Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Polarization-Resolved Study of High Harmonics from Bulk Semiconductors
NASA Astrophysics Data System (ADS)
Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro
2018-06-01
The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.
NASA Astrophysics Data System (ADS)
Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh
2015-12-01
The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection of harmonic complex mistuning and may also be associated with the modulation of auditory nerve responses.
Selection rules for harmonic generation in solids
NASA Astrophysics Data System (ADS)
Moiseyev, Nimrod
2015-05-01
High-order harmonic generation (HHG) in a bulk crystal was first observed in 2011 [S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011), 10.1038/nphys1847]. Only odd-order harmonics were observed as expected on the basis of the selection rules in solids, which were derived when only the interband currents were taken into consideration. Here we study HHG in solids when the intraband currents are taken into consideration as well. We show that the dynamical selection rules are broken in solids and the possibility of generation of even-order harmonics cannot be excluded on the basis of the dynamical symmetry analysis. However, a simple analysis of the expression we obtained for the amplitude of the emitted high-order harmonics shows, without the need to carry out numerical calculations, that the even-order harmonics are suppressed due to the localization of the field-free one-electron density probability on the atoms in the solids.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Color group selection for computer interfaces
NASA Astrophysics Data System (ADS)
Lyons, Paul; Moretti, Giovanni; Wilson, Mark
2000-06-01
We describe a low-impact method for coloring interfaces harmoniously. The method uses a model that characterizes the overall image including the need for distinguishability between interface components. The degree of visual distinction between one component and other components, and its color strength (which increases with its importance and decreases with its size and longevity), are used in generating a rigid ball-and-stick 'color molecule,' which represents the color relationships between the interface components. The shape of the color molecule is chosen to conform to standard principles of color harmony (like colors harmonize, complementary colors harmonize, cycles in the color space harmonize, and so on). The color molecule's shape is fixed, but its position and orientation within the perceptually uniform color solid are not. The end user of the application chooses a new color scheme for the complete interface by repositioning the molecule within the color space. The molecule's shape and rigidity, and the space's perceptual uniformity, ensures the distinguishability and color harmony of the components are maintained. The system produces a selection of color schemes which often include subtle 'nameless' colors that people rarely choose using conventional color controls, but which blend smoothly into a harmonious color scheme. A new set of equally harmonious color schemes only requires repositioning the color molecule within the space.
NASA Astrophysics Data System (ADS)
Leahy, Lauren N.; Haslach, Henry W.
2018-02-01
During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.
How to distinguish various components of the SHG signal recorded from the solid/liquid interface?
NASA Astrophysics Data System (ADS)
Gassin, Pierre-Marie; Martin-Gassin, Gaelle; Prelot, Benedicte; Zajac, Jerzy
2016-11-01
Second harmonic generation (SHG) may be an important tool to probe buried solid/liquid interfaces because of its inherent surface sensitivity. A detailed interpretation of dye adsorption onto Si-SiO2 wafer is not straightforward because both adsorbent and adsorbate contribute to the overall SHG signal. The polarization resolved SHG analysis points out that the adsorbent and adsorbate contributions are out of phase by π/2 in the present system. The surface nonlinear susceptibility χ(2) represents thus a complex tensor in which its real part is related to the adsorbent contribution and its imaginary part to the adsorbate one.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
...] RIN 1625-AB47 Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk... on June 17, 2010, entitled ``Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code.'' This correction provides correct information with regard to the...
Measurement of Jupiter’s asymmetric gravity field
NASA Astrophysics Data System (ADS)
Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.
NASA Technical Reports Server (NTRS)
Parke, M. E.
1982-01-01
The models of M2, S2, and K1 presented in Parke and Hendershott (1980) are supplemented with models of O1, P1, and N2. The models satisfy specified elevation boundary conditions and are generated by fighting a small number of test functions to island data. Maps are presented of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each new component. Maps of the tidal potential seen by an observer fixed to the surface of the solid earth are also presented for all six constituents. Spherical harmonic coefficients up to order four and the rms magnitude of the coefficients to order fifteen are presented for each constituent. The rms magnitudes of the P1 and K1 coefficients normalized by their respective equilibrium amplitudes are compared to determine the effect of the diurnal core resonance.
