Li, Yalong; Jones, Edward A.; Wang, Fred
2016-10-13
Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yalong; Jones, Edward A.; Wang, Fred
Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less
The Technology of Suppressing Harmonics with Complex Neural Network is Applied to Microgrid
NASA Astrophysics Data System (ADS)
Zhang, Jing; Li, Zhan-Ying; Wang, Yan-ping; Li, Yang; Zong, Ke-yong
2018-03-01
According to the traits of harmonics in microgrid, a new CANN controller which combines BP and RBF neural network is proposed to control APF to detect and suppress harmonics. This controller has the function of current prediction. By simulation in Matlab / Simulink, this design can shorten the delay time nearly 0.02s (a power supply current cycle) in comparison with the traditional controller based on ip-iq method. The new controller also has higher compensation accuracy and better dynamic tracking traits, it can greatly suppress the harmonics and improve the power quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.; Halbach, K.
1991-12-04
This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.
Xu, Xiangbo; Chen, Shao
2015-08-31
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
Xu, Xiangbo; Chen, Shao
2015-01-01
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281
G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.
Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less
Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode
NASA Astrophysics Data System (ADS)
Lv, Zhenhua; Shi, Mingming; Fei, Juntao
2018-02-01
The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.
Selective suppression of high-order harmonics within phase-matched spectral regions.
Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren
2017-04-01
Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.
Selection rules for harmonic generation in solids
NASA Astrophysics Data System (ADS)
Moiseyev, Nimrod
2015-05-01
High-order harmonic generation (HHG) in a bulk crystal was first observed in 2011 [S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011), 10.1038/nphys1847]. Only odd-order harmonics were observed as expected on the basis of the selection rules in solids, which were derived when only the interband currents were taken into consideration. Here we study HHG in solids when the intraband currents are taken into consideration as well. We show that the dynamical selection rules are broken in solids and the possibility of generation of even-order harmonics cannot be excluded on the basis of the dynamical symmetry analysis. However, a simple analysis of the expression we obtained for the amplitude of the emitted high-order harmonics shows, without the need to carry out numerical calculations, that the even-order harmonics are suppressed due to the localization of the field-free one-electron density probability on the atoms in the solids.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436
Comparative performance analysis of shunt and series passive filter for LED lamp
NASA Astrophysics Data System (ADS)
Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo
2018-03-01
Light Emitting Diode lamp or LED lamp nowadays is widely used by consumers as a new innovation in the lighting technologies due to its energy saving for low power consumption lamps for brighter light intensity. How ever, the LED lamp produce an electric pollutant known as harmonics. The harmonics is generated by rectifier as part of LED lamp circuit. The present of harmonics in current or voltage has made the source waveform from the grid is distorted. This distortion may cause inacurrate measurement, mall function, and excessive heating for any element at the grid. This paper present an analysis work of shunt and series filters to suppress the harmonics generated by the LED lamp circuit. The work was initiated by conducting several tests to investigate the harmonic content of voltage and currents. The measurements in this work were carried out by using HIOKI Power Quality Analyzer 3197. The measurement results showed that the harmonics current of tested LED lamps were above the limit of IEEE standard 519-2014. Based on the measurement results shunt and series filters were constructed as low pass filters. The bode analysis were appled during construction and prediction of the filters performance. Based on experimental results, the application of shunt filter at input side of LED lamp has reduced THD current up to 88%. On the other hand, the series filter has significantly reduced THD current up to 92%.
Nonlinear optical effects of opening a gap in graphene
NASA Astrophysics Data System (ADS)
Carvalho, David N.; Biancalana, Fabio; Marini, Andrea
2018-05-01
Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.
NASA Astrophysics Data System (ADS)
Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.
2018-05-01
Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, E.F.; You, Y.; Roesler, D.J.
This paper proposes a new model for three-phase transformers with three legs with and without tank under DC bias based on electric and magnetic circuit theory. For the calculation of the nonsinusoidal no-load currents, a combination of time and frequency domains is used. The analysis shows that (1) asymmetric three-phase transformers with three legs generate magnetizing currents with triplen harmonics not being of the zero-sequence type. (2) The wave shapes of the three magnetizing currents of (asymmetric) transformers are dependent on the phase sequence. (3) The magnetic history of transformer magnetization -- due to residual magnetization and hysteresis of themore » tank -- cannot be ignored if a DC bias is present and the magnetic influence of the tank is relatively strong, e.g., for oil-cooled transformers. (4) Symmetric three-phase transformers with three legs generate no-load currents without triplen harmonics. (5) The effects of DC bias currents (e.g., reactive power demand, harmonic distortion) can be suppressed employing symmetric three-phase transformers with three legs including tank. Measurements corroborate computational results; thus this nonlinear model is valid and accurate.« less
Harmonic analysis of electrified railway based on improved HHT
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.
NASA Astrophysics Data System (ADS)
Carbone, Anna; Gilli, Marco; Mazzetti, Piero; Ponta, Linda
2010-12-01
An array of resistively and capacitively shunted Josephson junctions with nonsinusoidal current-phase relation is considered for modeling the transition in high-Tc superconductors. The emergence of higher harmonics, besides the simple sinusoid Ic sin ϕ, is expected for dominant d-wave symmetry of the Cooper pairs, random distribution of potential drops, dirty grains, or nonstationary conditions. We show that additional cosine and sine terms act, respectively, by modulating the global resistance and by changing the Josephson coupling of the mixed superconductive-normal states. First, the approach is applied to simulate the transition in disordered granular superconductors with the weak-links characterized by nonsinusoidal current-phase relation. In granular superconductors, the emergence of higher-order harmonics affects the slope of the transition. Then, arrays of intrinsic Josephson junctions, naturally formed by the CuO2 planes in cuprates, are considered. The critical temperature suppression, observed at values of hole doping close to p =1/8, is investigated. Such suppression, related to the sign change and modulation of the Josephson coupling across the array, is quantified in terms of the intensities of the first and second sinusoids of the current-phase relation. Applications are envisaged for the design and control of quantum devices based on stacks of intrinsic Josephson junctions.
Phase locked neural activity in the human brainstem predicts preference for musical consonance.
Bones, Oliver; Hopkins, Kathryn; Krishnan, Ananthanarayan; Plack, Christopher J
2014-05-01
When musical notes are combined to make a chord, the closeness of fit of the combined spectrum to a single harmonic series (the 'harmonicity' of the chord) predicts the perceived consonance (how pleasant and stable the chord sounds; McDermott, Lehr, & Oxenham, 2010). The distinction between consonance and dissonance is central to Western musical form. Harmonicity is represented in the temporal firing patterns of populations of brainstem neurons. The current study investigates the role of brainstem temporal coding of harmonicity in the perception of consonance. Individual preference for consonant over dissonant chords was measured using a rating scale for pairs of simultaneous notes. In order to investigate the effects of cochlear interactions, notes were presented in two ways: both notes to both ears or each note to different ears. The electrophysiological frequency following response (FFR), reflecting sustained neural activity in the brainstem synchronised to the stimulus, was also measured. When both notes were presented to both ears the perceptual distinction between consonant and dissonant chords was stronger than when the notes were presented to different ears. In the condition in which both notes were presented to the both ears additional low-frequency components, corresponding to difference tones resulting from nonlinear cochlear processing, were observable in the FFR effectively enhancing the neural harmonicity of consonant chords but not dissonant chords. Suppressing the cochlear envelope component of the FFR also suppressed the additional frequency components. This suggests that, in the case of consonant chords, difference tones generated by interactions between notes in the cochlea enhance the perception of consonance. Furthermore, individuals with a greater distinction between consonant and dissonant chords in the FFR to individual harmonics had a stronger preference for consonant over dissonant chords. Overall, the results provide compelling evidence for the role of neural temporal coding in the perception of consonance, and suggest that the representation of harmonicity in phase locked neural firing drives the perception of consonance. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression
Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando
2013-01-01
The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2016-11-01
In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.
225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator
NASA Astrophysics Data System (ADS)
Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin
2017-02-01
In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.
Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators
NASA Astrophysics Data System (ADS)
Siahkamari, Hesam; Yasoubi, Zahra; Jahanbakhshi, Maryam; Mousavi, Seyed Mohammad Hadi; Siahkamari, Payam; Nouri, Mohammad Ehsan; Azami, Sajad; Azadi, Rasoul
2018-04-01
A novel scheme of a shrunken Wilkinson power divider with harmonic suppression, using two identical resonators in the conventional Wilkinson power divider is designed. Moreover, the LC equivalent circuit and its relevant formulas are provided. To substantiate the functionality and soundness of design, a microstrip implementation of this design operating at 1 GHz with the second to eighth harmonic suppression, is developed. The proposed circuit is relatively smaller than the conventional circuit, (roughly 55% of the conventional circuit). Simulation and measurement results for the proposed scheme, which are highly consistent with one another, indicate a good insertion loss about 3.1 dB, input return loss of 20 dB and isolation of 20 dB, while sustaining high-power handling capability over the Wilkinson power divider.
Higher-harmonics suppressor for soft x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, I.; Hirai, Y.; Momose, A.
We have developed an apparatus for suppressing higher harmonics contained in the soft x-ray output beam of grazing-incidence grating monochromators. It consists of eight pairs of total-reflection mirrors. Each pair serves as a low-pass filter with the cutoff energy different from one another. The eight pairs are designed to cover an energy range of 80--1600 eV with an efficiency of harmonic suppression better than 97%, while transmitting more than 50% of the fundamental photons. We have tested its preliminary performance on the soft x-ray beamline BL-8A at the Photon Factory. We present the observed transmission efficiencies and the effects ofmore » the harmonic suppressor on measurements of reflectivity and fluorescence spectra.« less
Maintenance and suppression of chaos by weak harmonic perturbations: a unified view.
Chacón, R
2001-02-26
General results concerning maintenance or enhancement of chaos are presented for dissipative systems subjected to two harmonic perturbations (one chaos inducing and the other chaos enhancing). The connection with previous results on chaos suppression is also discussed in a general setting. It is demonstrated that, in general, a second harmonic perturbation can reliably play an enhancer or inhibitor role by solely adjusting its initial phase. Numerical results indicate that general theoretical findings concerning periodic chaos-inducing perturbations also work for aperiodic chaos-inducing perturbations, and in arrays of identical chaotic coupled oscillators.
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
Instantaneous and dynamical decoherence
NASA Astrophysics Data System (ADS)
Polonyi, Janos
2018-04-01
Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
NASA Astrophysics Data System (ADS)
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
NASA Astrophysics Data System (ADS)
Theerawisitpong, Somboon; Suzuki, Toshitatsu; Morita, Noboru; Utsumi, Yozo
The design of microstrip bandpass filters using stepped-impedance resonators (SIRs) is examined. The passband center frequency for the WCDMA-FDD (uplink band) Japanese cellular system is 1950MHz with a 60-MHz bandwidth. The SIR physical characteristic can be designed using a SIR characteristic chart based on second harmonic suppression. In our filter design, passband design charts were obtained through the design procedure. Tchebycheff and maximally flat bandpass filters of any bandwidth and any number of steps can be designed using these passband design charts. In addition, sharp skirt characteristics in the passband can be realized by having two transmission zeros at both adjacent frequency bands by using open-ended quarter-wavelength stubs at input and output ports. A new even-mode harmonics suppression technique is proposed to enable a wide rejection band having a high suppression level. The unloaded quality factor of the resonator used in the proposed filters is greater than 240.
Suppression of energetic particle driven instabilities with HHFW heating
Fredrickson, E. D.; Taylor, G.; Bertelli, N.; ...
2015-01-01
In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less
Zhou, Y; Jenkins, M E; Naish, M D; Trejos, A L
2016-08-01
The design of a tremor estimator is an important part of designing mechanical tremor suppression orthoses. A number of tremor estimators have been developed and applied with the assumption that tremor is a mono-frequency signal. However, recent experimental studies have shown that Parkinsonian tremor consists of multiple frequencies, and that the second and third harmonics make a large contribution to the tremor. Thus, the current estimators may have limited performance on estimation of the tremor harmonics. In this paper, a high-order tremor estimation algorithm is proposed and compared with its lower-order counterpart and a widely used estimator, the Weighted-frequency Fourier Linear Combiner (WFLC), using 18 Parkinsonian tremor data sets. The results show that the proposed estimator has better performance than its lower-order counterpart and the WFLC. The percentage estimation accuracy of the proposed estimator is 85±2.9%, an average improvement of 13% over the lower-order counterpart. The proposed algorithm holds promise for use in wearable tremor suppression devices.
A real time study on condition monitoring of distribution transformer using thermal imager
NASA Astrophysics Data System (ADS)
Mariprasath, T.; Kirubakaran, V.
2018-05-01
The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.
Deep-subwavelength waveguiding via inhomogeneous second-harmonic generation.
Roppo, Vito; Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael
2012-08-01
We theoretically investigate second-harmonic generation in extremely narrow, subwavelength semiconductor and dielectric waveguides. We discuss a guiding mechanism characterized by the inhibition of diffraction and the suppression of cutoff limits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.
Alahnomi, Rammah A; Zakaria, Z; Ruslan, E; Ab Rashid, S R; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
Ruslan, E.; Ab Rashid, S. R.; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines). PMID:28934301
Harmonic lasing in x-ray free electron lasers
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2012-08-01
Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the parameter space, corresponding to the operating range of soft x-ray beam lines of x-ray FEL facilities (like SASE3 beam line of the European XFEL), harmonics can grow faster than the fundamental wavelength. This feature can be used in some experiments, but might also be an unwanted phenomenon, and we discuss possible measures to diminish it.
NASA Astrophysics Data System (ADS)
Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu
2016-12-01
Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.
Noninvasive probes of mitochondrial molecular motors
NASA Astrophysics Data System (ADS)
Nawarathna, Dharmakeerthna; Claycomb, James
2005-03-01
We report on a noninvasive method of probing mitochondrial molecular motors using nonlinear dielectric spectroscopy. It has been found previously that enzymes in the plasma membrane, particularly H+ ATPase, result in a strong low frequency (less than 100 Hz) nonlinear harmonic response. In this study, we find evidence that molecular motors located in the inner membranes of mitochondria cause the generation of harmonics at relatively high frequencies (1 - 30 kHz). In particular, we find that potassium cyanide (KCN), a respiratory inhibitor that binds to cytochrome c oxidase and thus prevents transport of protons across the mitochondrial inner membrane, suppresses the harmonic response. We observe this behavior in yeast (S. cerevisiae), a eucaryote that typically contains about 300 mitochondria, and B. indicas, a procaryote believed to be related to the ancient ancestor of mitochondria. Our current modeling efforts are focusing on a Brownian ratchet model of the F0 unit of ATP synthase, a remarkable molecular turbine driven by the proton gradient across the mitochondrial inner membrane.
Research on improvement of power quality of Micro - grid based on SVG pulse load
NASA Astrophysics Data System (ADS)
Lv, Chuang; Xie, Pu
2017-05-01
Pulse load will make the micro-grid public bus power to produce a high peak pulse due to its cyclical pulsation characteristics,, and make the micro-grid voltage fluctuations, frequency fluctuations, voltage and current distortion, power factor reduction and other adverse effects. In order to suppress the adverse effects of the pulse load on the microgrid and improve the power quality of the microgrid, this paper established the SVG simulation model in Matlab / Simulink environment, the superiority of SVG is verified by comparing the improvement of power quality before and after adding the SVG to microgrid system. The results show that the SVG model can suppress the adverse effects effectively of the pulse load on the microgrid, which is of great value and significance to the reactive power compensation and harmonic suppression of the microgrid.
Innovative FEL schemes using variable-gap undulators
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2017-06-01
We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.
Range side lobe inversion for chirp-encoded dual-band tissue harmonic imaging.
Shen, Che-Chou; Peng, Jun-Kai; Wu, Chi
2014-02-01
Dual-band (DB) harmonic imaging is performed by transmitting and receiving at both fundamental band (f0) and second-harmonic band (2f0). In our previous work, particular chirp excitation has been developed to increase the signal- to-noise ratio in DB harmonic imaging. However, spectral overlap between the second-order DB harmonic signals results in range side lobes in the pulse compression. In this study, a novel range side lobe inversion (RSI) method is developed to alleviate the level of range side lobes from spectral overlap. The method is implemented by firing an auxiliary chirp to change the polarity of the range side lobes so that the range side lobes can be suppressed in the combination of the original chirp and the auxiliary chirp. Hydrophone measurements show that the RSI method reduces the range side lobe level (RSLL) and thus increases the quality of pulse compression in DB harmonic imaging. With the signal bandwidth of 60%, the RSLL decreases from -23 dB to -36 dB and the corresponding compression quality improves from 78% to 94%. B-mode images also indicate that the magnitude of range side lobe is suppressed by 7 dB when the RSI method is applied.
NASA Astrophysics Data System (ADS)
Mohajer Iravani, Baharak
Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower dielectric constant. Meander lines can increase the effective inductive load which pushes down the lower edge of bandgap, thus resulting in a wider bandgap. Simulation results are included to show that the proposed EBG structures provide very wide bandgap (˜10GHz) covering the multiple harmonics of of currently available microprocessors and its harmonics. To speed up the design procedure, a model based on combination of lumped elements and transmission lines is proposed. The derived model predicts accurately the starting edge of bandgap. This result is verified with full-wave analysis. Finally, another novel compact wide band mushroom-type EBG structure using magneto-dielectric materials is designed. Numerical simulations show that the proposed EBG structure provides in-phase reflection bandgap which is several times greater than the one obtained from a conventional EBG operating at the same frequency while its cell size is smaller. This type of EBG structure can be used efficiently as a ground plane for low-profile wideband antennas.
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
Di Matteo, S.; Norman, M. R.
2016-08-24
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Matteo, S.; Norman, M. R.
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
Transmit beamforming for optimal second-harmonic generation.
Hoilund-Kaupang, Halvard; Masoy, Svein-Erik
2011-08-01
A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.
Control of Laser High-Harmonic Generation with Counterpropagating Light
NASA Astrophysics Data System (ADS)
Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.
2001-09-01
Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.
Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H
2014-12-01
High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.
Dual-pulse frequency compounded superharmonic imaging.
van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico
2011-11-01
Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.
Planar diode multiplier chains for THz spectroscopy
NASA Technical Reports Server (NTRS)
Maiwald, Frank W.; Drouin, Brian J.; Pearson, John C.; Mehdi, Imran; Lewena, Frank; Endres, Christian; Winnewisser, Gisbert
2005-01-01
High-resolution laboratory spectroscopy is utilized as a diagnostic tool to determine noise and harmonic content of balanced [9]-[11] and unbalanced [12]-[14] multiplier designs. Balanced multiplier designs suppress unintended harmonics more than -20dB. Much smaller values were measured on unbalanced multipliers.
Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Y. S.; Guo, Y. W.; Kao, B. H.
Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less
Reflection second harmonic generation on a z -cut congruent lithium niobate crystal
NASA Astrophysics Data System (ADS)
Sono, T. J.; Scott, J. G.; Sones, C. L.; Valdivia, C. E.; Mailis, S.; Eason, R. W.; Frey, J. G.; Danos, L.
2006-11-01
Reflection second harmonic generation experiments were performed on z -cut congruent lithium niobate crystals (LiNbO3) to reveal the interfacial layer symmetry as the crystal is rotated around the z axis. To suppress the bulk contribution, the fundamental wavelength was selected to be 532nm , resulting in second harmonic generation at a wavelength within the absorption region of the crystal. The polarity of the direction of the y -axis was determined from second harmonic generation data and used to show that this direction also inverts during domain inversion.
NASA Astrophysics Data System (ADS)
Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung
2018-03-01
We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.
Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin
2014-01-01
We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.
2015-04-01
Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-07-06
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate inmore » available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.« less
Coherence-domain imaging with harmonic holography
NASA Astrophysics Data System (ADS)
Pu, Ye; Psaltis, Demetri
2017-08-01
Observing the fast dynamics of specific molecules or targets in three-dimensional (3D) space and time inside a crowded and complex environment, such as living cells or tissues, remain one of the grand open challenges in modern science. Harmonic holography tackle this challenge by combining the 3D imaging capability of holography with the ultrafast, coherent optical contrast offered by second-harmonic radiating imaging probes (SHRIMPs). Similar to fluorescence, the second-harmonic signal emitted from SHRIMPs provides a color contrast against the uninterested background scattering, which can be efficiently suppressed by an optical filter. We review the latest developments in SHRIMPs and harmonic holography and discuss their further applications in fluidics and biofluidics.
Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect
NASA Astrophysics Data System (ADS)
Liu, Q. B.; Meng, K. K.; Cai, Y. Z.; Qian, X. H.; Wu, Y. C.; Zheng, S. Q.; Jiang, Y.
