were successfully focused into a 2.4 × 2.3 μm(2) spot.
Land cover for Ukraine: the harmonization of remote sensing and ground-based data
NASA Astrophysics Data System (ADS)
Lesiv, M.; Shchepashchenko, D.; Shvidenko, A.; See, L. M.; Bun, R.
2012-12-01
This study focuses on the development of a land cover map of the Ukraine through harmonization of remote sensing and ground-based data. At present there is no land cover map of the Ukraine available that is of sufficient accuracy for use in environmental modeling. The existing remote sensing data are not enough accurate. In this study we compare the territory of the Ukraine from three global remote sensing products (GlobCover 2009, MODIS Land Cover and GLC-2000) using a fuzzy logic methodology in order to capture the uncertainty in the classification of land cover. The results for the Ukraine show that GlobCover 2009, MODIS Land Cover and GLC-2000 have a fuzzy agreement of 65%. We developed a weighted algorithm for the creation of a land cover map based on an integration of a number of global land cover and remote sensing products including the GLC-2000, GlobCover 2009, MODIS Land Cover, the Vegetation Continuous Fields product, digital map of administrative units and forest account data at the local level. This weighted algorithm is based on the results of comparing these products and an analysis of a dataset of validation points for different land cover types in the Ukraine. We applied this algorithm to generate a forest land cover type map. This raster map contains a forest expectation index that was calculated for each pixel. Forest land was then allocated based on forest statistics at the local level. Areas with a higher forest expectation index were allocated with forest first until the results matched the forest statistics. The result is the first digital map of forest (with a spatial resolution of 300m) for the Ukraine, which consistent with forest and land accounts, remote sensing datasets and GIS products. The forest land was well defined in forest rich areas (i.e. in the northern part of the Ukraine, the Carpathians and the Crimea); well less accurate areas were identified in the steppe due to heterogeneous land cover. Acknowledgements. This research was
Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus
2006-09-01
The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.
Correction of harmonic motion and Kepler orbit based on the minimal momentum uncertainty
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Hassanabadi, Hassan
2017-03-01
In this paper we consider the deformed Heisenberg uncertainty principle with the minimal uncertainty in momentum which is called a minimal momentum uncertainty principle (MMUP). We consider MMUP in D-dimension and its classical analogue. Using these we investigate the MMUP effect for the harmonic motion and Kepler orbit.
X-ray FEL based on harmonics generation and electron beam outcoupling
Litvinenko, V.N.; Burnham, B.
1995-12-31
Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.
Psilodimitrakopoulos, Sotiris; Gavgiotaki, Evaggelia; Melessanaki, Kristallia; Tsafas, Vassilis; Filippidis, George
2016-10-01
In this work, we report that polarization second harmonic generation (PSHG) microscopy, commonly used in biomedical imaging, can quantitatively discriminate naturally aged from fresh starch-based glues used for conservation or restoration of paintings, works of art on paper, and books. Several samples of fresh and aged (7 years) flour and starch pastes were investigated by use of PSHG. In these types of adhesives, widely used in cultural heritage conservation, second harmonic generation (SHG) contrast originates primarily from the starch granules. It was found that in aged glues, the starch SHG effective orientation (SHG angle, θ) shifts to significantly higher values in comparison to the fresh granules. This shift is attributed to the different degree of granule hydration between fresh and aged adhesives. Thus noninvasive high-resolution nonlinear scattering can be employed to detect and quantify the degree of deterioration of restoration adhesives and to provide guidance toward future conservation treatments.
Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity
NASA Astrophysics Data System (ADS)
Guha, Anurup; Bijudas, C. R.
2016-04-01
Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.
Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors
NASA Astrophysics Data System (ADS)
Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.
2016-11-01
We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.
NASA Astrophysics Data System (ADS)
Liu, Zhengfan; Satira, Zachary A.; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Wong, Kelvin; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.
2014-02-01
Label-free multiphoton imaging is promising for replacing biopsy and could offer new strategies for intraoperative or surgical applications. Coherent anti-Stokes Raman scattering (CARS) imaging could provide lipid-band contrast, and second harmonic generation (SHG) imaging is useful for imaging collagen, tendon and muscle fibers. A combination of these two imaging modalities could provide rich information and this combination has been studied by researchers to investigate diseases through microscopy imaging. The combination of these two imaging modalities in endomicroscopy imaging has been rarely investigated. In this research, a fiber bundle consisted of one excitation fiber and 18 collection fibers was developed in our endomicroscopy prototype. The 18 collection fibers were divided into two collection channels with 9 fibers in each channel. These two channels could be used together as one channel for effective signal collection or used separately for simplifying detection part of the system. Differences of collection pattern of these two channels were investigated. Collection difference of central excitation fiber and surrounding 18 fibers was also investigated, which reveals the potential ability of this system to measure forward to backward (F/B) ratio in SHG imaging. CARS imaging of mouse adipocyte and SHG imaging of mouse tail tendon were performed to demonstrate the CARS and SHG tissue imaging performance of this system. Simultaneous CARS and SHG imaging ability of this system was demonstrated by mouse tail imaging. This fiber bundle based endomicroscopy imaging prototype, offers a promising platform for constructing efficient fiber-based CARS and SHG multimodal endomicroscopes for label free intraoperative imaging applications.
Purvinis, Georgeanne; Priambodo, Purnomo S; Pomerantz, Martin; Zhou, Ming; Maldonado, Theresa A; Magnusson, Robert
2004-05-15
Experimental results on resonantly excited second-harmonic generation (SHG) in a periodic ionically self-assembled monolayer (ISAM) film are reported. A double-layer guided-mode resonance filter (GMRF) structure is coated with 40 bilayers of pyrlium-based chi(2) ISAM thin film and excited with the fundamental of a Nd:YAG laser. Enhanced second-harmonic conversion in the ISAM film is achieved because of the local field enhancement associated with the fundamental resonating leaky mode. This method of SHG is particularly promising, as the ISAM films under investigation exhibit anomalous dispersion that may be applied for phase matching to improve nonlinear conversion efficiency.
Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D; Ozpineci, Burak; Tolbert, Leon M; Pinto, Joao Onofre P
2013-01-01
A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.
NASA Astrophysics Data System (ADS)
Sahin, Ozgur
At the molecular level, physical and chemical properties of materials are tightly coupled to the mechanical properties. The potential of mechanics for interacting with matter at the nanoscale has been largely unexplored due to lack of instruments capable of performing mechanical measurements at nanometer length scales. This thesis describes nanomechanical sensing techniques and applications based on time-resolved tip-sample force measurements in tapping-mode atomic force microscopy. Tapping mode is the most successful operation mode of atomic force microscopes. Theoretical calculations presented in the first part of this thesis show that time variations of the tip-sample forces in the tapping-mode depend on the physical and chemical properties of the sample and therefore, have the potential to be used for nanomechanical measurements. Unfortunately, the force-sensing probe of the tapping-mode atomic force microscope, the vibrating cantilever, is limited in its response to the variations of forces in time within a period of oscillations. We are describing two types of special micromachined cantilevers that enable measurements of time variations of tip-sample forces: the harmonic cantilever and the coupled torsional cantilever. These special cantilevers allow sensitive mechanical measurements at the nanoscale and single molecular level. The operation of these cantilevers does not require any modifications to the existing atomic force microscopy systems. With the nanomechanical sensing techniques we have developed, we investigated phase transformations of sub-micron domains of composite polymers and observed their glass transitions for the first time. Conventional measurements on bulk properties of these samples do not provide information on the physical changes at the nanoscale. Studies on nucleic acids attached to a surface, a configuration commonly used in DNA microarray technology, showed that the hybridized DNA molecules can be detected at the single molecule
Form of the effective interaction in harmonic-oscillator-based effective theory
NASA Astrophysics Data System (ADS)
Haxton, W. C.
2008-03-01
I explore the form of the effective interaction in harmonic-oscillator-based effective theory (HOBET) in leading order (LO) through next-to-next-to-next-to-leading order (NLO3). Because the included space in a HOBET (as in the shell model) is defined by the oscillator energy, both long-distance (low-momentum) and short-distance (high-momentum) degrees of freedom reside in the high-energy excluded space. A HOBET effective interaction is developed in which a short-range contact-gradient expansion, free of operator mixing and corresponding to a systematic expansion in nodal quantum numbers, is combined with an exact summation of the relative kinetic energy. By this means the very strong coupling of the included (P) and excluded (Q) spaces by the kinetic energy is removed. One finds a simple and rather surprising result, that the interplay of QT and QV is governed by a single parameter κ, the ratio of an observable, the binding energy |E|, to a parameter in the effective theory, the oscillator energy ℏω. Once the functional dependence on κ is identified, the remaining order-by-order subtraction of the short-range physics residing in Q becomes systematic and rapidly converging. Numerical calculations are used to demonstrate how well the resulting expansion reproduces the running of Heff from high scales to a typical shell-model scale of 8ℏω. At NLO3 various global properties of Heff are reproduced to a typical accuracy of 0.01%, or about 1 keV, at 8ℏω. Channel-by-channel variations in convergence rates are similar to those found in effective field theory approaches. The state dependence of the effective interaction has been a troubling problem in nuclear physics and is embodied in the energy dependence of Heff(|E|) in the Bloch-Horowitz formalism. It is shown that almost all of this state dependence is also extracted in the procedures followed here, isolated in the analytic dependence of Heff on κ. Thus there exists a simple, Hermitian Heff that can be use
Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine
NASA Astrophysics Data System (ADS)
Pecori, Barbara; Torzo, Giacomo; Sconza, Andrea
1999-03-01
We describe how the Atwood's machine, interfaced to a personal computer through a rotary encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy force acting on a body immersed in water. We report experimental studies of oscillators produced by driving forces of the type F=-kxn with n=1,2,3, and F=-k sgn(x). Finally we suggest how this apparatus can be used for showing to the students a macroscopic model of interatomic forces.
NASA Astrophysics Data System (ADS)
Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Bai, Jing; Luo, Jianwen
2016-04-01
Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and resolve multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. An algorithm based on independent component analysis (ICA) for multispectral excited FMT is proposed to resolve multiple fluorescent targets in this study. Fluorescent targets are excited by multispectral excitation, and the three-dimensional distribution of fluorescent yields under the excitation spectrum is reconstructed by an iterative Tikhonov regularization algorithm. Subsequently, multiple fluorescent targets are resolved from mixed fluorescence signals by employing ICA. Simulations were performed and the results demonstrate that multiple adjacent fluorescent targets can be resolved if the number of excitation wavelengths is not smaller than that of fluorescent targets with different concentrations. The algorithm obtains both independent components that provide spatial information of different fluorescent targets and spectral courses that reflect variation trends of fluorescent yields along with the excitation spectrum. By using this method, it is possible to visualize the metabolism status of drugs in different structure organs, and quantitatively depict the variation trends of fluorescent yields of each functional organ under the excitation spectrum. This method may provide a pattern for tumor detection, drug delivery and treatment monitoring in vivo.
Excited-State Energies and Electronic Couplings of DNA Base Dimers
Kozak, Christopher R.; Kistler, Kurt A.; Lu, Zhen; Matsika, Spiridoula
2010-02-04
The singlet excited electronic states of two π-stacked thymine molecules and their splittings due to electronic coupling have been investigated with a variety of computational methods. Focus has been given on the effect of intermolecular distance on these energies and couplings. Single-reference methods, CIS, CIS(2), EOMCCSD, TDDFT, and the multireference method CASSCF, have been used, and their performance has been compared. It is found that the excited-state energies are very sensitive to the applied method but the couplings are not as sensitive. Inclusion of diffuse functions in the basis set also affects the excitation energies significantly but not the couplings. TDDFT is inadequate in describing the states and their coupling, while CIS(2) gives results very similar to EOM-CCSD. Excited states of cytosine and adenine π-stacked dimers were also obtained and compared with those of thymine dimers to gain a more general picture of excited states in π-stacked DNA base dimers. The coupling is very sensitive to the relative position and orientation of the bases, indicating great variation in the degree of delocalization of the excited states between stacked bases in natural DNA as it fluctuates.
Gaff, J F; Franzen, S; Delley, B
2010-11-04
A method for the calculation of resonance Raman cross sections is presented on the basis of calculation of structural differences between optimized ground and excited state geometries using density functional theory. A vibrational frequency calculation of the molecule is employed to obtain normal coordinate displacements for the modes of vibration. The excited state displacement relative to the ground state can be calculated in the normal coordinate basis by means of a linear transformation from a Cartesian basis to a normal coordinate one. The displacements in normal coordinates are then scaled by root-mean-square displacement of zero point motion to calculate dimensionless displacements for use in the two-time-correlator formalism for the calculation of resonance Raman spectra at an arbitrary temperature. The method is valid for Franck-Condon active modes within the harmonic approximation. The method was validated by calculation of resonance Raman cross sections and absorption spectra for chlorine dioxide, nitrate ion, trans-stilbene, 1,3,5-cycloheptatriene, and the aromatic amino acids. This method permits significant gains in the efficiency of calculating resonance Raman cross sections from first principles and, consequently, permits extension to large systems (>50 atoms).
Meng, Yichang; Niang, Alioune; Guesmi, Khmaies; Salhi, Mohamed; Sanchez, Francois
2014-12-01
We demonstrate a passive mode-locked Er:Yb doped double-clad ring fiber laser based on graphene saturable absorber. By adjusting the polarization controller and minimizing the cavity loss, the laser can operate at hundreds of harmonics of the fundamental repetition frequency of the resonator with the central wavelength of 1.61 μm. Up to 683rd harmonic (which corresponds to 5.882 GHz) of the fundamental repetition frequency was achieved.
Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer
NASA Astrophysics Data System (ADS)
Schultz, Thomas; Samoylova, Elena; Radloff, Wolfgang; Hertel, Ingolf V.; Sobolewski, Andrzej L.; Domcke, Wolfgang
2004-12-01
We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds for the near-planar hydrogen-bonded dimer, which is significantly shorter than the lifetime of either the monomer or the 3- and 4-membered nonplanar clusters. Ab initio calculations of reaction pathways and potential-energy profiles identify the mechanism of the enhanced excited-state decay of the dimer: Conical intersections connect the locally excited 1ππ* state and the electronic ground state with a 1ππ* charge-transfer state that is strongly stabilized by the transfer of a proton.
An evaluation of excitation techniques for time domain based flutter data processing
NASA Technical Reports Server (NTRS)
Pinkelman, J. K.; Batill, S. M.; Vernon, L. E.; Kehoe, M. W.
1993-01-01
Numerically simulated, wind tunnel and flight test experimental data were used to evaluate various types of system excitation sources for subcritical flutter testing. Emphasis was placed upon the determination of modal frequencies and damping from relatively short time series records. Parameter identification based upon digital time series models was used to predict modal characteristics from subcritical test data. Various types of excitation were considered. These were: 1) impulsive loading and the resulting transient free vibration response, 2) random forced response, in which the 'mechanical' forcing function could be directly measured, 3) sine sweep forced response, in which the 'mechanical' forcing function could be directly measured, and 4) forced response from unsteady aerodynamic excitation or turbulence, in which the excitation could only be indirectly inferred from other measurements.
Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal
NASA Astrophysics Data System (ADS)
Zhuo, Shuangmu; Zhu, Xiaoqin; Wu, Guizhu; Chen, Jianxin; Xie, Shusen
2011-12-01
Most colorectal cancers arise from dysplastic lesions, such as adenomatous polyps, and these lesions are difficult to be detected by the current endoscopic screening approaches. Here, we present the use of an intrinsic second-harmonic generation (SHG) signal as a novel means to differentiate between normal and dysplastic human colonic tissues. We find that the SHG signal can quantitatively identify collagen change associated with colonic dysplasia that is indiscernible by conventional pathologic techniques. By comparing normal with dysplastic mucosa, there were significant differences in collagen density and collagen fiber direction, providing substantial potential to become quantitative intrinsic biomarkers for in vivo clinical diagnosis of colonic dysplasia.
Second-harmonic optical coherence tomography
NASA Astrophysics Data System (ADS)
Jiang, Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping
2004-05-01
Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.
NASA Astrophysics Data System (ADS)
Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.
2005-03-01
Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.
NASA Astrophysics Data System (ADS)
Taher Abuelma'atti, Muhammad
2011-07-01
This article presents a simple mathematical model for the output-voltage/input-voltage characteristics of the carbon nanotube field-effect transistor (CNTFET)-based and the single-electron tunnelling transistor (SET)-based inverting amplifiers. The model, basically a Fourier-series, yields closed-form expressions for the amplitudes of the harmonic and intermodulation components of the output voltage resulting from a multisinusoidal input voltage. The special case of a two-tone equal-amplitude input signal is considered in detail. The results show that the harmonic and intermodulation performance of the CNTFET-based and SET-based inverting amplifiers is strongly dependent on the values of the bias voltage and the amplitudes of the input tones. Moreover, the results show that for the CNTFET-based inverting amplifier, either the relative second-order or the relative third-order intermodulation component is dominant, while for the SET-based inverting amplifier, the relative third-order intermodulation is always dominant. The results also show that all the harmonics and intermodulation products may exhibit minima at different values of the input bias voltages and tone amplitudes.
Ultrafast dynamics in DNA base pairs following ultraviolet excitation.
NASA Astrophysics Data System (ADS)
Orr-Ewing, Andrew
2015-03-01
Photo-protective mechanisms in DNA are essential to maintain the integrity of the genetic code by preventing damage from absorption of solar ultraviolet (UV) radiation. We have used time-resolved infra-red (TRIR) spectroscopy to observe the dynamics of Watson-Crick nucleobase pairs following absorption of femtosecond UV laser pulses. The base pairs are prepared as nucleosides in solution, and photo-induced dynamics are probed in the carbonyl and N-H bond stretching regions using broadband IR pulses with picosecond time resolution. Results will be presented for the guanine-cytosine (G-C) base pair, contrasting the rapid recovery of ground-state products (the photo-protection pathway) with formation of other photoproducts which might represent photo-damage mechanisms. This work is a collaboration with the group of Prof F. Temps (Christian-Albrechts-Universitat zu Kiel). This research is supported by ERC Advanced Grant 290966 CAPRI.
Watson-Crick base pairing controls excited-state decay in natural DNA.
Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang
2014-10-13
Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states.
Lee, Byung Il; Lee, Suk-Ho; Kim, Tae-Seong; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun
2005-11-01
Recent progress in magnetic resonance electrical impedance tomography (MREIT) research via simulation and biological tissue phantom studies have shown that conductivity images with higher spatial resolution and accuracy are achievable. In order to apply MREIT to human subjects, one of the important remaining problems to be solved is to reduce the amount of the injection current such that it meets the electrical safety regulations. However, by limiting the amount of the injection current according to the safety regulations, the measured MR data such as the z-component of magnetic flux density Bz in MREIT tend to have low SNR and get usually degraded in their accuracy due to the nonideal data acquisition system of an MR scanner. Furthermore, numerical differentiations of the measured Bz required by the conductivity image reconstruction algorithms tend to further deteriorate the quality and accuracy of the reconstructed conductivity images. In this paper, we propose a denoising technique that incorporates a harmonic decomposition. The harmonic decomposition is especially suitable for MREIT due to the physical characteristics of Bz. It effectively removes systematic and random noises, while preserving important key features in the MR measurements, so that improved conductivity images can be obtained. The simulation and experimental results demonstrate that the proposed denoising technique is effective for MREIT, producing significantly improved quality of conductivity images. The denoising technique will be a valuable tool in MREIT to reduce the amount of the injection current when it is combined with an improved MREIT pulse sequence.
Zhang, Zhenggang; Liu, Dan; Deng, Mingxi; Ta, Dean; Wang, Weiqi
2014-07-01
The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.
Reduction of harmonic pollution in distribution networks
Lawrance, W.B.; Michalik, G.; Mielczarski, W.; Szczepanik, J.