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Tailored semiconductors for high-harmonic optoelectronics
NASA Astrophysics Data System (ADS)
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu.; Villeneuve, D. M.; Ropers, Claus; Corkum, P. B.
2017-07-01
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.
Nanoengineering of strong field processes in solids
NASA Astrophysics Data System (ADS)
Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.
2018-04-01
We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.
Effect of transition dipole phase on high-order-harmonic generation in solid materials
NASA Astrophysics Data System (ADS)
Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.
2017-11-01
High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.
Tailored semiconductors for high-harmonic optoelectronics.
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B
2017-07-21
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Alexander Roy; Krushelnick, Karl
2016-09-08
We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactionsmore » at 10 21 Wcm -2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code..., the Coast Guard amended its regulations governing the carriage of solid hazardous materials in bulk to... hazardous bulk solid materials not addressed in the amended regulations. This notice announces that the...
High Power Klystrons for Efficient Reliable High Power Amplifiers.
1980-11-01
techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer
Linking high harmonics from gases and solids.
Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B
2015-06-25
When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.
High-harmonic generation in amorphous solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Yin, Yanchun; Wu, Yi
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-harmonic generation in amorphous solids
You, Yong Sing; Yin, Yanchun; Wu, Yi; ...
2017-09-28
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
Optical second-harmonic diffraction study of anisotropic surface diffusion: CO on Ni(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, X.; Zhu, X.D.; Daum, W.
We describe in detail a technique using optical second-harmonic (SH) diffraction from a one-dimensional laser-induced monolayer grating to probe surface diffusion of adsorbates and its anisotropy on a solid surface. The case of CO on Ni(110) is used as a demonstration. The two orthogonal and independent diffusion tensor components along (1{bar 1}0) and (001) are measured, exhibiting a strong anisotropy in both the activation energy {ital E}{sub diff} and the preexponential factor {ital D}{sub 0} in the diffusion coefficients. A compensation effect between {ital E}{sub diff} and {ital D}{sub 0} is observed. In comparison with CO/Ni(111) and CO/Ni(100), our resultmore » suggests that the Ni(110) surface seen by CO is much smoother than Ni(111) and Ni(100). Both advantages and limitations of the present technique are mentioned and possible complications in the data analysis are discussed.« less
Second harmonic generation in a molecular magnetic chain
NASA Astrophysics Data System (ADS)
Cavigli, L.; Sessoli, R.; Gurioli, M.; Bogani, L.
2006-05-01
A setup for the determination of all the components of the second harmonic generation tensor in molecular materials is presented. It allows overcoming depletion problems, which one can expect to be common in molecular systems. A preliminary characterization of the nonlinear properties of the single chain magnet CoPhOMe is carried out. We observe a high second harmonic signal, comparable to that of urea, and show that the bulk contributions are dominant over the surface ones.
High-Harmonic Generation in Solids with and without Topological Edge States
NASA Astrophysics Data System (ADS)
Bauer, Dieter; Hansen, Kenneth K.
2018-04-01
High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.
A new method for gravity field recovery based on frequency analysis of spherical harmonics
NASA Astrophysics Data System (ADS)
Cai, Lin; Zhou, Zebing
2017-04-01
All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary results, which only compute lower degree spherical harmonics, indicates that the difference between the input (EGM2008) and output (coefficients from recovery) is smaller than 5E-17, while the minimal precision of computer software (Matlab) is 2.2204E-16.
High-order harmonic generation in solid slabs beyond the single-active-electron approximation
NASA Astrophysics Data System (ADS)
Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter
2017-11-01
High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.
High harmonic generation in rare gas solids
NASA Astrophysics Data System (ADS)
Reis, David
2015-05-01
There has recently been renewed interest in the interaction of strong optical fields with large band-gap solids. The response is known to involve the attosecond dynamics of the electrons and includes the generation of non-perturbative high-order harmonics. However, the detailed mechanism remain a matter of intense debate. Here we report on high harmonic generation in rare gas solids as compared to a dilute gas. The measured spectrum in the solid exhibits a secondary plateau and a subsequent high-energy cut-off that extends well beyond the gas phase, while the ellipticity dependence is simlar to the gas phase and suggests importance of coherent single-site recombination.