2018-01-01
We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor
NASA Astrophysics Data System (ADS)
Liu, J.; Li, L.; Huang, X.; Jezequel, L.
2017-10-01
In this paper, we propose a method to suppress the vibration of the integral bladed disk ('blisk' for short) in aero-engines using synchronized switch damping based on negative capacitor (SSDNC). Different from the classical piezoelectric shunt damping, SSDNC is a type of nonlinear piezoelectric damping. A multi-harmonic balance method combined with the alternating frequency/time method (MHBM-AFT) is used to predict and further analyze the dynamic characteristics of the electromechanical system, and an arc-length continuation technique is used to improve the convergence of the method. In order to validate the algorithm as well as to recognize the characteristics of the system with SSDNC, a two degree-of-freedom (2-DOF) system with SSDNC is studied at first. The nonlinear complex modal information is calculated and compared with those of the corresponding system with a linear RL shunt circuit. The results indicate that the natural frequencies and modal damping ratio do not change with the modal amplitude, which means that SSDNC has the same modal damping corresponding to different system energy levels. In addition, SSDNC can improve the damping level of all the modes nearly without affecting the natural frequencies of the system. Then, the forced response of the blisk with SSDNC in the frequency domain is calculated and analyzed, including a tuned blisk, which is excited by the traveling wave excitation with a single harmonic and multi-harmonic, and a mistuned blisk, which is excited by traveling wave excitation with a single harmonic and multi-harmonic. We present two advantages of the SSDNC technique when compared with piezoelectric shunt damping. First, SSDNC can suppress the vibration of the blisk under a multi-harmonic wideband the traveling wave, and second, the vibration suppression performance of SSDNC is insensitive to the mistuning of mechanical parameters of the blisk. The results will be of great significance in overcoming the problem of the amplitude magnification induced by the inevitable mistuning of the blisk in aero-engines.
Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal
NASA Astrophysics Data System (ADS)
Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling
2018-05-01
When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.
The harmonic impact of electric vehicle battery charging
NASA Astrophysics Data System (ADS)
Staats, Preston Trent
The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.
Calibration of a high harmonic spectrometer by laser induced plasma emission.
Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M
2009-08-17
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America
Third order harmonic imaging for biological tissues using three phase-coded pulses.
Ma, Qingyu; Gong, Xiufen; Zhang, Dong
2006-12-22
Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.
High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields
NASA Astrophysics Data System (ADS)
Pisanty, Emilio; Hickstein, Daniel D.; Galloway, Benjamin R.; Durfee, Charles G.; Kapteyn, Henry C.; Murnane, Margaret M.; Ivanov, Misha
2018-05-01
The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range, to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and its parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation as well as elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high harmonic generation using currently available light sources.
NASA Astrophysics Data System (ADS)
Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.
2005-12-01
We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.
Suppression of Even-Order Photodiode Nonlinearities in Multioctave Photonic Links
NASA Astrophysics Data System (ADS)
Hastings, Alexander S.; Urick, Vincent J.; Sunderman, Christopher; Diehl, John F.; McKinney, Jason D.; Tulchinsky, David A.; Devgan, Preetpaul S.; Williams, Keith J.
2008-08-01
A balanced photonic receiver is demonstrated to suppress photodiode-generated even-order nonlinearities in a photonic link. This result is especially important for multioctave analog applications. Experimental results are presented for a high-frequency (2-30 MHz) link exhibiting 33-dB suppression of the second harmonic, resulting in an output intercept point of 99 dBm due to second-order intermodulation distortion at 26-mA average photocurrent.
Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.
Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362
Cochlear transducer operating point adaptation.
Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred
2006-04-01
The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.
A nonlinear energy sink with an energy harvester: Harmonically forced responses
NASA Astrophysics Data System (ADS)
Kremer, Daniel; Liu, Kefu
2017-12-01
This study intends to achieve simultaneous vibration suppression and energy harvesting using a variant form of nonlinear energy sink (NES). The proposed apparatus is not a true NES as its spring is not essentially nonlinear. In a previous study [22] (Journal of Sound and Vibration, 333 (20) (2014)), it has been shown that the apparatus demonstrates the transient behaviors similar to those of the NES. As a sequel, the present paper focuses on harmonically forced responses of the system. First, the approximate solutions of steady state responses are derived. Using the approximate solutions, the steady state behaviors are investigated by using the numerical continuation method. This is followed by an experimental study. The study has shown that under harmonic excitation, the proposed apparatus functions similarly to the NES with the typical behaviors such as strongly modulated responses, amplitude jumping, excitation level dependence, etc. Overall, the apparatus meets the design objectives: the vibration suppression and energy harvesting in a broadband manner.
Stability of Alfvén eigenmodes in the vicinity of auroral arc
NASA Astrophysics Data System (ADS)
Hiraki, Yasutaka
2013-08-01
The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.
Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2004-01-01
This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.
A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data
Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.
2005-01-01
A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Spectral decontamination of a real-time helicopter simulation
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1983-01-01
Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.
CW injection locking for long-term stability of frequency combs
NASA Astrophysics Data System (ADS)
Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.
2009-05-01
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).
NASA Astrophysics Data System (ADS)
Nawarathna, Dharmakirthi
The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
NASA Technical Reports Server (NTRS)
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
Spatial properties of odd and even low order harmonics generated in gas.
Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph
2015-01-14
High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.
Hu, Yi; Loizou, Philipos C
2010-01-01
Pre-processing based noise-reduction algorithms used for cochlear implants (CIs) can sometimes introduce distortions which are carried through the vocoder stages of CI processing. While the background noise may be notably suppressed, the harmonic structure and/or spectral envelope of the signal may be distorted. The present study investigates the potential of preserving the signal's harmonic structure in voiced segments (e.g., vowels) as a means of alleviating the negative effects of pre-processing. The hypothesis tested is that preserving the harmonic structure of the signal is crucial for subsequent vocoder processing. The implications of preserving either the main harmonic components occurring at multiples of F0 or the main harmonics along with adjacent partials are investigated. This is done by first pre-processing noisy speech with a conventional noise-reduction algorithm, regenerating the harmonics, and vocoder processing the stimuli with eight channels of stimulation in steady speech-shaped noise. Results indicated that preserving the main low-frequency harmonics (spanning 1 or 3 kHz) alone was not beneficial. Preserving, however, the harmonic structure of the stimulus, i.e., the main harmonics along with the adjacent partials, was found to be critically important and provided substantial improvements (41 percentage points) in intelligibility.
Ultrasound contrast agent imaging: Real-time imaging of the superharmonics
NASA Astrophysics Data System (ADS)
Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.
2015-10-01
Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.
Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph
2012-01-01
A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.
Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta
2015-11-01
Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2018-04-01
We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
Electron cyclotron maser instability in the solar corona - The role of superthermal tails
NASA Technical Reports Server (NTRS)
Vlahos, L.; Sharma, R. R.
1985-01-01
The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.
An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter
NASA Astrophysics Data System (ADS)
Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu
2017-05-01
Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.
Physics of tissue harmonic imaging by ultrasound
NASA Astrophysics Data System (ADS)
Jing, Yuan
Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with reverberation; (2) is not immune to aberration effects and (3) suffers less clutter due to reduced side-lobe levels. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.
Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil
NASA Astrophysics Data System (ADS)
Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing
2017-05-01
The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.
Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2015-07-15
We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3 dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.
Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E
2018-04-14
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-04-01
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
Investigation of Passive Filter for LED Lamp
NASA Astrophysics Data System (ADS)
Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo
2017-04-01
Light Emitting Diode lamp or LED lamp is one of the energy saving lamps nowadays widely used by consumers. However, LED lamp has contained harmonics caused by the rectifier circuit inside the lamp. Harmonics cause a quality problem in power system. As the harmonics present in current or voltage, the waveforms are distorted. Harmonics can lead to overheating in magnetic core of electrical equipments. In this paper, several tests are carried out to investigate the harmonic content of voltage and currents, and also the level of light intensity of the two brands of LED lamps. Measurements in this study are conducted by using HIOKI Power Quality Analyzer 3197. The test results show that the total harmonic distortion or THD of voltage on various brands of LED lamps did not exceed 5% as in compliance to the limit of IEEE standard 519-1992. The largest harmonic voltage is 2.9%, while maximum harmonic current for tested brands of LED lamp is 170.6%. The use of low pass filter in the form of LC filter was proposed. Based on experimental results, the application of LC filter at input side of LED lamp has successfully reduced THD current in the range of 85%-88%.
Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, H., E-mail: hawal@chalmers.se; Desmaris, V.; Pavolotsky, A.
In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction.more » The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.« less
Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei
2016-01-01
In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
2018-06-01
The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
A W-band sixth-harmonic magnetron-type slotted peniotron
NASA Astrophysics Data System (ADS)
Hu, Biao; Li, Jiayin; Wu, Xinhui; Li, Tianming; Li, Hao; Wang, Haiyang; Zhao, Xiaoyun
2013-04-01
This paper has numerically investigated operating characteristics of a w-band six-harmonic magnetron-type slotted peniotron with 7 vanes. With the new structure design, a high efficiency of 40% w-band 30 kW medium power microwave source has been achieved and the mode competition can be somewhat suppressed. The main advantage of such a peniotron, based on a permanent magnet, is that it can have much more compact size and lower cost, and its operation gap can be greatly reduced.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
DOT National Transportation Integrated Search
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X
2009-06-01
We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.
NASA Astrophysics Data System (ADS)
Xu, Xiao-Hu; Wang, Yan-Jun; Miao, Xiang-Yang
2018-05-01
We theoretically investigate the enhancement of high-order harmonic generation by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation from the hydrogen molecular ion in a dichromatic inhomogeneous laser field. An ultrabroad supercontinuum up to 300 orders spectral width is generated. It is found that not only the inhomogeneity, but also the dichromatic field contributes to the significant extension of the harmonic cutoff compared with a monochromatic inhomogeneous laser field. Meanwhile, the long quantum paths can be suppressed and short ones can be enhanced by selecting optimized inhomogeneous parameter β, intensity and carrier envelope phase of the dichromatic inhomogeneous laser field. Furthermore, by superposing a properly selected range of the harmonic spectrum in the continuum region, an isolated 29-as pulse is generated. Both the classical theory and quantum time-frequency analysis are adopted to explain the physical mechanism.
Comparison of mechanisms involved in image enhancement of Tissue Harmonic Imaging
NASA Astrophysics Data System (ADS)
Cleveland, Robin O.; Jing, Yuan
2006-05-01
Processes that have been suggested as responsible for the improved imaging in Tissue Harmonic Imaging (THI) include: 1) reduced sensitivity to reverberation, 2) reduced sensitivity to aberration, and 3) reduction in the amplitude of diffraction side lobes. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed and solved using a time-domain code. The numerical simulations were validated through experiments with tissue mimicking phantoms. The impact of aberration from tissue-like media was determined through simulations using three-dimensional maps of tissue properties derived from datasets available through the Visible Female Project. The experiments and simulations demonstrated that second harmonic imaging suffers less clutter from reverberation and side-lobes but is not immune to aberration effects. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.
Determination of nonlinear resistance voltage-current relationships by measuring harmonics
NASA Technical Reports Server (NTRS)
Stafford, J. M.
1971-01-01
Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.
Orthogonality catastrophe and fractional exclusion statistics
NASA Astrophysics Data System (ADS)
Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.
2018-02-01
We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
NASA Astrophysics Data System (ADS)
Zhu, Yu; Liu, Zhigang; Deng, Wen; Deng, Zhongwen
2018-05-01
Frequency-scanning interferometry (FSI) using an external cavity diode laser (ECDL) is essential for many applications of the absolute distance measurement. However, owing to the hysteresis and creep of the piezoelectric actuator inherent in the ECDL, the optical frequency scanning exhibits a nonlinearity that seriously affects the phase extraction accuracy of the interference signal and results in the reduction of the measurement accuracy. To suppress the optical frequency nonlinearity, a harmonic frequency synthesis method for shaping the desired input signal instead of the original triangular wave is presented. The effectiveness of the presented shaping method is demonstrated through the comparison of the experimental results. Compared with an incremental Renishaw interferometer, the standard deviation of the displacement measurement of the FSI system is less than 2.4 μm when driven by the shaped signal.
Orthogonality catastrophe and fractional exclusion statistics.
Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R
2018-02-01
We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
NASA Astrophysics Data System (ADS)
Gunnoo, Hans; Abcha, Nizar; Ezersky, Alexander
2016-02-01
The influence of harmonic surface wave on non-regular Karman Vortex Street is investigated. In our experiments, Karman Street arises behind a vertical circular cylinder in a water flow and harmonic surface waves propagating upstream. It is found that surface waves can modify regimes of shedding in Karman Street: frequency lock-in and synchronization of vortex shedding can arise. Intensive surface waves can excite symmetric vortex street instead of chess-like street, and completely suppress shedding behind the cylinder. It is shown experimentally that such effects occur if frequency of harmonic surface wave is approximately twice higher than the frequency of vortex shedding. Region of frequency lock-in is found on the plane amplitude-frequency of surface wave.
Harmonic analysis and suppression in hybrid wind & PV solar system
NASA Astrophysics Data System (ADS)
Gupta, Tripti; Namekar, Swapnil
2018-04-01
The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.
Results of the harmonics measurement program at the John F. Long photovoltaic house
NASA Astrophysics Data System (ADS)
Campen, G. L.
1982-03-01
Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.
Ultrasound contrast agent imaging: Real-time imaging of the superharmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peruzzini, D.; Viti, J.; Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam
2015-10-28
Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performedmore » to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.« less
NASA Astrophysics Data System (ADS)
Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.
2018-03-01
High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.
75 FR 5118 - Possible Modifications to the International Harmonized System Nomenclature
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... (Harmonized System) in connection with the Fifth Review Cycle of the World Customs Organization (WCO), with a view to keeping the Harmonized System current with changes in technology and trade patterns. The... (RSC), which is responsible for considering amendments to the HS in order to keep the HS current with...
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.
Boedo, J A; Rudakov, D L
2017-03-01
We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J. A.; Rudakov, D. L.
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
Boedo, J. A.; Rudakov, D. L.
2017-03-20
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
VUV and XUV reflectance of optically coated mirrors for selection of high harmonics
Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...
2016-08-08
We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.
The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid
NASA Astrophysics Data System (ADS)
Heidarian, T.; Joorabian, M.; Reza, A.
2015-12-01
In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.
Theoretical study of a dual harmonic system and its application to the CSNS/RCS
NASA Astrophysics Data System (ADS)
Yuan, Yao-Shuo; Wang, Na; Xu, Shou-Yan; Yuan, Yue; Wang, Sheng
2015-12-01
Dual harmonic systems have been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in a dual rf system, the potential well, the sub-buckets in the bunch and the multi-solutions of the phase equation are studied theoretically in this paper. Based on these theoretical studies, optimization of bunching factor and rf voltage waveform are made for the dual harmonic rf system in the upgrade phase of the China Spallation Neutron Source Rapid Cycling Synchrotron (CSNS/RCS). In the optimization process, the simulation with space charge effect is done using a newly developed code, C-SCSIM. Supported by National Natural Science Foundation of China (11175193)
Majidi-Ahy, Gholamreza; Bloom, David M.
1991-01-01
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Meng, Zhixin; Feng, Yanying
2017-10-01
We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.
Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data
NASA Astrophysics Data System (ADS)
Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning
2018-06-01
North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.
Self-starting harmonic frequency comb generation in a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2017-12-01
Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.
Comparison of fundamental and wideband harmonic contrast imaging of liver tumors.
Forsberg, F; Liu, J B; Chiou, H J; Rawool, N M; Parker, L; Goldberg, B B
2000-03-01
Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI < or = 0.9) were imaged in gray scale using a Sonoline Elegra scanner (Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.
Extreme-ultraviolet-initiated high-order harmonic generation in Ar+
NASA Astrophysics Data System (ADS)
Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.
2018-02-01
We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.
Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.
Timofeeva, Maria; Lang, Lukas; Timpu, Flavia; Renaut, Claude; Bouravleuv, Alexei; Shtrom, Igor; Cirlin, George; Grange, Rachel
2018-06-13
Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qixiang, E-mail: zxqi1105@gmail.com; Yu, Sheng; Zhang, Tianzhong
2015-10-15
In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing themore » mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.« less
The radio-frequency fluctuation effect on the floating harmonic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan
2016-08-15
The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less
NASA Astrophysics Data System (ADS)
Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.
2017-10-01
We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.
2017-12-01
Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.
NASA Astrophysics Data System (ADS)
Troitskaya, Yu. I.; Ezhova, E. V.; Zilitinkevich, S. S.
2013-10-01
The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer.
The voltage control for self-excited induction generator based on STATCOM
NASA Astrophysics Data System (ADS)
Yan, Dandan; Wang, Feifeng; Pan, Juntao; Long, Weijie
2018-05-01
The small independent induction generator can build up voltage under its remanent magnetizing and excitation capacitance, but it is prone to voltage sag and harmonic increment when running with load. Therefore, the controller for constant voltage is designed based on the natural coordinate system to adjust the static synchronous compensator (STATCOM), which provides two-way dynamic reactive power compensation for power generation system to achieve voltage stability and harmonic suppression. The control strategy is verified on Matlab/Sinmulik, and the results show that the STATCOM under the controller can effectively improve the load capacity and reliability of asynchronous generator.
Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.
Peled, Itay; Kaminsky, Ron; Kotler, Zvi
2015-06-01
In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.
NASA Astrophysics Data System (ADS)
Zhu, Ran; Hui, Ming; Shen, Dongya; Zhang, Xiupu
2017-02-01
In this paper, dual wavelength linearization (DWL) technique is studied to suppress odd and even order nonlinearities simultaneously in a Mach-Zehnder modulator (MZM) modulated radio-over-fiber (RoF) transmission system. A theoretical model is given to analyze the DWL employed for MZM. In a single-tone test, the suppressions of the second order harmonic distortion (HD2) and third order harmonic distortion (HD3) at the same time are experimentally verified at different bias voltages of the MZM. The measured spurious-free dynamic ranges (SFDRs) with respect to the HD2 and HD3 are improved simultaneously compared to using a single laser. The output P1 dB is also improved by the DWL technique. Moreover, a WiFi signal is transmitted in the RoF system to test the linearization for broadband signal. The result shows that more than 1 dB improvement of the error vector magnitude (EVM) is obtained by the DWL technique.
NASA Astrophysics Data System (ADS)
Bedi, Tarun; Heema, Dave; Singh, Dheerendra
2018-03-01
It is known that harmonics are generated in any power electronics based application. Since presence of harmonics is not desirable, it is necessary to remove the harmonics. The IFOC is based on stator current regulation, and the stator currents are sensed and used in the speed control algorithm. The current needs to be free from noise and harmonics for accurate further processing. In this paper, a passive analog filter, as well as a 50th order FIR filter is designed in MATLAB and implemented in Code Composer Studio to remove noise and distortion, and a comparative analysis has been done, for the speed control of an induction motor fed through ZSI, for electric vehicle application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
NASA Astrophysics Data System (ADS)
Chen, Qian; Liu, Guohai; Gong, Wensheng; Qu, Li; Zhao, Wenxiang; Shen, Yue
2012-04-01
The spoke-type motor has higher torque density than the conventional one resulting from its structure for concentrating flux from permanent magnets (PMs). However, this motor suffers from the serious distortion of back electromotive force (EMF). This paper proposes a cost-effective approach to design a spoke-type motor with lower harmonics of back-EMF for electric vehicle. The key is to superimpose the coil-EMF of one phase in such a way that the harmonics of the phase-EMF can be canceled, resulting in essentially sinusoidal waveforms. By using finite element method (FEM), an optimal coil-EMF vectors distribution for minimum harmonics of the phase-EMF is obtained and verified. In addition, the co-simulation technology is adopted to verify that the torque ripple under the optimal winding configuration can be significantly suppressed.
Electron path control of high-order harmonic generation by a spatially inhomogeneous field
NASA Astrophysics Data System (ADS)
Mohebbi, Masoud; Nazarpoor Malaei, Sakineh
2016-04-01
We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.
Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incropera, F.P.; Prescott, P.J.
Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, bymore » reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.« less
Higher order harmonics suppression in extreme ultraviolet and soft x-ray
NASA Astrophysics Data System (ADS)
Chen, Yong; Wei, Lai; Qian, Feng; Yang, Zuhua; Wang, Shaoyi; Wu, Yinzhong; Zhang, Qiangqiang; Fan, Quanpin; Cao, Leifeng
2018-02-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206004), the National Natural Science Foundation of China (Grant No. 11375160), and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2009-03-01
In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.
Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.
Chacón, R; Martínez, J A
2002-03-01
Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.
Influence of load type on power factor and harmonic composition of three-phase rectifier current
NASA Astrophysics Data System (ADS)
Nikolayzin, N. V.; Vstavskaya, E. V.; Konstantinov, V. I.; Konstantinova, O. V.