1995-12-31
The paper presents two new schemes of harmonic current reduction in distribution of harmonic current reduction in distribution circuits. The first scheme aims at the reduction of harmonics generated by six pulse bridge rectifiers which are common nonlinear load in industry. The new approach is based on injection of the third harmonic current into the transformer secondary. The current injected is generated in two passive filters connected between the outputs of the bridge and the common point of transformer secondary. The scheme is very effective reducing harmonic distortion in the supply current from 27% to 4--5%. The second scheme presented aims at the reduction of harmonic distortion caused by fluorescent lamp systems. It assumes the installation of a series filter in the neutral conductor. A specially designed filter provides a low impedance path for the first harmonic current and high impedance for higher harmonics. Simulation and laboratory tests show significant reduction of harmonics in the neutral and phase conductors.
A hybrid configuration interaction treatment based on seniority number and excitation schemes
Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri
2014-12-28
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
NASA Astrophysics Data System (ADS)
Jungemann, C.; Pham, A. T.; Meinerzhagen, B.; Ringhofer, C.; Bollhöfer, M.
2006-07-01
The Boltzmann equation for transport in semiconductors is projected onto spherical harmonics in such a way that the resultant balance equations for the coefficients of the distribution function times the generalized density of states can be discretized over energy and real spaces by box integration. This ensures exact current continuity for the discrete equations. Spurious oscillations of the distribution function are suppressed by stabilization based on a maximum entropy dissipation principle avoiding the H transformation. The derived formulation can be used on arbitrary grids as long as box integration is possible. The approach works not only with analytical bands but also with full band structures in the case of holes. Results are presented for holes in bulk silicon based on a full band structure and electrons in a Si NPN bipolar junction transistor. The convergence of the spherical harmonics expansion is shown for a device, and it is found that the quasiballistic transport in nanoscale devices requires an expansion of considerably higher order than the usual first one. The stability of the discretization is demonstrated for a range of grid spacings in the real space and bias points which produce huge gradients in the electron density and electric field. It is shown that the resultant large linear system of equations can be solved in a memory efficient way by the numerically robust package ILUPACK.
NASA Astrophysics Data System (ADS)
Parnafes, Orit
2010-12-01
Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get the same type of information across different contexts and situations (diSessa and Sherin 1998; diSessa and Wagner 2005). Rather than simplifying complex situations, or creating a linear instructional sequence in which students move from one context to another, this paper demonstrates the use of computer-based representations to facilitate developing understanding of complex physical phenomena. The data is collected from 8 studies in which pairs of students are engaged in an exploratory activity, trying to understand the dynamic behavior of a simulation and, at the same time, to attribute meaning to it in terms of the physical phenomenon it represents. The analysis focuses on three episodes. The first two episodes demonstrate the epistemological complexity involved in attempting to make sense of natural harmonic oscillation. A third episode demonstrates the process by which students develop understanding in this complex perceptual and conceptual territory, through the mediation (Vygotsky 1978) of computer-based representations designed to facilitate understanding in this topic.
Hybridization assay based on evanescent fluorescence excitation and collection
NASA Astrophysics Data System (ADS)
Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.
2003-08-01
There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.
Meliza, C Daniel; Keen, Sara C; Rubenstein, Dustin R
2013-08-01
Quantitative measures of acoustic similarity can reveal patterns of shared vocal behavior in social species. Many methods for computing similarity have been developed, but their performance has not been extensively characterized in noisy environments and with vocalizations characterized by complex frequency modulations. This paper describes methods of bioacoustic comparison based on dynamic time warping (DTW) of the fundamental frequency or spectrogram. Fundamental frequency is estimated using a Bayesian particle filter adaptation of harmonic template matching. The methods were tested on field recordings of flight calls from superb starlings, Lamprotornis superbus, for how well they could separate distinct categories of call elements (motifs). The fundamental-frequency-based method performed best, but the spectrogram-based method was less sensitive to noise. Both DTW methods provided better separation of categories than spectrographic cross correlation, likely due to substantial variability in the duration of superb starling flight call motifs.
Daniel Meliza, C; Keen, Sara C.; Rubenstein, Dustin R.
2013-01-01
Quantitative measures of acoustic similarity can reveal patterns of shared vocal behavior in social species. Many methods for computing similarity have been developed, but their performance has not been extensively characterized in noisy environments and with vocalizations characterized by complex frequency modulations. This paper describes methods of bioacoustic comparison based on dynamic time warping (DTW) of the fundamental frequency or spectrogram. Fundamental frequency is estimated using a Bayesian particle filter adaptation of harmonic template matching. The methods were tested on field recordings of flight calls from superb starlings, Lamprotornis superbus, for how well they could separate distinct categories of call elements (motifs). The fundamental-frequency-based method performed best, but the spectrogram-based method was less sensitive to noise. Both DTW methods provided better separation of categories than spectrographic cross correlation, likely due to substantial variability in the duration of superb starling flight call motifs. PMID:23927136
Monitoring process of human keloid formation based on second harmonic generation imaging
NASA Astrophysics Data System (ADS)
Jiang, X. S.; Chen, S.; Chen, J. X.; Zhu, X. Q.; Zheng, L. Q.; Zhuo, S. M.; Wang, D. J.
2011-09-01
In this paper, the morphological variation of collagen among the whole dermis from keloid tissue was investigated using second harmonic generation (SHG) microscopy. In the deep dermis of keloids, collagen bundles show apparently regular gap. In the middle dermis, the collagen bundles are randomly oriented and loosely arranged in the pattern of fine mesh while the collagen bundles are organized in a parallel manner in the superficial dermis near the epidermis. The developed parameters COI and BD can be used to further quantitatively describe these changes. Our results demonstrate the potential of SHG microscopy to understand the formation process of human keloid scar at the cellular level through imaging collagen variations in different depth of dermis.
Jang, Yunho; Jeong, Jay I; Kim, Moon K
2006-07-01
UMass Morph Server (UMMS) has been developed for the broad impact on the study of molecular dynamics (MD). The elastic network model (ENM) of a given macromolecule has been proven as a useful tool for analyzing thermal behaviors locally and predicting folding pathways globally. UMMS utilizes coarse-grained ENMs at various levels. These simplifications remarkably save computation time compared with all-atom MD simulations so that one can bring down massive computational problems from a supercomputer to a PC. To improve computational efficiency and physical reality of ENMs, the symmetry-constrained, rigid-cluster, hybrid and chemical-bond ENMs have been developed and implemented at UMMS. One can request both harmonic normal mode analysis of a single macromolecule and anharmonic pathway generation between two conformations of a same molecule using elastic network interpolation at http://biomechanics.ecs.umass.edu/umms.html.
Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I. E-mail: sshibata@post.kek.jp
2015-08-15
We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source function is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.
NASA Astrophysics Data System (ADS)
Shahab, S.; Erturk, A.
2014-04-01
Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.
Bochkova, Elena; Burokur, Shah Nawaz; de Lustrac, André; Lupu, Anatole
2016-01-15
We provide evidence for the mechanism of direct dark mode excitation in a metasurface composed of bi-layered Z-shaped enantiomeric meta-atoms. The electromagnetic behavior of the structure is investigated through both numerical simulations and experimental measurements in the microwave domain. We demonstrate direct field coupling excitation of second higher order electric mode under normal incidence based only on symmetry matching conditions. The proposed approach provides a better flexibility in engineering dark mode resonances that do not rely on hybridization mechanism and presents important advantages for multi-spectral sensor applications.
Excitation spectra of Ag3-DNA bases complexes: A benchmark study
NASA Astrophysics Data System (ADS)
Maksimov, D. A.; Pomogaev, V. A.; Kononov, A. I.
2017-04-01
Assessment of different ab initio and TDDFT methods was studied for calculation of the excitation energies of the complexes of pyrimidine bases with positively charged Ag3+ clusters. Performance of CIS, CIS(D), CC2, ADC(2), MP2, and TDDFT techniques with the use of different hybrid-GGA and meta-hybrid-GGA functionals and basis sets is studied. We found that M06-2X functional shows good accuracy in comparison with the ADC(2) ab initio method and that the geometry optimization approach can strongly affect the excitation spectra of the complexes. Our results may have important implications for further studies of ligand-stabilized silver nanoclusters.
NASA Astrophysics Data System (ADS)
Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.
2009-10-01
Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.
Sham, T.K.; Rosenberg, R. A.; Univ. of Western Ontario
2007-01-01
The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.
Airflow energy harvesters of metal-based PZT thin films by self-excited vibration
NASA Astrophysics Data System (ADS)
Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.
2014-11-01
We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.
Base excitation testing system using spring elements to pivotally mount wind turbine blades
Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott
2013-12-10
A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.
Nine Principles of Semantic Harmonization.
Cunningham, James A; Van Speybroeck, Michel; Kalra, Dipak; Verbeeck, Rudi
2016-01-01
Medical data is routinely collected, stored and recorded across different institutions and in a range of different formats. Semantic harmonization is the process of collating this data into a singular consistent logical view, with many approaches to harmonizing both possible and valid. The broad scope of possibilities for undertaking semantic harmonization do lead however to the development of bespoke and ad-hoc systems; this is particularly the case when it comes to cohort data, the format of which is often specific to a cohort's area of focus. Guided by work we have undertaken in developing the 'EMIF Knowledge Object Library', a semantic harmonization framework underpinning the collation of pan-European Alzheimer's cohort data, we have developed a set of nine generic guiding principles for developing semantic harmonization frameworks, the application of which will establish a solid base for constructing similar frameworks.
Nine Principles of Semantic Harmonization
Cunningham, James A.; Van Speybroeck, Michel; Kalra, Dipak; Verbeeck, Rudi
2016-01-01
Medical data is routinely collected, stored and recorded across different institutions and in a range of different formats. Semantic harmonization is the process of collating this data into a singular consistent logical view, with many approaches to harmonizing both possible and valid. The broad scope of possibilities for undertaking semantic harmonization do lead however to the development of bespoke and ad-hoc systems; this is particularly the case when it comes to cohort data, the format of which is often specific to a cohort’s area of focus. Guided by work we have undertaken in developing the ‘EMIF Knowledge Object Library’, a semantic harmonization framework underpinning the collation of pan-European Alzheimer’s cohort data, we have developed a set of nine generic guiding principles for developing semantic harmonization frameworks, the application of which will establish a solid base for constructing similar frameworks. PMID:28269840
Floquet topological system based on frequency-modulated classical coupled harmonic oscillators
NASA Astrophysics Data System (ADS)
Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo
2016-02-01
We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators
NASA Astrophysics Data System (ADS)
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
Time-resolved phase-sensitive second harmonic generation spectroscopy
NASA Astrophysics Data System (ADS)
Nowakowski, Paweł J.; Woods, David A.; Bain, Colin D.; Verlet, Jan R. R.
2015-02-01
A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times.
Zhang, Laibin; Ren, Tingqi; Tian, Jianxiang; Yang, Xiuqin; Zhou, Liuzhu; Li, Xiaoming
2013-04-18
Design and synthesis of fluorescent nucleobase analogues for studying structures and dynamics of nucleic acids have attracted much attention in recent years. In the present work, a comprehensive theoretical study of electronic transitions of naphtho-homologated base analogues, namely, xxC, xxT, xxA, and xxG, was performed. The nature of the low-lying excited states was discussed, and the results were compared with those of x-bases. Geometrical characteristics of the lowest excited singlet ππ* states were explored using the CIS method. The calculated excitation maxima are 423, 397, 383, and 357 nm for xxA, xxG, xxC, and xxT, respectively, and they are greatly red-shifted compared with x-bases and natural bases, allowing them to be selectively excited in the presence of the natural bases. In the gas phase, the fluorescence from them would be expected to occur around 497, 461, 457, and 417 nm, respectively. The effects of methanol solution, deoxyribose, and base paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were also examined.
Studies of Plasma Instability Processes Excited by Ground Based High Power HF ("Heating") Facilities
2001-04-01
by ground based high power HF (’ heating ’) facilities 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Alexander...Prescribed by ANSI Std. Z39-18 Grant SPC 00-4010 Final Report STUDIES OF PLASMA INSTABILITY PROCESSES EXCITED BY GROUND BASED HIGH POWER HF (" HEATING ...growing field of ionospheric HF heating . The main new results can be summarized as following: 1. Two sets of observations of suprathermal electrons
NASA Astrophysics Data System (ADS)
Taylor, Laurent; Henneron, Thomas; Margueron, Xavier; Le Menach, Yvonnick; Le Moigne, Philippe
2016-04-01
Predetermination of losses and inductance values in the design phase, is necessary for the development of high-performance magnetic components for power electronics. Numerical modeling, based on the finite element method (FEM) can be used to determine the characteristics of a particular component with a complex geometry in high frequency (HF). These models are very accurate but the computation time required is high compared to analytical models. The model order reduction (MOR) methods can be applied to reduce the computation time while maintaining high accuracy. Nowadays, the proper orthogonal decomposition (POD) is the most popular of MOR approaches. This technique has been applied to study problems in many fields of engineering. In this paper, the POD method is developed to solve magneto-harmonic problems in order to study a HF planar magnetic inductor. Contribution to the topical issue "Numelec 2015-Elected submissions", edited by Adel Razek
NASA Astrophysics Data System (ADS)
Gautam, Kumar; Chauhan, Garv; Rawat, Tarun Kumar; Parthasarathy, Harish; Sharma, Navneet
2015-09-01
This paper presents the design of a given quantum unitary gate by perturbing a three-dimensional (3-D) quantum harmonic oscillator with a time-varying but spatially constant electromagnetic field. The idea is based on expressing the radiation- perturbed Hamiltonian as the sum of the unperturbed Hamiltonian and O( e) and perturbations and then solving the Schrödinger equation to obtain the evolution operator at time T up to , and this is a linear-quadratic function of the perturbing electromagnetic field values over the time interval [0, T]. Setting the variational derivative of the error energy with respect to the electromagnetic field values with an average electromagnetic field energy constraint leads to the optimal electromagnetic field solution, a linear integral equation. The reliability of such a gate design procedure in the presence of heat bath coupling is analysed, and finally, an example illustrating how atoms and molecules can be approximated using oscillators is presented.
NASA Astrophysics Data System (ADS)
Hack, Szabolcs; Varró, Sándor; Czirják, Attila
2016-02-01
We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron's relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.
Min, Byung-Il; Periáñez, Raúl; Park, Kihyun; Kim, In-Gyu; Suh, Kyung-Suk
2014-10-15
The eleven nuclear power plants in operation, under construction and a well-planned plant in the east coast of China generally use seawater for reactor cooling. In this study, an oceanic dispersion assessment system based on a database of tidal harmonic constants is developed. This system can calculate the tidal current without a large computational cost, and it is possible to calculate real-time predictions of pollutant dispersions in the ocean. Calculated amplitudes and phases have maximum errors of 10% and 20% with observations, respectively. A number of hypothetical simulations were performed according to varying of the release starting time and duration of pollutant for the six nuclear sites in China. The developed system requires a computational time of one hour for one month of real-time forecasting in Linux OS. Thus, it can use to evaluate rapidly the dispersion characteristics of the pollutants released into the sea from a nuclear accident.
NASA Astrophysics Data System (ADS)
Simmonett, Andrew C.; Pickard, Frank C.; Schaefer, Henry F.; Brooks, Bernard R.
2014-05-01
Next-generation molecular force fields deliver accurate descriptions of non-covalent interactions by employing more elaborate functional forms than their predecessors. Much work has been dedicated to improving the description of the electrostatic potential (ESP) generated by these force fields. A common approach to improving the ESP is by augmenting the point charges on each center with higher-order multipole moments. The resulting anisotropy greatly improves the directionality of the non-covalent bonding, with a concomitant increase in computational cost. In this work, we develop an efficient strategy for enumerating multipole interactions, by casting an efficient spherical harmonic based approach within a particle mesh Ewald (PME) framework. Although the derivation involves lengthy algebra, the final expressions are relatively compact, yielding an approach that can efficiently handle both finite and periodic systems without imposing any approximations beyond PME. Forces and torques are readily obtained, making our method well suited to modern molecular dynamics simulations.
Duan, Lihong; Fang, Jiancheng; Li, Rujie; Jiang, Liwei; Ding, Ming; Wang, Wei
2015-12-14
The fluctuations of the probe light intensity seriously affect the performance of the sensitive atomic magnetometer. Here we propose a novel method for the intensity stabilization based on the second harmonic component of the photoelastic modulator (PEM) detection in the atomic magnetometer. The method not only could be used to eliminate the intensity fluctuations of the laser source, but also remove the fluctuations from the optical components caused by the environment. A relative fluctuation of the light intensity of 0.035% was achieved and the corresponding fluctuation of the output signal of the atomic magnetometer has decreased about two orders of magnitude from 4.06% to 0.041%. As the scheme proposed here only contains optical devices and does not require additional feedback controlled equipments, it is especially suitable for the integration of the atomic magnetometer.
Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases.
Send, Robert; Sundholm, Dage; Johansson, Mikael P; Pawłowski, Filip
2009-09-08
The potential energy surface of the (1)Bu and (1)A' states of all-trans-polyenes and the corresponding protonated Schiff bases have been studied at density functional theory and coupled cluster levels. Linear polyenes and protonated Schiff bases with 4 to 12 heavy atoms have been investigated. The calculations show remarkable differences in the excited state potential energy surfaces of the polyenes and the protonated Schiff bases. The excited states of the polyenes exhibit high torsion barriers for single-bond twists and low torsion barriers for double-bond twists. The protonated Schiff bases, on the other hand, are very flexible molecules in the first excited state with low or vanishing torsion barriers for both single and double bonds. Calculations at density functional theory and coupled cluster levels yield qualitatively similar potential energy surfaces. However, significant differences are found for some single-bond torsions in longer protonated Schiff bases, which indicate a flaw of the employed time-dependent density functional theory methods. The close agreement between the approximate second and third order coupled cluster levels indicates that for these systems calculations at second order coupled cluster level are useful in the validation of results based on time-dependent density functional theory.
Optical near-field excitations on plasmonic nanoparticle-based structures.
Foteinopoulou, S; Vigneron, J P; Vandenbem, C
2007-04-02
We investigate optical excitations on single silver nanospheres and nanosphere composites with the Finite Difference Time Domain (FDTD) method. Our objective is to achieve polarization control of the enhanced local field, pertinent to SERS applications. We employ dimer and quadrumer structures, which can display broadband and highly confined near-field-intensity enhancement comparable to or exceeding the resonant value of smaller sized isolated spheres. Our results demonstrate that the polarization of the enhanced field can be controlled by the orientation of the multimers in respect to the illumination, rather than the illumination itself. In particular, we report cases where the enhanced field shares the same polarization with the exciting field, and cases where it is predominantly perpendicular to the source field. We call the later phenomenon depolarized enhancement. Furthermore, we study a realizable nanolens based on a tapered self-similar silver nanosphere array. The time evolution of the fields in such structures show conversion of a diffraction limited Gaussian beam to a focused spot, through sequential coupling of the nano-array spheres' Mie-plasmons. For a longitudinally excited nanolens design we observed the formation of an isolated focus with size about one tenth the vacuum wavelength. We believe such nanolens will aid scanning near-field optical microscopy (SNOM) detection and the excitation of surface plasmon based guiding devices.
Morrey spaces in harmonic analysis
NASA Astrophysics Data System (ADS)
Adams, David R.; Xiao, Jie
2012-10-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Yuan, Bing; Bernstein, Elliot R
2017-01-07
Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (<55 K). Initial decomposition mechanisms for these two electronically excited, isolated molecules are explored at the complete active space self-consistent field (CASSCF(12,12)/6-31G(d)) level with and without MP2 correction. Potential energy surface calculations illustrate that conical intersections play an essential role in the calculated decomposition mechanisms. Based on experimental observations and theoretical calculations, NO product is released through opening of the furoxan ring: ring opening can occur either on the S1 excited or S0 ground electronic state. The reaction path with the lowest energetic barrier is that for which the furoxan ring opens on the S1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these
NASA Astrophysics Data System (ADS)
Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.