NASA Astrophysics Data System (ADS)
Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J.
2015-03-01
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Carcagno, Samuele; Plack, Christopher J
2011-08-01
Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.
Properties of Decameter IIIb-III Pairs
NASA Astrophysics Data System (ADS)
Melnik, V. N.; Brazhenko, A. I.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.
2018-02-01
A large number of Type IIIb-III pairs, in which the first component is a Type IIIb burst and the second one is a Type III burst, are often recorded during decameter Type III burst storms. From the beginning of their observation, the question of whether the components of these pairs are the first and the second harmonics of radio emission or not has remained open. We discuss properties of decameter IIIb-III pairs in detail to answer this question. The components of these pairs, Type IIIb bursts and Type III bursts, have essentially different durations and polarizations. At the same time their frequency drift rates are rather close, provided that the drift rates of Type IIIb bursts are a little larger those of Type III bursts at the same frequency. Frequency ratios of the bursts at the same moment are close to two. This points at a harmonic connection of the components in IIIb-III pairs. At the same time there was a serious difficulty, namely why the first harmonic had fine frequency structure in the form of striae and the second harmonic did not have it. Recently Loi, Cairns, and Li ( Astrophys. J. 790, 67, 2014) succeeded in solving this problem. The physical aspects of observational properties of decameter IIIb-III pairs are discussed and pros and cons of harmonic character of Type IIIb bursts and Type III bursts in IIIb-III pairs are presented. We conclude that practically all properties of the IIIb-III pair components can be understood in the framework of the harmonic relation of the components of the IIIb-III pairs.
Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...
2016-11-14
High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less
Multilevel perspective on high-order harmonic generation in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.
2016-12-01
We investigate high-order harmonic generation in a solid, modeled as a multilevel system dressed by a strong infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [G. Ndabashimiye et al., Nature 534, 520 (2016), 10.1038/nature17660]. We also show that when the multilevel system originates from the Bloch state at the Γ point of the band structure, the laser-dressed states are equivalent to the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494] and will therefore map out the band structure away from the Γ point as the laser field increases. This leads to a semiclassical three-step picture in momentum space that describes the high-order harmonic generation process in a solid.
Solid-state transformer-based new traction drive system and control
NASA Astrophysics Data System (ADS)
Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao
2017-11-01
A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.
Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V
2012-06-01
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.
Effect of Solid-State Power-Converter Harmonics on Electric-Power-Supply Systems
DOT National Transportation Integrated Search
1973-03-01
The United States utility industry has not set suitable standards, other than TIF (Telephone Interference Factor), for controlling the design of solid-state wayside and on-board power-conversion equipment, to limit the harmonic currents and voltages ...
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; ...
2017-12-18
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less
High-harmonic generation in graphene enhanced by elliptically polarized light excitation
NASA Astrophysics Data System (ADS)
Yoshikawa, Naotaka; Tamaya, Tomohiro; Tanaka, Koichiro
2017-05-01
The electronic properties of graphene can give rise to a range of nonlinear optical responses. One of the most desirable nonlinear optical processes is high-harmonic generation (HHG) originating from coherent electron motion induced by an intense light field. Here, we report on the observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature. The HHG in graphene is enhanced by an elliptically polarized laser excitation, and the resultant harmonic radiation has a particular polarization. The observed ellipticity dependence is reproduced by a fully quantum mechanical treatment of HHG in solids. The zero-gap nature causes the unique properties of HHG in graphene, and our findings open up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.
Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less
Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.; ...
2017-04-24
Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less
Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo
2015-04-01
During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.
Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo
2015-01-01
During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Aidan P.; Swiler, Laura P.; Trott, Christian R.
2015-03-15
Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1].more » The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.P., E-mail: athomps@sandia.gov; Swiler, L.P., E-mail: lpswile@sandia.gov; Trott, C.R., E-mail: crtrott@sandia.gov
2015-03-15
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. Themore » SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less
Space-qualified submillimeter radiometer
NASA Technical Reports Server (NTRS)
Huguenin, G. R.