2018-05-01
This article is devoted to research of the harmonic composition of the three-phase rectifier current consumed when it operates with different types of load. The results are compared with Standard requirements.
NASA Astrophysics Data System (ADS)
Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.
2016-08-01
With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.
Harmonic analysis of tides and tidal currents in South San Francisco Bay, California
Cheng, R.T.; Gartner, J.W.
1985-01-01
Water level observations from tide stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each tide station, 13 harmonic constituents have been computed by a least-squares regression without inference. Tides in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal tide. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.
Kerns, Cordon R.
1977-01-01
A device is provided for detecting the current level of a DC signal. It includes an even harmonic modulator to which a reference AC signal is applied. The unknown DC signal acts on the reference AC signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown DC current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
2016-09-15
The design and current spectrum of a thyristor valve controlled shunt reactor (TCSR) with split valveside windings are described. The dependence of the amplitudes of higher-order harmonics of the power winding current on the TCSR operating regime are presented for this TCSR design.
Harmonic multiplication using resonant tunneling
NASA Technical Reports Server (NTRS)
Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Correa, C. A.
1988-01-01
This paper demonstrates the use of resonant-tunneling diodes as varistors for harmonic multiplication. It is shown that efficient odd-harmonic conversion is possible and that even harmonics do not appear because of the antisymmetry of the current-voltage (I-V) curve. It is also shown that, with the proper choice of resonant-tunneling structure and pump amplitude, most of the harmonic output power can be confined to a single odd-harmonic frequency. Fifth-harmonic multiplication was demonstrated with an output at 21.75 GHz and a power conversion efficiency of 0.5 percent, and a fifth-harmonic efficiency of 2.7 percent was achieved in a circuit simulation using an improved I-V curve.
Harmonic reduction by using single-tuned passive filter in plastic processing industry
NASA Astrophysics Data System (ADS)
Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.
2018-02-01
The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.
MODEL HARMONIZATION POTENTIAL AND BENEFITS
The IPCS Harmonization Project, which is currently ongoing under the auspices of the WHO, in the context of chemical risk assessment or exposure modeling, does not imply global standardization. Instead, harmonization is thought of as an effort to strive for consistency among appr...
NASA Astrophysics Data System (ADS)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann
2016-01-01
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.
Harmonic surface acoustic waves on gallium nitride thin films.
Justice, Joshua; Lee, Kyoungnae; Korakakis, D
2012-08-01
SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
Subcycle engineering of laser filamentation in gas by harmonic seeding
NASA Astrophysics Data System (ADS)
Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.
2015-11-01
Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.
Microwave power amplifiers based on AlGaN/GaN transistors with a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Vendik, O. G.; Vendik, I. B.; Tural'chuk, P. A.; Parnes, Ya. M.; Parnes, M. D.
2016-11-01
A technique for synthesis of microwave power amplifiers based on transistors with a AlGaN/GaN heterojunction is discussed. Special focus is on the development of a technique for synthesis of transformation circuits of the power amplifier to increase efficiency with a retained high output power. The use of independent matching at the harmonic frequencies and fundamental frequency makes it possible to control the attainable efficiency in a wide frequency band along with the total suppression of harmonics beyond the operational band. Microwave power amplifiers for operation at 4 and 9 GHz have been developed and experimentally investigated.
Application of harmonic detection technology in methane telemetry
NASA Astrophysics Data System (ADS)
Huo, Yuehua; Fan, Weiqiang
2017-08-01
Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.
Highlighting the harmonic regime generated by electric locomotives equipped with DC motors
NASA Astrophysics Data System (ADS)
Baciu, I.; Cunţan, C. D.
2018-01-01
The paper presents the results of measurements made using the C.A. 8334 power quality analyzer on an electric locomotive equipped with DC motors. We carried out determinations of the current-voltage regime using a locomotive motor. The harmonic regime of the other motors being identical to the analysed one, we could easily deduce the effects caused by the entire locomotive. The data measured with the analyzer were firstly transferred into a computer system using the Qualistar software, followed by data processing in Excel, enabling therefore a graphical representation of the characteristic parameters of power quality. Based on the acquired data, we determined the power factor, as well as the active, reactive and apparent power. The measurements revealed high values of the current harmonics, fact that required some measures to be taken for reducing the values of these harmonics. For this, we ran a simulation using the PSCAD/EMTDC software, by introducing LC filters in tune with the harmonic frequencies. The result was a significant reduction in the harmonic regime, either in the harmonics values or the power factor and reactive power.
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao
2013-01-01
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638
Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides
NASA Astrophysics Data System (ADS)
Panday, Suman Raj; Fregoso, Benjamin M.
2017-11-01
The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the largest effective second harmonic generation reported so far. It can reach magnitudes up to 10~nm~V-1 which is about an order of magnitude larger than that of prototypical GaAs. To rationalize this result we model the optical response with a simple one-dimensional two-band model along the spontaneous polarization direction. Within this model the second-harmonic generation tensor is proportional to the shift-current response tensor. The large shift current and second harmonic responses of GeS, GeSe, SnS and SnSe make them promising non-linear materials for optoelectronic applications.
Compensation of the sheath effects in cylindrical floating probes
NASA Astrophysics Data System (ADS)
Park, Ji-Hwan; Chung, Chin-Wook
2018-05-01
In cylindrical floating probe measurements, the plasma density and electron temperature are overestimated due to sheath expansion and oscillation. To reduce these sheath effects, a compensation method based on well-developed floating sheath theories is proposed and applied to the floating harmonic method. The iterative calculation of the Allen-Boyd-Reynolds equation can derive the floating sheath thickness, which can be used to calculate the effective ion collection area; in this way, an accurate ion density is obtained. The Child-Langmuir law is used to calculate the ion harmonic currents caused by sheath oscillation of the alternating-voltage-biased probe tip. Accurate plasma parameters can be obtained by subtracting these ion harmonic currents from the total measured harmonic currents. Herein, the measurement principles and compensation method are discussed in detail and an experimental demonstration is presented.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.
A new approach to harmonic elimination based on a real-time comparison method
NASA Astrophysics Data System (ADS)
Gourisetti, Sri Nikhil Gupta
Undesired harmonics are responsible for noise in a transmission channel, power loss in power electronics and in motor control. Selective Harmonic Elimination (SHE) is a well-known method used to eliminate or suppress the unwanted harmonics between the fundamental and the carrier frequency harmonic/component. But SHE bears the disadvantage of its incapability to use in real-time applications. A novel reference-carrier comparative method has been developed which can be used to generate an SPWM signal to apply in real-time systems. A modified carrier signal is designed and tested for different carrier frequencies based on the generated SPWM FFT. The carrier signal may change for different fundamental to carrier ratio that leads to solving the equations each time. An analysis to find all possible solutions for a particular carrier frequency and fundamental amplitude is performed and found. This proves that there is no one global maxima instead several local maximas exists for a particular condition set that makes this method less sensitive. Additionally, an attempt to find a universal solution that is valid for any carrier signal with predefined fundamental amplitude is performed. A uniform distribution Monte-Carlo sensitivity analysis is performed to measure the window i.e., best and worst possible solutions. The simulations are performed using MATLAB and are justified with experimental results.
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles
NASA Astrophysics Data System (ADS)
Collings, E. W.; Sumption, M. D.
2001-05-01
Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturini, M.
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
NASA Astrophysics Data System (ADS)
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.
Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083; Ye, W. H.
2010-05-15
In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces themore » nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.« less
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
NASA Astrophysics Data System (ADS)
Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa
2017-08-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.
NASA Astrophysics Data System (ADS)
Sun, Youwen
2017-10-01
A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
NASA Astrophysics Data System (ADS)
Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.
2011-08-01
Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT
NASA Astrophysics Data System (ADS)
Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.
2015-08-01
Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.
Probing periodic potential of crystals via strong-field re-scattering
NASA Astrophysics Data System (ADS)
You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu
2018-06-01
Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.
NASA Astrophysics Data System (ADS)
Boumaza, R.; Bencheikh, K.
2017-12-01
Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Harmonic generation in magnetized quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Punit; Singh, Abhisek Kumar; Singh, Shiv
2016-05-06
A study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, M.; Pinsker, R. I.; Chan, V. S.
2011-12-23
In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6{sup th} harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4{sup th} harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4{sup th} harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6{sup th} harmonic FW on beam ion tails to produce synergy.
Harmonic analysis of spacecraft power systems using a personal computer
NASA Technical Reports Server (NTRS)
Williamson, Frank; Sheble, Gerald B.
1989-01-01
The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.
Effect of composition and temperature on the second harmonic generation in silver phosphate glasses
NASA Astrophysics Data System (ADS)
Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.
2018-01-01
We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.
Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J
2009-05-25
We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, A.; Acero, J.; Alberdi, B.
High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER{reg_sign} and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented.
Automated detection and characterization of harmonic tremor in continuous seismic data
NASA Astrophysics Data System (ADS)
Roman, Diana C.
2017-06-01
Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoffield, Don
2015-03-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
Method of Calculating the Correction Factors for Cable Dimensioning in Smart Grids
NASA Astrophysics Data System (ADS)
Simutkin, M.; Tuzikova, V.; Tlusty, J.; Tulsky, V.; Muller, Z.
2017-04-01
One of the main causes of overloading electrical equipment by currents of higher harmonics is the great increasing of a number of non-linear electricity power consumers. Non-sinusoidal voltages and currents affect the operation of electrical equipment, reducing its lifetime, increases the voltage and power losses in the network, reducing its capacity. There are standards that respects emissions amount of higher harmonics current that cannot provide interference limit for a safe level in power grid. The article presents a method for determining a correction factor to the long-term allowable current of the cable, which allows for this influence. Using mathematical models in the software Elcut, it was described thermal processes in the cable in case the flow of non-sinusoidal current. Developed in the article theoretical principles, methods, mathematical models allow us to calculate the correction factor to account for the effect of higher harmonics in the current spectrum for network equipment in any type of non-linear load.
A suppression of differential rotation in Jupiter’s deep interior
NASA Astrophysics Data System (ADS)
Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.
Multi-megawatt millimeter-wave source for plasma heating and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; Wang, C.; Ganguly, A.K.
1995-12-31
Results of a feasibility study are summarized for multi-megawatt mm-wavelength gyroharmonic converters for plasma heating applications. Output power in these devices is extracted at a high harmonic of the modulation frequency of a spatiotemporally gyrating electron beam prepared using cyclotron autoresonance acceleration. An example is described in which an output of 2.2 MW at 148.5 GHz is predicted at the 13th harmonic of an 8 MW 11.424 GHz CARA, after including waveguide ohmic wall losses. Achievement of this performance requires a high quality 200 kV, 16 A luminar pencil beam injected into CARA, and effective suppression of competing output modes;more » means to realize these requirements are discussed.« less
Wavelet Transform Based Filter to Remove the Notches from Signal Under Harmonic Polluted Environment
NASA Astrophysics Data System (ADS)
Das, Sukanta; Ranjan, Vikash
2017-12-01
The work proposes to annihilate the notches present in the synchronizing signal required for converter operation appearing due to switching of semiconductor devices connected to the system in the harmonic polluted environment. The disturbances in the signal are suppressed by wavelet based novel filtering technique. In the proposed technique, the notches in the signal are determined and eliminated by the wavelet based multi-rate filter using `Daubechies4' (db4) as mother wavelet. The computational complexity of the adapted technique is very less as compared to any other conventional notch filtering techniques. The proposed technique is developed in MATLAB/Simulink and finally validated with dSPACE-1103 interface. The recovered signal, thus obtained, is almost free of the notches.
Suppression of Higher Order Modes in an Array of Cavities Using Waveguides
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.
An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.
Euler potentials of current-free fields expressed in spherical harmonics
NASA Technical Reports Server (NTRS)
Stern, David P.
1994-01-01
Given a magnetic field B = -del(vector differential operator)(sub gamma) with gamma expanded in spherical harmonics, it is shown that analytic Euler potentials may be derived for B if gamma is asymmetrical but contains only the contribution of a single index n. This work generalizes a result for sectorial harmonics with n = m, derived by Willis and Gardiner (1988).
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang
2018-06-01
Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.
Ito, Kota; Toshiyoshi, Hiroshi; Iizuka, Hideo
2016-06-13
Metal-insulator-metal metamaterial thermal emitters strongly radiate at multiple resonant wavelengths. The fundamental mode, whose wavelength is the longest among resonances, is generally utilized for selective emission. In this paper, we show that parasitic modes at shorter wavelengths are suppressed by newly employed densely-tiled resonators, and that the suppression enables quasi-monochromatic thermal emission. The second-order harmonics, which is excited at half the fundamental wavelength in conventional emitters, shifts toward shorter wavelength. The blue-shift reduces the amplitude of the second-order emission by taking a distance from the Wien wavelength. Other parasitic modes are eliminated by the small spacing between resonators. The densely-tiled resonators are fabricated, and the measured emission spectra agree well with numerical simulations. The methodology presented here for the suppression of parasitic modes adds flexibility to metamaterial thermal emitters.
NASA Astrophysics Data System (ADS)
Edler, Karl T.
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl
Flerlage, Jamie E; Kelly, Kara M; Beishuizen, Auke; Cho, Steve; De Alarcon, Pedro A; Dieckmann, Ute; Drachtman, Richard A; Hoppe, Bradford S; Howard, Scott C; Kaste, Sue C; Kluge, Regine; Kurch, Lars; Landman-Parker, Judith; Lewis, Jocelyn; Link, Michael P; McCarten, Kathleen; Punnett, Angela; Stoevesandt, Dietrich; Voss, Stephan D; Wallace, William Hamish; Mauz-Körholz, Christine; Metzger, Monika L
2017-07-01
International harmonization of staging evaluation and response criteria is needed for childhood, adolescence, and young adulthood Hodgkin lymphoma. Two Hodgkin lymphoma protocols from cooperative trials in Europe and North America were compared for areas in need of harmonization, and an evidence-based approach is currently underway to harmonize staging and response evaluations with a goal to enhance comparisons, expedite identification of effective therapies, and aid in the approval process for new agents by regulatory agencies. © 2017 Wiley Periodicals, Inc.
Surface plasma wave assisted second harmonic generation of laser over a metal film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Santosh; Parashar, J., E-mail: j.p.parashar@gmail.com
2015-01-15
Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.
Compact single-pass X-ray FEL with harmonic multiplication cascades
NASA Astrophysics Data System (ADS)
Zhukovsky, K.
2018-07-01
The generation of X-ray radiation in cascaded single-pass free electron laser (FEL), which amplifies high harmonics of a two-frequency undulator, is studied. Power dynamics of FEL harmonics is explored with the help of the phenomenological model of a single pass FEL. The model describes both linear and non-linear harmonic generation, starting from a coherent seed laser and initial shot noise with account for main loss factors for each harmonic in each cascade individually: the energy spread and beam divergence, the coupling losses between FEL cascades, the diffraction etc. The model was validated with the experiment and with relevant 3-D simulations. It is employed for modeling the cascaded FELs with harmonic multiplication and analyzing the evolution of FEL harmonic power with the aim to obtain the maximum high harmonic power in the X-ray band at the shortest possible FEL length with the lowest possible seed frequency. The advantages of two-frequency undulators in HGHG FELs are elucidated. The requirements for the electron beam are studied; the need for low energy spread is evidenced: our evaluations yield σe < 2 × 10-4. Several cascaded HGHG FELs with two-frequency undulators are modeled. Generation of soft X-ray radiation at λ = 2 . 71 nm, reaching ∼50 MW power with I0 ∼ 100 A in a cascaded FEL at just 40 m with 13.51 nm seed, matching peak reflectivity of Mo/Si, is demonstrated. The generation of 40 MW radiation power at λ = 2 . 27 nm with the beam current I0 ∼ 100 A, energy E = 950 MeV and the energy spread σe = 2 × 10-4 is studied, using second and third harmonics in three-stage 45 m long FEL. The multistage FEL is modeled for generating radiation in nanometer band: ∼40 MW power at λ ∼ 2 . 6 nm with I0 ∼ 175 A current in just ∼40 m long FEL with commercially available F2 excimer UV laser seed at 157 nm. The peak radiation power rises to ∼0.5 GW for ∼1 kA beam current.
Polarization-Resolved Study of High Harmonics from Bulk Semiconductors
NASA Astrophysics Data System (ADS)
Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro
2018-06-01
The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.
Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng
2017-08-09
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...
2017-05-18
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
QED effects induced harmonics generation in extreme intense laser foil interaction
NASA Astrophysics Data System (ADS)
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.
2004-11-01
Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).
Coplanar Waveguide Radial Line Double Stub and Application to Filter Circuits
NASA Technical Reports Server (NTRS)
Simons, R. N.; Taub, S. R.
1993-01-01
Coplanar waveguide (CPW) and grounded coplanar waveguide (GCPW) radial line double stub resonators are experimentally characterized with respect to stub radius and sector angle. A simple closed-form design equation, which predicts the resonance radius of the stub, is presented. Use of a double stub resonator as a lowpass filter or as a harmonic suppression filter is demonstrated, and design rules are given.
Goldstone STDN 9-meter radiation test
NASA Astrophysics Data System (ADS)
Blain, J. R.
1981-12-01
The Goldstone spaceflight tracking and data network (STDN) 9-meter tests were conducted from February through July 1981 to characterize the near-field radiation patterns of the S-band and fourth harmonic frequency emissions. The test configurations and results are presented with graphs of the antenna patterns. The tests indicated that X-band leakage may be suppressed to levels of approximately -190 dBm/sq cm at 200 meters.
Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid
2013-09-01
electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is
Contribution of ASDEX Upgrade to disruption studies for ITER
NASA Astrophysics Data System (ADS)
Pautasso, G.; Zhang, Y.; Reiter, B.; Giannone, L.; Gruber, O.; Herrmann, A.; Kardaun, O.; Khayrutdinov, K. K.; Lukash, V. E.; Maraschek, M.; Mlynek, A.; Nakamura, Y.; Schneider, W.; Sias, G.; Sugihara, M.; ASDEX Upgrade Team
2011-10-01
This paper describes the most recent contributions of ASDEX Upgrade to ITER in the field of disruption studies. (1) The ITER specifications for the halo current magnitude are based on data collected from several tokamaks and summarized in the plot of the toroidal peaking factor versus the maximum halo current fraction. Even if the maximum halo current in ASDEX Upgrade reaches 50% of the plasma current, the duration of this maximum lasts a fraction of a ms. (2) Long-lasting asymmetries of the halo current are rare and do not give rise to a large asymmetric component of the mechanical forces on the machine. Differently from JET, these asymmetries are neither locked nor exhibit a stationary harmonic structure. (3) Recent work on disruption prediction has concentrated on the search for a simple function of the most relevant plasma parameters, which is able to discriminate between the safe and pre-disruption phases of a discharge. For this purpose, the disruptions of the last four years have been classified into groups and then discriminant analysis is used to select the most significant variables and to derive the discriminant function. (4) The attainment of the critical density for the collisional suppression of the runaway electrons seems to be technically and physically possible on our medium size tokamak. The CO2 interferometer and the AXUV diagnostic provide information on the highly 3D impurity transport process during the whole plasma quench.
Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner
2014-01-01
Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices.
Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner
2014-01-01
Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices. PMID:24660020
Higher harmonics generation in relativistic electron beam with virtual cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.
2014-09-15
The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in themore » spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de
2016-01-28
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show howmore » adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.« less
2017-06-01
dc converter-based test system was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic...the inclusion of distorted waveforms obtained by varying filter capacitance. At higher frequencies, the Metglas cores were found to exhibit greater...was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic inductance of the test system. Both
Control Strategy of Active Power Filter Based on Modular Multilevel Converter
NASA Astrophysics Data System (ADS)
Xie, Xifeng
2018-03-01
To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.
Effect of Solid-State Power-Converter Harmonics on Electric-Power-Supply Systems
DOT National Transportation Integrated Search
1973-03-01
The United States utility industry has not set suitable standards, other than TIF (Telephone Interference Factor), for controlling the design of solid-state wayside and on-board power-conversion equipment, to limit the harmonic currents and voltages ...
NASA Astrophysics Data System (ADS)
Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.
2017-09-01
The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.
Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.
2016-12-01
The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.
Yasuda, K; Tsukazaki, A; Yoshimi, R; Kondou, K; Takahashi, K S; Otani, Y; Kawasaki, M; Tokura, Y
2017-09-29
The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5×10^{10} A m^{-2}, showing its potential as a spintronic material.