2016-11-01
This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.
Quantum dot based detections of propagating plasmonic modes excited by bowtie antennas
NASA Astrophysics Data System (ADS)
Wen, Jing; Wang, Kang; Feng, Hui; Lv, Yating; Chen, Jiannong; Zhang, Dawei
2017-03-01
Propagating plasmonic modes excited by bowtie apertures based on emissions from a layer of CdSe/ZnS quantum dots are experimentally detected. The mode distributions with a cladding of 20 nm thick Al2O3 film in between the silver and the quantum dot layers are more homogenous compared to the uncoated structure. The variation discipline of the effective indexes and the decay lengths of the plasmonic modes are discussed for various refractive indexes and thicknesses of the cladding. The three dimensional field distributions of the structure are simulated and the plasmonic fields are only excited in and around the cladding layer on top of the silver film. Such quantum dots based detection methods are promising tools for simultaneous imaging of near field optical distributions in integrated plasmonic nano-circuits.
Calibration of excitation function measurement based on corona cage test results.
Lan, Lei; Chen, Xiaoyue; Wen, Xishan; Li, Wei; Xiao, Guozhou
2016-11-01
Corona cage approaches are crucial for research on the corona characteristics of conductors. Calibration is an indispensable task for determining excitation functions, which are used to predict corona performance of long transmission lines through extrapolation from measurements of short lines in corona cages. In this paper, the amplification factor G is calculated through a frequently adopted method, propagation analysis of high-frequency corona current along a short line. Another convenient calibration method, based on distributed parameter equivalent circuits, is established. The results for G obtained through propagation analysis and equivalent circuits are compared. To verify the rationality of calculation parameters in propagation analysis and equivalent circuits, a calibration experiment based on the excitation caused by a simulated monopulse current was performed. The results of the proposed calibration method and the calibration experiment are in good agreement.
A novel quadruple excitation in high-Tc SQUID-based non-destructive evaluation
NASA Astrophysics Data System (ADS)
Kong, X. Y.; Ren, Y. F.; Li, J. W.; Yu, H. W.; Chen, G. H.; Yang, Q. S.
2006-02-01
A high-Tc SQUID-based non-destructive evaluation (NDE) system has been set up in our laboratory. The SQUID was made on a 24° bicystal SrTiO3 substrate. A novel quadruple excitation coil was proposed for the first time and applied in the artificial holes in the aluminium multilayer structure in a noisy unshielded environment. The experimental data shows that it has good balance and is very effective at detecting small hole defects.
Absorption of harmonic light in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Vincenti, Maria A.; de Ceglia, Domenico; Scalora, Michael
2016-09-01
Surface plasmons are known for their ability to provide large field enhancement at the interface between a metal and another medium. They can be observed in a variety of structures ranging from plain metallic films to nanoparticles and gratings. Thanks to their large electric field enhancement, surface plasmons have also been exploited for the enhancement of second and third harmonic generation. In fact, metals possess a relatively high third order susceptibility and, although dipole-allowed quadratic nonlinearities are not present in the bulk, they also display an effective second order response that arises from symmetry breaking at the surface, magnetic dipoles (Lorentz force), inner-core electrons, convective nonlinear sources, and electron gas pressure. While much attention has been devoted to achieve efficient excitation of surface plasmons to improve far-field harmonic generation, little or no attention has been paid to the dissipation of the generated harmonic light. Therefore, we undertake a discussion of both harmonic generation and absorption in simple metallic/dielectric interfaces with or without excitation of surface plasmons. We demonstrate that, despite the best efforts embarked upon to study plasmon excitation, the absorbed harmonic energy can far surpass the energy emitted in the far-field. These findings suggest that quantification of the absorbed harmonic light should be an important parameter in evaluating designs of plasmonic nanostructures for frequency mixing.
Optimal trajectories for efficient atomic transport without final excitation
Chen Xi; Torrontegui, E.; Muga, J. G.; Stefanatos, Dionisis; Li, Jr-Shin
2011-10-15
We design optimal harmonic-trap trajectories to transport cold atoms without final excitation, combining an inverse engineering technique based on Lewis-Riesenfeld invariants with optimal control theory. Since actual traps are not really harmonic, we keep the relative displacement between the center of mass of the transport modes and the trap center bounded. Under this constraint, optimal protocols are found according to different physical criteria. The minimum time solution has a ''bang-bang'' form, and the minimum displacement solution is of ''bang-off-bang'' form. The optimal trajectories for minimizing the transient energy are also discussed.
NASA Astrophysics Data System (ADS)
He, Xiaoying; Wang, D. N.
2016-11-01
Passive harmonic mode-locking fiber laser is experimentally demonstrated with high pulse energy and excellent signal-to-noise-ratio by employing monolayer graphene and multi-mode fiber. A repetition rate of 20.26 MHz corresponding to the 3rd harmonic mode-locking has been achieved, with a pulse duration of 603 fs, and a high single-pulse energy of 1.04 nJ. The spectral width of the pulses is found to be decreased with the increase of the harmonic order. Such a fiber laser is suitable for optical access network or material processing applications.
Asymmetric Gaussian harmonic steering in second-harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2013-11-01
Intracavity second-harmonic generation is one of the simplest of the quantum optical processes and is well within the expertise of most optical laboratories. It is well understood and characterized, both theoretically and experimentally. We show that it can be a source of continuous-variable asymmetric Gaussian harmonic steering with fields which have a coherent excitation, hence combining the important effects of harmonic entanglement and asymmetric steering in one easily controllable device, adjustable by the simple means of tuning the cavity loss rates at the fundamental and harmonic frequencies. We find that whether quantum steering is available via the standard measurements of the Einstein-Podolsky-Rosen correlations can depend on which quadrature measurements are inferred from output spectral measurements of the fundamental and the harmonic. Altering the ratios of the cavity loss rates can be used to tune the regions where symmetric steering is available, with the results becoming asymmetric over all frequencies as the cavity damping at the fundamental frequency becomes significantly greater than at the harmonic. This asymmetry and its functional dependence on frequency is a potential new tool for experimental quantum information science, with possible utility for quantum key distribution. Although we show the effect here for Gaussian measurements of the quadratures, and cannot rule out a return of the steering symmetry for some class of non-Gaussian measurements, we note here that the system obeys Gaussian statistics in the operating regime investigated and Gaussian inference is at least as accurate as any other method for calculating the necessary correlations. Perhaps most importantly, this system is simpler than any other methods we are aware of which have been used or proposed to create asymmetric steering.
NASA Astrophysics Data System (ADS)
Souza, Adelmo S.; Nunes, Luiz A. O.; Silva, Ivan G. N.; Oliveira, Fernando A. M.; da Luz, Leonis L.; Brito, Hermi F.; Felinto, Maria C. F. C.; Ferreira, Rute A. S.; Júnior, Severino A.; Carlos, Luís D.; Malta, Oscar L.
2016-02-01
Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu3+ emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be
Second harmonic imaging and scoring of collagen in fibrotic tissues
NASA Astrophysics Data System (ADS)
Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.
2007-04-01
We compare second harmonic generation (SHG) to histological and immunohistochemical techniques for the visualization and scoring of collagen in biological tissues. We show that SHG microscopy is highly specific for fibrillar collagens and that combined SHG and two-photon excited fluorescence (2PEF) imaging can provide simultaneous three-dimensional visualization of collagen synthesis and assembly sites in transgenic animal models expressing GFP constructs. Finally, we propose several scores for characterizing collagen accumulation based on SHG images and appropriate for different types of collagen distributions. We illustrate the sensitivity of these scores in a murine model of renal fibrosis using a morphological segmentation of the tissue based on endogenous 2PEF signals.
Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
NASA Astrophysics Data System (ADS)
Li-li, Tian; Yang, Chen; Jian-long, Liu; Kai, Guo; Ke-ya, Zhou; Yang, Gao; Shu-tian, Liu
2016-07-01
According to the electromagnetic field distributions, there exist two kinds of coupled spoof surface plasmon polaritons (SSPPs), the symmetric and anti-symmetric modes, in the three-dimensional (3D) subwavelength spoof-insulator-spoof (SIS) waveguide. We study the dispersion and excitation of the two kinds of coupled SSPPs supported by the 3D SIS waveguide. The evolution of the dispersion with the thickness and gap width of the waveguide is numerically investigated, and we give a theoretical analysis according to the coupling mechanism. Specially, based on the coupling mechanism, we design a zipper structure, through which the excitation and propagation of the anti-symmetric coupled modes can be realized effectively. Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702) and the National Natural Science Foundation of China (Grant Nos. 61377016, 61575055, 10974039, 61307072, 61308017, and 61405056).
NASA Astrophysics Data System (ADS)
Baszanowska, E.; Otremba, Z.
2015-10-01
The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.
Quantum thermal diode based on two interacting spinlike systems under different excitations
NASA Astrophysics Data System (ADS)
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador
2010-12-06
We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.
Application of time-series-based damage detection algorithms to structures under ambient excitations
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chan, Chuan-Kai; Lee, Chung-Hsien
2016-04-01
Operational modal analysis (OMA) is to extract the dynamic characteristics of structures based on vibration responses of structures without considering the excitation measurement. In this study both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of a test structure ( a 3- story steel frame subjected to a series of earthquake and white noise excitations back to back) using both input and output response data or output only measurement and identify the damage location. For the modal-based identification, the multi-variant autoregressive model (MV-AR model) is used to identify the dynamic characteristics of structure. The MV-AR model parameters are then used to develop the vectors of autoregressive model and Mahalanobis distance, and then to identify the damage features and locate the damage. From the signal-based feature identification two damage features will be discussed: (1) the enhancement of time-frequency analysis of acceleration responses, and (2) WPT based energy damage indices. Discussion on the correlation of the extract local damage features from measurements with the global damage indices, such as null-space and subspace damage indices, is also made.
Harmonic admittance and dispersion equations--the theorem.
Plessky, Viktor P; Biryukov, Sergey V; Koskela, Julius
2002-04-01
The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the harmonic admittance. Here, we show that a strict reverse relationship also exists: the harmonic admittance of a periodic system of electrodes may always be expressed as the ratio of two determinants, which have been specifically constructed to describe the eigen-modes of the open- and short-circuited systems. There is no need to solve these equations to find the admittance. The existence of a connection between the excitation and propagation problems was recognized within the coupling-of-modes theory by Chen and Haus and was recently used to model surface transverse waves by Koskela et al., but a rigorous mathematical proof was only found later by Biryukov. Here, we reproduce this theorem in detail, give some examples of calculations based on this theorem, and compare the results with measured admittance curves.
Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.
2013-12-14
Recent work from our research group has demonstrated that symmetry-projected Hartree–Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C{sub 2} dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model C{sub 2v} insertion pathway for BeH{sub 2}. The variational excited state methodology developed in this work has two remarkable traits: it is fully black-box and will be applicable to fairly large systems thanks to its mean-field computational cost.
Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation
NASA Astrophysics Data System (ADS)
Motevalli, Benyamin; Taherifar, Neda; Zhe Liu, Jefferson
2016-05-01
There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ˜10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8-3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices.
B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation.
Katscher, Ulrich; Findeklee, Christian; Voigt, Tobias
2012-12-01
The current gold standard to estimate local and global specific energy absorption rate for MRI involves numerically modeling the patient and the transmit radiofrequency coil. Recently, a patient-individual method was presented, which estimated specific energy absorption rate from individually measured B(1) maps. This method, however, was restricted to quadrature volume coils due to difficulties distinguishing phase contributions from radiofrequency transmission and reception. In this study, a method separating these two phase contributions by comparing the electric conductivity reconstructed from different transmit channels of a parallel radiofrequency transmission system is presented. This enables specific energy absorption rate estimation not only for quadrature excitation but also for the nonquadrature excitation of the single elements of the transmit array. Though the contributions of the different phases are known, unknown magnetic field components and tissue boundary artifacts limit the technique. Nevertheless, the high agreement between simulated and experimental results found in this study is promising. B(1)-based specific energy absorption rate determination might become possible for arbitrary radiofrequency excitation on a patient-individual basis.
NASA Astrophysics Data System (ADS)
Liu, Yongfang; Zhao, Yu; Chen, Guanrong
2016-11-01
This paper studies the distributed consensus and containment problems for a group of harmonic oscillators with a directed communication topology. First, for consensus without a leader, a class of distributed consensus protocols is designed by using motion planning and Pontryagin's principle. The proposed protocol only requires relative information measurements at the sampling instants, without requiring information exchange over the sampled interval. By using stability theory and the properties of stochastic matrices, it is proved that the distributed consensus problem can be solved in the motion planning framework. Second, for the case with multiple leaders, a class of distributed containment protocols is developed for followers such that their positions and velocities can ultimately converge to the convex hull formed by those of the leaders. Compared with the existing consensus algorithms, a remarkable advantage of the proposed sampled-data-based protocols is that the sampling periods, communication topologies and control gains are all decoupled and can be separately designed, which relaxes many restrictions in controllers design. Finally, some numerical examples are given to illustrate the effectiveness of the analytical results.
Liu, Yongfang; Zhao, Yu; Chen, Guanrong
2016-11-01
This paper studies the distributed consensus and containment problems for a group of harmonic oscillators with a directed communication topology. First, for consensus without a leader, a class of distributed consensus protocols is designed by using motion planning and Pontryagin's principle. The proposed protocol only requires relative information measurements at the sampling instants, without requiring information exchange over the sampled interval. By using stability theory and the properties of stochastic matrices, it is proved that the distributed consensus problem can be solved in the motion planning framework. Second, for the case with multiple leaders, a class of distributed containment protocols is developed for followers such that their positions and velocities can ultimately converge to the convex hull formed by those of the leaders. Compared with the existing consensus algorithms, a remarkable advantage of the proposed sampled-data-based protocols is that the sampling periods, communication topologies and control gains are all decoupled and can be separately designed, which relaxes many restrictions in controllers design. Finally, some numerical examples are given to illustrate the effectiveness of the analytical results.
A method for the harmonic removal in operational modal analysis of rotating blades
NASA Astrophysics Data System (ADS)
Agneni, Alessandro; Coppotelli, Giuliano; Grappasonni, Chiara
2012-02-01
The operational modal analysis, OMA, allows estimating the dynamic properties of a structure, natural frequencies, damping ratios, and mode shapes, without measuring the input forces. According to the main hypothesis concerning the input excitation, i.e., stochastic with frequency independent spectra (at least in the frequency band of interest), it is not theoretically possible to apply the OMA procedures in structures characterized by the presence of harmonic components in the excitation loading. In this paper, an approach capable to identify the presence of harmonic excitations, acting together with a broad band stochastic loading, and then to remove their effects in the modal parameter estimate is presented. The approach is based on the joint use of the statistical parameter called "entropy" and the already developed output-only procedure based on the application of the Hilbert transform properties to the output response signals. The capability to improve the OMA procedures is investigated numerically and through whirl tower experimental tests of a rotating blade in which both stochastic and harmonic contributions to the dynamic excitations have been provided by the perturbations arising from the operative conditions. A sensitivity analysis has been also performed to evaluate the effects of the filtered responses, in the time domain, on the statistical characterization, required to distinguish the operational frequencies from the natural ones.
Harmonic model of graphene based on a tight binding interatomic potential
NASA Astrophysics Data System (ADS)
Mendez, J. P.; Ariza, M. P.
2016-08-01
Like in many other materials, the presence of topological defects in graphene has been demonstrated to modify its behavior, thus enhancing features aimed at several technological applications, more specifically, its electronic and transport properties. In particular, pristine defect-free graphene has been shown to be of limited use for semiconductor-based electronics, whereas the presence of individual or cluster defect rings along grain boundaries hinders electron transport and introduce a transport gap, unveiling the possibility of novel electronic device applications based on the structural engineering of graphene-based materials. In this work, we present an atomic bondwise force-constant model from the tight binding potential by Xu et al. (1992), that accounts for the electron-mechanical coupling effects in graphene. First we verify that this computational scheme is capable of accurately predicting the defect energies and core structures of dislocation dipoles based on the theory of discrete dislocations of Ariza and Ortiz (2005). In order to demonstrate our ability to characterize the effect of patterned distributions of structural defects on the electronic structure of graphene, we present the electronic band structures and density of states curves of several defective graphene sheets.
Vibration Modal Characterization of a Stirling Convertor via Base-Shake Excitation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2003-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.
High Harmonic Generation at Long Wavelengths
Sheehy, B.; Martin, J. D. D.; DiMauro, L. F.; Agostini, P.; Schafer, K. J.; Gaarde, M. B.; Kulander, K. C.
1999-12-20
High harmonic radiation spectra up to 19th order in alkali metal vapors excited by an intense, picosecond mid-infrared (3-4 {mu} m ) laser are reported and compared to theory. The strong-field dynamics in the alkali metal atoms exhibit significant differences from all previously studied systems due to the strong coupling between their ground and first excited states. (c) 1999 The American Physical Society.
Imaging with Second-Harmonic Generation Nanoparticles
NASA Astrophysics Data System (ADS)
Hsieh, Chia-Lung
Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and
Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur
2012-11-15
Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.
NASA Astrophysics Data System (ADS)
Trunina, Natalia A.; Popov, Alexey P.; Lademann, Jürgen; Tuchin, Valery V.; Myllylä, Risto; Darvin, Maxim E.
2012-06-01
Penetration of nanoparticles into tooth tissues is of significant interest in solving problems related to reduction of tooth sensitivity, enamel strengthening and restoration and cosmetic bleaching. In this work we demonstrate two-photonexcited autofluorescence and second-harmonic generation microscopy for visualization of penetration of TiO2 and ZnO nanoparticles into tooth tissues.
Liu, Meng; Zheng, Xu-Wu; Qi, You-Li; Liu, Hao; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng; Zhao, Chu-Jun; Zhang, Han
2014-09-22
We reported on the generation of high-order harmonic mode-locking in a fiber laser using a microfiber-based molybdenum disulfide (MoS(2)) saturable absorber (SA). Taking advantage of both the saturable absorption and large third-order nonlinear susceptibilities of the few-layer MoS(2), up to 2.5 GHz repetition rate HML pulse could be obtained at a pump power of 181 mW, corresponding to 369th harmonic of fundamental repetition frequency. The results provide the first demonstration of the simultaneous applications of both highly nonlinear and saturable absorption effects of the MoS(2), indicating that the microfiber-based MoS(2) photonic device could serve as high-performance SA and highly nonlinear optical component for application fields such as ultrafast nonlinear optics.
Peng, Fang Zheng; Lai, Jih-Sheng
1996-10-01
A generalized theory of instantaneous reactive power for three-phase power systems is proposed in this paper. This theory gives a generalized definition of instantaneous reactive power, which is valid for sinusoidal or nonsinusoidal, balanced or unbalanced, three- phase power systems with or without zero-sequence currents and/or voltages. The properties and physical meanings of the newly defined instantaneous reactive power are discussed in detail. With this new reactive power theory, it is very easy to calculate and decompose all components, such as fundamental active/reactive power and current, harmonic current, etc. Reactive power and/or harmonic compensation systems for a three-phase distorted power system with and without zero-sequence components in the source voltage and/or load current are then used as examples to demonstrate the measurement, decomposition, and compensation of reactive power and harmonics.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Predicted and measured strain responses of isotropic panels to base excitation
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Leatherwood, Jack D.; Daniels, Edward F.
1988-01-01
The accuracy of classical linear theory for predicting acceleration and strain for cantilevered and Clamped-Free-Clamped-Free (C-F-C-F) panels excited through the base is studied. Aluminum, steel and titanium plates of various dimensions and thicknessess were vibration tested, using a broadband random signal applied through a shaker mounting fixture. The strains were measured at 9 locations on the cantilevered panels and at 5 locations on the C-F-C-F panels. Predictions were based on the Ritz method. The measured accelerations of the base were input to the analysis for the forcing function. Comparisons between predicted and measured strain acceleration spectra were within an average error of 20 percent for both the cantilevered and C-F-C-F panels.