1987-01-01
The purpose of this research was to develop a reliable submillimeter wave spectrometer for space-borne high frequency spectral line work. The emphasis was on improving the efficiency of frequency multipliers to limit the system components to rugged, low power consumption solid-state devices. This research has allowed Millitech to develop increased efficiency and performance in Millitech's existing line of submillimeter components and systems. Millitech has fabricated and tested a complete solid-state spectrometer front end for use at 560 GHz (the 1(sub 10) to 1(sub 01) transition of water vapor). The spectrometer was designed with the rigors of flight conditions in mind. The spectrometer uses a phase-locked, solid-state Gunn diode oscillator as the local oscillator, employing a tripler to produce about 3 mW of power at 285 GHz, and a low noise second harmonic waveguide mixer which requires less than 2 mW of LO power. The LO (and the signal) is injected into the mixer by means of a quasioptical diplexer. The measured system noise temperature is 2800 K (DSB) over 400 MHz. The whole spectrometer front end is compact (21 cm by 21 cm by 24 cm), light (7.4 kg), and has a power consumption of less than 8 W. Other topics explored in this work include compact frequency agile phase lock loops, optical filters, and InP Gunn oscillators for low noise applications. As a result of this research, the improvement in the design of multipliers and harmonic mixers will allow their use as the LO power for a variety of satellite-borne receivers operating in the 200 to 600 GHz frequency range.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.
2016-09-01
Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang
2018-06-01
Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.
Onsager vortex formation in two-component Bose–Einstein condensates in two-dimensional traps
NASA Astrophysics Data System (ADS)
Han, Junsik; Tsubota, Makoto
2018-03-01
We study numerically the dynamics of quantized vortices in two-dimensional one-component and two-component Bose–Einstein condensates (BECs) trapped by a harmonic and box potentials. In two-component miscible BECs, we confirmed the tendency of the formation of Onsager vortices in both traps. The vortices in one component separate spatially from those in the other component, which comes from their intercomponent-coupling. We also discuss the decay of the number of vortices.
Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology
Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret
2016-01-01
Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782
High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems
NASA Astrophysics Data System (ADS)
Silva, R. E. F.; Blinov, Igor V.; Rubtsov, Alexey N.; Smirnova, O.; Ivanov, M.
2018-05-01
We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.
NASA Astrophysics Data System (ADS)
Johnson, R. A.; Shoshitaishvili, E.; Sorenson, L. S.
2001-12-01
The Cheyenne Belt in southeastern Wyoming separates Archean Wyoming Craton from accreted juvenile Proterozoic crust making it one of the fundamental sutures in the Proterozoic assemblage of western North America. As one of the multidisciplinary components of the Continental Dynamics - Rocky Mountains Transect project (CDROM), reflection seismic data were acquired from south-central Wyoming to central Colorado to characterize crustal structure associated with this boundary and younger Proterozoic shear zones to the south. In addition to acquisition of more conventional vertical-component data, 3-component data were acquired to better constrain rock properties and reflection directionality, providing information that tends to be lost with one-component recording. In order to achieve the highest possible signal-to-noise ratios in the processed data, considerable work was focused on removal of noise caused by private vehicles driving on forest roads during active recording and, perhaps more problematical, harmonic noise generated from power-line and other electrical-equipment interference. Noise generated from these sources was successfully attenuated using 1) short-window 2D FFT filtering to remove irregular, high-amplitude vehicular noise, and 2) harmonic-noise-subtraction algorithms developed at the University of Arizona to remove harmonic electrical-induction noise. This latter filtering procedure used a time-domain-based method of automatic estimation of noise frequencies and their amplitudes, followed by subtraction of these estimated anomalous harmonics from the data. Since the technique estimates the best fit of noise for the entire trace, subtraction of the noise avoids many of the deleterious effects of simple notch filtering. After noise removal, it was possible to pick both P-wave and S-wave first arrivals and model shallow subsurface rock properties. This model provides a link between deeper events and the surface geology.