Electron Cyclotron Radiation, Related Power Loss, and Passive Current Drive in Tokamaks: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidone, Ignazio; Giruzzi, Gerardo; Granata, Giovanni
2001-01-15
A critical review on emission of weakly damped, high-harmonics electron cyclotron radiation, the related synchrotron power loss, and passive current drive in tokamaks with a fish-scale first wall is presented. First, the properties of overlapping harmonics are discussed using general analytical formulas and numerical applications. Next, the radiation power loss and efficiency of passive current drive in tokamak reactors are derived for the asymmetric fish-scale first wall. The radiation power loss is determined by the direction-averaged reflection coefficient {sigma}{sub 0} and the passive current drive by the differential reflectivity {delta}{sigma}/(1 - {sigma}{sub 0}). Finally, the problem of experimental investigations ofmore » the high harmonics radiation spectra, of {sigma}{sub 0} and {delta}{sigma}/(1 - {sigma}{sub 0}) in existing and next-step tokamaks, is discussed. Accurate measurements of the radiation spectra and the fish-scale reflectivity can be performed at arbitrary electron temperature using a partial fish-scale structure located near the tokamak equatorial plane.« less
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.
1996-11-19
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.
Coding strategies for cochlear implants under adverse environments
NASA Astrophysics Data System (ADS)
Tahmina, Qudsia
Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise.
NASA Astrophysics Data System (ADS)
Zhou, D. F.; Li, J.; Hansen, C. H.
2011-11-01
Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.
Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens
2015-01-01
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang
2015-08-15
The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)
NASA Astrophysics Data System (ADS)
Kim, Ki-Yong
2009-05-01
The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
Polarization control of high order harmonics in the EUV photon energy range.
Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe
2011-02-28
We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.
High-harmonic generation in amorphous solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Yin, Yanchun; Wu, Yi
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-harmonic generation in amorphous solids
You, Yong Sing; Yin, Yanchun; Wu, Yi; ...
2017-09-28
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
Sun, Weifang; Yao, Bin; He, Yuchao; Zeng, Nianyin; He, Wangpeng
2017-01-01
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages. PMID:28792453
Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu
2015-06-29
Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less
Unity power factor switching regulator
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1983-01-01
A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.
Control of edge localized modes by pedestal deposited impurity in the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Zhang, Y. P.; Mazon, D.; Zou, X. L.; Zhong, W. L.; Gao, J. M.; Zhang, K.; Sun, P.; Dong, C. F.; Cui, Z. Y.; Liu, Yi; Shi, Z. B.; Yu, D. L.; Cheng, J.; Jiang, M.; Xu, J. Q.; Isobe, M.; Xiao, G. L.; Chen, W.; Song, S. D.; Bai, X. Y.; Zhang, P. F.; Yuan, G. L.; Ji, X. Q.; Li, Y. G.; Zhou, Y.; Delpech, L.; Ekedahl, A.; Giruzzi, G.; Hoang, T.; Peysson, Y.; Song, X. M.; Song, X. Y.; Li, X.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Xu, M.; Duan, X. R.; Liu, Y.; the HL-2A Team
2018-04-01
Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling-Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
NASA Astrophysics Data System (ADS)
Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława
2018-04-01
The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.
A possible upgrade of FLASH for harmonic lasing down to 1.3 nm
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2013-07-01
We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1% (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 1031 photons/(s mrad2 mm2 0.1% BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.
Bates, Mary E; Simmons, James A
2010-08-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1 approximately 55-22 kHz;FM2 approximately 105-45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-micros delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 micros counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter.
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar
Bates, Mary E.; Simmons, James A.
2011-01-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.
Bates, Mary E; Simmons, James A
2011-02-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.
Optimal filter bandwidth for pulse oximetry
NASA Astrophysics Data System (ADS)
Stuban, Norbert; Niwayama, Masatsugu
2012-10-01
Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.
Optimal filter bandwidth for pulse oximetry.
Stuban, Norbert; Niwayama, Masatsugu
2012-10-01
Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.
NASA Astrophysics Data System (ADS)
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
Molecular wires acting as quantum heat ratchets.
Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter
2009-12-01
We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances
Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504
NASA Technical Reports Server (NTRS)
Piziali, R. A.; Trenka, A. R.
1974-01-01
The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.
NASA Astrophysics Data System (ADS)
Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.
2017-12-01
When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.
Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.
All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect
NASA Astrophysics Data System (ADS)
Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.
2018-05-01
Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.
2013-03-01
acquisition DC Direct current DHPC Discrete harmonic plant compensation DLMs Dorsal longitudinal muscles DOE Design of experiments DOF Degrees of...nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...and discrete harmonic plant compensation (DHPC) to manipulate the wings of the FWMAV. A clear understanding of what research has been done in all of
Shaping and timing gradient pulses to reduce MRI acoustic noise.
Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M
2010-08-01
A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.
Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems
NASA Astrophysics Data System (ADS)
Zieve, Peter; Ng, James; Fiedberg, Robert
1991-10-01
The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.
Feed-forward control of gear mesh vibration using piezoelectric actuators
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin
1994-01-01
This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.
Design of weak link channel-cut crystals for fast QEXAFS monochromators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polheim, O. von, E-mail: vonpolheim@uni-wuppertal.de; Müller, O.; Lützenkirchen-Hecht, D.
2016-07-27
A weak link channel-cut crystal, optimized for dedicated Quick EXAFS monochromators and measurements, was designed using finite element analysis. This channel-cut crystal offers precise detuning capabilities to enable suppression of higher harmonics in the virtually monochromatic beam. It was optimized to keep the detuning stable, withstanding the mechanical load, which occurs during oscillations with up to 50 Hz. First tests at DELTA (Dortmund, Germany), proved the design.
Bernstein wave aided laser third harmonic generation in a plasma
NASA Astrophysics Data System (ADS)
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Gartner, J.W.; Yost, B.T.
1988-01-01
Current meter data collected at 11 stations and water level data collected at one station in Suisun and San Pablo Bays, California, in 1986 are compiled in this report. Current-meter measurements include current speed and direction, and water temperature and salinity (computed from temperature and conductivity). For each of the 19 current-meter records, data are presented in two forms. These are: (1) results of harmonic analysis; and (2) plots of tidal current speed and direction versus time and plots of temperature and salinity versus time. Spatial distribution of the properties of tidal currents are given in graphic form. In addition, Eulerian residual currents have been compiled by using a vector-averaging technique. Water level data are presented in the form of a time-series plot and the results of harmonic analysis. (USGS)
Quadratic Optimization in the Problems of Active Control of Sound
NASA Technical Reports Server (NTRS)
Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source.
Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal R; Qian, Xifeng; Goodhue, William D
2012-12-03
Frequency stabilization of a THz quantum cascade laser (QCL) to the harmonic of a microwave source has been accomplished using a Schottky diode waveguide mixer designed for harmonic mixing. The 2.32 THz, 1.0 milliwatt CW QCL is coupled into the signal port of the mixer and a 110 GHz signal, derived from a harmonic of a microwave synthesizer, is coupled into the IF port. The difference frequency between the 21st harmonic of 110 GHz and the QCL is used in a discriminator to adjust the QCL bias current to stabilize the frequency. The short-term frequency jitter is reduced from 550 kHz to 4.5 kHz (FWHM) and the long-term frequency drift is eliminated. This performance is compared to that of several other THz QCL frequency stabilization techniques.
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
NASA Astrophysics Data System (ADS)
Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.
2012-09-01
We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.
Beckwith, Curt G; Kuo, Irene; Fredericksen, Rob J; Brinkley-Rubinstein, Lauren; Cunningham, William E; Springer, Sandra A; Loeliger, Kelsey B; Franks, Julie; Christopoulos, Katerina; Lorvick, Jennifer; Kahana, Shoshana Y; Young, Rebekah; Seal, David W; Zawitz, Chad; Delaney, Joseph A; Crane, Heidi M; Biggs, Mary L
2018-01-01
Transgender persons are highly victimized, marginalized, disproportionately experience incarceration, and have alarmingly increased rates of HIV infection compared to cis-gender persons. Few studies have examined the HIV care continuum outcomes among transgender women (TW), particularly TW who are involved with the criminal justice (CJ) system. To improve our understanding of HIV care continuum outcomes and risk behaviors among HIV-infected TW who are involved with the CJ system, we analyzed data from the National Institute on Drug Abuse-supported Seek, Test, Treat, Retain (STTR) Data Harmonization Initiative. Baseline data were pooled and analyzed from three U.S. STTR studies to examine HIV risk and care continuum indicators among CJ-involved HIV-infected TW compared to cisgender men (CM), matched on age (within 5 years) and study at a ratio of 1:5. Eighty-eight TW and 440 CM were included in the study. Among matched participants, TW were more likely to report crack and cocaine use compared to CM (40%,16% respectively, p<0.001); both TW and CM reported high rates of condomless sex (58%, 64%, respectively); TW were more likely than CM to have more than one sexual partner (OR = 2.9, 95% CI: 1.6, 5.2; p<0.001) and have engaged in exchange sex (OR = 3.9, 95% CI: 2.3, 6.6; p<0.001). There were no significant differences between TW and CM in the percentage currently taking ART (52%, 49%, respectively), the mean percent adherence to ART (77% for both groups), and the proportion who achieved viral suppression (61%, 58%, respectively). HIV-infected CJ-involved TW and CM had similar use of ART and viral suppression but TW were more likely than matched CM to engage in exchange sex, have multiple sexual partners, and use crack/cocaine. TW and CM had similarly high rates of condomless sex and use of other drugs. TW require tailored risk reduction interventions, however both CJ-involved TW and CM require focused attention to reduce HIV risk and improve HIV continuum of care outcomes.
NASA Astrophysics Data System (ADS)
Naka, Yoshitsugu; Tsuboi, Ken-Ichiro; Kametani, Yukinori; Fukagata, Koji; Obi, Shinnosuke
We have performed experiments in a turbulent mixing layer with periodic forcing introduced by a Piezo Film Actuator (PFA). Three different lengths of PFAs have been used, and the effects of various combinations of forcing amplitudes and frequencies are investigated. The forcing at the first and second sub-harmonic frequencies against the natural frequency enhances the development of the thickness of the mixing layer: the mixing layer spreads due to the forcing. On the other hand, the forcing near the natural frequency suppresses the development: the mean velocity gradient becomes steeper than the no control case. The vector pattern of the periodic velocity components indicated the formation of the vortical structure. By forcing at the natural and its first sub-harmonic frequencies, two counter-rotating vortices are clearly observed in one period of forcing. By forcing at second sub-harmonic frequency, the vortical structure is found only in the downstream region. The distribution of the periodic Reynolds shear stress significantly varies with the forcing frequency and it takes a positive value when forcing occurs near the natural frequency. However, the total value of the Reynolds shear stress remains negative due to the contribution of the turbulent components.
Nonlinear ultrasonic imaging with X wave
NASA Astrophysics Data System (ADS)
Du, Hongwei; Lu, Wei; Feng, Huanqing
2009-10-01
X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.
Harmonically mode-locked erbium-doped waveguide laser
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.
2004-08-01
The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-04-01
The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
Single-stage three-phase boost power factor correction circuit for AC-DC converter
NASA Astrophysics Data System (ADS)
Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.
2018-01-01
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.
Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697
Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.
Analytical and experimental study of high phase order induction motors
NASA Technical Reports Server (NTRS)
Klingshirn, Eugene A.
1989-01-01
Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.
Magnetic-Field-Response Measurement-Acquisition System
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2006-01-01
A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
NASA Astrophysics Data System (ADS)
Huo, Peng; Gajdošová, Katarína; Jia, Jiangyong; Zhou, You
2018-02-01
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC (n , m), in pp and p+Pb collisions, and interpreted the non-zero SC (n , m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges. We argue that the reanalysis of SC (n , m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.
Clutter suppression and classification using twin inverted pulse sonar in ship wakes.
Leighton, T G; Finfer, D C; Chua, G H; White, P R; Dix, J K
2011-11-01
Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).
Higher Harmonic Control for Tiltrotor Vibration Reduction
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5- scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing 1P and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasion-al on-line recalculations of the system transfer matrix.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
...), invites public comments concerning the harmonization of Cost Accounting Standards 412 and 413 with the... cost that is based on currently accrued benefits that have been valued using corporate bond rates... that avoid undue cost or contribution volatility. The Board agrees with the public comments that since...
Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens
2015-01-01
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications. PMID:25885290
NASA Astrophysics Data System (ADS)
Svinin, V. M.; Savilov, A. V.
2018-03-01
The article describes the results of experimental studies on the effects of variation type for variable teeth pitches on low-rigidity workpiece chatter suppression efficiency in a feed direction and in a direction of the normal to the machined surface. Mill operation performance was identified by comparing the amplitudes of dominant chatter harmonics using constant and variable teeth pitches. The following variable pitch formation variants were studied: alternative, linear rising, and linear rising falling. The angle difference of adjacent teeth pitches ranged from 0 to 10°, from 5 to 8° and from 5 to 10° with interval of 1°. The experiments showed that for all variants, machining dynamics performance resulted from the difference of adjacent pitches corresponding to a half the chatter wavelength along the cutting surface. The alternative nature of a variable teeth pitch is most efficient as it almost completely suppresses the chatters. Theoretical explanations of the results are presented
Analysis of the harmonics and power-factor effects at a utility-inertied photovoltaic system
NASA Astrophysics Data System (ADS)
Campen, G. L.
The harmonics and power factor characteristics and effects of a single residential photovoltaic (PV) installation using a line commutated inverter are outlined. The data were taken during a 5 day measurement program at a prototype residential PV installation in Arizona. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system. A candidate method of modeling the installation for computer studies of larger concentrations is given.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
Bates, Mary E.; Simmons, James A.
2010-01-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1∼55–22 kHz;FM2∼105–45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-μs delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 μs counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter. PMID:20707464
NASA Astrophysics Data System (ADS)
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, F.; Ruiz, C.; Becker, A.
We study the suppression of reflections in the numerical simulation of the time-dependent Schroedinger equation for strong-field problems on a grid using exterior complex scaling (ECS) as an absorbing boundary condition. It is shown that the ECS method can be applied in both the length and the velocity gauge as long as appropriate approximations are applied in the ECS transformation of the electron-field coupling. It is found that the ECS method improves the suppression of reflection as compared to the conventional masking function technique in typical simulations of atoms exposed to an intense laser pulse. Finally, we demonstrate the advantagemore » of the ECS technique to avoid unphysical artifacts in the evaluation of high harmonic spectra.« less
Suppression of Magnetic Order before the Superconducting Dome in MnP
NASA Astrophysics Data System (ADS)
Yano, Shin-ichiro; Lançon, Diane; Rønnow, Henrik M.; Hansen, Thomas C.; Ressouche, Eric; Qureshi, Navid; Ouladdiaf, Bachir; Gardner, Jason S.
2018-02-01
We have performed neutron diffraction experiments on the manganese superconductor, MnP, under applied pressure. Higher harmonics of the previously reported double helix (2δ and 3δ) at ambient pressure were observed and a new magnetic phases was discovered as hydrostatic pressure was applied to a polycrystalline sample below the pressure required to induce superconductivity. The double helix magnetic structure is suppressed by 0.7 GPa. A new incommensurate magnetic structure with propagation vector ˜ (0.25,0.25,0.125) was found at 1.5 GPa. The application of higher pressures results in the quenching of the incommensurate phase and broad, diffuse magnetic scattering develops before the superconducting phase. Single crystal studies complement the polycrystalline data confirming the magnetic propagation vector in the low pressure phase.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Nomura, M.; Shimada, T.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.; Schnase, A.
2016-11-01
An rf cavity in the J-PARC RCS not only covers the frequency range of a fundamental acceleration pattern but also generates multi-harmonic rf voltage because it has a broadband impedance. However, analyzing the vacuum tube operation in the case of multi-harmonics is very complicated because many variables must be solved in a self-consistent manner. We developed a method to analyze the vacuum tube operation using a well-known formula and which includes the dependence on anode current for some variables. The calculation method is verified with beam tests, and the results indicate that it is efficient under condition of multi-harmonics with a heavy beam loading effect.
High performance ripple feedback for the buck unity-power-factor rectifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Y.W.; King, R.J.
1995-03-01
The buck unity-power-factor rectifier has harmonic-free input current with complete load regulation down to zero output voltage. A new ``nonlinear ripple feedback`` is proposed which exactly cancels the spoiling effect of dc-side current ripple on the low-distortion ac line current waveforms, even for large amounts of ripple. This cancellation is independent of operating point and readily implemented with analog hardware, thereby permitting economies in the design of the dc filter while maintaining harmonic-free operation. Both large-signal and incremental analyses of the rectifier are given. Confirming experimental results from a 1-kW 48-V isolated battery charger operating with current-ripple levels ranging frommore » 50% to discontinuous-conduction-mode operation are given.« less
A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Ruxi; Wang, Fei
It is well known that there exist second-order harmonic current and corresponding ripple voltage on dc bus for single phase PWM rectifiers. The low frequency harmonic current is normally filtered using a bulk capacitor in the bus which results in low power density. This paper proposed an active ripple energy storage method that can effectively reduce the energy storage capacitance. The feed-forward control method and design considerations are provided. Simulation and 15 kW experimental results are provided for verification purposes.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.
NASA Astrophysics Data System (ADS)
Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun
2016-03-01
In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification and rotation suppress the generation of ISWs; and the width of ISW crestline generated by K1 tidal harmonic is longer than that by M2 tidal harmonic.
van der Vorm, Lisa N; Hendriks, Jan C M; Laarakkers, Coby M; Klaver, Siem; Armitage, Andrew E; Bamberg, Alison; Geurts-Moespot, Anneke J; Girelli, Domenico; Herkert, Matthias; Itkonen, Outi; Konrad, Robert J; Tomosugi, Naohisa; Westerman, Mark; Bansal, Sukhvinder S; Campostrini, Natascia; Drakesmith, Hal; Fillet, Marianne; Olbina, Gordana; Pasricha, Sant-Rayn; Pitts, Kelly R; Sloan, John H; Tagliaro, Franco; Weykamp, Cas W; Swinkels, Dorine W
2016-07-01
Absolute plasma hepcidin concentrations measured by various procedures differ substantially, complicating interpretation of results and rendering reference intervals method dependent. We investigated the degree of equivalence achievable by harmonization and the identification of a commutable secondary reference material to accomplish this goal. We applied technical procedures to achieve harmonization developed by the Consortium for Harmonization of Clinical Laboratory Results. Eleven plasma hepcidin measurement procedures (5 mass spectrometry based and 6 immunochemical based) quantified native individual plasma samples (n = 32) and native plasma pools (n = 8) to assess analytical performance and current and achievable equivalence. In addition, 8 types of candidate reference materials (3 concentrations each, n = 24) were assessed for their suitability, most notably in terms of commutability, to serve as secondary reference material. Absolute hepcidin values and reproducibility (intrameasurement procedure CVs 2.9%-8.7%) differed substantially between measurement procedures, but all were linear and correlated well. The current equivalence (intermeasurement procedure CV 28.6%) between the methods was mainly attributable to differences in calibration and could thus be improved by harmonization with a common calibrator. Linear regression analysis and standardized residuals showed that a candidate reference material consisting of native lyophilized plasma with cryolyoprotectant was commutable for all measurement procedures. Mathematically simulated harmonization with this calibrator resulted in a maximum achievable equivalence of 7.7%. The secondary reference material identified in this study has the potential to substantially improve equivalence between hepcidin measurement procedures and contributes to the establishment of a traceability chain that will ultimately allow standardization of hepcidin measurement results. © 2016 American Association for Clinical Chemistry.
Methods for reverberation suppression utilizing dual frequency band imaging.
Rau, Jochen M; Måsøy, Svein-Erik; Hansen, Rune; Angelsen, Bjørn; Tangen, Thor Andreas
2013-09-01
Reverberations impair the contrast resolution of diagnostic ultrasound images. Tissue harmonic imaging is a common method to reduce these artifacts, but does not remove all reverberations. Dual frequency band imaging (DBI), utilizing a low frequency pulse which manipulates propagation of the high frequency imaging pulse, has been proposed earlier for reverberation suppression. This article adds two different methods for reverberation suppression with DBI: the delay corrected subtraction (DCS) and the first order content weighting (FOCW) method. Both methods utilize the propagation delay of the imaging pulse of two transmissions with alternating manipulation pressure to extract information about its depth of first scattering. FOCW further utilizes this information to estimate the content of first order scattering in the received signal. Initial evaluation is presented where both methods are applied to simulated and in vivo data. Both methods yield visual and measurable substantial improvement in image contrast. Comparing DCS with FOCW, DCS produces sharper images and retains more details while FOCW achieves best suppression levels and, thus, highest image contrast. The measured improvement in contrast ranges from 8 to 27 dB for DCS and from 4 dB up to the dynamic range for FOCW.
NASA Astrophysics Data System (ADS)
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, A., E-mail: davidsoa@physics.ucla.edu; Tableman, A., E-mail: Tableman@physics.ucla.edu; An, W., E-mail: anweiming@ucla.edu
2015-01-15
For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r–z grid and a procedure for calculating the complexmore » current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r–z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.« less
Promoting clinical and laboratory interaction by harmonization.