Valastro, Viviana; Holmes, Edward C; Britton, Paul; Fusaro, Alice; Jackwood, Mark W; Cattoli, Giovanni; Monne, Isabella
2016-04-01
Infectious bronchitis virus (IBV) is the causative agent of a highly contagious disease that results in severe economic losses to the global poultry industry. The virus exists in a wide variety of genetically distinct viral types, and both phylogenetic analysis and measures of pairwise similarity among nucleotide or amino acid sequences have been used to classify IBV strains. However, there is currently no consensus on the method by which IBV sequences should be compared, and heterogeneous genetic group designations that are inconsistent with phylogenetic history have been adopted, leading to the confusing coexistence of multiple genotyping schemes. Herein, we propose a simple and repeatable phylogeny-based classification system combined with an unambiguous and rationale lineage nomenclature for the assignment of IBV strains. By using complete nucleotide sequences of the S1 gene we determined the phylogenetic structure of IBV, which in turn allowed us to define 6 genotypes that together comprise 32 distinct viral lineages and a number of inter-lineage recombinants. Because of extensive rate variation among IBVs, we suggest that the inference of phylogenetic relationships alone represents a more appropriate criterion for sequence classification than pairwise sequence comparisons. The adoption of an internationally accepted viral nomenclature is crucial for future studies of IBV epidemiology and evolution, and the classification scheme presented here can be updated and revised novel S1 sequences should become available.
D'Amico, María Belén; Calandrini, Guillermo L
2015-11-01
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
NASA Astrophysics Data System (ADS)
Gelman, David; Koch, Christiane P.; Kosloff, Ronnie
2004-07-01
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
Limit cycles in nonlinear excitation of clusters of classical oscillators
NASA Astrophysics Data System (ADS)
De Lauro, E.; De Martino, S.; Falanga, M.; Ixaru, L. Gr.
2009-10-01
In this paper we develop a numerical procedure for detecting the existence of limit cycles in nonlinear excitation of clusters of classical harmonic oscillators. Our technique is able to compute also the main parameters of a limit cycle, that is the amplitudes and the period. The numerical method, based on the propagation matrix formalism, is transparent and easy to apply. It may find application in various areas where nonlinear excitations are involved, e.g., sound and mechanic vibrations in musical instruments, ground vibrations in volcanic areas, and sea tides.
Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening.
Kamimura, H A S; Wang, S; Wu, S-Y; Karakatsani, M E; Acosta, C; Carneiro, A A O; Konofagou, E E
2015-10-07
Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n = 15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5–1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were mm3, mm3and mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were V.s, V.s and V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue.
RESONANT CAVITY EXCITATION SYSTEM
Baker, W.R.; Kerns, Q.A.; Riedel, J.
1959-01-13
An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.
Harmonization of Biodiesel Specifications
Alleman, T. L.
2008-02-01
Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.
Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei
2015-06-15
Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.
Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo
2016-07-07
This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.
Yang, M.-J.; /Fermilab
1995-01-01
To understand the effect of Main Ring harmonic quadruple correctors. Previous data taken with the harmonic quads did not agree well with the SYNCH calculation. The ultimate goal of this study was to be able to change the harmonic quads and verify the changes in lattice function.
ERIC Educational Resources Information Center
Parnafes, Orit
2010-01-01
Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…
Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin
2014-03-10
We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.
Leary, S P; Pilgrim, S M
1998-01-01
The polarization response of a ferroelectric ceramic displays nonlinear behavior at high applied fields due to saturation effects. Weak-field dielectric aging imposes additional nonlinearity on the hysteresis loops of these materials. Harmonic analysis using a discrete Fourier transform (DFT) permitted an observation of the change in the polarization frequency spectrum as Pb(Mg(1/3)Nb(2/3))O (3)-based relaxor ceramics aged. It also facilitated the calculation of ac current, power, and "internal bias field". The results show that particular harmonics in the polarization signal are sensitive indications of aging behavior. The average power dissipated at weak ac fields was found to decrease with aging time; and the power dissipated at strong fields tended to increase.
Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials
NASA Astrophysics Data System (ADS)
Aabdin, Z.; Peranio, N.; Eibl, O.; Töllner, W.; Nielsch, K.; Bessas, D.; Hermann, R. P.; Winkler, M.; König, J.; Böttner, H.; Pacheco, V.; Schmidt, J.; Hashibon, A.; Elsässer, C.
2012-06-01
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6 × 1019 cm-3, large thermopower of 130 μV K-1, and large charge carrier mobility of 402 cm2 V-1 s-1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50 nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.
Detection of pretreated fingerprint fluorescence using an LED-based excitation system.
Takatsu, Masahisa; Shimoda, Osamu; Onishi, Kyoko; Onishi, Akira; Oguri, Naoki
2008-07-01
Optimization of a light emitting diode (LED)-based excitation system for the detection of pretreated fingerprint fluorescence is described. Fluorescent ridges can usually be excited by irradiation with forensic light sources such as xenon arc lamps or quartz-halogen lamps with high-power output and suitable filters. However, they are too expensive for many crime laboratories in smaller organizations. We concentrated on LEDs which have advantages over conventional light sources in that they are simpler and of lower cost, but the power output and quality of each individual LED unit is not sufficient for the detection of weak fluorescent ridges. To resolve this subject, blue and green LED arrays composed of ninety LED units were adopted and suitable low pass filters for them were designed. An experimental system, consisting of blue and green LED arrays with the suitable low pass filters for illumination, high pass filters for viewing, a digital camera and a computer, was tested. The fluorescent images of cyanoacrylate ester fumed/rhodamine 6G stained fingerprint on white polyethylene sheet and weak fluorescent ridges of ninhydrin/indium chloride treated fingerprint on white paper were successfully detected and photographed. It was shown that the improvement of LED beam in intensity and quality can compensate the disadvantages, resulting in well-contrasted images.
Winter, Thomas G.
2011-02-15
Coupled two-center as well as one-center Sturmian cross sections have been determined for ionization and excitation in p-bar-H(1s) collisions at p-bar energies from 1 to 16 000 keV, following the author's recent work for p-H(1s) collisions [Phys. Rev. A 80, 032701 (2009)]. Basis convergence is studied in detail. Results for ionization and excitation are compared to other coupled-state results and to numerical results, as well as limited experimental results for ionization only. Except for the large, two-center coupled-Gaussian-pseudostate calculation of Toshima for ionization only [Phys. Rev. A 64, 024701 (2001)], previous calculations employed one-center bases, including a one-center Sturmian calculation by Igarashi et al. [Phys. Rev. A 61, 062712 (2000)]. A strong contrast with p-H collisions is confirmed at intermediate energies, while at high energies the extent of agreement is revealed between coupled-state results for the two collisional systems, as well as with first Born results.
Koo, Joonhoi; Park, June; Lee, Junsu; Jhon, Young Min; Lee, Ju Han
2016-05-16
We experimentally demonstrate the use of a bulk-like, MoSe_{2}-based saturable absorber (SA) as a passive harmonic mode-locker for the production of femtosecond pulses from a fiber laser at a repetition rate of 3.27 GHz. By incorporating a bulk-like, MoSe_{2}/PVA-composite-deposited side-polished fiber as an SA within an erbium-doped-fiber-ring cavity, mode-locked pulses with a temporal width of 737 fs to 798 fs can be readily obtained at various harmonic frequencies. The fundamental resonance frequency and the maximum harmonic-resonance frequency are 15.38 MHz and 3.27 GHz (212th harmonic), respectively. The temporal and spectral characteristics of the output pulses are systematically investigated as a function of the pump power. The output pulses exhibited Gaussian-temporal shapes irrespective of the harmonic order, and even when their spectra possessed hyperbolic-secant shapes. The saturable absorption and harmonic-mode-locking performance of our prepared SA are compared with those of previously demonstrated SAs that are based on other transition metal dichalcogenides (TMDs). To the best of the authors' knowledge, the repetition rate of 3.27 GHz is the highest frequency that has ever been demonstrated regarding the production of femtosecond pulses from a fiber laser that is based on SA-induced passive harmonic mode-locking.
Characteristics of Excitable Dog Behavior Based on Owners’ Report from a Self-Selected Study
Shabelansky, Anastasia; Dowling-Guyer, Seana
2016-01-01
Simple Summary This study provides information about owners’ experiences with their dogs’ excitable behavior. We found that certain daily scenarios tended to prompt excitable behavior. The majority of owners in this self-selected sample were very frustrated with their excitable dog. Many dogs in the sample had other behavior problems. Abstract Past research has found that excitable dog behavior is prevalent among sheltered and owned dogs and many times is a reason for canine relinquishment. In spite of its prevalence in the canine population, excitable behavior is relatively unstudied in the scientific literature. The intent of this research was to understand the experience of owners of excitable dogs through the analysis of self-administered online questionnaires completed by owners as part of another study. We found that certain daily scenarios tended to prompt excitable behavior, with excitability most common when the owner or other people came to the dog’s home. All owners experienced some level of frustration with their dog’s excitable behavior, with the majority being very frustrated. Many dogs in the sample had other behavior problems, with disobedient, destructive, chasing and barking behaviors being the most commonly reported. Other characteristics of excitable dogs also are discussed. Although the ability to generalize from these results is likely limited, due to targeted recruitment and selection of owners of more excitable dogs, this research provides valuable insights into the owner’s experience of excitable behavior. We hope this study prompts more research into canine excitable behavior which would expand our understanding of this behavior and help behaviorists, veterinarians, and shelters develop tools for managing it, as well as provide better education to owners of excitable dogs. PMID:26999222
Orbit-based analysis of resonant excitations of Alfvén waves in tokamaks
Bierwage, Andreas; Shinohara, Kouji
2014-11-15
The exponential growth phase of fast-ion-driven Alfvénic instabilities is simulated and the resonant wave-particle interactions are analyzed numerically. The simulations are carried out in realistic magnetic geometry and with a realistic particle distribution for a JT-60U plasma driven by negative-ion-based neutral beams. In order to deal with the large magnetic drifts of the fast ions, two new mapping methods are developed and applied. The first mapping yields the radii and pitch angles at the points, where the unperturbed orbit of a particle intersects the mid-plane. These canonical coordinates allow to express analysis results (e.g., drive profiles and resonance widths) in a form that is easy to understand and directly comparable to the radial mode structure. The second mapping yields the structure of the wave field along the particle trajectory. This allows us to unify resonance conditions for trapped and passing particles, determine which harmonics are driven, and which orders of the resonance are involved. This orbit-based resonance analysis (ORA) method is applied to fast-ion-driven instabilities with toroidal mode numbers n = 1-3. After determining the order and width of each resonance, the kinetic compression of resonant particles and the effect of linear resonance overlap are examined. On the basis of the ORA results, implications for the fully nonlinear regime, for the long-time evolution of the system in the presence of a fast ion source, and for the interpretation of experimental observations are discussed.
NASA Technical Reports Server (NTRS)
Vernon, Lura
1993-01-01
A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.
Amezquita-Sanchez, Juan P.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.; Garcia-Perez, Arturo
2014-01-01
This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals. PMID:24683346
NASA Astrophysics Data System (ADS)
Hui, Yi; Law, Siu Seong; Ku, Chiu Jen
2017-02-01
Covariance of the auto/cross-covariance matrix based method is studied for the damage identification of a structure with illustrations on its advantages and limitations. The original method is extended for structures under direct white noise excitations. The auto/cross-covariance function of the measured acceleration and its corresponding derivatives are formulated analytically, and the method is modified in two new strategies to enable successful identification with much fewer sensors. Numerical examples are adopted to illustrate the improved method, and the effects of sampling frequency and sampling duration are discussed. Results show that the covariance of covariance calculated from responses of higher order modes of a structure play an important role to the accurate identification of local damage in a structure.
Camarena-Martinez, David; Amezquita-Sanchez, Juan P; Valtierra-Rodriguez, Martin; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Garcia-Perez, Arturo
2014-01-01
This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.
Liu, Lingzhi; Dong, Xiaohu; Lian, Wenlong; Peng, Xiaoniu; Liu, Zhihong; He, Zhike; Wang, Ququan
2010-02-15
Recently, we have successfully developed a two-photon excitation fluorescence resonance energy transfer (TPE-FRET)-based homogeneous immunoassay using two-photon excitable small organic molecule as the energy donor. In the present work, the newly emerging TPE-FRET technique was extended to the determination of oligonucleotide. A new TPE molecule with favorable two-photon action cross section was synthesized [2-(2,5-bis(4-(dimethylamino)styryl)-1H-pyrrol-1-yl)acetic acid, abbreviated as TP-COOH], with the tagged reactive carboxyl group allowing facile conjugation with streptavidin (SA). Employing the TP-COOH molecule as energy donor and black hole quencher 1 (BHQ-1) as acceptor, a TPE-FRET-based homogeneous competitive hybridization model was constructed via a biotin-streptavidin bridge. Through the hybridization between a biotinylated single-stranded DNA (ssDNA) and a BHQ-1-linked ssDNA, and the subsequent capture of the as-formed hybrid by TP-COOH labeled SA, the donor fluorescence was quenched due to the FRET between TP-COOH and BHQ-1. Upon the competition between a target ssDNA and the quencher-linked ssDNA toward the biotinylated oligonucleotide, the donor fluorescence was recovered in a target-dependent manner. Good linearity was obtained with the target oligonucleotide ranging from 0.08 to 1.52 microM. The method was applied to spiked serum and urine samples with satisfying recoveries obtained. The results of this work verified the applicability of TPE-FRET technique in hybridization assay and confirmed the advantages of TPE-FRET in complicated matrix.
NASA Astrophysics Data System (ADS)
Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro
2011-10-01
Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
Walsh, Gary F; Dal Negro, Luca
2013-07-10
In this communication, we systematically investigate the effects of Fano-type coupling between long-range photonic resonances and localized surface plasmons on the second harmonic generation from periodic arrays of Au nanoparticles arranged in monomer and dimer geometries. Specifically, by scanning the wavelength of an ultrafast tunable pump laser over a large range, we measure the second harmonic excitation spectra of these arrays and demonstrate their tunability with particle size and separation. Moreover, through a comparison with linear optical transmission spectra, which feature asymmetric Fano-type lineshapes, we demonstrate that the second harmonic generation is enhanced when coupled photonic-plasmonic resonances of the arrays are excited at the fundamental pump wavelength, thus boosting the intensity of the electromagnetic near-fields. Our experimental results, which are supported by numerical simulations of linear optical transmission and near-field enhancement spectra based on the Finite Difference Time Domain method, demonstrate a direct correlation between the onset of Fano-type coupling and the enhancement of second harmonic generation in arrays of Au nanoparticles. Our findings enable the engineering of the nonlinear optical response of Fano-type coupled nanoparticle arrays that are relevant to a number of device applications in nonlinear nano-optics and plasmonics, such as on-chip frequency generators, modulators, switchers, and sensors.
NASA Technical Reports Server (NTRS)
Vernon, Lura
1993-01-01
A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic and transonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.
NASA Astrophysics Data System (ADS)
Kohno, Ryuji; Iinatti, Jari; Sameshima, Keiko
2016-12-01
Harmonization for scientific and commercial radio uses is one of the unsolved problems in academia, industry, and regulatory bodies. The demands for commercial radio, mobile communications, and broadcasting have significantly increased over the past few decades; therefore, interference has become a major concern. There is an increasing need to prevent such interferences, for example, between commercial radio systems and other potentially sensitive radio systems such as those used for radio astronomy or studies. When discussing the fairness in resolving such conflicts, regulatory science may be a useful multidisciplinary approach as it scientifically investigates the advantages and disadvantages of a new application or technology for conflicts between different stakeholders through a mathematical analysis of risks versus benefits of the given technology. Such an analysis enables fair rules or regulations to be made. In this study, we apply the above-mentioned concept to harmonize the scientific and commercial uses of radio. After a brief introduction to regulatory science, a case study about the coexistence between ultrawideband commercial radio systems and radio astronomy is considered. Finally, a proposal by International Union of Radio Science, Japan, to the Science Council of Japan in the Cabinet Office to establish a "Center for Coexistence and Harmonization of Scientific and Commercial Uses of Radio Waves" is explained.
Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening
NASA Astrophysics Data System (ADS)
Kamimura, H. A. S.; Wang, S.; Wu, S.-Y.; Karakatsani, M. E.; Acosta, C.; Carneiro, A. A. O.; Konofagou, E. E.
2015-10-01
Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n = 15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38+/- 5.71 mm3, 8.91+/- 3.91 mm3and 35.47+/- 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40+/- 28.43 V.s, 63.87+/- 29.97 V.s and 356.52+/- 257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue.
Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening
Kamimura, HAS; Wang, S; Wu, S-Y; Karakatsani, ME; Acosta, C; Carneiro, AAO; Konofagou, EE
2015-01-01
Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n=15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38±5.71 mm3, 8.91±3.91 mm3 and 35.47 ± 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40±28.43 V.s, 63.87±29.97 V.s and 356.52±257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue. PMID:26394091
Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass
Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; Jesse, Stephen; Noh, Tae Won; Kalinin, Sergei V.
2014-11-14
The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonic ESM response are discussed.
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta; Salstein, David
2016-04-01
Our investigations are focused on the influence of different land hydrosphere surface parameters (precipitation, evaporation, total runoff, soil moisture, accumulated snow) on polar motion excitation functions at seasonal and nonseasonal timescales. Here these different variables are obtained from the Flexible Global Ocean-Atmosphere-Land System Model, Grid point Version 2 (FGOALS-g2), which is a climate model from the fifth phase of the Coupled Model Intercomparison Project (CMIP5); with CMIP5 being composed of separate component models of the atmosphere, ocean, sea ice, and land surface. In this study Terrestrial Water Storage TWS changes were determined as: differences between the precipitation, evaporation and total surface runoff content, and as the total soil moisture content being a sum of soil moisture and snowfall flux changes. We compare the model-based data with those from estimates of the Equivalent Water Thickness determined by GRACE satellite observations from the Center for Space Research (CSR). The transfer of angular momentum from global geophysical fluids to the solid Earth is described by the equatorial components χ1 and χ2 of the polar motion excitation functions. Observationally, these so-called geodetic excitation functions of polar motion can be determined on the basis of the equations of motion by using observed x, y components of the pole. The second-degree, first-order coefficients of the Earth gravity field are proportional to variations of the equatorial component χ1, χ2 of the series of the gravimetric excitation function of polar motion. This gravimetric function can be compared with the mass term of geodetic excitation of polar motion. Our analysis comprises (1) determinations and comparisons of regional patterns of hydrological excitation functions of polar motion, and (2) comparison of the global hydrological function determined from the FGOALS-g2 and GRACE data with a hydrological signal in the geodetic excitation function of
Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance
Fridjhon, Peter; Rubin, David M.
2016-01-01
Theoretical and experimental investigations into the thermal excitation of liquid paramagnetic contrast agents using the spin resonance relaxation mechanism are presented. The electronic spin-lattice relaxation time τ1e of gadolinium-based contrast agents, which is estimated at 0.1 ns, is ten orders of magnitude faster than the relaxation time of protons in water. The shorter relaxation time is found to significantly increase the rate of thermal energy deposition. To the authors’ knowledge this is the first study of gadolinium based contrast agents in a liquid state used as thermal agents. Analysis shows that when τ1e and other experimental parameters are optimally selected, a maximum theoretical heating rate of 29.4 °C.s−1 could be achieved which would suffice for clinical thermal ablation of neoplasms. The experimental results show a statistically significant thermal response for two out of the four contrast agents tested. The results are compared to the simulated estimates via analysis of a detailed model of the system. While these experimentally determined temperature rises are small and thus of no clinical utility, their presence supports the theoretical analysis and strongly suggests that the chemical structure of the selected compounds plays an important role in this mechanism of heat deposition. There exists an opportunity for the development of alternative gadolinium-based compounds with an order of magnitude longer τ1e in a diluted form to be used as an efficient hyperthermia agent for clinical use. PMID:27341338
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5
NASA Astrophysics Data System (ADS)
Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong
2013-12-01
Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.