D'Aguanno, Giuseppe; Centini, Marco; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; Bloemer, Mark J; Bowden, Charles M
2003-01-01
We study second-harmonic generation in finite, one-dimensional, photonic band-gap structures with large index contrast in the regime of pump depletion and global phase-matching conditions. We report a number of surprising results: above a certain input intensity, field dynamics resemble a multiwave mixing process, where backward and forward components compete for the available energy; the pump field is mostly reflected, revealing a type of optical limiting behavior; and second-harmonic generation becomes balanced in both directions, showing unusual saturation effects with increasing pump intensity. This dynamics was unexpected, and it is bound to influence the way one goes about thinking and designing nonlinear frequency conversion devices in a practical way.
A new FPGA-driven P-HIFU system with harmonic cancellation technique
NASA Astrophysics Data System (ADS)
Wu, Hao; Shen, Guofeng; Su, Zhiqiang; Chen, Yazhu
2017-03-01
This paper introduces a high intensity focused ultrasound system for ablation using switch-mode power amplifiers with harmonic cancellation technique eliminating the 3rdharmonic and all even harmonics. The efficiency of the amplifier is optimized by choosing different parameters of the harmonic cancellation technique. This technique requires double driving signals, and specific signal waveform because of the full-bridge topology. The new FPGA-driven P-HIFU system has 200 channels of phase signals that can form 100 output channels. An FPGA chip is used to generate these signals, and each channel has a phase resolution of 2 ns, less than one degree. The output waveform of the amplifier, voltage waveform across the transducer, shows fewer harmonic components.
NASA Astrophysics Data System (ADS)
Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin
2018-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
DC-magnetic field vector measurement
NASA Technical Reports Server (NTRS)
Schmidt, R.
1981-01-01
A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.
The use of harmonic analysis to investigate processes in irradiated transistor structures
NASA Astrophysics Data System (ADS)
Gnap, A. K.; Zaliubovskii, I. I.; Dakhov, V. M.; Pelikhatyi, N. M.; Filippenko, V. E.
A theoretical model is developed for analyzing the behavior of transistor structures under irradiation by high-energy particles. Specifically, attention is given to the operation of a transistor switch under irradiation by 2-MeV neutrons. The proposed approach involves the replacement of the actual voltage pulse by a trapezoidal pulse, and the application of harmonic analysis to the latter. The parameters of the actual pulse can then be determined from an analysis of the constant component of the signal and the value of one of its harmonics.
High coupling efficiency of foam spherical hohlraum driven by 2ω laser light
NASA Astrophysics Data System (ADS)
Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.
2018-02-01
The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.
Harmonic generation with a dual frequency pulse.
Keravnou, Christina P; Averkiou, Michalakis A
2014-05-01
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
NASA Astrophysics Data System (ADS)
Matikas, Theodore E.
2010-07-01
The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.
Internal friction and mode relaxation in a simple chain model.
Fugmann, S; Sokolov, I M
2009-12-21
We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling.
A new description of Earth's wobble modes using Clairaut coordinates: 1. Theory
NASA Astrophysics Data System (ADS)
Rochester, M. G.; Crossley, D. J.; Zhang, Y. L.
2014-09-01
This paper presents a novel mathematical reformulation of the theory of the free wobble/nutation of an axisymmetric reference earth model in hydrostatic equilibrium, using the linear momentum description. The new features of this work consist in the use of (i) Clairaut coordinates (rather than spherical polars), (ii) standard spherical harmonics (rather than generalized spherical surface harmonics), (iii) linear operators (rather than J-square symbols) to represent the effects of rotational and ellipticity coupling between dependent variables of different harmonic degree and (iv) a set of dependent variables all of which are continuous across material boundaries. The resulting infinite system of coupled ordinary differential equations is given explicitly, for an elastic solid mantle and inner core, an inviscid outer core and no magnetic field. The formulation is done to second order in the Earth's ellipticity. To this order it is shown that for wobble modes (in which the lowest harmonic in the displacement field is degree 1 toroidal, with azimuthal order m = ±1), it is sufficient to truncate the chain of coupled displacement fields at the toroidal harmonic of degree 5 in the solid parts of the earth model. In the liquid core, however, the harmonic expansion of displacement can in principle continue to indefinitely high degree at this order of accuracy. The full equations are shown to yield correct results in three simple cases amenable to analytic solution: a general earth model in rigid rotation, the tiltover mode in a homogeneous solid earth model and the tiltover and Chandler periods for an incompressible homogeneous solid earth model. Numerical results, from programmes based on this formulation, are presented in part II of this paper.
Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-04-01
The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.
Dissipative effects in multi-component systems
NASA Astrophysics Data System (ADS)
El, Andrej; Bouras, Ioannis; Xu, Zhe; Greiner, Carsten
2013-05-01
Using a smooth initial condition of Glauber type in the kinetic transport algorithm BAMPS we investigate differences in behavior of a multi-component system and its one-component equivalent with the same η/s value. Flow harmonic coefficients v2 and v4 are shown to have very low sensitivity to the details of microscopic interactions in the system.
Multichannel high-order harmonic generation from solids
NASA Astrophysics Data System (ADS)
Du, Tao-Yuan; Tang, Dong; Huang, Xiao-Huan; Bian, Xue-Bin
2018-04-01
We studied the ultrafast dynamics of high-order harmonic generation (HHG) from solids numerically. It is found that a superposition of Bloch oscillation in the same band and Zenner tunneling to its neighboring conduction band (i.e., Bloch-Zener oscillation effect) play significant roles in HHG when the Bloch electrons cross the boundary of the first Brillouin zone. It increases the number of the harmonic emission channels. These multichannel signals extend the cutoff energy of the plateau in the HHG spectra and enhance both the intra- and interband contributions. The interference of different channels makes the structure of the HHG spectra complex. The multichannel dynamics in the monochromatic and two-color laser fields are demonstrated in a periodic potential model and single-crystal MgO, respectively. It provides an alternative way to control the ultrafast electron dynamics and HHG emission processes in solids.
Two-phase thermodynamic model for computing entropies of liquids reanalyzed
NASA Astrophysics Data System (ADS)
Sun, Tao; Xian, Jiawei; Zhang, Huai; Zhang, Zhigang; Zhang, Yigang
2017-11-01
The two-phase thermodynamic (2PT) model [S.-T. Lin et al., J. Chem. Phys. 119, 11792-11805 (2003)] provides a promising paradigm to efficiently determine the ionic entropies of liquids from molecular dynamics. In this model, the vibrational density of states (VDoS) of a liquid is decomposed into a diffusive gas-like component and a vibrational solid-like component. By treating the diffusive component as hard sphere (HS) gas and the vibrational component as harmonic oscillators, the ionic entropy of the liquid is determined. Here we examine three issues crucial for practical implementations of the 2PT model: (i) the mismatch between the VDoS of the liquid system and that of the HS gas; (ii) the excess entropy of the HS gas; (iii) the partition of the gas-like and solid-like components. Some of these issues have not been addressed before, yet they profoundly change the entropy predicted from the model. Based on these findings, a revised 2PT formalism is proposed and successfully tested in systems with Lennard-Jones potentials as well as many-atom potentials of liquid metals. Aside from being capable of performing quick entropy estimations for a wide range of systems, the formalism also supports fine-tuning to accurately determine entropies at specific thermal states.
Organo-Metallic Elements for Associative Information Processing
1989-01-15
7844 400 MHz oscilloscope Hamamatsu Model B2297-3 Ge photodiodes Scientech Model 365 power meter Miscellaneous optical components (i.e., harmonic...dried in vacuo at 80 °C for 3 hours to give a tan colored powder 234.2 g, yield I 84%, mp > 400 oC. IR(KBr) 1787, 1733, 1683, 1621, 1557, 1467, 1375...flask was cooled in an ice-water bath for 3 hours and the solid was collected on a filter and washed thoroughly with water 2 x 400 mL and ethanol 3 x
NASA Astrophysics Data System (ADS)
Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi
2005-12-01
The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.
Complex metabolic oscillations in plants forced by harmonic irradiance.
Nedbal, Ladislav; Brezina, Vítezslav
2002-01-01
Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435
On the possibility of a place code for the low pitch of high-frequency complex tonesa
Santurette, Sébastien; Dau, Torsten; Oxenham, Andrew J.