Plebani, Mario; Panteghini, Mauro
2014-05-15
The lack of interchangeable results in current practice among clinical laboratories has underpinned greater attention to standardization and harmonization projects. Although the focus was mainly on the standardization and harmonization of measurement procedures and their results, the scope of harmonization goes beyond method and analytical results: it includes all other aspects of laboratory testing, including terminology and units, report formats, reference limits and decision thresholds, as well as test profiles and criteria for the interpretation of results. In particular, as evidence collected in last decades demonstrates that pre-pre- and post-post-analytical steps are more vulnerable to errors, harmonization initiatives should be performed to improve procedures and processes at the laboratory-clinical interface. Managing upstream demand, down-stream interpretation of laboratory results, and subsequent appropriate action through close relationships between laboratorians and clinicians remains a crucial issue of the laboratory testing process. Therefore, initiatives to improve test demand management from one hand and to harmonize procedures to improve physicians' acknowledgment of laboratory data and their interpretation from the other hand are needed in order to assure quality and safety in the total testing process. © 2013.
2001-09-01
starting from the energy approach, but unfortunately the geometry assumed in their work does not apply to the hexapods available at the Satellite...harmonics multiple of 1Hz, which was the difference between the two frequencies. The two assigned frequencies were actually suppressed, but the energy ...Audio Processing, Vol. 3, No. 3, May 1995, pp. 217–222. [20] Li, D. and Salcudean, S. E., “Modeling, Simulation and Control of a Hidraulic Stewart Plat
Enhancement and Suppression of Transmission in 3-D Nanoslits Arrays with 1- and 2-D Periodicities
2011-01-01
Technologies Group, 410 Jan Davis Dr., Huntsville, AL 35806 M. Scalora Charles M. Bowden Research Center AMSRD-AMR-WS-ST, RDECOM, Redstone Arsenal... Scalora , M., “Second harmonic generation from nanoslits in metal substrates: applications to palladium-based H2 sensor,” J. Nanophotonics 2, 021851 (2008...5] Vincenti, M.A., D’Orazio, A., Buncick, M., Akozbek, N., Bloemer, M.J. and Scalora , M., "Beam steering from resonant sub-wavelength slits
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced motions and free-to-roll motions, including the active suppression of the wing-rock type phenomenon. The conical Euler methodology developed is directly extend able to three-dimensional calculations.
High-frequency AC/DC converter with unity power factor and minimum harmonic distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernekinch, E.R.
1987-01-01
The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimentalmore » results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.« less
Power conditioning unit for photovoltaic power systems
NASA Astrophysics Data System (ADS)
Beghin, G.; Nguyen Phuoc, V. T.
Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.
A framework to analyze the stochastic harmonics and resonance of wind energy grid interconnection
Cho, Youngho; Lee, Choongman; Hur, Kyeon; ...
2016-08-31
This study addresses a modeling and analysis methodology for investigating the stochastic harmonics and resonance concerns of wind power plants (WPPs). Wideband harmonics from modern wind turbines are observed to be stochastic, associated with real power production, and they may adversely interact with the grid impedance and cause unexpected harmonic resonance if not comprehensively addressed in the planning and commissioning of the WPPs. These issues should become more critical as wind penetration levels increase. We thus propose a planning study framework comprising the following functional steps: First, the best-fitted probability density functions (PDFs) of the harmonic components of interest inmore » the frequency domain are determined. In operations planning, maximum likelihood estimations followed by a chi-square test are used once field measurements or manufacturers' data are available. Second, harmonic currents from the WPP are represented by randomly-generating harmonic components based on their PDFs (frequency spectrum) and then synthesized for time-domain simulations via inverse Fourier transform. Finally, we conduct a comprehensive assessment by including the impacts of feeder configurations, harmonic filters, and the variability of parameters. We demonstrate the efficacy of the proposed study approach for a 100-MW offshore WPP consisting of 20 units of 5-MW full-converter turbines, a realistic benchmark system adapted from a WPP under development in Korea, and discuss lessons learned through this research.« less
Critical current density and third-harmonic voltage in superconducting films
NASA Astrophysics Data System (ADS)
Mawatari, Yasunori; Yamasaki, Hirofumi; Nakagawa, Yoshihiko
2002-09-01
When a sinusoidal drive current I0cos ωt flows in a small coil close to the surface of a superconducting film, third-harmonic voltage V3 cos(3ωt+θ3) is induced in the coil if the film causes a nonlinear response. We have developed an approximate theoretical method yielding the relationships among I0, V3, and θ3, thus providing the scientific basis for a widely used inductive method for measuring the critical current density Jc in large-area superconducting films. Our results show that V3 is near zero when I0 is smaller than a threshold value Ic0∝Jcd, where d is the film thickness. When I0>Ic0, on the other hand, the third-harmonic voltage is expressed as V3 exp(-iθ3)=ωIc0G(I0/Ic0), where G(x) is a scaling function determined by the configuration of the coil. We demonstrate the scaling law of V3/Ic0 vs I0/Ic0 in a YBa2Cu3O7-δ film.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
NASA Astrophysics Data System (ADS)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul; Dahlin, Torleif; Auken, Esben
2016-11-01
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. Two major limitations restrict the extraction of the spectral information of TDIP data in the field: (i) the difficulty of acquiring reliable early-time measurements in the millisecond range and (ii) the self-potential background drift in the measured potentials distorting the shape of the late-time IP responses, in the second range. Recent developments in TDIP acquisition equipment have given access to full-waveform recordings of measured potentials and transmitted current, opening for a breakthrough in data processing. For measuring at early times, we developed a new method for removing the significant noise from power lines contained in the data through a model-based approach, localizing the fundamental frequency of the power-line signal in the full-waveform IP recordings. By this, we cancel both the fundamental signal and its harmonics. Furthermore, an efficient processing scheme for identifying and removing spikes in TDIP data was developed. The noise cancellation and the de-spiking allow the use of earlier and narrower gates, down to a few milliseconds after the current turn-off. In addition, tapered windows are used in the final gating of IP data, allowing the use of wider and overlapping gates for higher noise suppression with minimal distortion of the signal. For measuring at late times, we have developed an algorithm for removal of the self-potential drift. Usually constant or linear drift-removal algorithms are used, but these algorithms often fail in removing the background potentials present when the electrodes used for potential readings are previously used for current injection, also for simple contact resistance measurements. We developed a drift-removal scheme that models the polarization effect and efficiently allows for preserving the shape of the IP responses at late times. Uncertainty estimates are essential in the inversion of IP data. Therefore, in the final step of the data processing, we estimate the data standard deviation based on the data variability within the IP gates and the misfit of the background drift removal Overall, the removal of harmonic noise, spikes, self-potential drift, tapered windowing and the uncertainty estimation allows for doubling the usable range of TDIP data to almost four decades in time (corresponding to four decades in frequency), which will significantly advance the applicability of the IP method.
Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang
2017-01-15
A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%.
Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang
2017-01-01
A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%. PMID:28098842
Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo
2014-12-01
Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.
A description of the tides in the Eastern North Atlantic
NASA Astrophysics Data System (ADS)
Fanjul, Enrique Alvarez; Gómez, Begoña Pérez; Sánchez-Arévalo, Ignacio Rodríguez
A description of the Eastern North Atlantic tidal dynamics (in a region spanning from 20°N to 48°N in latitude and from 34°W to 0° in longitude) is obtained by means of new in situ measurements and numerical modelling based on TOPEX/POSEIDON-derived data sets. The main source of measurements is the tide gauge network REDMAR (RED de MAReógrafos de Puertos del Estado), operative since July 1992 and managed by Clima Marítimo (Puertos del Estado). Results derived from the harmonic analysis of the first years of measurements are presented and compared with model results. In order to obtain a global picture of the tides in the region, a large compilation of harmonic constants obtained from other institutes is included. The availability of new TOPEX/POSEIDON-derived harmonic constants data sets provides a chance to include the benefits derived from satellite altimetry in high resolution regional applications of numerical models. Richard Ray's tidal model (Ray et al., 1994), based on a response type tidal analysis of TOPEX/POSEIDON data, was employed within a model of the studied area. The numerical model employed is HAMSOM, a 3-D finite difference code developed both by the Institut für Meereskunde (Hamburg University) and Clima Marítimo. Results from simulations of seven major harmonics are presented, providing a comprehensive view of tidal dynamics, including current information. The results of tidal simulations show good agreement between semidiurnal harmonic components and the values measured by both coastal and pelagic tidal gauges and by current meters. The modelled diurnal constituents show larger relative differences with measurements than semidiurnal harmonics, especially concerning the phase lags. The non-linear transfer of energy from semidiurnal to higher order harmonics, such as M 4 and M 6, was mapped. Those transfers were found to be important only in two areas: the French continental shelf in the Bay of Biscay and the widest part of the African shelf, south of Cabo Bojador.
Instabilities of conducting fluid flows in cylindrical shells under external forcing
NASA Astrophysics Data System (ADS)
Burguete, Javier; Miranda, Montserrat
2010-11-01
Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).
Flux control and one-hundred and eighty degree core systems
Hsu, John S
2012-11-27
A two-phase or four-phase electric machine includes a first stator part and a second stator part disposed about ninety electrical degrees apart. Stator pole parts are positioned near the first stator part and the second stator part. An injector injects a third-harmonic frequency current that is separate from and not produced by the fundamental current driving the first stator part and the second stator part. The electric angular speed of the third-harmonic rotating field comprises .theta. ##EQU00001## where p comprises the number of pole pairs, .theta. comprises a mechanical angle and t comprise time in seconds.
NASA Technical Reports Server (NTRS)
Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.
1992-01-01
Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.
Improved Continuous-Time Higher Harmonic Control Using Hinfinity Methods
NASA Astrophysics Data System (ADS)
Fan, Frank H.
The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently, and maneuver in confined space. This versatility is enabled by the main rotor, which also causes undesired harmonic vibration during operation. This unwanted vibration has a negative impact on the practicality of the helicopter and also increases its operational cost. Passive control techniques have been applied to helicopter vibration suppression, but these methods are generally heavy and are not robust to changes in operating conditions. Feedback control offers the advantages of robustness and potentially higher performance over passive control techniques, and amongst the various feedback schemes, Shaw's higher harmonic control algorithm has been shown to be an effective method for attenuating harmonic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm is further developed to achieve improved performance. One goal in this thesis is to determine the importance of periodicity in the helicopter rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and simulation results, we conclude the helicopter rotor can be modeled reasonably well as linear and time-invariant for control design purposes. Modeling the helicopter rotor as linear time-invariant allows us to apply linear control theory concepts to the higher harmonic control problem. Another goal in this thesis is to find the limits of performance in harmonic disturbance rejection. To achieve this goal, we first define the metrics to measure the performance of the controller in terms of response speed and robustness to changes in the plant dynamics. The performance metrics are incorporated into an Hinfinity control problem. For a given plant, the resulting Hinfinity controller achieves the maximum performance, thus allowing us to identify the performance limitation in harmonic disturbance rejection. However, the Hinfinity controllers are of high order, and may have unstable poles, leading us to develop a design method to generate stable, fixed-order, and high performance controllers. Both the Hinfinity and the fixed-order controllers are designed for constant flight conditions. A gain-scheduled control law is used to reduce the vibration throughout the flight envelope. The gain-scheduling is accomplished by blending the outputs from fixed-order controllers designed for different flight conditions. The structure of the fixed-order controller allows the usage of a previously developed anti-windup scheme, and the blending function results in a bumpless full flight envelope control law. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing
2014-02-01
Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.
Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F
2015-07-01
In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Electroencephalography in ellipsoidal geometry with fourth-order harmonics.
Alcocer-Sosa, M; Gutierrez, D
2016-08-01
We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
Diffraction of Harmonic Flexural Waves in a Cracked Elastic Plate Carrying Electrical Current
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Hasanyan, Davresh; Librescu, iviu; Qin, Zhanming
2005-01-01
The scattering effect of harmonic flexural waves at a through crack in an elastic plate carrying electrical current is investigated. In this context, the Kirchhoffean bending plate theory is extended as to include magnetoelastic interactions. An incident wave giving rise to bending moments symmetric about the longitudinal z-axis of the crack is applied. Fourier transform technique reduces the problem to dual integral equations, which are then cast to a system of two singular integral equations. Efficient numerical computation is implemented to get the bending moment intensity factor for arbitrary frequency of the incident wave and of arbitrary electrical current intensity. The asymptotic behaviour of the bending moment intensity factor is analysed and parametric studies are conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paap, G.C.
1991-03-01
From general equations which describe the transient electromechanical behavior of the asynchronous squirrel-cage motor, and which include the influence of space harmonics and mutual slotting, simplified models are derived and compared. The models derived are demonstrated in examples where special attention is paid to the influence of the place of the harmonics in the mutual inductance matrix and the influence of mutual slotting. Further, the steady-state equations are derived and the back-transformation for the stator and rotor currents is given. One example is compared with the result of measurements.
Improved definition of crustal magnetic anomalies for MAGSAT data
NASA Technical Reports Server (NTRS)
Brown, R. D.; Frawley, J. F.; Davis, W. M.; Ray, R. D.; Didwall, E.; Regan, R. D. (Principal Investigator)
1982-01-01
The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component.
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
Optical Manifestations of the Electron-Electron Interaction
NASA Astrophysics Data System (ADS)
Portengen, Taco
1995-01-01
In this thesis, two optical manifestations of the electron-electron interaction are studied: the Fermi -edge singularity in doped quantum wells and quantum wires, and second-harmonic generation in mixed-valent compounds. First, we construct a theory of the Fermi-edge singularity that can systematically account for the finite mass of a hole created in the valence subband of a quantum well or quantum wire. The dynamical response for finite hole mass depends crucially on the dimensionality of the Fermi sea. Whereas in three dimensions the infrared divergence is suppressed, in two dimensions a one-over-square-root singularity survives, while in one dimension the spectrum is even more singular with recoil than without recoil. This explains the large optical singularities observed in quantum wires. Correlations change the prefactor, but not the exponent of the threshold behaviour in two and in three dimensions, while in one dimension, they affect neither the prefactor nor the exponent. Second, we apply our theory to the Frohlich polaron, a manifestation of the electron-phonon rather than the electron-electron interaction. The new method of calculating the Green's function removes unphysical features of the conventional cumulant expansion that had remained unnoticed in the literature up to now. Third, in an effort to investigate the impact of coherence on optical properties, we calculate the linear and nonlinear optical characteristics of mixed-valent compounds. Second -harmonic generation can only occur for solutions of the theoretical Falicov-Kimball model that have a built-in coherence between the itinerant d-electrons and localized f-holes. By contrast, second-harmonic generation cannot occur for solutions with f-site occupation as a good quantum number. The interaction between optically created quasiparticles leads to a threshold singularity in the absorption spectrum, and greatly enhances the second-harmonic conversion efficiency at half the gap frequency. As an experimental test of coherence we propose the measurement of the second-harmonic susceptibility of SmB_6..
Thermal transistor behavior of a harmonic chain
NASA Astrophysics Data System (ADS)
Kim, Sangrak
2017-09-01
Thermal transistor behavior of a harmonic chain with three heat reservoirs is explicitly analyzed. Temperature profile and heat currents of the rather general system are formulated and then heat currents for the simplest system are exactly calculated. The matrix connecting the three temperatures of the reservoirs and those of the particles comprises a stochastic matrix. The ratios R 1 and R 2 between heat currents, characterizing thermal signals can be expressed in terms of two external variables and two material parameters. It is shown that the ratios R 1 and R 2 can have wide range of real values. The thermal system shows a thermal transistor behavior such as the amplification of heat current by appropriately controlling the two variables and two parameters. We explicitly demonstrate the characteristics and mechanisms of thermal transistor with the simplest model.
Application of a range of turbulence energy models to the determination of M4 tidal current profiles
NASA Astrophysics Data System (ADS)
Xing, Jiuxing; Davies, Alan M.
1996-04-01
A fully nonlinear, three-dimensional hydrodynamic model of the Irish Sea, using a range of turbulence energy sub-models, is used to examine the influence of the turbulence closure method upon the vertical variation of the current profile of the fundamental and higher harmonics of the tide in the region. Computed tidal current profiles are compared with previous calculations using a spectral model with eddy viscosity related to the flow field. The model has a sufficiently fine grid to resolve the advection terms, in particular the advection of turbulence and momentum. Calculations show that the advection of turbulence energy does not have a significant influence upon the current profile of either the fundamental or higher harmonic of the tide, although the advection of momentum is important in the region of headlands. The simplification of the advective terms by only including them in their vertically integrated form does not appear to make a significant difference to current profiles, but does reduce the computational effort by a significant amount. Computed current profiles both for the fundamental and the higher harmonic determined with a prognostic equation for turbulence and an algebraic mixing length formula, are as accurate as those determined with a two prognostic equation model (the so called q2- q2l model), provided the mixing length is specified correctly. A simple, flow-dependent eddy viscosity with a parabolic variation of viscosity also performs equally well.
NASA Astrophysics Data System (ADS)
Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping
2013-01-01
Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong; ...
2017-12-18
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less
Resonant magnetic perturbation effect on tearing mode dynamics
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.
2010-03-01
The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.
NASA Astrophysics Data System (ADS)
Marengo, Edwin A.; Khodja, Mohamed R.
2006-09-01
The nonrelativistic Larmor radiation formula, giving the power radiated by an accelerated charged point particle, is generalized for a spatially extended particle in the context of the classical charged harmonic oscillator. The particle is modeled as a spherically symmetric rigid charge distribution that possesses both translational and spinning degrees of freedom. The power spectrum obtained exhibits a structure that depends on the form factor of the particle, but reduces, in the limit of an infinitesimally small particle and for the charge distributions considered, to Larmor’s familiar result. It is found that for finite-duration small-enough accelerations as well as perpetual uniform accelerations the power spectrum of the spatially extended particle reduces to that of a point particle. It is also found that when the acceleration is violent or the size parameter of the particle is very large compared to the wavelength of the emitted radiation the power spectrum is highly suppressed. Possible applications are discussed.
Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong
Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Hyun-Sang; Jeon, Jae-Hong; Han, Min-Koo
2008-03-01
We have proposed a new poly-Si TFT pixel, which can suppress TFT leakage current effect on active matrix organic diode (AMOLED) displays, by employing a new circular switching TFT and additional signal line for compensating the leakage current. When the leakage current of switching TFT is increased, the VGS of the current driving TFT in the proposed pixel is not altered by the variable data voltages due to the circular switching TFT. Our simulation results show that OLED current variation of the proposed pixel can be suppressed less than 3%, while that of conventional pixel exceeds 30%. The proposed pixel may be suitable to suppress the leakage current effect on AMOLED display.
Active stabilization of ion trap radiofrequency potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.
2016-05-15
We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.
Thermal gradient crystals as tuneable monochromator for high energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruett, U.; Schulte-Schrepping, H.; Heuer, J.
2010-06-23
At the high energy synchrotron radiation beamline BW5 at DORIS III at DESY a new monochromator providing broad energy bandwidth and high reflectivity is in use. On a small 10x10x5 mm{sup 3} silicon crystal scattering at the (311) reflection a thermal gradient is applied, which tunes the scattered energy bandwidth. The (311) reflection strongly suppresses the higher harmonics allowing the use of an image plate detector for crystallography. The monochromator can be used at photon energies above 60 keV.
NASA Astrophysics Data System (ADS)
Omran, Mohamed A.; Mohd, Izzeldin I.; Almelian, Mohamad M.; Ullah Sheikh, Usman; Bofares, Mustafa E. A. A.
2018-04-01
This study presents the capacity of a self-tuning filter based on the synchronous reference frame method with a fuzzy logic controller for the improvement of the efficiency of harmonic suppression of a shunt hybrid active power filter in an unbalanced distorted and un-distorted voltage supply conditions. The simulation results indicated that the filter with a fuzzy logic controller had a good filtering performance in steady and transient states, irrespective of whether the voltage supply is distorted or unbalanced.
ERIC Educational Resources Information Center
Trohler, Daniel
2010-01-01
The general thesis of this paper is that the motives of the currently dominant global educational governance are rooted in a specific cultural milieu in the time of the Cold War, more precisely in the late 1950s, heading to a harmonious world. The more specific thesis is that a series of failures in the achievement of this harmonized globe led to…
Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng
2018-02-19
The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.
Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin
2016-06-01
We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.