NASA Astrophysics Data System (ADS)
Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu
2016-03-01
Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.
Workshop on Harmonic Oscillators
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)
1993-01-01
Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.
An FPGA-Based Silicon Neuronal Network with Selectable Excitability Silicon Neurons
Li, Jing; Katori, Yuichi; Kohno, Takashi
2012-01-01
This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability of silicon neurons and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with 256 full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs. PMID:23269911
Spanu, A; Lai, S; Cosseddu, P; Tedesco, M; Martinoia, S; Bonfiglio, A
2015-03-06
In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms.
Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents.
Zgrablić, Goran; Voïtchovsky, Kislon; Kindermann, Maik; Haacke, Stefan; Chergui, Majed
2005-04-01
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.
Band-structure-based collisional model for electronic excitations in ion-surface collisions
Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.
2005-07-15
Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.
An FPGA-Based Silicon Neuronal Network with Selectable Excitability Silicon Neurons.
Li, Jing; Katori, Yuichi; Kohno, Takashi
2012-01-01
This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability of silicon neurons and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with 256 full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs.
Spanu, A.; Lai, S.; Cosseddu, P.; Tedesco, M.; Martinoia, S.; Bonfiglio, A.
2015-01-01
In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms. PMID:25744085
NASA Astrophysics Data System (ADS)
Lee, Wei-Cheng; Lv, Weicheng; Tranquada, John; Phillips, Philip
2013-03-01
We show here that orbital degrees of freedom produce a distinct signature in the magnetic excitation spectrum of iron-based superconductors above the magnetic ordering temperature. Because dxz and dyz orbitals are strongly connected with Fermi surface topology, the nature of magnetic excitations can be modified significantly due to the presence of either static or fluctuating orbital correlations. Within a five-orbital itinerant model, we show that static orbital order generally leads to an enhancement of commensurate magnetic excitations even when the original Fermi surface lacks nesting at commensurate wavevectors. When long-range orbital order is absent, Gaussian fluctuations beyond the standard random-phase approximation capture the effects of fluctuating orbital correlations on the magnetic excitations. We find that commensurate magnetic excitations can also be enhanced if the orbital correlations are strong. We propose that this unusual incommensurate-to-commensurate transformation is an important signature to distinguish orbital from spin physics in the normal state of iron-based superconductors. This work is supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088.
Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z
2012-09-01
We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability.
Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben
2013-01-01
We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756
Derivation of a model of the exciter of a brushless synchronous machine
NASA Astrophysics Data System (ADS)
Vleeshouwers, J. M.
1992-06-01
The modeling of the brushless exciter for a machine used in a wind turbine is addressed. A brushless exciter reduces the susceptability of the machine to atmospheric conditions and therefore the need for maintenance compared to a synchronous machine equipped with brushes and sliprings. Furthermore, no large excitation winding power supply is needed. In large wind turbines which apply a synchronous machine, these advantages will be vital. A brushless exciter is usually constructed as a small synchronous machine with rectifier. According to manufacturers, exciters are designed to function as a current transformer. The method which has been developed in an earlier resarch project to model the synchronous machine with rectifier is concluded to be applicable to model the exciter, provided that the effect of resistances on the commutation may be neglected. This restricts the technique to modeling exciters of machines in the 100 kW range and larger. For smaller exciters the existing modeling approach is not applicable. Measurements of a small exciter (of a 37.5 kVa machine) show that higher harmonics in the exciter significantly contribute to its behavior. Based on experimental data a simple linear first order dynamic model was developed for the small exciter. The model parameters can be deduced from the steady state current gain and a simple dynamic experiment.
Harmonic generation with a dual frequency pulse.
Keravnou, Christina P; Averkiou, Michalakis A
2014-05-01
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
Theory of harmonic dissipation in disordered solids
NASA Astrophysics Data System (ADS)
Damart, T.; Tanguy, A.; Rodney, D.
2017-02-01
Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
Optical High Harmonic Generation in C60
NASA Astrophysics Data System (ADS)
Zhang, Guoping
2005-03-01
C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).
Harmonic segregation through mistuning can improve fundamental frequency discrimination.
Bernstein, Joshua G W; Oxenham, Andrew J
2008-09-01
This study investigated the relationship between harmonic frequency resolution and fundamental frequency (f(0)) discrimination. Consistent with earlier studies, f(0) discrimination of a diotic bandpass-filtered harmonic complex deteriorated sharply as the f(0) decreased to the point where only harmonics above the tenth were presented. However, when the odd harmonics were mistuned by 3%, performance improved dramatically, such that performance nearly equaled that found with only even harmonics present. Mistuning also improved performance when alternating harmonics were presented to opposite ears (dichotic condition). In a task involving frequency discrimination of individual harmonics within the complexes, mistuning the odd harmonics yielded no significant improvement in the resolution of individual harmonics. Pitch matches to the mistuned complexes suggested that the even harmonics dominated the pitch for f(0)'s at which a benefit of mistuning was observed. The results suggest that f(0) discrimination performance can benefit from perceptual segregation based on inharmonicity, and that poor performance when only high-numbered harmonics are present is not due to limited peripheral harmonic resolvability. Taken together with earlier results, the findings suggest that f(0) discrimination may depend on auditory filter bandwidths, but that spectral resolution of individual harmonics is neither necessary nor sufficient for accurate f(0) discrimination.
Covariant harmonic oscillators and coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, Daesoo; Kim, Young S.; Noz, Marilyn E.
1995-01-01
It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.
Plogmaker, S. E-mail: Joachim.Terschluesen@physics.uu.se Terschlüsen, J. A. E-mail: Joachim.Terschluesen@physics.uu.se Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J. E-mail: Joachim.Terschluesen@physics.uu.se
2015-12-15
In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.
Plogmaker, S; Terschlüsen, J A; Krebs, N; Svanqvist, M; Forsberg, J; Cappel, U B; Rubensson, J-E; Siegbahn, H; Söderström, J
2015-12-01
In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.
NASA Astrophysics Data System (ADS)
Liang, C. J.; Wong, T. C.; Hung, L. S.; Lee, S. T.; Hong, Z. R.; Li, W. L.
2001-06-01
Luminance-current characteristics of organic electroluminescent devices based on the europium complex of europium(dibenzoylmethanato)3 (bathophenanthroline) (Eu(DBM)3bath) have been investigated. Transient measurements were carried out to study the decay process of excited Eu3+ ions. A comparison of experimental data and theoretical calculation shows that biexcitonic quenching among the excited Eu3+ ions is an important channel in their decay process, and this quenching process is a primary cause for our observation of a rapid decrease in quantum efficiency with increasing current density. Extending the recombination zone is found to be beneficial to reducing this defective effect. The mechanism of the quenching process is also discussed.
Presiado, Itay; Erez, Yuval; Huppert, Dan
2010-12-30
Steady-state and time-resolved techniques were employed to study the excited-state proton transfer (ESPT) from d-luciferin, the natural substrate of the firefly luciferase, to the mild acetate base in aqueous solutions. We found that in 1 M aqueous solutions of acetate or higher, a proton transfer (PT) process to the acetate takes place within 30 ps in both H(2)O and D(2)O solutions. The time-resolved emission signal is composed of three components. We found that the short-time component decay time is 300 and 600 fs in H(2)O and D(2)O, respectively. This component is attributed either to a PT process via the shortest water bridged complex available, ROH··H(2)O··Ac(-), or to PT taking place within a contact ion pair. The second time component of 2000 and 3000 fs for H(2)O and D(2)O, respectively, is attributed to ROH* acetate complex, whose proton wire is longer by one water molecule. The decay rate of the third, long-time component is proportional to the acetate concentration. We attribute it to the diffusion-assisted reaction as well as to PT process to the solvent.
In vivo MR-tracking based on magnetic signature selective excitation.
Felfoul, O; Mathieu, J B; Beaudoin, G; Martel, S
2008-01-01
A novel magnetic resonance (MR)-tracking method specifically developed to locate the ferromagnetic core of an untethered microdevice, microrobot, or nanorobot for navigation or closed-loop control purpose is described. The tracking method relies on the application of radio-frequency (RF) excitation signals tuned to the equipotential magnetic curves generated by the magnetic signature of the object being tracked. Positive contrast projections are obtained with reference to the position of the magnetic source. A correlation function performed on only one k-space line for each of the three axes and corresponding to three projections, is necessary to obtain a 3-D location of the device. In this study, the effects of the sphere size and the RF frequency offset were investigated in order to find the best contrast noise ratio (CNR) for tracking. Resolution and precision were also investigated by proper measurement of the position of a ferromagnetic sphere by magnetic resonance imaging (MRI) acquisition and by comparing them with the real position. This method is also tested for a moving marker where the positions found by MRI projections were compared with the ones taken with a camera. In vitro and in vivo experiments show the operation of the technique in tortuous phantom and in animal models. Although the method was developed in the prospect of new interventional MR-guided endovascular operations based on miniature untethered devices, it could also be used as a passive tracking method using tools such as catheters or guide wires.
Zilberg, Shmuel; Haas, Yehuda
2011-07-07
The energy and approximate structure of certain S(0)/S(1) conical intersections (CI) are shown computationally to be deducible from those of two bound states: the first triplet (T(1)), which is iso-energetic with the CI, and the second excited singlet state (S(2)). This is demonstrated for acepentalene (I) and its perfluoro derivative (II) using the twin state concept for three states systems and based on the fact that the triplet T(1) is almost degenerate with the CI. The stable S(2) (C(3v) configuration) state exhibits unusual exaltation of Jahn-Teller active degenerate mode-ν(JT) = 2058 cm(-1) (∼500 cm(-1) higher than analogous e-mode of the symmetric (C(3v)) T(1) and the dianion I(-2) or any C-C vibration of the Jahn-Teller distorted (C(s)) ground state minimum). The acepentalene molecule, whose rigid structure and possibility to attain the relatively high symmetry C(3v) configuration, is a particularly suitable candidate for this purpose.
Power generation from base excitation of a Kevlar composite beam with ZnO nanowires
NASA Astrophysics Data System (ADS)
Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.
2015-04-01
One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.
Chen, Xiao-Na; Han, Xiu-Rong; Su, Rong-Guo; Shi, Xiao-Yong
2014-03-01
An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor (PARAFAC) analysis and CHEMTAX. The PARAFAC model was applied to fluorescence excitation-emission matrix (EEM) of 23 algae species and 12 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. Based on the 12 fluorescent components, the algae species at different growth stages were correctly classified at the division level using Bayesian discriminant analysis (BDA). Then the reference fluorescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate taxonomic groups of algae. When the fluorometric method was used for 531 single-species samples, the average correct discrimination ratio (CDR) was 99.1% and the correct discrimination ratios (CDRs) were 100% at the division level except Chlorophyta, the CDR of which was 97.5%. The CDRs for 95 mixtures were above 98.5% for the dominant algae species and above 90.5% for the subdominant algae species, with average relative contents of 69.7% and 26.4%, respectively. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch.
Parametric autoresonant excitation of the nonlinear Schrödinger equation.
Friedland, L; Shagalov, A G
2016-10-01
Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.
Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators
NASA Astrophysics Data System (ADS)
Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik
2015-12-01
Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO2 microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO2 microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.
Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators
Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik
2015-12-07
Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.
NASA Astrophysics Data System (ADS)
Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Singh, Ranjan; Singh, Navab; Lee, Chengkuo
2016-11-01
We report experimental results of the active switching of electromagnetically induced transparency (EIT) analogue by controlling the dark mode excitation pathways in a microelectromechanical system based tri-atomic metamolecule, operating in the terahertz spectral region. The tri-atomic metamolecule consists of two bright cut wire resonators (CWRs) on either side of the dark split ring resonators (SRRs). Each of the CWRs can independently excite the dark inductive-capacitive resonance mode of the SRRs through inductive coupling, and this allows for the dual pathways of dark mode excitation. The CWRs are made movable along the out-of-plane direction and electrically isolated to achieve selective reconfiguration. Hence, by controlling the physical position of these CWRs, the excitation pathways can be actively reconfigured. This enables the strong excitation of EIT analogue at 0.65 THz, only when one of the pathways is made accessible. Moreover, the transparency peak is completely modulated when both pathways are made either inaccessible or equally accessible. The proposed approach of realizing independent control of constituent resonators in a multi-resonator coupled system, enables the realization of efficient slow light devices and tunable high-Q resonators in terahertz spectral region.
Song, Xiaojun; Ta, Dean; Wang, Weiqi
2012-11-01
Researchers are interested in using ultrasonic guided waves (GWs) to assess long bones. However, GWs suffer high attenuation when they propagate in long bones, resulting in a low SNR. To overcome this limitation, this paper introduces a base-sequence-modulated Golay code (BSGC) to produce larger amplitude and improve the SNR in the ultrasound evaluation of long bones. A 16-bit Golay code was used for excitation in computer simulation. The decoded GWs and the traditional GWs, which were generated by a single pulse, agreed well after decoding the received signals, and the SNR was improved by 26.12 dB. In the experiments using bovine bones, the BSGC excitation produced the amplitudes which were at least 237 times greater than those produced by a single pulse excitation. The BSGC excitation also allowed the GWs to be received over a longer distance between two transducers. The results suggest the BSGC excitation has the potential to measure GWs and assess long bones.
Xu, Hengxing; Qin, Wei; Li, Mingxing; Wu, Ting; Hu, Bin
2017-02-20
Experimental studies on magneto-photoluminescence based on two-photon excitation in up-conversion Y2 O2 S:Er, Yb crystal particles are reported. It is found that the up-conversion photoluminescence generated by two-photon excitation exhibits magnetic field effects at room temperature, leading to a two-photon excitation-induced magneto-photoluminescence, when the two-photon excitation exceeds the critical intensity. By considering the spin selection rule in electronic transitions, it is proposed that spin-antiparallel and spin-parallel transition dipoles with spin mixing are accountable for the observed magneto-photoluminescence. Specifically, the two-photon excitation generates spin-antiparallel electric dipoles between (4) S3/2 -(4) I15/2 in Er(3+) ions. The antiparallel spins are conserved by exchange interaction within dipoles. When the photoexcitation exceeds the critical intensity, the Coulomb screening can decrease the exchange interaction. Consequently, the spin-orbital coupling can partially convert the antiparallel dipoles into parallel dipoles, generating a spin mixing. Eventually, the populations between antiparallel and parallel dipoles reach an equilibrium established by the competition between exchange interaction and spin-orbital coupling. Applying a magnetic field can break the equilibrium by disturbing spin mixing through introducing spin precessions, changing the spin populations on antiparallel and parallel dipoles and leading to the magneto-photoluminescence. Therefore, spin-dependent transition dipoles present a convenient mechanism to realize magneto-photoluminescence in multiphoton up-conversion crystal particles.
NASA Astrophysics Data System (ADS)
Lee, Wei-Cheng; Lv, Weicheng; Tranquada, J. M.; Phillips, Philip W.
2012-09-01
We show here that orbital degrees of freedom produce a distinct signature in the magnetic excitation spectrum of iron-based superconductors above the magnetic ordering temperature. Because dxz and dyz orbitals are strongly connected with Fermi surface topology, the nature of magnetic excitations can be modified significantly due to the presence of either static or fluctuating orbital correlations. Within a five-orbital itinerant model, we show that static orbital order generally leads to an enhancement of commensurate magnetic excitations even when the original Fermi surface lacks nesting at (π,0) or (0,π). When long-range orbital order is absent, Gaussian fluctuations beyond the standard random-phase approximation capture the effects of fluctuating orbital correlations on the magnetic excitations. We find that commensurate magnetic excitations can also be enhanced if the orbital correlations are strong. Our results offer a natural explanation for the incommensurate-to-commensurate transformation observed in a recent neutron scattering measurement (Xu , arXiv:1201.4404), and we propose that this unusual transformation is an important signature to distinguish orbital from spin physics in the normal state of pnictides. Implications for the magnetic and superconducting states are discussed.
Sham, Tsun-Kong; Rosenberg, Richard A
2007-12-21
The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.
NASA Astrophysics Data System (ADS)
Nogajewski, K.; Łusakowski, J.; Knap, W.; Popov, V. V.; Teppe, F.; Rumyantsev, S. L.; Shur, M. S.
2011-11-01
Magnetotransport and magnetooptics investigations of plasmon excitations in large-area grating-gate terahertz modulators based on AlGaN/GaN high-electron-mobility transistors with different grating-gate duty cycle are reported. We demonstrate that the effect of the gate potential on the ungated region extends beyond the conventional fringing effect distance, ranging over 250-350 nm instead of expected 26-30 nm. This phenomenon enables excitation of the localized gated magnetoplasmon modes only if the inter-finger spacing in the grating gate exceeds 350 nm. For narrower slits, only the collective gated magnetoplasmon modes extending over the entire period of the structure can be excited.
Terahertz and Microwave Devices Based on the Photo-Excited Low Dimensional Electronic System
2015-03-11
condition that is realized by photo-exciting the system with electromagnetic waves in the microwave and THz parts of the radiation spectrum, in the...electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two-dimensional electron system, while helping...exciting a high mobility low dimensional electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two
Campbell, Kirby R; Campagnola, Paul J
2017-03-02
Extensive remodeling of the extracellular matrix (ECM) occurs in many epithelial cancers. For example, in ovarian cancer, upregulation of collagen isoform type III has been linked to invasive forms of the disease, and this change may be a potential biomarker. To examine this possibility, we implemented wavelength-dependent second harmonic generation circular dichroism (SHG-CD) imaging microscopy to quantitatively determine changes in chirality in ECM models comprised of different Col I/Col III composition. In these models, Col III was varied between 0 and 40%, and we found increasing Col III results in reduced net chirality, consistent with structural biology studies of Col I and III in tissues where the isoforms comingle in the same fibrils. We further examined the wavelength dependence of the SHG-CD to both optimize the response and gain insight into the underlying mechanism. We found using shorter SHG excitation wavelengths resulted in increased SHG-CD sensitivity, where this is consistent with the electric-dipole-coupled oscillator model suggested previously for the nonlinear chirality response from thin films. Moreover, the sensitivity is further consistent with the wavelength dependency of SHG intensity fit to a two-state model of the two-photon absorption in collagen. We also provide experimental calibration protocols to implement the SHG-CD modality on a laser scanning microscope. We last suggest that the technique has broad applicability in probing a wide range of diseased states with changes in collagen molecular structure.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.
Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory
Jensen, Lasse; Govind, Niranjan
2009-09-10
In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.
Chang, Lin-Chau; Kang, Jaw-Jou; Gau, Churn-Shiouh
2016-06-01
The main concern for container closure systems of drugs is to ensure suitability for the intended use which is associated with issues regarding protection, compatibility, safety, and performance. Among various concerns, leachables may pose a safety hazard to patients, while risks might vary depending on the dosage form and the administration route. Stringent regulatory authorities such as the European Medicines Agency and the United States Food and Drug Administration have established risk-based regulatory requirements and published corresponding guidelines to facilitate implementation. Taiwan, a member of the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme, makes every effort to harmonize with international regulations and to strengthen protection of public health through regulatory controls. The aim of the present study was to investigate the regulatory framework and policies set by stringent regulatory authorities. The strategy proposed for the development of an eventual guideline was sent to the Taiwan Food and Drug Administration for decision. A risk-based, phased-in approach which was extensively discussed in the expert committee was proposed. The approach proposed herein could also serve as a starting point which is worth considered by other countries in which international harmonization is in process.