2012-01-01
Harmonics are considered unresolved when they interact with neighboring harmonics and cannot be heard out separately. Several studies have suggested that the pitch derived from unresolved harmonics is coded via temporal fine-structure cues emerging from their peripheral interactions. Such conclusions rely on the assumption that the components of complex tones with harmonic ranks down to at least 9 were indeed unresolved. The present study tested this assumption via three different measures: (1) the effects of relative component phase on pitch matches, (2) the effects of dichotic presentation on pitch matches, and (3) listeners' ability to hear out the individual components. No effects of relative component phase or dichotic presentation on pitch matches were found in the tested conditions. Large individual differences were found in listeners' ability to hear out individual components. Overall, the results are consistent with the coding of individual harmonic frequencies, based on the tonotopic activity pattern or phase locking to individual harmonics, rather than with temporal coding of single-channel interactions. However, they are also consistent with more general temporal theories of pitch involving the across-channel summation of information from resolved and/or unresolved harmonics. Simulations of auditory-nerve responses to the stimuli suggest potential benefits to a spatiotemporal mechanism. PMID:23231119
NASA Astrophysics Data System (ADS)
Overstreet, Sarah; Wang, Haipeng
2017-09-01
An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.
Space Shuttle Transportation (Roll-Out) Loads Diagnostics
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Buehrle, Ralph D.; James, George H.; Richart, Jene A.
2005-01-01
The Space Transportation System (STS) consists of three primary components; an Orbiter Vehicle, an External Fuel Tank, and two Solid Rocket Boosters. The Orbiter Vehicle and Solid Rocket Boosters are reusable components, and as such, they are susceptible to durability issues. Recently, the fatigue load spectra for these components have been updated to include load histories acquired during the rollout phase of the STS processing for flight. Using traditional program life assessment techniques, the incorporation of these "rollout" loads produced unacceptable life estimates for certain Orbiter structural members. As a result, the Space Shuttle System Engineering and Integration Office has initiated a program to re-assess the method used for developing the "rollout" loads and performing the life assessments. In the fall of 2003 a set of tests were preformed to provide information to either validate existing load spectra estimation techniques or generate new load spectra estimation methods. Acceleration and strain data were collected from two rollouts of a partial-stack configuration of the Space Shuttle. The partial stack configuration consists of two Solid Rocket Boosters tied together at the upper External Tank attachment locations mounted on the Mobile Launch Platform carried by a Crawler Transporter (CT). In the current analysis, the data collected from this test is examined for consistency in speed, surface condition effects, and the characterization of the forcing function. It is observed that the speed of the CT is relatively stable. The dynamic response acceleration of the partial-stack is slightly sensitive to the surface condition of the road used for transport, and the dynamic response acceleration of the partial-stack generally increases as the transport speed increases. However, the speed sensitivity is dependent on the measurement location. Finally, the character of the forcing function is narrow-banded with the primary drivers being harmonics of two CT speed dependent excitations. One source is an excitation due to the CT treads striking the road surface, and the second is unknown.
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Generation of intense high-order vortex harmonics.
Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan
2015-05-01
This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.
Orientation dependence of temporal and spectral properties of high-order harmonics in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; Reis, David A.; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.
2017-12-01
We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems this gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. We address recent experimental results in MgO [Y. S. You et al., Nat. Phys. 13, 345 (2017)., 10.1038/nphys3955] and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.
Sea Level Variations in Gulf of Thailand.
1981-03-01
the astrono - mical tides alone. One purpose of thesis is to assess the importance of some of the non-astronomical factors in the Gulf of Thailand. 14...diurnal and diurnal tide components from the non-harmonic components of the hourly height. Then the non- astrono - mical part of the height change can be seen
Anomalous tidal loading signals in South-West England and Brittany
NASA Astrophysics Data System (ADS)
Keshin, M.; Penna, N. T.; Clarke, P. J.; Bos, M. S.; Baker, T. F.