Astronomical Context of Georgian Folklore
NASA Astrophysics Data System (ADS)
Jijelava1, Badri; Holbrook, Jarita; Simonia, Irakli
2016-10-01
Objectives: The religious Ancient megalithic monuments are accordingly o/riente to the ancient Gods - The Sun, Moon, luminaries. The aim of this work to research the ethnographic data, current folklore and based on the results, harmonize the ancient Gods and the orientations of the religious megalithic complexes. Methods/Statistical Analysis: We harmonized the ethnographical, folklore and historical information and restoration of ancient celestial sphere (using special astronomy application) and identified the correlations between the some acronychal or helical rising/set of luminaries and orientations of megalithic objects. Such connections are stored in a folklore. Findings: This technique of investigations gives us more clear understanding of ancient universe. Using this method, we can receive additional information about the ancient Gods - Luminaries, clarify current mythology, date the megalithic complex. Application/Improvements: This method of investigation - Harmonization cultural astronomy and archae or astronomy with the archeological investigations will be more fruitful, because it gives us reliable information concerning the ancient culture, ancient religion and ancient people.
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
NASA Astrophysics Data System (ADS)
Kheirabadi, Narjes; McCann, Edward; Fal'ko, Vladimir I.
2018-02-01
We model the magnetic ratchet effect in bilayer graphene in which a dc electric current is produced by an ac electric field of frequency ω in the presence of a steady in-plane magnetic field and inversion-symmetry breaking. In bilayer graphene, the ratchet effect is tunable by an external metallic gate which breaks inversion symmetry. For zero in-plane magnetic field, we show that trigonal warping and inversion-symmetry breaking are able to produce a large dc valley current, but not a nonzero total dc charge current. For the magnetic ratchet in a tilted magnetic field, the perpendicular field component induces cyclotron motion with frequency ωc and we find that the dc current displays cyclotron resonance at ωc=ω , although this peak in the current is actually smaller than its value at ωc=0 . Second harmonic generation, however, is greatly enhanced by resonances at ωc=ω and ωc=2 ω for which the current is generally much larger than at ωc=0 .
Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Hamouda, M.-N. H.; Pierce, G. A.
1981-01-01
A design procedure is presented for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions. The procedure consists of a frequency response analysis for a hingeless rotor blade excited by a harmonic variation of spanwise airload distributions during forward flight, as well as a concentrated load at the tip. The structural modeling of the blade provides for elastic degrees of freedom in flap and lead-lag bending plus torsion. Simple flap and lead-lag pendulums are considered individually. Using a rational order scheme, the general nonlinear equations of motion are linearized. A quasi-steady aerodynamic representation is used in the formation of the airloads. The solution of the system equations derives from their representation as a transfer matrix. The results include the effect of pendulum tuning on the minimization of the hub reactions.
Probing the strongly driven spin-boson model in a superconducting quantum circuit.
Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M
2018-04-11
Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for the design of entangled light-matter states.
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Bae, Hyo-In; Koo, Jeong-Hoi; Kim, Kyung-Soo; Kim, Soohyun
2012-04-01
An adaptive tunable vibration absober based on magnetorheological elastomer (MRE) is designed as an intelligent device for auto-tuning itself to the time-varying harmonic disturbance force to reduce the unwanted vibration of the primary system in the steady state. The objectives of this note are to develop and implement a continuous control method for a MRE tunable vibration absorber (TVA) and to evaluate its performance in suppressing time-varying tonal vibrations. In the proposed control, the stiffness of MREs is continuously varied based on a nonlinear tuning function that relates the response of the system to the input magnetic field density. Through experiments, it will be shown that the proposed MRE TVA reduces in real time the transmission of a time-varying excited vibration of 48-55 Hz, which shows the potential applicability of the MRE in reducing unwanted vibration to precision devices.
Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system
NASA Astrophysics Data System (ADS)
Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook
2014-09-01
Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration.
Deelen, Patrick; Bonder, Marc Jan; van der Velde, K Joeri; Westra, Harm-Jan; Winder, Erwin; Hendriksen, Dennis; Franke, Lude; Swertz, Morris A
2014-12-11
To gain statistical power or to allow fine mapping, researchers typically want to pool data before meta-analyses or genotype imputation. However, the necessary harmonization of genetic datasets is currently error-prone because of many different file formats and lack of clarity about which genomic strand is used as reference. Genotype Harmonizer (GH) is a command-line tool to harmonize genetic datasets by automatically solving issues concerning genomic strand and file format. GH solves the unknown strand issue by aligning ambiguous A/T and G/C SNPs to a specified reference, using linkage disequilibrium patterns without prior knowledge of the used strands. GH supports many common GWAS/NGS genotype formats including PLINK, binary PLINK, VCF, SHAPEIT2 & Oxford GEN. GH is implemented in Java and a large part of the functionality can also be used as Java 'Genotype-IO' API. All software is open source under license LGPLv3 and available from http://www.molgenis.org/systemsgenetics. GH can be used to harmonize genetic datasets across different file formats and can be easily integrated as a step in routine meta-analysis and imputation pipelines.
NASA Technical Reports Server (NTRS)
Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)
1982-01-01
Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents.
High accuracy switched-current circuits using an improved dynamic mirror
NASA Technical Reports Server (NTRS)
Zweigle, G.; Fiez, T.
1991-01-01
The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.
Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Abelev, B.; Adam, J.; Adamová, D.; ...
2014-11-03
Our measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at √s NN=5.02 TeV and Pb-Pb at √s NN=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. These comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a |Δη| gap is placed to suppress such correlations, the two-particle cumulants begin to risemore » at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. Furthermore, the negative values allow for a measurement of v 2{4} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v 2{4}≃v 2{6}≠0 which is indicative of a Bessel-Gaussian function for the v 2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δη|>1.4 gap is placed.« less
Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider
NASA Astrophysics Data System (ADS)
Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; di Bari, D.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil Svn, M.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.; Alice Collaboration
2014-11-01
Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p -Pb at √{sNN}=5.02 TeV and Pb-Pb at √{sNN}=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p -Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p -Pb collisions. However, when a |Δ η | gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p -Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4 } to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4 } ≃v2{6 } ≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p -Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δ η |>1.4 gap is placed.
High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay
NASA Astrophysics Data System (ADS)
Updyke, T. G.; Dusek, G.; Atkinson, L. P.
2016-02-01
Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.
Implied dynamics biases the visual perception of velocity.
La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo
2014-01-01
We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform.
NASA Astrophysics Data System (ADS)
Isayama, A.
2005-05-01
Recent results from steady-state sustainment of high-β plasma experiments in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) tokamak [A. Kitsunezaki et al., Fusion Sci. Technol. 42, 179 (2002)] are described. Extension of discharge duration to 65s (formerly 15s) has enabled physics research with long time scale. In long-duration high-β research, the normalized beta βN=2.5, which is comparable to that in the steady-state operation in International Thermonuclear Experimental Reactor (ITER) [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], has been sustained for about 15s with confinement enhancement factor H89PL above 2, where the duration is about 80 times energy confinement time and ˜10 times current diffusion time (τR). In the scenario aiming at longer duration with βN˜1.9, which is comparable to that in the ITER standard operation scenario, duration has been extended to 24s (˜15τR). Also, from the viewpoint of collisionality and Larmor radius of the plasmas, these results are obtained in the ITER-relevant regime with a few times larger than the ITER values. No serious effect of current diffusion on instabilities is observed in the region of βN≲2.5, and in fact neoclassical tearing modes (NTMs), which limit the achievable β in the stationary high-βp H-mode discharges, are suppressed throughout the discharge. In high-β research with the duration of several times τR, a high-β plasma with βN˜2.9-3 has been sustained for 5-6s with two scenarios for NTM suppression: (a) NTM avoidance by modification of pressure and current profiles, and (b) NTM stabilization with electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH). NTM stabilization with the second harmonic X-mode ECCD/ECH has been performed, and it is found that EC current density comparable to bootstrap current density at the mode location is required for complete stabilization. Structure of a magnetic island associated with an m /n=3/2 NTM has been measured in detail (m and n are poloidal and toroidal mode numbers, respectively). By applying newly developed analysis method using motional Stark effect (MSE) diagnostic, where change in current density is directly evaluated from change in MSE pitch angle without equilibrium reconstruction, localized decrease/increase in current density at the mode rational surface is observed for NTM growth/suppression. In addition, it is found that characteristic structure of electron temperature perturbation profile is deformed during NTM stabilization. Hypothesis that temperature increase inside the magnetic island well explains the experimental observations. It is also found that the characteristic structure is not formed for the case of ECCD/ECH before the mode, while the structure is seen for the case with ECCD/ECH just after the mode onset, suggesting the stronger stabilization effect of the early EC wave injection.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
A Drive Method for Small Inductance PM Motor Under No-Load Condition
NASA Astrophysics Data System (ADS)
Tanaka, Daisuke; Ohishi, Kiyoshi
The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.
DIII-D research to address key challenges for ITER and fusion energy
NASA Astrophysics Data System (ADS)
Buttery, R. J.; the DIII-D Team
2015-10-01
DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modelling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully noninductively with βN = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a βN = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behaviour. Scenarios are shown to be compatible with radiative and snowflake divertor techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. Future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.
DIII-D research to address key challenges for ITER and fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttery, Richard J.
DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.« less
DIII-D research to address key challenges for ITER and fusion energy
Buttery, Richard J.
2015-07-29
DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.« less
Mercury's Crustal Magnetic Field from MESSENGER Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Johnson, C.
2017-12-01
We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.
Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J
2003-08-25
We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.
Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam
NASA Astrophysics Data System (ADS)
Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin
2010-04-01
A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.
On a focal point instability in (B3Πg - C3Πu)N2 optogalvanic circuit with hollow cathode
NASA Astrophysics Data System (ADS)
Gencheva, V.
2016-03-01
The (B3Πg, v = 0 - C3 Πu, v = 0) N2 dynamic optogalvanic signals have been registered illuminating an Al hollow cathode lamp with a pulsed N2 laser generating at the wavelength of 337.1nm. The dynamic optogalvanic signal (DOGS) at certain discharge current of 8 mA is a harmonic oscillator due to a focal point instability produced by our optogalvanic circuit. This damped harmonic oscillator can be described as a solution of linear second order homogeneous differential equation. The oscillation frequency is estimated from the registered DOGS using Fourier synthesis. The analytical description of the damped harmonic DOGS is obtained.
Controllability in tunable chains of coupled harmonic oscillators
NASA Astrophysics Data System (ADS)
Buchmann, L. F.; Mølmer, K.; Petrosyan, D.
2018-04-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.
PWM Switching Frequency Effects on Eddy Current Sensors for Magnetically Suspended Flywheel Systems
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Lebron, Ramon; Dever, Timothy P.; Birchenough, Arthur G.
2003-01-01
A flywheel magnetic bearing (MB) pulse width modulated power amplifier (PWM) configuration is selected to minimize noise generated by the PWMs in the flywheel position sensor system. Two types of noise are addressed: beat frequency noise caused by variations in PWM switching frequencies, and demodulation noise caused by demodulation of high order harmonics of the switching voltage into the MB control band. Beat frequency noise is eliminated by synchronizing the PWM switch frequencies, and demodulation noise is minimized by selection of a switching frequency which does not have harmonics at the carrier frequency of the sensor. The recommended MB PWM system has five synchronized PWMs switching at a non-integer harmonic of the sensor carrier.
Using AORSA to simulate helicon waves in DIIID and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Berry, Lee Alan
2014-01-01
Recent efforts by Vdovin [1] and Prater [2] have shown that helicon waves (fast waves at ~30 ion cyclotron frequency harmonic) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIIID, ITER and DEMO. For DIIID scenarios, the ray tracing code GENRAY has been extensively used to study helicon current drive efficiency and location as a function many plasma parameters. has some limitations on absorption at high cyclotron harmonics, so the full wave code AORSA, which is applicable to arbitrary Larmor radius and can therefore resolve high ion cyclotron harmonics, has been recentlymore » used to validate the GENRAY model. It will be shown that the GENRAY and AORSA driven current drive profiles are comparable for the envisioned high temperature and density advanced scenarios for DIIID, where there is high single pass absorption due to electron Landau damping. AORSA results will be shown for various plasma parameters for DIIID and for ITER. Computational difficulties in achieving these AORSA results will also be discussed. * Work supported by USDOE Contract No. DE-AC05-00OR22725 [1] V. L. Vdovin, Plasma Physics Reports, V.39, No.2, 2013 [2] R. Prater et al, Nucl. Fusion, 52, 083024, 2014« less
Advanced feedback control methods in EXTRAP T2R reversed field pinch
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-07-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.
Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.
Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S
2017-04-01
Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.
Decoding Mode-mixing in Black-hole Merger Ringdown
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.; Baker, John G.
2013-01-01
Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.
Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...
2016-11-14
High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less
Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.
Ciampa, Francesco; Mankar, Akash; Marini, Andrea
2017-11-07
Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.
NASA Astrophysics Data System (ADS)
Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian
2013-10-01
The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.
Kitamura, Taro; Munakata, Mitsutoshi; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Iinuma, Kazuie
2008-08-01
beta-Phenylethylamine (beta-PEA), an endogenous amine synthesized in the brain, serves as a neuromodulator and is involved in the pathophysiology of various neurological disorders such as depression, schizophrenia, and attention-deficit hyperactivity disorder. beta-PEA fully exerts the physiological effects within the nanomolar concentration range via the trace amine receptors, but beta-PEA also causes convulsions at much higher concentrations via an as yet unknown mechanism. To investigate the electrophysiological mechanism by which beta-PEA induces convulsions, we examined the effect of beta-PEA on ionic currents passing through the cell membrane of dissociated rat cerebral cortical neurons, using a patch-clamp technique. The external application of beta-PEA suppressed ionic currents which continuously flowed when the membrane potential was held at -25 mV. The suppression was in a concentration-dependent manner and a half-maximal effective concentration was 540 muM. These currents suppressed by beta-PEA consisted of two K(+) currents: a time- and voltage-dependent K(+) current (M-current) and a leakage K(+) current. The suppression of the M-current reduces the efficacy of the current in limiting excessive neuronal firing, and the suppression of the leakage K(+) current can cause membrane depolarization and thus promote neuronal excitation. Reducing both of these currents in concert may produce neuronal seizing activity, which could conceivably underlie the convulsions induced by high-dose beta-PEA.
NASA Astrophysics Data System (ADS)
Oumaamar, Mohamed El Kamel; Maouche, Yassine; Boucherma, Mohamed; Khezzar, Abdelmalek
2017-02-01
The mixed eccentricity fault detection in a squirrel cage induction motor has been thoroughly investigated. However, a few papers have been related to pure static eccentricity fault and the authors focused on the RSH harmonics presented in stator current. The main objective of this paper is to present an alternative method based on the analysis of line neutral voltage taking place between the supply and the stator neutrals in order to detect air-gap static eccentricity, and to highlight the classification of all RSH harmonics in line neutral voltage. The model of squirrel cage induction machine relies on the rotor geometry and winding layout. Such developed model is used to analyze the impact of the pure static air-gap eccentricity by predicting the related frequencies in the line neutral voltage spectrum. The results show that the line neutral voltage spectrum are more sensitive to the air-gap static eccentricity fault compared to stator current one. The theoretical analysis and simulated results are confirmed by experiments.
[Harmonization of TSH Measurements.
Takeoka, Keiko; Hidaka, Yoh; Hishinuma, Akira; Ikeda, Katsuyoshi; Okubo, Shigeo; Tsuchiya, Tatsuyuki; Hashiguchi, Teruto; Furuta, Koh; Hotta, Taeko; Matsushita, Kazuyuki; Matsumoto, Hiroyuki; Murakami, Masami; Maekawa, Masato
2016-05-01
The measured concentration of thyroid stimulating hormone (TSH) differs depending on the reagents used. Harmonization of TSH is crucial because the decision limits are described in current clinical practice guide- lines as absolute values, e.g. 2.5 mIU/L in early pregnancy. In this study, we tried to harmonize the report- ed concentrations of TSH using the all-procedure trimmed mean. TSH was measured in 146 serum samples, with values ranging from 0.01 to 18.8 mIU/L, using 4 immunoassays. The concentration of TSH was highest with E test TOSOH and lowest with LUMIPULSE. The concentrations with each reagent were recalculated with the following formulas: E test TOSOH 0.855x-0.014; ECLusys 0.993x+0.079; ARCHITECT 1.041x- 0.010; and LUMIPULSE 1.096x-0.015. Recalculation eliminated the between-assay discrepancy. These formulas may be used until harmonization of TSH is achieved by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal
Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun
2013-01-01
In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest. PMID:23549389
Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal.
Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun
2013-01-01
In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest.
Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics
NASA Astrophysics Data System (ADS)
Penn, G.; Reinsch, M.
2011-09-01
The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.
Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; ...
2017-05-22
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qinghua; Xiao, Fuliang; Yang, Chang
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less
Development of a miniature fan motor
NASA Astrophysics Data System (ADS)
Wang, Chien-Chang; Yao, Yeong-Der; Liang, Kun-Yi; Huang, Chung-Chun; Chang, Yu-Choung
2012-04-01
A novel compact axial flux fan motor was developed. Such a micromotor could be a potential candidate for using as the cooling solution for the next generation mobile devices, for example, smart phones and pico-projectors. The key parameters of the motor, such as back electromotive force, cogging torque, and axial preload are predicted using finite element method. In addition, new approaches are proposed to measure these items, and the corresponding experimental results are in good agreement with the simulated one. Moreover, the undesired vibration harmonic is successfully suppressed, and the fan motor represents a high static pressure and air flow rate.
Impulse damping control of an experimental structure
NASA Technical Reports Server (NTRS)
Redmond, J.; Meyer, J. L.; Silverberg, L.
1993-01-01
The characteristics associated with the fuel optimal control of a harmonic oscillator are extended to develop a near minimum fuel control algorithm for the vibration suppression of spacecraft. The operation of single level thrusters is regulated by recursive calculations of the standard deviations of displacement and velocity resulting in a bang-off-bang controller. A vertically suspended 16 ft cantilevered beam was used in the experiment. Results show that the structure's response was easily manipulated by minor alterations in the control law and the control system performance was not seriously degraded in the presence of multiple actuator failures.
NASA Astrophysics Data System (ADS)
Al Janaideh, Mohammad; Aljanaideh, Omar
2018-05-01
Apart from the output-input hysteresis loops, the magnetostrictive actuators also exhibit asymmetry and saturation, particularly under moderate to large magnitude inputs and at relatively higher frequencies. Such nonlinear input-output characteristics could be effectively characterized by a rate-dependent Prandtl-Ishlinskii model in conjunction with a function of deadband operators. In this study, an inverse model is formulated to seek real-time compensation of rate-dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The inverse model is formulated with the inverse of the rate-dependent Prandtl-Ishlinskii model, satisfying the threshold dilation condition, with the inverse of the deadband function. The inverse model was subsequently applied to the hysteresis model as a feedforward compensator. The proposed compensator is applied as a feedforward compensator to the actuator hardware to study its potential for rate-dependent and asymmetric hysteresis loops. The experimental results are obtained under harmonic and complex harmonic inputs further revealed that the inverse compensator can substantially suppress the hysteresis and output asymmetry nonlinearities in the entire frequency range considered in the study.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Tian, Xiaoran; Zhou, Xinlei; Yu, Qingxu
2015-04-01
The characteristics of a fiber-optic Fabry-Perot interferometric acoustic sensor are investigated. An improved phase-generator carrier-demodulation mechanism is proposed for obtaining a high harmonic suppression ratio and stability of the demodulation results. A gold-coated polyethylene terephthalate membrane is used as the sensing diaphragm. By optimizing the parameters and the demodulation algorithm, the signal-to-noise ratio (SNR) and distortion ratio of 50.3 dB and the total harmonic distortion of 0.1% at 114 dB sound pressure level (SPL) (@ 1 kHz) are achieved, respectively. The sensor shows good temperature stability; the variation of the response is within 0.6 dB as the temperature changes from -10°C to 50°C. A sensitivity of 40 mV/Pa at 1 kHz and a frequency response range of 100 Hz to 12.5 kHz are reached, respectively. The SNR of the system is 60 dB (Re. 94 dB SPL). The sensor may be applied to photoacoustic spectrometers as a high-performance acoustic sensor.
RF performance of GaAs pHEMT switches with various upper/lower δ-doped ratio designs
NASA Astrophysics Data System (ADS)
Chiu, Hsien-Chin; Fu, Jeffrey S.; Chen, Chung-Wen
2009-02-01
AlGaAs/InGaAs pseudomorphic high-electron-mobility transistor (pHEMT) single-pole-single-throw (SPST) switches with various upper/lower δ-doped ratio designs were fabricated and investigated for the first time. Both off-state capacitance and the specific on-resistance ( Ron) of pHEMT are dominated factors and showed characteristics of sensitive to upper/lower δ-doped ratio for RF switch applications. By adopting the series-shunt architecture, upper/lower ratio of 3:1 switch achieved the lowest insertion loss compared to 4:1 design owing to the device shunt to ground (M2) of 4:1 design exhibited a worse fundamental signal isolation especially at high power level. As to the isolation under same architecture, however, due to the lowest Ron can be obtained, the 4:1 design provided better isolation performance. In addition, the M2 also dominated the second and third harmonics suppression and meanwhile, the lowest Ron of 4:1 design was found to be beneficial to the reduction of the harmonics power transmitted to the output terminal.