Ultrafast Excited State Dynamics of the Protonated Schiff Base of All-trans Retinal in Solvents
Zgrablić, Goran; Voïtchovsky, Kislon; Kindermann, Maik; Haacke, Stefan; Chergui, Majed
2005-01-01
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500–8100 cm−1) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of ∼6000 cm−1, indicating depopulation of the Franck-Condon region in ≤100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S2 to the S1 state. Along with the direct excitation of S1, this relaxation populates different quasistationary states in S1, as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5–0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects. PMID:15792984
Filter-Based Coded-Excitation System for High-Speed Ultrasonic Imaging
Shen, Jian
2010-01-01
We have recently presented a new algorithm for high-speed parallel processing of ultrasound pulse-echo data for real-time three-dimensional (3-D) imaging. The approach utilizes a discretized linear model of the echo data received from the region of interest (ROI) using a conventional beam former. The transmitter array elements are fed with binary codes designed to produce distinct impulse responses from different directions in ROI. Image reconstruction in ROI is achieved with a regularized pseudoinverse operator derived from the linear receive signal model. The reconstruction operator can be implemented using a transversal filter bank with every filter in the bank designed to extract echoes from a specific direction in the ROI. The number of filters in the bank determines the number of image lines acquired simultaneously. In this paper, we present images of a cyst phantom reconstructed based on our formulation. A number of issues of practical significance in image reconstruction are addressed. Specifically, an augmented model is introduced to account for imperfect blocking of echoes from outside the ROI. We have also introduced a column-weighting algorithm for minimizing the number of filter coefficients. In addition, a detailed illustration of a full image reconstruction using subimage acquisition and compounding is given. Experimental results have shown that the new approach is valid for phased-array pulse-echo imaging of speckle-generating phantoms typically used in characterizing medical imaging systems. Such coded-excitation-based image reconstruction from speckle-generating phantoms, to the best of our knowledge, have not been reported previously. PMID:10048849
NASA Astrophysics Data System (ADS)
Li, Zishen; Yuan, Yunbin; Wang, Ningbo; Hernandez-Pajares, Manuel; Huo, Xingliang
2015-04-01
To take maximum advantage of the increasing Global Navigation Satellite Systems (GNSS) data to improve the accuracy and resolution of global ionospheric TEC map (GIM), an approach, named Spherical Harmonic plus generalized Trigonometric Series functions (SHPTS), is proposed by integrating the spherical harmonic and the generalized trigonometric series functions on global and local scales, respectively. The SHPTS-based GIM from January 1st, 2001 to December 31st, 2011 (about one solar cycle) is validated by the ionospheric TEC from raw global GPS data, the GIM released by the current Ionospheric Associate Analysis Center (IAAC), the TOPEX/Poseidon satellite and the DORIS. The present results show that the SHPTS-based GIM over the area where no real data are available has the same accuracy level (approximately 2-6 TECu) to that released by the current IAAC. However, the ionospheric TEC in the SHPTS-based GIM over the area covered by real data is more accurate (approximately 1.5 TECu) than that of the GIM (approximately 3.0 TECu) released by the current IAAC. The external accuracy of the SHPTS-based GIM validated by the TOPEX/Poseidon and DORIS is approximately 2.5-5.5 and 1.5-4.5 TECu, respectively. In particular, the SHPTS-based GIM is the best or almost the best ranked, along with those of JPL and UPC, when they are compared with TOPEX/Poseidon measurements, and the best (in addition to UPC) when they are validated with DORIS data. With the increase in the number of GNSS satellites and contributing stations, the performance of the SHPTS-based GIM can be further improved. The SHPTS-based GIM routinely calculated using global GPS, GLONASS and BDS data will be found at the website http://www.gipp.org.cn.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Wernet, Philippe; Gaudin, Jérôme; Godehusen, Kai; Schwarzkopf, Olaf; Eberhardt, Wolfgang
2011-06-01
A laser-based tabletop approach to femtosecond time-resolved photoelectron spectroscopy with photons in the vacuum-ultraviolet (VUV) energy range is described. The femtosecond VUV pulses are produced by high-order harmonic generation (HHG) of an amplified femtosecond Ti:sapphire laser system. Two generations of the same setup and results from photoelectron spectroscopy in the gas phase are discussed. In both generations, a toroidal grating monochromator was used to select one harmonic in the photon energy range of 20-30 eV. The first generation of the setup was used to perform photoelectron spectroscopy in the gas phase to determine the bandwidth of the source. We find that our HHG source has a bandwidth of 140 ± 40 meV. The second and current generation is optimized for femtosecond pump-probe photoelectron spectroscopy with high flux and a small spot size at the sample of the femtosecond probe pulses. The VUV radiation is focused into the interaction region with a toroidal mirror to a spot smaller than 100 × 100 μm(2) and the flux amounts to 10(10) photons/s at the sample at a repetition rate of 1 kHz. The duration of the monochromatized VUV pulses is determined to be 120 fs resulting in an overall pump-probe time resolution of 135 ± 5 fs. We show how this setup can be used to map the transient valence electronic structure in molecular dissociation.
NASA Astrophysics Data System (ADS)
Wang, Peng; Tang, Hong; Zhang, Peng
2016-10-01
Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers.
Naruse, Makoto; Nomura, Wataru; Ohtsu, Motoichi; Aono, Masashi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju
2014-10-21
Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.
NASA Astrophysics Data System (ADS)
Naruse, Makoto; Nomura, Wataru; Aono, Masashi; Ohtsu, Motoichi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju
2014-10-01
Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.
NASA Astrophysics Data System (ADS)
Fukunishi, H.; Takahashi, Y.; Sato, M.; Shono, A.; Fujito, M.; Watanabe, Y.
Optical and search coil magnetometer data obtained from the SPRITES'96 campaign carried out at Yucca Ridge Field Station, Colorado in July 1996 have presented clear evidence for the excitation of ULF transients with their dominant power at 1-2 Hz by strong lightning discharges producing elves and sprites. The most striking feature is that the ULF transients exhibit different wave forms in the case of sprites without preceding elves and the case of sprites with preceding elves. In the former case damped, quasi-sinusoidal oscillations commence impulsively at the onset of sprites, while in the latter case quasi-sinusoidal wavelets with a duration of ˜3 s are excited, and elves and sprites occur within each wavelet. It is likely that these ULF transients are due to the nonlinear excitation of the ionospheric Alfvén resonator by strong lightning discharge, as proposed by Sukhorukov and Stubbe [1997].
Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence
NASA Astrophysics Data System (ADS)
Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin
2016-09-01
Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.
Wang, Peng; Tang, Hong; Zhang, Peng
2016-01-01
Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers. PMID:27725746
Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.
Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin
2016-12-01
Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.
NASA Astrophysics Data System (ADS)
Lakrad, Faouzi
2016-03-01
We study the nonlinear vibrations of an AFM system, modeled as a linear mass-spring-damper system, under the Lennard-Jones forces and an imposed harmonic base displacement. The frequency of this latter is very low with respect to the natural fundamental frequency of the system. The invariant slow manifolds of the system are approximated and their bifurcations are investigated. It is shown that two dynamic saddle-node bifurcations, during one period of the base oscillation, of the contact and the noncontact invariant slow manifolds are responsible for triggering the tapping mode. It is also shown that these dynamic bifurcations govern the contact time between the probe and the sample during the tapping mode.
Power System Harmonic Elimination to Improve Power Quality
NASA Astrophysics Data System (ADS)
Chandrasekaran, K.; Ramachandaramurthy, V. K.
2015-06-01
An improvised RLC interface filter for a Dynamic Voltage Restorer (DVR) is proposed. The RLC filter is connected in the front end between the IGBT based Voltage Source Inverter (VSI) and the injection transformer and is able to eliminate voltage harmonics in the system and also switching harmonics generated from VSI. The voltage at the sensitive load end is pure sinusoidal. In this method, the DVR produced Pulse Width Modulation (PWM) voltage with voltage harmonic canceling the voltage harmonic generated from the supply main. The VSI handles harmonic power. The low order switching harmonics generated by the IGBT based VSI is suppressed. The DVR has greater voltage injection capability. Good dynamic and transient results recorded and Total Harmonic Distortion (THD) at the sensitive load end is minimized. The voltage at the sensitive load is sinusoidal and at 1.0 pu. PSCAD/EMTDC is used to validate the performance of the interface filter and the DVR. Simulated results are presented.
Feng, Shangyuan; Chen, Rong; Lin, Juqiang; Pan, Jianji; Wu, Yanan; Li, Yongzeng; Chen, Jiesi; Zeng, Haishan
2011-03-15
We have recently applied surface-enhanced Raman spectroscopy (SERS) for blood plasma analysis for non-invasive nasopharyngeal cancer detection and obtained good preliminary results. The aim of this study was to develop a more robust SERS spectroscopy based blood plasma analysis method for non-invasive gastric cancer detection. The effect of different laser polarizations (non-polarized, linear-polarized, right-handed circularly polarized, and left-handed circularly polarized) on blood plasma SERS spectroscopy was explored for the first time. Silver nanoparticles as the SERS-substrate were directly mixed with blood plasma to enhance the Raman scattering of various biomolecular constituents. High quality SERS spectra were obtained using a fiber optic probe and a dispersive type near infrared Raman system. Blood plasma samples from gastric cancer patients (n=32) and healthy subjects (n=33) were analyzed. The diagnostic performance for differentiating gastric cancer plasma from normal plasma was evaluated. Principal component analysis combined with linear discriminant analysis (LDA) of the obtained spectral data was used to develop diagnostic algorithms. Classification results obtained from cross-validation of the LDA model based on the four spectral data sets of different laser polarizations demonstrated different diagnostic sensitivities and specificities: 71.9% and 72.7% for non-polarized laser excitation, 75% and 87.9% for linear-polarized laser excitation, 81.3% and 78.8% for right-handed circularly polarized laser excitation, 100% and 97% for left-handed circularly polarized laser excitation. The results from this exploratory study demonstrated that plasma SERS spectroscopy with left-handed circularly polarized laser excitation has great promise of becoming a clinically useful diagnostic tool for non-invasive gastric cancer detection.
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution.
Vasudevan, R K; Okatan, M Baris; Rajapaksa, I; Kim, Y; Marincel, D; Trolier-McKinstry, S; Jesse, S; Valanoor, N; Kalinin, S V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr(1-x)Ti(x))O₃ (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of n(th) order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Fast generic polar harmonic transforms.
Hoang, Thai V; Tabbone, Salvatore
2014-07-01
Generic polar harmonic transforms have recently been proposed to extract rotation-invariant features from images and their usefulness has been demonstrated in a number of pattern recognition problems. However, direct computation of these transforms from their definition is inefficient and is usually slower than some efficient computation strategies that have been proposed for other methods. This paper presents a number of novel computation strategies to compute these transforms rapidly. The proposed methods are based on the inherent recurrence relations among complex exponential and trigonometric functions used in the definition of the radial and angular kernels of these transforms. The employment of these relations leads to recursive and addition chain-based strategies for fast computation of harmonic function-based kernels. Experimental results show that the proposed method is about 10× faster than direct computation and 5× faster than fast computation of Zernike moments using the q-recursive strategy. Thus, among all existing rotation-invariant feature extraction methods, polar harmonic transforms are the fastest.
Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng
2012-08-16
This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions.
Coulomb excitation of states in 232Th
NASA Astrophysics Data System (ADS)
McGowan, F. K.; Milner, W. T.
1993-09-01
Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.
Feasibility of 3D harmonic contrast imaging.
Voormolen, M M; Bouakaz, A; Krenning, B J; Lancée, C T; ten Cate, F J; de Jong, N
2004-04-01
Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suitable for contrast imaging. In this study the feasibility of 3D harmonic contrast imaging is evaluated in vitro. A commercially available tissue mimicking flow phantom was used in combination with Sonovue. Backscatter power spectra from a tissue and contrast region of interest were calculated from recorded radio frequency data. The spectra and the extracted contrast to tissue ratio from these spectra were used to optimize the excitation frequency, the pulse length and the receive filter settings of the transducer. Frequencies ranging from 1.66 to 2.35 MHz and pulse lengths of 1.5, 2 and 2.5 cycles were explored. An increase of more than 15 dB in the contrast to tissue ratio was found around the second harmonic compared with the fundamental level at an optimal excitation frequency of 1.74 MHz and a pulse length of 2.5 cycles. Using the optimal settings for 3D harmonic contrast recordings volume measurements of a left ventricular shaped agar phantom were performed. Without contrast the extracted volume data resulted in a volume error of 1.5%, with contrast an accuracy of 3.8% was achieved. The results show the feasibility of accurate volume measurements from 3D harmonic contrast images. Further investigations will include the clinical evaluation of the presented technique for improved assessment of the heart.
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes
Rousseau, O.; Yamada, M.; Miura, K.; Ogawa, S.; Otani, Y.
2014-02-07
We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.
Making A Circular-Harmonic Filter
NASA Technical Reports Server (NTRS)
Cheng, Yeou Yen
1989-01-01
Optical image-correlating system made rotationally invariant. Experiment shows circular-harmonic filter generated optically. Hologram made by phase-shifted-double-exposure procedure. Filter used in optical image-recognition system based on correlation between target (image to be recognized) and matched spatial filter. In addition to usual invariance under translation of target, circular harmonic filter invariant under rotation of target; peak intensity of illumination at origin of correlation plane does not vary when target rotated about optical axis.
The Case of the Missing Harmonic Structure
Arp, U.
2007-01-19
Classical synchrotron radiation theory predicts emission in harmonics of the revolution frequency of the radiating particles. The Synchrotron Ultraviolet Radiation Facility SURF is an electron storage ring based on the weak focusing principle. The particles travel on a near perfect circular path, which makes SURF an ideal test-bed for synchrotron radiation theory. The harmonic structure of the radiation emitted by the electrons stored in SURF will be explored.
McFerran, J. J.
2009-05-10
Details for constructing an astronomical frequency comb suitable as a wavelength reference for echelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 {mu}m. The means of producing a repetition rate greater than 7 GHz and a peak optical power of {approx}8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry-Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested.
Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver
2012-01-01
Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases.
NASA Astrophysics Data System (ADS)
Thom, Ian; Buck, Manfred
2005-04-01
The reductive desorption of self-assembled monolayers (SAMs) of ω-(4'-methyl-biphenyl-4-yl)-alkanethiols (CH 3-C 6H 4-C 6H 4-(CH 2) n-SH, BP n) on Au(1 1 1) on mica was studied in 0.5 M KOH solution as a function of the length of the aliphatic spacer chain ( n = 1-6 and 12) and for two different preparations temperatures (295 K and 343 K). Second harmonic generation (SHG) was applied in situ parallel to cyclic voltammetry (CV). Odd-even differences in the structure of the BP n monolayers are clearly reflected in the electrochemical stability, as well as by the charge and shape of the desorption peak. For n = 1-5 a single desorption peak is detected whereas multiple peaks occur for BP6 similar to hexadecane thiol which was also studied for comparison. An increased preparation temperature affects the shape and width of the desorption peak but not the position. BP1 exhibits a temperature dependence different from the other homologues. The relationship between coverage monitored by SHG and desorption charge determined from the CVs is found to be linear and surprisingly independent from the details of the SAMs. The combined SHG and CV experiments suggest that capacitive and faradaic current are always closely coupled even for BP6 and hexadecane thiol which exhibit multiple desorption peaks.
Pump-probe study of atoms and small molecules with laser driven high order harmonics
NASA Astrophysics Data System (ADS)
Cao, Wei
A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source
NASA Technical Reports Server (NTRS)
Parusel, A. B.; Pohorille, A.
2001-01-01
The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.
Near BPS skyrmions and restricted harmonic maps
NASA Astrophysics Data System (ADS)
Speight, J. M.
2015-06-01
Motivated by a class of near BPS Skyrme models introduced by Adam, Sánchez-Guillén and Wereszczyński, the following variant of the harmonic map problem is introduced: a map φ :(M, g) →(N, h) between Riemannian manifolds is restricted harmonic if it locally extremizes E2 on its SDiff(M) orbit, where SDiff(M) denotes the group of volume preserving diffeomorphisms of (M, g), and E2 denotes the Dirichlet energy. It is conjectured that near BPS skyrmions tend to restricted harmonic maps in the BPS limit. It is shown that φ is restricted harmonic if and only if φ∗ h has exact divergence, and a linear stability theory of restricted harmonic maps is developed, from which it follows that all weakly conformal maps are stable restricted harmonic. Examples of restricted harmonic maps in every degree class R3 → SU(2) and R2 →S2 are constructed. It is shown that the axially symmetric BPS skyrmions on which all previous analytic studies of near BPS Skyrme models have been based, are not restricted harmonic, casting doubt on the phenomenological predictions of such studies. The problem of minimizing E2 for φ :Rk → N over all linear volume preserving diffeomorphisms is solved explicitly, and a deformed axially symmetric family of Skyrme fields constructed which are candidates for approximate near BPS skyrmions at low baryon number. The notion of restricted harmonicity is generalized to restricted F-criticality where F is any functional on maps (M, g) →(N, h) which is, in a precise sense, geometrically natural. The case where F is a linear combination of E2 and E4, the usual Skyrme term, is studied in detail, and it is shown that inverse stereographic projection R3 →S3 ≡ SU(2) is stable restricted F-critical for every such F.
NASA Astrophysics Data System (ADS)
Panek, Petr; Prochazka, Ivan
2007-09-01
This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3ps rms that corresponds to the time of arrival precision of 0.9ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5ps/K, and the long term stability is better than ±0.2ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.
The Effect of Sulfur Substitution on the Excited-State Dynamics of DNA and RNA Base Derivatives
NASA Astrophysics Data System (ADS)
Pollum, Marvin; Crespo-Hernández, Carlos E.
2014-06-01
Substitution of oxygen by a sulfur atom in the natural DNA and RNA bases gives rise to a family of derivatives commonly known as the thiobases. Upon excitation with UV radiation, the natural bases are able to quickly and efficiently dissipate the imparted energy as heat to their surroundings. Thiobases, on the other hand, relax into a long-lived triplet excited state in quantum yields that approach unity. This finding has both fundamental and biological relevance because the triplet state plays a foremost role in the photochemistry of the thiobases, this is especially important in the current medicinal applications of thiobase derivatives. Using femtosecond transient absorption spectroscopy, we are able uncover the ultrafast dynamics leading to the population of this reactive triplet state. In particular, I will present our results on how the site of sulfur substitution and the degree of substitution impact these dynamics and I will compare these experimental results to some recent computational work. Pinning down the excited-state dynamics of the thiobases is important to furthering the understanding of dynamics in natural DNA/RNA bases, as well as to the discovery of thiobase derivatives with desirable therapeutic properties. The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.
Axisymmetric generalized harmonic evolution code
Sorkin, Evgeny
2010-04-15
We describe the first axisymmetric numerical code based on the generalized harmonic formulation of the Einstein equations, which is regular at the axis. We test the code by investigating gravitational collapse of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic formulation is the choice of the gauge source functions, and we conclude that a damped-wave gauge is remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically, the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a curvature singularity develops inside the pulses.