Tiltrotor Vibration Reduction Through Higher Harmonic Control
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.
1984-06-01
types of conditions, discriminable differences in intensity, pitch, or use of beats or harmonics shall be provided. If absolute discrimination is...shall be directed to the operator’s headset as well as to the work area. Binaural headsets should not be used in any operational environment below 85...signals are to be used to alert an operator to different types of conditions, discriminable difference in Intensity, pitch, or use of beats and harmonics
Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.
2016-08-01
The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n = 6 component to the {{n}\\text{rmp}}=3 applied field and a significant n = 5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n = 3 and n = 4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is rotated, however there is a change with rotation for the {{n}\\text{rmp}}=3 case.
Enhancement of runaway production by resonant magnetic perturbation on J-TEXT
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Huang, D. W.; Izzo, V. A.; Tong, R. H.; Jiang, Z. H.; Hu, Q. M.; Wei, Y. N.; Yan, W.; Rao, B.; Wang, S. Y.; Ma, T. K.; Li, S. C.; Yang, Z. J.; Ding, D. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; J-TEXT Team
2016-07-01
The suppression of runaways following disruptions is key for the safe operation of ITER. The massive gas injection (MGI) has been developed to mitigate heat loads, electromagnetic forces and runaway electrons (REs) during disruptions. However, MGI may not completely prevent the generation of REs during disruptions on ITER. Resonant magnetic perturbation (RMP) has been applied to suppress runaway generation during disruptions on several machines. It was found that strong RMP results in the enhancement of runaway production instead of runaway suppression on J-TEXT. The runaway current was about 50% pre-disruption plasma current in argon induced reference disruptions. With moderate RMP, the runway current decreased to below 30% pre-disruption plasma current. The runaway current plateaus reach 80% of the pre-disruptive current when strong RMP was applied. Strong RMP may induce large size magnetic islands that could confine more runaway seed during disruptions. This has important implications for runaway suppression on large machines.
Fortier, Isabel; Doiron, Dany; Little, Julian; Ferretti, Vincent; L’Heureux, François; Stolk, Ronald P; Knoppers, Bartha M; Hudson, Thomas J; Burton, Paul R
2011-01-01
Background Proper understanding of the roles of, and interactions between genetic, lifestyle, environmental and psycho-social factors in determining the risk of development and/or progression of chronic diseases requires access to very large high-quality databases. Because of the financial, technical and time burdens related to developing and maintaining very large studies, the scientific community is increasingly synthesizing data from multiple studies to construct large databases. However, the data items collected by individual studies must be inferentially equivalent to be meaningfully synthesized. The DataSchema and Harmonization Platform for Epidemiological Research (DataSHaPER; http://www.datashaper.org) was developed to enable the rigorous assessment of the inferential equivalence, i.e. the potential for harmonization, of selected information from individual studies. Methods This article examines the value of using the DataSHaPER for retrospective harmonization of established studies. Using the DataSHaPER approach, the potential to generate 148 harmonized variables from the questionnaires and physical measures collected in 53 large population-based studies (6.9 million participants) was assessed. Variable and study characteristics that might influence the potential for data synthesis were also explored. Results Out of all assessment items evaluated (148 variables for each of the 53 studies), 38% could be harmonized. Certain characteristics of variables (i.e. relative importance, individual targeted, reference period) and of studies (i.e. observational units, data collection start date and mode of questionnaire administration) were associated with the potential for harmonization. For example, for variables deemed to be essential, 62% of assessment items paired could be harmonized. Conclusion The current article shows that the DataSHaPER provides an effective and flexible approach for the retrospective harmonization of information across studies. To implement data synthesis, some additional scientific, ethico-legal and technical considerations must be addressed. The success of the DataSHaPER as a harmonization approach will depend on its continuing development and on the rigour and extent of its use. The DataSHaPER has the potential to take us closer to a truly collaborative epidemiology and offers the promise of enhanced research potential generated through synthesized databases. PMID:21804097
Using AORSA to simulate helicon waves in DIII-D
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2015-12-01
Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.
A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors
NASA Astrophysics Data System (ADS)
Ghanbari, Teymoor; Samet, Haidar
2017-11-01
Monitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.
ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX
Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...
2017-10-26
A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less
Implied Dynamics Biases the Visual Perception of Velocity
La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo
2014-01-01
We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform. PMID:24667578
Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals
NASA Astrophysics Data System (ADS)
Chen, Chao-Hsiang
Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi-phase matching was developed to overcome the limiting factor of both phase-mismatch and electric displacement walk off in second-harmonic generation. By using PPLN, the photorefractive damage threshold is the only limiting factor. For quantum noise squeezing with pulsed traveling-wave, the inhomogeneous nature of spatial and temporal modes are the constraining factors for further noise reduction.
Tunable high-power blue external cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun
2017-09-01
A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.
Acoustic characteristics of phonation in "wet voice" conditions.
Murugappan, Shanmugam; Boyce, Suzanne; Khosla, Sid; Kelchner, Lisa; Gutmark, Ephraim
2010-04-01
A perceptible change in phonation characteristics after a swallow has long been considered evidence that food and/or drink material has entered the laryngeal vestibule and is on the surface of the vocal folds as they vibrate. The current paper investigates the acoustic characteristics of phonation when liquid material is present on the vocal folds, using ex vivo porcine larynges as a model. Consistent with instrumental examinations of swallowing disorders or dysphagia in humans, three liquids of different Varibar viscosity ("thin liquid," "nectar," and "honey") were studied at constant volume. The presence of materials on the folds during phonation was generally found to suppress the higher frequency harmonics and generate intermittent additional frequencies in the low and high end of the acoustic spectrum. Perturbation measures showed a higher percentage of jitter and shimmer when liquid material was present on the folds during phonation, but they were unable to differentiate statistically between the three fluid conditions. The finite correlation dimension and positive Lyapunov exponent measures indicated that the presence of materials on the vocal folds excited a chaotic system. Further, these measures were able to reliably differentiate between the baseline and different types of liquid on the vocal folds.
Acoustic characteristics of phonation in “wet voice” conditions
Murugappan, Shanmugam; Boyce, Suzanne; Khosla, Sid; Kelchner, Lisa; Gutmark, Ephraim
2010-01-01
A perceptible change in phonation characteristics after a swallow has long been considered evidence that food and∕or drink material has entered the laryngeal vestibule and is on the surface of the vocal folds as they vibrate. The current paper investigates the acoustic characteristics of phonation when liquid material is present on the vocal folds, using ex vivo porcine larynges as a model. Consistent with instrumental examinations of swallowing disorders or dysphagia in humans, three liquids of different Varibar viscosity (“thin liquid,” “nectar,” and “honey”) were studied at constant volume. The presence of materials on the folds during phonation was generally found to suppress the higher frequency harmonics and generate intermittent additional frequencies in the low and high end of the acoustic spectrum. Perturbation measures showed a higher percentage of jitter and shimmer when liquid material was present on the folds during phonation, but they were unable to differentiate statistically between the three fluid conditions. The finite correlation dimension and positive Lyapunov exponent measures indicated that the presence of materials on the vocal folds excited a chaotic system. Further, these measures were able to reliably differentiate between the baseline and different types of liquid on the vocal folds. PMID:20370039
[Cultural order, disease and health care].
Viniegra-Velázquez, Leonardo
With the appearance of Homo sapiens, the biological order was gradually replaced by the anthropocentric cultural order (CO), in which traditions, appreciations, preferences and desires for possession and domination guided their interactions with nature (predation or care), within the group (ranks, classes) and with others groups (commerce, wars). Current CO, characterized by unlimited profit interests, extreme wealth concentration and inequality where moral degradation hits rock bottom and planetary ecosystem is devastated, shows a collapsed civilization with a background of a global media controlled anesthetized societies. Regarding the health field, control works by prevalent ideas and practices: sickness as a strange object to the body, health as an imperative vital ideal and technologically based suppressive medicine shaping life's medicalization, main control "device" and health industry support. Other alternative ideas and practices are discussed: sickness as an inner harmony disturbance or as a differentiated and particular way of human beings, and stimulating medicine, that targets sick people with the purpose of strengthening and harmonizing them so they may recover, alleviate or appease. Considerations about possibilities and significance of stimulating medicine are made at the end. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy
Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi
2017-01-01
Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098
Burau, J.R.; Simpson, M.R.; Cheng, R.T.
1993-01-01
Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.
Poli, F. M.; Andre, R. G.; Bertelli, N.; ...
2015-10-30
One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less
Fault current limiter with shield and adjacent cores
Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick
2013-10-22
In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.
Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases.
Keeling, Kim M; Bedwell, David M
2011-01-01
Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy. Copyright © 2011 John Wiley & Sons, Ltd.
Algal Supply System Design - Harmonized Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abodeely, Jared; Stevens, Daniel; Ray, Allison
2013-03-01
The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logisticsmore » Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.« less
Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.
2018-05-01
A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
The evens and odds of CMB anomalies
NASA Astrophysics Data System (ADS)
Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.
2018-06-01
The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun
2014-06-01
Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.
NASA Astrophysics Data System (ADS)
Bellan, Diego; Pignari, Sergio A.
2016-07-01
This work deals with the statistical characterization of real-time digital measurement of the amplitude of harmonics affected by frequency instability. In fact, in modern power systems both the presence of harmonics and frequency instability are well-known and widespread phenomena mainly due to nonlinear loads and distributed generation, respectively. As a result, real-time monitoring of voltage/current frequency spectra is of paramount importance as far as power quality issues are addressed. Within this framework, a key point is that in many cases real-time continuous monitoring prevents the application of sophisticated algorithms to extract all the information from the digitized waveforms because of the required computational burden. In those cases only simple evaluations such as peak search of discrete Fourier transform are implemented. It is well known, however, that a slight change in waveform frequency results in lack of sampling synchronism and uncertainty in amplitude estimate. Of course the impact of this phenomenon increases with the order of the harmonic to be measured. In this paper an approximate analytical approach is proposed in order to describe the statistical properties of the measured magnitude of harmonics affected by frequency instability. By providing a simplified description of the frequency behavior of the windows used against spectral leakage, analytical expressions for mean value, variance, cumulative distribution function, and probability density function of the measured harmonics magnitude are derived in closed form as functions of waveform frequency treated as a random variable.
Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay
NASA Astrophysics Data System (ADS)
Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.
2018-04-01
Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.
Effect of quantum well position on the distortion characteristics of transistor laser
NASA Astrophysics Data System (ADS)
Piramasubramanian, S.; Ganesh Madhan, M.; Radha, V.; Shajithaparveen, S. M. S.; Nivetha, G.
2018-05-01
The effect of quantum well position on the modulation and distortion characteristics of a 1300 nm transistor laser is analyzed in this paper. Standard three level rate equations are numerically solved to study this characteristics. Modulation depth, second order harmonic and third order intermodulation distortion of the transistor laser are evaluated for different quantum well positions for a 900 MHz RF signal modulation. From the DC analysis, it is observed that optical power is maximum, when the quantum well is positioned near base-emitter interface. The threshold current of the device is found to increase with increasing the distance between the quantum well and the base-emitter junction. A maximum modulation depth of 0.81 is predicted, when the quantum well is placed at 10 nm from the base-emitter junction, under RF modulation. The magnitude of harmonic and intermodulation distortion are found to decrease with increasing current and with an increase in quantum well distance from the emitter base junction. A minimum second harmonic distortion magnitude of -25.96 dBc is predicted for quantum well position (230 nm) near to the base-collector interface for 900 MHz modulation frequency at a bias current of 20 Ibth. Similarly, a minimum third order intermodulation distortion of -38.2 dBc is obtained for the same position and similar biasing conditions.
NASA Astrophysics Data System (ADS)
Song, Young-Joo; Kim, Bang-Yeop
2015-09-01
In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the nonsphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.
NASA Astrophysics Data System (ADS)
Overstreet, Sarah; Wang, Haipeng
2017-09-01
An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
AEIS Policy vs. Site-Based Management: Research Agenda Implications.
ERIC Educational Resources Information Center
Nash, John B.
This paper examines the problems of centralized academic-indicator systems in light of the move toward site-based management. Problems with current practice are examined in the framework of critical inquiry. Alternatives to current accountability guidelines are presented that harmonize positivism with critical inquiry, while respecting both local…
electromagnetics, eddy current, computer codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, David
TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.
Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru
2009-03-27
Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.
Arpinar, V E; Hamamura, M J; Degirmenci, E; Muftuler, L T
2012-07-07
Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z).
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
Leavitt, M.A.
1958-11-18
A magnetometer ls described, partlcularly to a device which accurately indicates the polarity and intensity of a magnetlc field. The main feature of the invention is a unique probe construction in combinatlon wlth a magnetic fleld detector system. The probe comprises two coils connected in series opposition for energization with an a-c voltage. The voltage lnduced in a third coll on the probe, a pick-up coil, is distorted by the presence of an external field to produce even harmonic voltages. A controlled d-c current is passed through the energized coils to counter the dlstortlon and reduce tbe even harmonic content to a null. When the null point is reached, the d-c current is a measure of the external magnetic field strength, and the phase of the pickup coil voltage indicates tbe field polarlty.
Measurements on wave propagation characteristics of spiraling electron beams
NASA Technical Reports Server (NTRS)
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Santiago, Walter
2004-01-01
The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.
Computation of nonlinear ultrasound fields using a linearized contrast source method.
Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A
2013-08-01
Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.
Global trends in critical values practices and their harmonization.
Kost, Gerald J; Hale, Kristin N
2011-02-01
The objectives of this article were 1) to identify current trends in critical values practices in North America, Europe, and other regions; 2) to describe progress toward harmonization of critical limits; and 3) to synthesize strategies that will encourage global consensus. Critical limits are described in national surveys. Critical value practices are guided by federal statutes, The Joint Commission regulations, and accreditation requirements in the US; by provincial healthcare agencies in Canada; by thought leaders and ISO EN 15189:2007 in Europe; and in SE Asia, mostly by ad hoc policies lacking statutory grip. Review of databases, literature, websites, federal statutes, litigation, official policies, current affairs, and accreditation agency requirements. Practical strategies will accelerate harmonization of critical values practices, as follows: a) continue national and international survey comparisons; b) clarify age, ethnic, and subject dependencies; c) standardize qualitative and quantitative decision levels for urgent clinician notification; d) monitor compliance and timeliness for safety; and e) alert high frequencies of critical values related to adverse events. New expectations and communication technologies present opportunities for enhanced performance using wireless closed-loop reporting with recipient acknowledgment to reduce phone calls and improve efficiency. Hospitals worldwide can benefit from developing consensus for critical values practices.
Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks
NASA Astrophysics Data System (ADS)
Harris, S. P.; Pinsker, R. I.; Porkolab, M.
2014-10-01
Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Doyley, Marvin M.
2013-03-01
Nonlinear (subharmonic/harmonic) imaging with ultrasound contrast agents (UCA) could characterize the vasa vasorum, which could help assess the risk associated with atherosclerosis. However, the sensitivity and specificity of high-frequency nonlinear imaging must be improved to enable its clinical translation. The current excitation scheme employs sine-bursts — a strategy that requires high-peak pressures to produce strong nonlinear response from UCA. In this paper, chirp-coded excitation was evaluated to assess its ability to enhance the subharmonic and harmonic response of UCA. Acoustic measurements were conducted with a pair of single-element transducers at 10-MHz transmit frequencies to evaluate the subharmonic and harmonic response of Targestar-P® (Targeson Inc., San Diego, CA, USA), a commercially available phospholipid-encapsulated contrast agent. The results of this study demonstrated a 2 - 3 fold reduction in the subharmonic threshold, and a 4 - 14 dB increase in nonlinear signal-to-noise ratio, with chirp-coded excitation. Therefore, chirp-coded excitation could be well suited for improving the imaging performance of high-frequency harmonic and subharmonic imaging.
NASA Astrophysics Data System (ADS)
Gubin, V.; Firsov, A.
2018-03-01
As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.
Seasonal variation in internet keyword searches: a proxy assessment of sex mating behaviors.
Markey, Patrick M; Markey, Charlotte N
2013-05-01
The current study investigated seasonal variation in internet searches regarding sex and mating behaviors. Harmonic analyses were used to examine the seasonal trends of Google keyword searches during the past 5 years for topics related to pornography, prostitution, and mate-seeking. Results indicated a consistent 6-month harmonic cycle with the peaks of keyword searches related to sex and mating behaviors occurring most frequently during winter and early summer. Such results compliment past research that has found similar seasonal trends of births, sexually transmitted infections, condom sales, and abortions.
NASA Astrophysics Data System (ADS)
Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2018-01-01
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.
2009-01-01
We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639
A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.
2018-03-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.
Miniaturized LTCC elliptic-function lowpass filters with side stopbands
Hsieh, Lung -Hwa; Dai, Steve Xunhu
2015-05-28
A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.
NASA Astrophysics Data System (ADS)
Lo, Wen; Wang, Tsung-Jen; Chen, Wei-Liang; Hsueh, Chiu-Mei; Chen, Shean-Jen; Chen, Yang-Fang; Chou, Hsiu-Chu; Lin, Pi-Jung; Hu, Fung-Rong; Dong, Chen-Yuan
2010-05-01
We applied multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) microscopy to monitor corneal wound healing after photorefractive keratectomy (PRK). Our results show that keratocyte activation can be observed by an increase in its MAF, while SHG imaging of corneal stroma can show the depletion of Bowman's layer after PRK and the reticular collagen deposition in the wound healing stage. Furthermore, quantification of the keratocyte activation and collagen deposition in conjunction with immunohistochemistry and histological images demonstrate the effectiveness of mitomycin C (MMC) in suppressing myofibroblast proliferation and collagen regeneration in the post-PRK wound healing process.
Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout
NASA Astrophysics Data System (ADS)
Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2017-04-01
We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic double-balanced modulators that comprise the device are formed with purely reactive elements (capacitors and Josephson junction inductors) and require no microwave-frequency control tones. Microwave signals in the 4 to 8 GHz band, with power up to -85 dBm, are converted up or down in frequency by as much as 120 MHz. Spurious harmonics in the device can be suppressed by up to 25 dB for select probe and modulation frequencies.
Critical behavior in trapped strongly interacting Fermi gases
NASA Astrophysics Data System (ADS)
Taylor, E.
2009-08-01
We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.
Barnes, Rachel D; Tantleff-Dunn, Stacey
2010-08-01
The current study sought to extend previous eating behaviors and thought suppression literature by assessing the relationship between food thought suppression and weight-related outcomes. Three hundred and twelve overweight/obese community men and women completed self-report measures of thought suppression, weight history, and eating behaviors. Women were more likely than men to endorse food thought suppression, as were individuals who currently were dieting, when compared with those nondieters. Food thought suppression also predicted binge eating, food cravings, and other eating disordered symptoms. Results have implications for obesity and support further exploration of third wave interventions, such as Acceptance and Commitment Therapy and Mindfulness, in the treatment of obesity. 2010 Elsevier Ltd. All rights reserved.
"Hey, Bernie," I Said, "What's New?"
ERIC Educational Resources Information Center
Otto, Wayne
1994-01-01
Discusses a startlingly current 1953 article called "Recent Trends in the Teaching of Reading" by Virgil Herrick, and a 1992 book by James Moffett called "Harmonic Learning: Keynoting School Reform." (SR)
NASA Technical Reports Server (NTRS)
Fernandes, David Neil
1992-01-01
Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.