2011-01-01
Background The European Project on OSteoArthritis (EPOSA), here presented for the first time, is a collaborative study involving five European cohort studies on aging. This project focuses on the personal and societal burden and its determinants of osteoarthritis (OA). The aim of the current report is to describe the purpose of the project, the post harmonization of the cross-national data and methodological challenges related to the harmonization process Methods The study includes data from cohort studies in five European countries (Germany, Italy, the Netherlands, Spain and the United Kingdom) on older community-dwelling persons aged ≥ 59 years. The study design and main characteristics of the five cohort studies are described. Post harmonization algorithms are developed by finding a "common denominator" to merge the datasets and weights are calculated to adjust for differences in age and sex distribution across the datasets. Results A harmonized database was developed, consisting of merged data from all participating countries. In total, 10107 persons are included in the harmonized dataset with a mean age of 72.8 years (SD 6.1). The female/male ratio is 53.3/46.7%. Some variables were difficult to harmonize due to differences in wording and categories, differences in classifications and absence of data in some countries. The post harmonization algorithms are described in detail in harmonization guidelines attached to this paper. Conclusions There was little evidence of agreement on the use of several core data collection instruments, in particular on the measurement of OA. The heterogeneity of OA definitions hampers comparing prevalence rates of OA, but other research questions can be investigated using high quality harmonized data. By publishing the harmonization guidelines, insight is given into (the interpretation of) all post harmonized data of the EPOSA study. PMID:22122831
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Lattice harmonics expansion revisited
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.
Koga, Y; McNeilage, C; Searls, J H; Ohshima, S
2001-01-01
A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.
Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E
2015-04-07
Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62 ± 0.41 kPa, compared to EMechTesting = 4.2 ± 2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.
Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane
NASA Astrophysics Data System (ADS)
Mohapatra, Monalisa; Mishra, Ashok K.
2012-03-01
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
Harmonic millimeter radiation from a microwave FEL amplifier
NASA Astrophysics Data System (ADS)
Liu, Y.-H.; Marshall, T. C.
1997-02-01
In this project, an electron beam is bunched at a microwave frequency and the harmonics of this bunching drive radiation at millimeter wavelengths, using a FEL, configured as a single-pass travelling wave amplifier. A 10 kW 24 GHz microwave input signal grows to ˜200 kW level using the lower-frequency unstable root of the waveguide FEL dispersion relation. The Columbia FEL facility operates at this frequency in the TE11 mode, using a helical undulator (1.85 cm period) and a 3 mm diameter 600 kV electron beam contained in a 8.7 mm ID cylindrical waveguide. The harmonic currents set up by the microwave are found to cause growth of harmonic power under two conditions. First, we choose the parameters of the device so that the upper frequency root corresponds to the third harmonic, in which case we observe a small amount of third-harmonic emission in the TE11 mode, accompanied by comparable second harmonic. The millimeter harmonic radiation produced is coherent and phase-related to the microwave source. Second, we have found substantial emission at the seventh harmonic, most likely from the TE72 mode — which, in cylindrical waveguide geometry, travels at very nearly the same wave speed as the 24 GHz TE11 power. In order to excite the seventh-harmonic radiation, the electron beam must be displaced from the system axis — ˜2 mm in this device. The seventh-harmonic output is potentially an attractive choice for a CW FEL which must generate appreciable power at ˜2 mm wavelength for plasma electron cyclotron heating since we can produce this radiation for electron beam energy as low as 400 kV. We present a theoretical model of the experiment which predicts that if the microwave signal is strong enough to drive the FEL into saturation, the harmonic emission becomes powerful.
Scintillation characteristics of LiCaAlF6-based single crystals under X-ray excitation
NASA Astrophysics Data System (ADS)
Nikl, M.; Bruza, P.; Panek, D.; Vrbova, M.; Mihokova, E.; Mares, J. A.; Beitlerova, A.; Kawaguchi, N.; Fukuda, K.; Yoshikawa, A.
2013-04-01
LiCaAlF6-based scintillators are studied under X- and soft gamma-ray excitations. Under nanosecond pulsed soft X-ray laser excitation the scintillation decay is measured with extremely high dynamical resolution and broad time scale. The undoped LiCaAlF6 shows complex temperature dependence of exciton luminescence and tunneling-driven energy transfer process in scintillation decay. In both the Ce and Eu-doped LiCaAlF6 the dominant part of measured scintillation decay is due to prompt recombination of electrons and holes at the doped emission centers. Nevertheless, the measured light yield value is considerably lower with respect to the derived upper limits. Possible origin of its deterioration is discussed.
Zhang, Wei; Yan, Yongli; Gu, Jianmin; Yao, Jiannian; Zhao, Yong Sheng
2015-06-08
Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self-assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited-state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four-level system, which is more favorable for population inversion. Low-power driven lasing in proton-transfer molecular nanowires with an optimized ESIPT energy-level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP-type resonators, which generated single-mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process.
High-order harmonic generation enhanced by XUV light
Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.
2012-03-19
The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2} and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.
NASA Astrophysics Data System (ADS)
Scafetta, N.
2012-12-01
We show that the Schwabe frequency band of the Zurich sunspot record since 1749 is made of three major cycles that are closely related to the spring tidal period of Jupiter and Saturn (~9.93 year), to the tidal sidereal period of Jupiter (about 11.86 years) and to a central cycle that may be associated to a quasi-11-year solar dynamo cycle. The central harmonic is approximately synchronized to the average of the two planetary frequencies. A harmonic model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals major beat periods occurring at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. Equivalent synchronized cycles are found in cosmogenic solar proxy records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima around 1900-1920 and 1960-1980, the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005, and a secular upward trending during the 20th century. The latter modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which is produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts
NASA Technical Reports Server (NTRS)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
NASA Technical Reports Server (NTRS)
Parusel, A. B.
2000-01-01
The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base
Theoretical study of the electronic excitations of free-base porphyrin-Ar2 van der Waals complexes
NASA Astrophysics Data System (ADS)
Fukuda, Ryoichi; Ehara, Masahiro
2013-08-01
The intermolecular interaction of free-base porphine (FBP)-Ar2 and free-base tetraazaporphyrin (FBPz)-Ar2 van der Waals (vdW) complexes was calculated in the ground state and vertical excitations that correspond to the Q- and B-bands using the many-body wavefunction theory of the symmetry-adapted cluster-configuration interaction (SAC-CI) method and time-dependent density functional theory (TDDFT). For the 11B3u state of FBP-Ar2 a blueshift (high-energy shift) of excitation energy was calculated using the SAC-CI method; such a blueshift was not obtained by TDDFT calculations. This calculated blueshift corresponds to the experimentally observed blueshift in the Qx-band of FBP for FBP-Arn complexes. For FBPz-Ar2, blueshifts of the Q-band were not obtained using SAC-CI and TDDFT. These behaviors of the energy shift of the Q-bands could not be explained by the point dipole-point dipole interaction model. Large redshifts (low-energy shift) were obtained for the B-band states (21B3u and 21B2u) of FBP and FBPz. The energy shift showed the inverse sixth-power dependence on the intermolecular distance. The point dipole-point dipole interaction model can describe the redshift of the B-band. For the excited states that exhibit large redshifts, the TDDFT can qualitatively describe the vdW interaction in the excited states by supermolecular calculations. The solvatochromic shifts for FBP and FBPz in an Ar matrix were examined by the linear-response polarizable continuum model and TDDFT. The magnitude of calculated solvatochromic redshifts is proportional to the square of the transition dipole moment.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2016-07-01
This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.
Presiado, Itay; Gepshtein, Rinat; Erez, Yuval; Huppert, Dan
2011-07-07
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ∼2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.
Summers, Mark A.; Eimerl, David; Boyd, Robert D.
1985-01-01
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").
Summers, M.A.; Eimerl, D.; Boyd, R.D.
1982-06-10
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).
Valone, S M; Pilania, G; Liu, X Y; Allen, J R; Wu, T-C; Atlas, S R; Dunlap, D H
2015-11-14
Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U((FH)). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U((FH)), thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.
Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure
Valone, S. M.; Pilania, G.; Liu, X. Y.; Allen, J. R.; Wu, T.-C.; Atlas, S. R.; Dunlap, D. H.
2015-11-14
Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.
Influence of a harmonic in the response on randomdec signature
NASA Astrophysics Data System (ADS)
Modak, S. V.
2011-10-01
Operational Modal Analysis (OMA) extracts modal parameters of a structure using their output response, during operation in general. OMA, when applied to mechanical engineering structures is often faced with the problem of harmonics present in the output response, and can cause erroneous modal extraction. The random decrement (RD) method of OMA helps extract randomdec signature data that can be further processed to obtain modal parameters of a structure. This paper for the first time analyses influence of a harmonic in the response on randomdec signature. Fundamental equations based on probability are derived for analyzing the influence of a harmonic on randomdec signature. These probabilistic equations are then used to predict the amplitude of the harmonic in randomdec signature. Randomdec signature of a pure harmonic signal is also derived and it is shown that it is of the same frequency as that of the harmonic signal, but has an amplitude equal to the trigger level used to find the randomdec. Based on the developed theory, new insights into the influence of harmonic on randomdec are presented based on an example. It is shown that the influence of the harmonic on randomdec is characterized by the conditional probability density function of the harmonic. It is found that more unsymmetrical is this PDF, more is the amplitude of the harmonic that is present in the randomdec signature. The amplitude of the harmonic in the randomdec is shown to be the conditional expected value of the harmonic. It is also shown that as the random component of the response increases then the amplitude of the harmonic in the randomdec decreases and in the limit can be completely eliminated.
The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches
NASA Astrophysics Data System (ADS)
Altmark, A. M.; Kanareykin, A. D.
2016-07-01
We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.
NASA Astrophysics Data System (ADS)
Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.
2011-02-01
Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.
Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P
2011-02-01
Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.
NASA Astrophysics Data System (ADS)
Jiang, Kejian; Zhu, Changsheng; Chen, Liangliang; Qiao, Xiaoli
2015-08-01
To represent the support characteristic of active magnetic bearings (AMB), the commonly used parameters are the equivalent stiffness and the equivalent damping, which inherit the parameters of the stiffness and the damping from traditional mechanical bearings. First, by analyzing the diversity and the similarity between traditional mechanical bearing and AMB, the prior condition for applying the parametric representation of equivalent stiffness and equivalent damping to AMB is illuminated. Then, a method for measuring the equivalent stiffness and the equivalent damping of AMB-rotor system is proposed with multi-frequency excitation. One of its outstanding features is that the proposed method is based on the multi-degree of freedom (DOF) rotor model, not the single- DOF model, because the single DOF model cannot be suitably applied to the multi-DOF AMB-rotor systems. Otherwise, in order to decrease the identification error, the multi-frequency excitation can achieve the lowest peak value by means of appropriate selection for the relative phasing of each component, so that the possibility of the rotor displacement exceeding clearances of AMB and the magnetic force reaching saturation is minimized. Finally, the experiments, which are carried out on an AMB-rotor test rig with a vertical shaft, indicate that the proposed method can efficiently reduce the peak value for the superimposed multi-frequency excitation and correctly identify the equivalent stiffness and equivalent damping of AMB-rotor system.
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.
Chacón, R; Martínez, J A
2002-03-01
Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.
Localized harmonic motion imaging for focused ultrasound surgery targeting.
Curiel, Laura; Hynynen, Kullervo
2011-08-01
Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study, we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired radio-frequency (RF) signal. Silicon phantom studies were performed to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude.
The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials
NASA Astrophysics Data System (ADS)
Alberti, Julian; Linnenbank, Heiko; Linden, Stefan; Grynko, Yevgen; Förstner, Jens
2016-02-01
We report on second harmonic generation spectroscopy on a series of rectangular arrays of split-ring resonators. Within the sample series, the lattice constants are varied, but the area of the unit cell is kept fixed. The SHG signal intensity of the different arrays upon resonant excitation of the fundamental plasmonic mode strongly depends on the respective arrangement of the split-ring resonators. This finding can be explained by variations of the electromagnetic interactions between the split-ring resonators in the different arrays. The experimental results are in agreement with numerical calculations based on the discontinuous Galerkin time-domain method.
Identification and tracking of harmonic sources in a power system using a Kalman filter
Ma, H.; Girgis, A.A.
1996-07-01
In this paper, two problems have been addressed on harmonic sources identification: the optimal locations of a limited number of harmonic meters and the optimal dynamic estimates of harmonic source locations and their injections in unbalanced three-phase power systems. A Kalman filtering is used to attack these problems. System error covariance analysis by the Kalman filter associated with a harmonic injection estimate determines the optimal arrangement of limited harmonic meters. Based on the optimally-arranged harmonic metering locations, the Kalman filter then yields the optimal dynamic estimates of harmonic injections with a few noisy harmonic measurements. The method is dynamic and has the capability of identifying, analyzing and tracking each harmonic injection at all buses in unbalanced three-phase power systems. Actual recorded harmonic measurements and simulated data in a power distribution system are provided to prove the efficiency of this approach.
Kirchberger, Martin
2016-01-01
A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122
Booster Double Harmonic Setup Notes
Gardner, C. J.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.
Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2015-11-10
A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57 pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56 pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.
Chiu, Weihsueh A.; Ginsberg, Gary L.
2011-06-15
This article reports on the development of a 'harmonized' PBPK model for the toxicokinetics of perchloroethylene (tetrachloroethylene or perc) in mice, rats, and humans that includes both oxidation and glutathione (GSH) conjugation of perc, the internal kinetics of the oxidative metabolite trichloroacetic acid (TCA), and the urinary excretion kinetics of the GSH conjugation metabolites N-Acetylated trichlorovinyl cysteine and dichloroacetic acid. The model utilizes a wider range of in vitro and in vivo data than any previous analysis alone, with in vitro data used for initial, or 'baseline,' parameter estimates, and in vivo datasets separated into those used for 'calibration' and those used for 'evaluation.' Parameter calibration utilizes a limited Bayesian analysis involving flat priors and making inferences only using posterior modes obtained via Markov chain Monte Carlo (MCMC). As expected, the major route of elimination of absorbed perc is predicted to be exhalation as parent compound, with metabolism accounting for less than 20% of intake except in the case of mice exposed orally, in which metabolism is predicted to be slightly over 50% at lower exposures. In all three species, the concentration of perc in blood, the extent of perc oxidation, and the amount of TCA production is well-estimated, with residual uncertainties of {approx} 2-fold. However, the resulting range of estimates for the amount of GSH conjugation is quite wide in humans ({approx} 3000-fold) and mice ({approx} 60-fold). While even high-end estimates of GSH conjugation in mice are lower than estimates of oxidation, in humans the estimated rates range from much lower to much higher than rates for perc oxidation. It is unclear to what extent this range reflects uncertainty, variability, or a combination. Importantly, by separating total perc metabolism into separate oxidative and conjugative pathways, an approach also recommended in a recent National Research Council review, this analysis
Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.
2014-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637
Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E
2011-12-01
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
Human brain networks function in connectome-specific harmonic waves.
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-21
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.
Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO2 laser.
Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung
2012-09-01
We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO(2) laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.
Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng
2016-06-02
Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology.
NASA Astrophysics Data System (ADS)
Li, Jingwen; Zhan, Zhenlin; Lin, Hongxin; Zuo, Ning; Zhu, Xiaoqin; Xie, Shusen; Chen, Jianxin; Zhuo, Shuangmu
2016-10-01
Alterations in the elastic fibers have been implicated in lung cancer. However, the label-free, microscopic imaging of elastic fibers in situ remains a major challenge. Here, we present the use of intrinsic two-photon excited fluorescence (TPEF) signal as a novel means for quantification of the elastic fibers in intact fresh human lung tissues. We obtained the TPEF images of elastic fibers from ex vivo the human lung tissues. We found that three features, including the elastic fibers area, the elastic fibers orientation, the elastic fibers structure, provide the quantitative identification of lung cancer and the direct visual cues for cancer versus non-cancer areas. These results suggest that the TPEF signal can be used as the label-free optical biomarkers for rapid clinical lung diagnosis and instant image-guided surgery.
Planar Position Sensor Based on Mono Sensing Electrode and Hybrid-Frequency Excitation
Yu, Hongxiang; Zhang, Yu; Shen, Mengfeng; Zhang, Hongli; Gao, Zhao; Wang, Dongyun
2016-01-01
A new way of measuring planar position for micrometric and sub-micrometric applications is presented with a mono sensing electrode and hybrid-frequency excitation. The sensing theory and operation principle are described and summarized, and a printed circuit board (PCB) sensor prototype is built and tested. It is shown by the experimental results that a very simple structure and geometric relationship are achieved. Meanwhile, displacement sensitivity on an order of 1.50 mV per micron and measurement repeatability better than 0.002 mm are easily fulfilled for a square zone of 256 mm2, making it a valuable alternative measurement device candidate for flexible and low-cost planar position detection. PMID:27187404
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-01-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
NASA Astrophysics Data System (ADS)
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-02-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
NASA Astrophysics Data System (ADS)
Hu, Xuanyu
2016-06-01
The spherical and ellipsoidal harmonic series of the external gravitational potential for a given mass distribution are equivalent in their mutual region of uniform convergence. In an instructive case, the equality of the two series on the common coordinate surface of an infinitely large sphere reveals the exact correspondence between the spherical and ellipsoidal harmonic coefficients. The transformation between the two sets of coefficients can be accomplished via the numerical methods by Walter (Celest Mech 2:389-397, 1970) and Dechambre and Scheeres (Astron Astrophys 387:1114-1122, 2002), respectively. On the other hand, the harmonic coefficients are defined by the integrals of mass density moments in terms of the respective solid harmonics. This paper presents general algebraic formulas for expressing the solid ellipsoidal harmonics as a linear combination of the corresponding solid spherical harmonics. An exact transformation from spherical to ellipsoidal harmonic coefficients is found by incorporating these connecting expressions into the density integral. A computational procedure is proposed for the transformation. Numerical results based on the nearly ellipsoidal Martian moon, Phobos, are presented for validation of the method.
Extended range harmonic filter
NASA Technical Reports Server (NTRS)
Jankowski, H.; Geia, A. J.; Allen, C. C.
1973-01-01
Two types of filters, leaky-wall and open-guide, are combined into single component. Combination gives 10 db or greater additional attenuation to fourth and higher harmonics, at expense of increasing loss of fundamental frequency by perhaps 0.05 to 0.08 db. Filter is applicable to all high power microwave transmitters, but is especially desirable for satellite transmitters.
ERIC Educational Resources Information Center
Pruitt, Kathryn Ringler
2012-01-01
This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…
Introducing Simple Harmonic Motion.
ERIC Educational Resources Information Center
Roche, John
2002-01-01
Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)
ERIC Educational Resources Information Center
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B.; Sobajic, D.J.; Pao, Y.H. |
1995-12-01
This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.
Living with power system harmonics
Palko, E.
1992-06-18
This paper reports the effect of harmonics on electronic equipment in manufacturing plants which was essentially a nonproblem as recently as nine years ago. In years past, harmonics were essentially a problem experienced by electric utility companies, with a relatively few types of industries impressing a serous degree of harmonics onto the utility system. Utilities typically solved their harmonic problems by imposing limits on the amount of harmonics that a customer was permitted to reflect onto the utility system, and assessing heavy financial penalties for noncompliance. Today's electronic equipment creates a problem that feeds on itself: solid-state electronic equipment is a flagrant generator of harmonics, and solid-state equipment is, itself, intolerant of harmonics and is susceptible to malfunction and failure when served from a harmonic-laden power source.
Kornilov, Oleg; Wilcox, Russell; Gessner, Oliver
2010-07-09
A compact, versatile device for VUV beam characterization is presented. It combines the functionalities of a VUV spectrometer and a VUV beam profiler in one unit and is entirely supported by a standard DN200 CF flange. The spectrometer employs a silicon nitride transmission nanograting in combination with a micro-channel plate based imaging detector. This enables the simultaneous recording of wavelengths ranging from 10 nm to 80 nm with a resolution of 0.25 nm to 0.13 nm. Spatial beam profiles with diameters up to 10 mm are imaged with 0.1 mm resolution. The setup is equipped with an in-vacuum translation stage that allows for in situ switching between the spectrometer and beam profiler modes and for moving the setup out of the beam. The simple, robust design of the device is well suited for non-intrusive routine characterization of emerging laboratory- and accelerator-based VUV light sources. Operation of the device is demonstrated by characterizing the output of a femtosecond high-order harmonic generation light source.
Young children's harmonic perception.
Costa-Giomi, Eugenia
2003-11-01
Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.