Gray, Joshua C.; Amlung, Michael T.; Owens, Max; Acker, John; Brown, Courtney L.; Brody, Gene H.; Sweet, Lawrence H.; MacKillop, James
2017-01-01
How the brain processes cigarette cost-benefit decision making remains largely unknown. Using functional magnetic resonance imaging (fMRI), this study investigated the neural correlates of decisions for cigarettes (0–10 cigarettes) at varying levels of price during a Cigarette Purchase Task (CPT) in male regular smokers (N = 35). Differential neural activity was examined between choices classified as inelastic, elastic, and suppressed demand, operationalized as consumption unaffected by cost, partially suppressed by cost, and entirely suppressed by cost, respectively. Decisions reflecting elastic demand, putatively the most effortful decisions, elicited greater activation in regions associated with inhibition and planning (e.g., middle frontal gyrus and inferior frontal gyrus), craving and interoceptive processing (anterior insula), and conflict monitoring (e.g., anterior cingulate cortex). Exploratory examination in a harmonized dataset of both cigarette and alcohol demand (N = 59) suggested common neural activation patterns across commodities, particularly in the anterior insula, caudate, anterior cingulate, medial frontal gyrus, and dorsolateral prefrontal cortex. Collectively, these findings provide initial validation of a CPT fMRI paradigm; reveal the interplay of brain regions associated with executive functioning, incentive salience, and interoceptive processing in cigarette decision making; and add to the literature implicating the insula as a key brain region in addiction. PMID:28157228
Gray, Joshua C; Amlung, Michael T; Owens, Max; Acker, John; Brown, Courtney L; Brody, Gene H; Sweet, Lawrence H; MacKillop, James
2017-02-03
How the brain processes cigarette cost-benefit decision making remains largely unknown. Using functional magnetic resonance imaging (fMRI), this study investigated the neural correlates of decisions for cigarettes (0-10 cigarettes) at varying levels of price during a Cigarette Purchase Task (CPT) in male regular smokers (N = 35). Differential neural activity was examined between choices classified as inelastic, elastic, and suppressed demand, operationalized as consumption unaffected by cost, partially suppressed by cost, and entirely suppressed by cost, respectively. Decisions reflecting elastic demand, putatively the most effortful decisions, elicited greater activation in regions associated with inhibition and planning (e.g., middle frontal gyrus and inferior frontal gyrus), craving and interoceptive processing (anterior insula), and conflict monitoring (e.g., anterior cingulate cortex). Exploratory examination in a harmonized dataset of both cigarette and alcohol demand (N = 59) suggested common neural activation patterns across commodities, particularly in the anterior insula, caudate, anterior cingulate, medial frontal gyrus, and dorsolateral prefrontal cortex. Collectively, these findings provide initial validation of a CPT fMRI paradigm; reveal the interplay of brain regions associated with executive functioning, incentive salience, and interoceptive processing in cigarette decision making; and add to the literature implicating the insula as a key brain region in addiction.
NASA Astrophysics Data System (ADS)
Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.
2017-04-01
In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...
2017-02-14
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.
2015-12-10
Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola
2015-01-01
Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
A note on evaluating model tidal currents against observations
NASA Astrophysics Data System (ADS)
Cummins, Patrick F.; Thupaki, Pramod
2018-01-01
The root-mean-square magnitude of the vector difference between modeled and observed tidal ellipses is a comprehensive metric to evaluate the representation of tidal currents in ocean models. A practical expression for this difference is given in terms of the harmonic constants that are routinely used to specify current ellipses for a given tidal constituent. The resulting metric is sensitive to differences in all four current ellipse parameters, including phase.
Criteria for Neoclassical Tearing Modes Suppression in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Hwang, Y. S.
2007-11-01
In KSTAR, neoclassical tearing modes(NTMs) will be suppressed by using 170GHz electron cyclotron current drive(ECCD) system with steering mirrors that align the current deposition to NTM locations. As an initial stage of NTM suppression study, 1 MW ECCD power will be used to suppress m/n = 3/2 and 2/1 NTMs. To confirm the feasibility of successful suppression of the modes under the proposed KSTAR environment, modified Rutherford equation(MRE) which encapsulates stability of NTMs is constructed for the target equilibrium of KSTAR. The geometric coefficients in MRE are obtained by comparing saturated sizes of NTMs from ISLAND code [1] with the amounts of local bootstrap currents from ONETWO. Parameters related to the operation of ECCD are analyzed by TORAY-GA linear ray-tracing code. Due to the small ECCD power available at the initial stage of KSTAR, condition of the optimum ECCD modulation is considered in the analysis to maximize suppression performance. From the analyses, criteria such as the minimum ECCD power required for complete suppression of the modes and the optimum conditions of EC wave launch angle and modulation duty factor are derived for the successful NTM suppression in KSTAR. [1] C.N. Nguyen, G. Bateman and A.H. Kritz, Phys. Plasmas 11 3460 (2004)
Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.-K. Park, et. al.
2013-01-14
Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range.more » These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.« less
Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations
NASA Astrophysics Data System (ADS)
Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.
2016-10-01
A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.
Bridgeless SEPIC PFC Converter for Multistring LED Driver
NASA Astrophysics Data System (ADS)
Jha, Aman; Singh, Bhim
2018-05-01
This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.
Detection of stator winding faults in induction motors using three-phase current monitoring.
Sharifi, Rasool; Ebrahimi, Mohammad
2011-01-01
The objective of this paper is to propose a new method for the detection of inter-turn short circuits in the stator windings of induction motors. In the previous reported methods, the supply voltage unbalance was the major difficulty, and this was solved mostly based on the sequence component impedance or current which are difficult to implement. Some other methods essentially are included in the offline methods. The proposed method is based on the motor current signature analysis and utilizes three phase current spectra to overcome the mentioned problem. Simulation results indicate that under healthy conditions, the rotor slot harmonics have the same magnitude in three phase currents, while under even 1 turn (0.3%) short circuit condition they differ from each other. Although the magnitude of these harmonics depends on the level of unbalanced voltage, they have the same magnitude in three phases in these conditions. Experiments performed under various load, fault, and supply voltage conditions validate the simulation results and demonstrate the effectiveness of the proposed technique. It is shown that the detection of resistive slight short circuits, without sensitivity to supply voltage unbalance is possible. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
Watts, Christopher; Barnes-Burroughs, Kathryn; Estis, Julie; Blanton, Debra
2006-03-01
A growing body of contemporary research has investigated differences between trained and untrained singing voices. However, few studies have separated untrained singers into those who do and do not express abilities related to singing talent, including accurate pitch control and production of a pleasant timbre (voice quality). This investigation studied measures of the singing power ratio (SPR), which is a quantitative measure of the resonant quality of the singing voice. SPR reflects the amplification or suppression in the vocal tract of the harmonics produced by the sound source. This measure was acquired from the voices of untrained talented and nontalented singers as a means to objectively investigate voice quality differences. Measures of SPR were acquired from vocal samples with fast Fourier transform (FFT) power spectra to analyze the amplitude level of the partials in the acoustic spectrum. Long-term average spectra (LTAS) were also analyzed. Results indicated significant differences in SPR between groups, which suggest that vocal tract resonance, and its effect on perceived vocal timbre or quality, may be an important variable related to the perception of singing talent. LTAS confirmed group differences in the tuning of vocal tract harmonics.
Identification of minimal parameters for optimal suppression of chaos in dissipative driven systems.
Martínez, Pedro J; Euzzor, Stefano; Gallas, Jason A C; Meucci, Riccardo; Chacón, Ricardo
2017-12-21
Taming chaos arising from dissipative non-autonomous nonlinear systems by applying additional harmonic excitations is a reliable and widely used procedure nowadays. But the suppressory effectiveness of generic non-harmonic periodic excitations continues to be a significant challenge both to our theoretical understanding and in practical applications. Here we show how the effectiveness of generic suppressory excitations is optimally enhanced when the impulse transmitted by them (time integral over two consecutive zeros) is judiciously controlled in a not obvious way. Specifically, the effective amplitude of the suppressory excitation is minimal when the impulse transmitted is maximum. Also, by lowering the impulse transmitted one obtains larger regularization areas in the initial phase difference-amplitude control plane, the price to be paid being the requirement of larger amplitudes. These two remarkable features, which constitute our definition of optimum control, are demonstrated experimentally by means of an analog version of a paradigmatic model, and confirmed numerically by simulations of such a damped driven system including the presence of noise. Our theoretical analysis shows that the controlling effect of varying the impulse is due to a subsequent variation of the energy transmitted by the suppressory excitation.
Quantum work fluctuations in connection with the Jarzynski equality.
Jaramillo, Juan D; Deng, Jiawen; Gong, Jiangbin
2017-10-01
A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.
Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data
NASA Astrophysics Data System (ADS)
Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.
2013-03-01
A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.
FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.
Walters, Roy A.
1988-01-01
A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.
Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations
NASA Astrophysics Data System (ADS)
Serpico, C.; Quercia, A.; Bertotti, G.; d'Aquino, M.; Mayergoyz, I.; Perna, S.; Ansalone, P.
2015-05-01
Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.
Lamb, G D; Walsh, T
1987-01-01
1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns component of the charge movement and DHP binding sites, in both fast- and slow-twitch mammalian muscle. qns appears to be part of the gating current of the T-system calcium channels. PMID:2451745
NASA Astrophysics Data System (ADS)
Dai, Quanqi; Harne, Ryan L.
2017-04-01
Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.
Method of detecting system function by measuring frequency response
NASA Technical Reports Server (NTRS)
Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)
2012-01-01
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Method of detecting system function by measuring frequency response
Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID
2012-04-03
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Characterization of simple wireless neurostimulators and sensors.
Gulick, Daniel W; Towe, Bruce C
2014-01-01
A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.
Data harmonization and model performance
NASA Astrophysics Data System (ADS)
The Joint Committee on Urban Storm Drainage of the International Association for Hydraulic Research (IAHR) and International Association on Water Pollution Research and Control (IAWPRC) was formed in 1982. The current committee members are (no more than two from a country): B. C. Yen, Chairman (USA); P. Harremoes, Vice Chairman (Denmark); R. K. Price, Secretary (UK); P. J. Colyer (UK), M. Desbordes (France), W. C. Huber (USA), K. Krauth (FRG), A. Sjoberg (Sweden), and T. Sueishi (Japan).The IAHR/IAWPRC Joint Committee is forming a Task Group on Data Harmonization and Model Performance. One objective is to promote international urban drainage data harmonization for easy data and information exchange. Another objective is to publicize available models and data internationally. Comments and suggestions concerning the formation and charge of the Task Group are welcome and should be sent to: B. C. Yen, Dept. of Civil Engineering, Univ. of Illinois, 208 N. Romine St., Urbana, IL 61801.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Global Harmonization of Maximum Residue Limits for Pesticides.
Ambrus, Árpád; Yang, Yong Zhen
2016-01-13
International trade plays an important role in national economics. The Codex Alimentarius Commission develops harmonized international food standards, guidelines, and codes of practice to protect the health of consumers and to ensure fair practices in the food trade. The Codex maximum residue limits (MRLs) elaborated by the Codex Committee on Pesticide Residues are based on the recommendations of the FAO/WHO Joint Meeting on Pesticides (JMPR). The basic principles applied currently by the JMPR for the evaluation of experimental data and related information are described together with some of the areas in which further developments are needed.
Current status of herbal product: Regulatory overview
Sharma, Sanjay
2015-01-01
A review of the regulatory status of herbal drugs/products was done for few countries forming part of Asia, Africa, America, Europe, and Australia, to understand various categories under which the trade of herbal products is permitted and their premarketing requirements. A critical assessment was done, to know the hindrances in the process of harmonization of herbal products. It has been found that there is a lack of harmonization in the regulatory requirements of herbal products internationally, besides the issues of availability of herbs and their conservation. These are hindering the international trade and growth of the herbal products segment. PMID:26681886
Current status of herbal product: Regulatory overview.
Sharma, Sanjay
2015-01-01
A review of the regulatory status of herbal drugs/products was done for few countries forming part of Asia, Africa, America, Europe, and Australia, to understand various categories under which the trade of herbal products is permitted and their premarketing requirements. A critical assessment was done, to know the hindrances in the process of harmonization of herbal products. It has been found that there is a lack of harmonization in the regulatory requirements of herbal products internationally, besides the issues of availability of herbs and their conservation. These are hindering the international trade and growth of the herbal products segment.
Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, Daniel Beom Soo
We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.
NASA Astrophysics Data System (ADS)
Pinsker, R. I.
2014-10-01
In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
Shen, Wen; Slaughter, Malcolm M
1998-01-01
Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896
Approaches to creating and controlling motion in MRI.
Fischer, Gregory S; Cole, Gregory; Su, Hao
2011-01-01
Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.
NASA Technical Reports Server (NTRS)
Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.
1978-01-01
The 1977 altimetry data bank is analyzed for the geometrical shape of the sea surface expressed as surface spherical harmonics after referral to the higher reference model defined by GEM 9. The resulting determination is expressed as quasi-stationary dynamic SST. Solutions are obtained from different sets of long arcs in the GEOS-3 altimeter data bank as well as from sub-sets related to the September 1975 and March 1976 equinoxes assembled with a view to minimizing seasonal effects. The results are compared with equivalent parameters obtained from the hydrostatic analysis of sporadic temperature, pressure and salinity measurements of the oceans and the known major steady state current systems with comparable wavelengths. The most clearly defined parameter (the zonal harmonic of degree 2) is obtained with an uncertainty of + or - 6 cm. The preferred numerical value is smaller than the oceanographic value due to the effect of the correction for the permanent earth tide. Similar precision is achieved for the zonal harmonic of degree 3. The precision obtained for the fourth degree zonal harmonic reflects more closely the accuracy expected from the level of noise in the orbital solutions.
Theory, Design and Operation of a High-Power Second - Gyro-Twt Amplifier.
NASA Astrophysics Data System (ADS)
Wang, Qinsong
1995-01-01
Based on the cyclotron resonance maser (CRM) instability, the gyrotron traveling wave tube (gyro-TWT) amplifier is an efficient high power microwave and millimeter wave coherent radiation source. As evidenced in previous experiments, gyro-TWTs, however, can be very susceptible to spontaneous oscillations, and their output powers have thus been limited to relatively low levels. In this dissertation work, thorough theoretical and experimental studies have been conducted to demonstrate and confirm a novel "marginal stability design" (MSD) concept that a harmonic gyro-TWT amplifier is more stable to spontaneous oscillation than a fundamental harmonic gyro-TWT amplifier. Since their interactions are, in general, weaker and allow higher levels of electron beam current, harmonic gyro-TWTs can yield, in principle, a significantly higher RF output power than a fundamental gyro-TWT. The study results also show that a magnetron injection gun (MIG) type electron beam is applicable to harmonic gyro-TWTs. A complete analytic linear theory employing Laplace transforms and a three dimensional nonlinear theory using a slow time-scale formalism are developed in Chapt. 2 for the general CRM interaction to address the issue of stability. Two designs were developed to demonstrate the MSD procedure. The design and development of the proof -of-principle experiment are discussed in Chapt. 3. The accompanying cold test results indicate that all the components have met their respective design goals. The RF diagnostic circuit employed to characterize the gyro-TWT amplifier is also described. Chapter 4 presents the hot-test results of the second-harmonic TE_{21} gyro-TWT amplifier experiment in which an 80 kV, 20 A MIG beam with alpha(equivupsilon _|/upsilon_|) = 1 was used to generate a peak RF output power of 207 kW in Ku-band with an efficiency of 12.9%. In addition, the saturated gain is 16 dB, the small signal gain is 22 dB, the measured bandwidth is 2.1%, and the amplifier was zero-drive stable. As pointed out in Chapt. 5, the theoretical and experimental studies conducted in this work have successfully realized their objectives. Further improvements to the current proof-of-principle experiment and an increase in the operating frequency by operating at an even higher cyclotron harmonic are promising and worthy of future efforts.
NASA Astrophysics Data System (ADS)
Bae, Y. S.; Jeong, J. H.; Park, S. I.; Joung, M.; Kim, J. H.; Hahn, S. H.; Yoon, S. W.; Yang, H. L.; Kim, W. C.; Oh, Y. K.; England, A. C.; Namkung, W.; Cho, M. H.; Jackson, G. L.; Bak, J. S.; KSTAR Team
2009-02-01
This letter reports on the successful demonstration of the second harmonic electron cyclotron heating (ECH)-assisted startup in the first plasma experiments recently completed in the fully superconducting Korea Superconducting Tokamak Advanced Research (KSTAR) device whose major and minor radii are 1.8 m and 0.5 m, respectively. For the second harmonic ECH-assisted startup, an 84 GHz EC wave at 0.35 MW was launched before the onset of the toroidal electric field of the Ohmic system. And it was observed that this was sufficient to achieve breakdown in the ECH pre-ionization phase, allow burn-through and sustain the plasma during the current ramp with a low loop voltage of 2.0 V and a corresponding toroidal electric field of 0.24 V m-1at the innermost vacuum vessel wall (R = 1.3 m). This is a lower value than 0.3 Vm-1 which is the maximum electric field in ITER. Due to the limited volt-seconds and the loop voltage of the Ohmic power system, the extended pulse duration of the ECH power up to 180 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA s-1.
A new method of presentation the large-scale magnetic field structure on the Sun and solar corona
NASA Technical Reports Server (NTRS)
Ponyavin, D. I.
1995-01-01
The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.
High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma
NASA Astrophysics Data System (ADS)
Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.
1999-05-01
A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten
2015-11-01
The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.
Woodall, Christopher W; Rondeux, Jacques; Verkerk, Pieter J; Ståhl, Göran
2009-10-01
Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study is to describe the status, DW components measured, sample methods employed, and DW component thresholds used by national forest inventories that currently inventory DW around the world. Study results indicate that most countries do not inventory forest DW. Globally, we estimate that about 13% of countries inventory DW using a diversity of sample methods and DW component definitions. A common feature among DW inventories was that most countries had only just begun DW inventories and employ very low sample intensities. There are major hurdles to harmonizing national forest inventories of DW: differences in population definitions, lack of clarity on sample protocols/estimation procedures, and sparse availability of inventory data/reports. Increasing database/estimation flexibility, developing common dimensional thresholds of DW components, publishing inventory procedures/protocols, releasing inventory data/reports to international peer review, and increasing communication (e.g., workshops) among countries inventorying DW are suggestions forwarded by this study to increase DW inventory harmonization.
Cator, Lauren J; Zanti, Zacharo
2016-12-01
Several new mosquito control strategies will involve the release of laboratory reared males which will be required to compete with wild males for mates. Currently, the determinants of male mating success remain unclear. The presence of convergence between male and female harmonic flight tone frequencies during a mating attempt have been found to increase male mating success in the yellow fever mosquito, Aedes aegypti. Size has also been implicated as a factor in male mating success. Here, we investigated the relationships among body size, harmonic convergence signalling, and mating success. We predicted that harmonic convergence would be an important determinant of mating success and that large individuals would be more likely to converge. We used diet to manipulate male and female body size and then measured acoustic interactions during mating attempts between pairs of different body sizes. Additionally, we used playback experiments to measure the direct effect of size on signalling performance. In live pair interactions, harmonic convergence was found to be a significant predictor of copula formation. However, we also found interactions between harmonic convergence behaviour and body size. The probability that a given male successfully formed a copula was a consequence of his size, the size of the female encountered, and whether or not they converged. While convergence appears to be predictive of mating success regardless of size, the positive effect of convergence was modulated by size combinations. In playbacks, adult body size did not affect the probability of harmonic convergence responses. Both body size and harmonic convergence signalling were found to be determinants of male mating success. Our results suggest that in addition to measuring convergence ability of mass release lines that the size distribution of released males may need to be adjusted to complement the size distribution of females. We also found that diet amount alone cannot be used to increase male mating success or convergence probability. A clearer understanding of convergence behaviours, their relationship to mating success, and factors influencing convergence ability would provide the groundwork for improving the mating performance of laboratory reared lines.
Greenberg, Jonathan; Shapero, Benjamin G; Mischoulon, David; Lazar, Sara W
2017-04-01
An impaired ability to suppress currently irrelevant mental-sets is a key cognitive deficit in depression. Mindfulness-based cognitive therapy (MBCT) was specifically designed to help depressed individuals avoid getting caught in such irrelevant mental-sets. In the current study, a group assigned to MBCT plus treatment-as-usual (n = 22) exhibited significantly lower depression scores and greater improvements in irrelevant mental-set suppression compared to a wait-list plus treatment-as-usual (n = 18) group. Improvements in mental-set-suppression were associated with improvements in depression scores. Results provide the first evidence that MBCT can improve suppression of irrelevant mental-sets and that such improvements are associated with depressive alleviation.
Zhou, Zhanmin; Zhang, Bao; Mao, Dapeng
2018-01-01
Torque ripples caused by cogging torque, flux harmonics, and current measurement error seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC), in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress the torque ripples as its invariance to disturbances. However, since the high switching gain tends to cause chattering and it requires derivative of signals which is not readily obtainable without an acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the performance of the SMC. The NTD is employed to providing the derivative of the signal, and the DOB is utilized to estimate the system lumped disturbances, including parameter variations and external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance performance compared to the traditional methods. PMID:29596387
Zhou, Zhanmin; Zhang, Bao; Mao, Dapeng
2018-03-29
Torque ripples caused by cogging torque, flux harmonics, and current measurement error seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC), in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress the torque ripples as its invariance to disturbances. However, since the high switching gain tends to cause chattering and it requires derivative of signals which is not readily obtainable without an acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the performance of the SMC. The NTD is employed to providing the derivative of the signal, and the DOB is utilized to estimate the system lumped disturbances, including parameter variations and external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance performance compared to the traditional methods.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.