Giffin, S M; McKinnie, I T; Ter-Mikirtychev, V V
1998-02-01
A new broadly tunable visible solid-state laser is reported. Wavelengths between 550 and 610 nm are generated by intracavity frequency doubling of tuned and free-running room-temperature pulsed LiF:F(2)(-) lasers in potassium titanyl phosphate. Second-harmonic energy of 1.3 mJ has been achieved, corresponding to a fundamental-to-second-harmonic conversion efficiency of 20%. Operation is optimized with respect to LiF:F(2)(-) laser parameters.
ERIC Educational Resources Information Center
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Quaternionic Harmonic Analysis of Texture
Mason, J.
2012-10-01
QHAT uses various functions and data structures native to MATLAB to analyze crystallographic texture information using harmonic functions on the space of rotations represented as normalized quaternions. These harmonic functions generalize the spherical harmonics in three dimensions, and form the basis for the irreducible representations of the four-dimensional rotation group. This allows the basis of harmonic functions to be reduced to linearly independent combinations that satisfy the crystal and sample symmetry point groups.
NASA Astrophysics Data System (ADS)
Shoji, Tatsuya; Mizumoto, Yoshihiko; Ishihara, Hajime; Kitamura, Noboru; Takase, Mai; Murakoshi, Kei; Tsuboi, Yasuyuki
2012-09-01
In optical trapping using photon force much enhanced by localized surface plasmon (LSP) in solution, we found that a resonant excitation effect can further enhance photon force. In this LSP-based optical trapping under a resonant excitation condition, an incident laser beam excites both LSP and electronic resonant transition of a target object simultaneously. Fluorescence microspectroscopy clearly showed that nanospheres under the resonant condition were much more efficiently trapped as compared to that under a non-resonant condition. The resonant LSP-based trapping mechanism was further reinforced by theoretical calculations taking the resonant excitation effect into account. Such resonant LSP-based trapping methodology will provide a novel approach for efficient trapping of small molecules.
Harmonization, Trade, and the Environment.
ERIC Educational Resources Information Center
Stevens, Candice
1993-01-01
Discusses the harmonization of international methods for the development and administration of product standards. Defines the term "harmonization" and discusses the harmonization of environmental policies and purposes involving product standards; environmental regulations on production methods, technologies, and practices; and life-cycle…
Alvarez-Sánchez, María-Victoria; Napoléon, Bertrand
2014-11-14
Over the last decade, the development of stabilised microbubble contrast agents and improvements in available ultrasonic equipment, such as harmonic imaging, have enabled us to display microbubble enhancements on a greyscale with optimal contrast and spatial resolution. Recent technological advances made contrast harmonic technology available for endoscopic ultrasound (EUS) for the first time in 2008. Thus, the evaluation of microcirculation is now feasible with EUS, prompting the evolution of contrast-enhanced EUS from vascular imaging to images of the perfused tissue. Although the relevant experience is still preliminary, several reports have highlighted contrast-enhanced harmonic EUS (CH-EUS) as a promising noninvasive method to visualise and characterise lesions and to differentiate benign from malignant focal lesions. Even if histology remains the gold standard, the combination of CH-EUS and EUS fine needle aspiration (EUS-FNA) can not only render EUS more accurate but may also assist physicians in making decisions when EUS-FNA is inconclusive, increasing the yield of EUS-FNA by guiding the puncture with simultaneous imaging of the vascularity. The development of CH-EUS has also opened up exciting possibilities in other research areas, including monitoring responses to anticancer chemotherapy or to ethanol-induced pancreatic tissue ablation, anticancer therapies based on ultrasound-triggered drug and gene delivery, and therapeutic adjuvants by contrast ultrasound-induced apoptosis. Contrast harmonic imaging is gaining popularity because of its efficacy, simplicity and non-invasive nature, and many expectations are currently resting on this technique. If its potential is confirmed in the near future, contrast harmonic imaging will become a standard practice in EUS.
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen
2013-11-01
The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.
Second harmonic inversion for ultrasound contrast harmonic imaging.
Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L M J; Cachard, Christian; van der Steen, Antonius F W; Basset, Olivier; de Jong, Nico
2011-06-07
Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p″, of the same frequency f(0) and the same amplitude P(0) to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.
Tissue Characterization on Ultrasound Harmonic Signals using Nakagami Statistics
NASA Astrophysics Data System (ADS)
Lin, Fanglue; Cristea, Anca; Cachard, Christian; Basset, Olivier
Quantitative ultrasound (QUS) imaging provides a way to characterize biological tissue. The QUS estimates can be obtained from the envelope statistics. Previous studies are mainly based on the whole backscattered signals analysis. However, the ultrasound propagation is a nonlinear process and the harmonic signals can therefore reveal the nonlinear nature of a biological medium. The present study investigates the statistics of harmonic signal envelopes to relate the distribution parameters to the nonlinear coefficients. The main results demonstrate that the distributions exhibit a different behavior for fundamental and harmonic signals and that media with different nonlinearities can be distinguished, when using Nakagami statistics on the harmonic signal envelopes.
NASA Astrophysics Data System (ADS)
Scafetta, Nicola
2012-05-01
The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature
Surface plasma wave assisted second harmonic generation of laser over a metal film
Chauhan, Santosh; Parashar, J.
2015-01-15
Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.
Role of surface plasmon in second harmonic generation from gold nanorods
Hubert, C.; Billot, L.; Adam, P.-M.; Bachelot, R.; Royer, P.; Grand, J.; Gindre, D.; Dorkenoo, K. D.; Fort, A.
2007-04-30
The role of surface plasmon in second harmonic generation from arrays of gold nanorod particles excited by femtosecond laser pulses is investigated as a function of incident light polarization and irradiation wavelength. In addition to photoluminescence, a peak of second harmonic is observed and is found to depend on the polarization and wavelength of the fundamental frequency laser beam. In particular, the authors found similarities between extinction spectra of the nanoparticles and spectra of emmitted second harmonic. This behavior can be explained by resonant excitation of localized surface plasmon resonances.
Jo, Hanggochnuri; Sohn, Ahrum; Shin, Kyung-Sik; Kumar, Brijesh; Kim, Jae Hyun; Kim, Dong-Wook; Kim, Sang-Woo
2014-01-22
An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using these well-dispersed Au NPs revealed that such a self-assembled Au NP array can induce a strong plasmonic field. Furthermore, we demonstrated a new architecture of plasmon excitation in a bulk heterojunction (BHJ) inverted organic solar cell (IOSC) using the Au NP array with AAO. The optical response of an active layer poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester was enhanced by this strong plasmonic field associated a well-dispersed Au NP array. A comparative study of AAO with and without Au NPs confirmed plasmonic improvement of the BHJ IOSC. Simulation results showed that Au NPs concentrate the incoming light into a strongly localized field and enhance light absorption in a wide wavelength range.
Chen, Jianwei; Wu, Yishi; Wang, Xuedong; Yu, Zhenyi; Tian, He; Yao, Jiannian; Fu, Hongbing
2015-11-07
Cryogenic temperature detection plays an irreplaceable role in exploring nature. Developing high sensitivity, accurate, observable and convenient measurements of cryogenic temperature is not only a challenge but also an opportunity for the thermometer field. The small molecule 9-(9,9-dimethyl-9H-fluoren-3yl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine (FIPAC) in 2-methyl-tetrahydrofuran (MeTHF) solution is utilized for the detection of cryogenic temperature with a wide range from 138 K to 343 K. This system possesses significantly high sensitivity at low temperature, which reaches as high as 19.4% K(-1) at 138 K. The temperature-dependent ratio of the dual emission intensity can be fitted as a single-exponential curve as a function of temperature. This single-exponential curve can be explained by the mechanism that the dual emission feature of FIPAC results from the excited-state configuration transformations upon heating or cooling, which is very different from the previously reported mechanisms. Here, our work gives an overall interpretation for this mechanism. Therefore, application of FIPAC as a cryogenic thermometer is experimentally and theoretically feasible.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
NASA Astrophysics Data System (ADS)
Lan, Guoqiang; Ouyang, Bin; Xu, Yushuai; Song, Jun; Jiang, Yong
2016-06-01
Rare-earth (RE) pyrochlores are considered as promising candidate materials for the thermal barrier coating. In this study, we performed first-principles calculations, augmented by quasi-harmonic phonon calculations, to investigate the thermal expansion behaviors of several RE2Zr2O7 (RE = La, Nd, Sm, Gd) pyrochlores. Our findings show that RE2Zr2O7 pyrochlores exhibit low-lying optical phonon frequencies that correspond to RE-cation rattling vibrational modes. These frequencies become imaginary upon volume expansion, preventing correct determination of the free energy versus volume relation and thereby quantification of thermal expansion using QH phonon calculations. To address this challenge, we proposed a QH approximation approach based on stable phonon modes where the RE-cation rattling modes were systematically eliminated. This approach is shown to provide accurate predictions of the coefficients of thermal expansion (CTEs) of RE2Zr2O7 pyrochlores, in good agreement with experimental measurements and data from first-principles molecular dynamics simulations. In addition, we showed that the QH Debye model considerably overestimates the magnitudes and wrongly predicts the trend for the CTEs of RE2Zr2O7 pyrochlores.
Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W
2014-09-21
Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.
Nakata, Hiroya; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Sakurai, Minoru; Nakamura, Shinichiro
2014-04-14
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.
NASA Astrophysics Data System (ADS)
Hester, Sarah
Throughout the study of high frequency combustion instability in a single element Continuously Variable Resonance Combustor (CVRC), the excitation of the fundamental longitudinal mode is closely followed by the excitation of higher harmonic modes. In an attempt to establish a heuristic relationship between the appearances of the fundamental mode and its harmonics, several unstable fixed geometry and variable geometry tests from the CVRC are analyzed through traditional Fourier-based methods and alternative signal processing methods such as wavelet analysis and Instantaneous Frequency (IF) Analysis from PC Signal Analysis. Early results led to the conclusion that traditional Fourier-based analysis provides believable and consistent results for the first three modes. However, Fourier analysis is sensitive to effects from non-sinusoidal waveforms. Further work using manufactured signals with both sinusoidal and steepfronted waveforms established that it is unclear which parts of the calculated harmonic signals are data artifacts and which are true signal. Supplementary assessment of IF Analysis and the traditional Fourier-based analysis explored the applicability of each method, the inherent data artifacts, and distinguishing behavior between the experimental data and those data artifacts. The results obtained from the IF Analysis provide good agreement with the traditional Fourier-based analysis, though one uses FIR filters and the other uses IIR filters. The validity of the results is sensitive to the settings chosen for these filters. It is shown that harmonic modal content exists in the CVRC, but it is also shown that the current results include indistinguishable Fourier artifacts. Both methods are sensitive to the sinusoidal assumption and cannot correctly interpret steep-fronted waveforms. This supplementary assessment has shown that IF Analysis is no worse than traditional Fourier-based analysis, but it fails to provide additional useful information
Fushitani, Mizuho; Hishikawa, Akiyoshi
2016-01-01
We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules. PMID:27795976
[Lycopene and beta-carotene content in tomato analyzed by the second harmonic].
Ouyang, Shun-Li; Zhou, Mi; Cao, Biao; Men, Zhi-Wei; Gao, Shu-Qin; Li, Zuo-Wei; Lu, Guo-Hui; Yang, Jian-Ge
2009-12-01
Lycopene and beta-carotene are two important nutritional components in tomato. The main Raman spectrum group of lycopene and beta-carotene abundant in tomato is identical and difficult to be distinguished through fundamental frequency. With excitation wavelength of 514.5 nm, the excited light was just present in the half width range of the main absorption bands of Lycopene and beta-carotene, so the resonance Raman effect can occur. Based on resonance Raman spectra, by on-body measuring the second harmonic of stretching vibration of carbon-carbon conjugated double bond in lycopene and beta-carotene, the content of lycopene and beta-carotene can be obtained according to the integrated intensity of each component calculated by software. And this provides a method for on-body determining the content of the components with the homologous group.
Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.
Timofeeva, Maria; Bouravleuv, Alexei; Cirlin, George; Shtrom, Igor; Soshnikov, Ilya; Reig Escalé, Marc; Sergeyev, Anton; Grange, Rachel
2016-10-12
In this work, we report an optical method for characterizing crystal phases along single-semiconductor III-V nanowires based on the measurement of polarization-dependent second-harmonic generation. This powerful imaging method is based on a per-pixel analysis of the second-harmonic-generated signal on the incoming excitation polarization. The dependence of the second-harmonic generation responses on the nonlinear second-order susceptibility tensor allows the distinguishing of areas of pure wurtzite, zinc blende, and mixed and rotational twins crystal structures in individual nanowires. With a far-field nonlinear optical microscope, we recorded the second-harmonic generation in GaAs nanowires and precisely determined their various crystal structures by analyzing the polar response for each pixel of the images. The predicted crystal phases in GaAs nanowire are confirmed with scanning transmission electron and high-resolution transmission electron measurements. The developed method of analyzing the nonlinear polar response of each pixel can be used for an investigation of nanowire crystal structure that is quick, sensitive to structural transitions, nondestructive, and on-the-spot. It can be applied for the crystal phase characterization of nanowires built into optoelectronic devices in which electron microscopy cannot be performed (for example, in lab-on-a-chip devices). Moreover, this method is not limited to GaAs nanowires but can be used for other nonlinear optical nanostructures.
An Arduino Investigation of Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Galeriu, Calin; Edwards, Scott; Esper, Geoffrey
2014-03-01
We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment. With this educational philosophy in mind, Massimo Banzi and his team have developed and popularized the open source Arduino microcontroller board. The Arduino board has helped countless people in their science, electronics, robotics, or engineering projects, allowing them to build things that we have not even dreamed of. Physics instructors have also realized the advantages of using Arduino boards for lab experiments. The schools are saving money because the homemade experimental equipment is much cheaper than the commercial alternatives. The students are thankful for an educational experience that is more interesting, more loaded with STEM content, and more fun. As further proof of this new trend in physics education, Vernier5 is now documenting the use of their probes with Arduino boards. This is why we have developed an Arduino-based physics investigation of the simple harmonic motion (SHM) of a mass on a spring. The experimental data are collected with the help of an ultrasonic distance sensor and an Arduino Uno board. The data are then graphed and analyzed using Origin 9. This rich cross-curricular STEM activity integrates electronics, computer programming, physics, and mathematics in a way that is both experimentally exciting and intellectually rewarding.
Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems
NASA Astrophysics Data System (ADS)
da Jornada, Felipe H.
2015-03-01
Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.
Retamal, Mauricio A.; Alcayaga, Julio; Verdugo, Christian A.; Bultynck, Geert; Leybaert, Luc; Sáez, Pablo J.; Fernández, Ricardo; León, Luis E.; Sáez, Juan C.
2014-01-01
Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca2+/Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons. PMID:24999316
Retamal, Mauricio A; Alcayaga, Julio; Verdugo, Christian A; Bultynck, Geert; Leybaert, Luc; Sáez, Pablo J; Fernández, Ricardo; León, Luis E; Sáez, Juan C
2014-01-01
Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca(2+)/Mg(2+)-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca(2+)/Mg(2+)-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
NASA Astrophysics Data System (ADS)
Polasik, M.; Słabkowska, K.; Carroll, J. J.; Chiara, C. J.; Syrocki, Ł.; WÈ©der, E.; Rzadkiewicz, J.
2017-03-01
We present here a comprehensive analysis to understand the optimal atomic conditions for the first experimental observation of nuclear excitation by electron capture (NEEC) for the 6.85 h Mom93 isomer with spin parity 21 /2+ . The NEEC process would provide an excitation from the long-lived isomer to a depletion level with spin parity 17 /2+ , which lies only 4.85 keV higher in energy, and is itself a shorter-lived isomer that subsequently decays, releasing a substantial amount of stored energy (2429.8 keV). The depletion level decays to a 13 /2+ state through a 267.9-keV transition that offers the opportunity for identification of NEEC because it does not occur in the natural decay of the long-lived isomer. It has been shown that, for the proposed approach, high-precision atomic predictions are essential to understanding the proper physical conditions under which the experimental observation of the NEEC process will be possible using a beam-based scenario.
Three-dimensional analysis of harmonic generation in self-amplified spontaneous emission.
Huang, Z.; Kim, K.-J.
1999-09-01
In a high-gain free-electron laser, strong bunching at the fundamental wavelength can drive substantial harmonic bunching and sizable power levels at the harmonic frequencies. In this paper, we investigate the three-dimensional evolution of the harmonic fields based on the coupled Maxwell-Vlasov equations that take into account the nonlinear harmonic interaction. Each harmonic field is the sum of a self-amplified term and a term driven by the nonlinear harmonic interaction. In the exponential gain regime, the growth rate of the dominant nonlinear term is much faster than that of the self-amplified harmonic field. As a result, the gain length and the transverse profile of the first few harmonics are completely determined by those of the fundamental. A percentage of the fundamental power level is found at the third harmonic frequency right before saturation for the current self-amplified spontaneous emission projects.
Exchange and polarization effect in high-order harmonic imaging of molecular structures
Sukiasyan, Suren; Ivanov, Misha Yu.; Patchkovskii, Serguei; Smirnova, Olga; Brabec, Thomas
2010-10-15
We analyze the importance of exchange, polarization, and electron-electron correlation in high-order harmonic generation in molecules interacting with intense laser fields. We find that electron exchange can become particularly important for harmonic emission associated with intermediate excitations in the molecular ion. In particular, for orbitals associated with two-hole one-particle excitations, exchange effects can eliminate structure-related minima and maxima in the harmonic spectra. Laser-induced polarization of the neutral molecule may also have major effects on orbital structure-related minima and maxima in the harmonic spectra. Finally, we show how exchange terms in recombination can be viewed as a shakedownlike process induced by sudden electronic excitation in the ion.
Response of a shell structure subject to distributed harmonic excitation
NASA Astrophysics Data System (ADS)
Cao, Rui; Bolton, J. Stuart
2016-09-01
Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires.
NASA Astrophysics Data System (ADS)
Hosford, A.; Ryan, S. G.; García Pérez, A. E.; Norris, J. E.; Olive, K. A.
2009-01-01
Context: The discovery of the Spite plateau in the abundances of 7Li for metal-poor stars led to the determination of an observationally deduced primordial lithium abundance. However, after the success of the Wilkinson Microwave Anisotropy Probe (WMAP) in determining the baryon density, Ω_Bh2, there was a discrepancy between observationally determined and theoretically determined abundances in the case of 7Li. One of the most important uncertain factors in the calculation of the stellar 7Li abundance is the effective temperature, T_eff. Aims: We use sixteen metal-poor halo dwarfs to calculate new T_eff values using the excitation energy method. With this temperature scale we then calculate new Li abundances for this group of stars in an attempt to resolve the 7Li discrepancy. Methods: Using high signal-to-noise (S/N ≈ 100) spectra of 16 metal-poor halo dwarfs, obtained with the UCLES spectrograph on the AAT, measurements of equivalent widths from a set of unblended Fe I lines are made. These equivalent widths are then used to calculate new T_eff values with the use of the single line radiative transfer program WIDTH6, where we have constrained the gravity using either theoretical isochrones or the Hipparcos parallax, rather than the ionization balance. The lithium abundances of the stars are calculated with these temperatures. Results: The physical parameters are derived for the 16 programme stars, and two standards. These include T_eff, log g, [Fe/H], microturbulence and 7Li abundances. A comparison between the temperature scale of this work and those adopted by others has been undertaken. We find good consistency with the temperatures derived from the Hα line by Asplund et al. (2006, ApJ, 644, 229), but not with the hotter scale of Meléndez & Ramírez (2004, ApJ, 615, L33). We also present results of the investigation into whether any trends between 7Li and metallicity or temperature are present in these metal-poor stars. Appendix A is only available in
High harmonic phase in molecular nitrogen
McFarland, Brian K.
2009-10-17
Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.