2010-05-01
The tidal deformation of the Earth, including ocean tide loading (OTL), sheds light on the Earth's internal structure. Uncertainties in the knowledge of this deformation may be a source of both direct and propagated periodic errors in GPS geodesy. The increasing number of global GPS stations with long histories of observations, as well as recent developments in precise GPS geodesy such as the availability of reprocessed satellite orbits, enables further study of these geophysical and geodetic phenomena. There are more than 10 worldwide regions where OTL displacement amplitudes exceed 25mm. In our work we considered one such region covering South-West England and stretching southward along the coasts of France, Spain and Portugal. Estimates of three-dimensional harmonic site motion at each of the principal diurnal (K1, O1, P1, Q1) and semi-diurnal (K2, M2, N2, S2) frequencies were obtained for 40 European stations with at least 2 year observation span, using the GIPSY-OASIS II software package with reprocessed precise satellite orbits from JPL. All GPS data available from 2002.0 to 2010.0 were considered. 34 stations were situated close to the Atlantic coast; a further 6 inland stations at similar latitudes were processed as a check on solid Earth tide models. Inter-model OTL displacement differences are small, especially for the inland sites; the problematic Bristol Channel area of South-West England was excluded. We validated the quality of our GPS estimates by using and comparing three different analysis strategies: (1) Harmonic estimation of total tidal displacement in 24-hour Precise Point Positioning (PPP) batch solutions: harmonic displacements are estimated per coordinate component for each of the eight principal tidal constituents. OTL is not modelled a priori, and nodal corrections are applied in post-processing after combination of the daily results; (2) Harmonic estimation of residual tidal displacement in 24-hour PPP batch solutions: OTL is modelled a priori using the FES2004 model in the reference frame of the whole Earth system (CM); the residual harmonic displacements are estimated per component per principal tidal constituent. Minor tidal harmonics are removed a priori using the routine "hardisp" by D. Agnew. Because of this, post-processing nodal corrections are not applied; (3) Amplitude and phase from kinematic PPP processing: kinematic GPS processing with a priori OTL modelling using FES2004 and hardisp as in (2); amplitude spectra are later estimated from the entire coordinate time series using the Lomb-Scargle periodogram method. We typically obtain excellent (0.3-0.7mm except for the K1 and K2 constituents) phasor agreement between all three strategies, comparable to the inter-model agreement between computed OTL displacements and suggesting that the GPS analysis strategy robustly detects actual tidal displacements. For sites in inland Europe where computed OTL displacements are less than 10mm with inter-model differences of less than 0.2mm, residual harmonic amplitudes are also at the 0.3-0.7mm level, confirming that solid Earth tides are modelled to at least this accuracy. For GPS stations located in South-West England and Brittany, onshore of the continental shelf, anomalous residual tidal signals were detected of about 2-3mm magnitude for the vertical M2 OTL constituent (10% of the expected signal). In contrast, sites in the Iberian Peninsula, with similar expected OTL magnitudes, have residuals at the expected 0.3-0.7mm level. Sites near to the Bay of Biscay show transitional behaviour between these regimes. Therefore at these locations, the different modern ocean tide models that agree very well must all either be systematically in error, or the difference in behaviour may be caused by errors in the displacement Green's functions applicable to loads on the nearby continental shelf.
Hu, Yi
2010-05-01
Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.
Temporal coherence of high-order harmonics generated at solid surfaces
NASA Astrophysics Data System (ADS)
Hemmers, D.; Behmke, M.; Karsch, S.; Keyling, J.; Major, Z.; Stelzmann, C.; Pretzler, G.
2014-07-01
We present interferometric measurements of the temporal coherence of high-order harmonics generated by reflection of a titanium sapphire laser off a solid surface. It is found that the coherence length of the harmonic emission is significantly reduced compared with the bandwidth limited case. To identify the responsible mechanism, the acquired data were analyzed by means of particle-in-cell simulations, whose results show good agreement between the calculated spectra and the measured coherence times. We show that the observed broadening can be understood consistently by the occurrence of a Doppler shift induced by the moving plasma surface, which is dented by the radiation pressure of the laser pulse. In this case, this Doppler effect would also lead to positive chirp of the emitted radiation.
Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids
NASA Astrophysics Data System (ADS)
Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo
2018-02-01
We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.
The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings
Sun, Peng; Liao, Yuhe; Lin, Jin
2017-01-01
The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock Pulse Index (SPI), is proposed in this paper. It integrates the mutual advantages of both the parameters mentioned above and can help effectively identify fault-related impulse components under conditions of interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the transient information of interest contained in the filtered signal can be highlighted through demodulation with the Teager Energy Operator (TEO). Fault-related impulse components can therefore be extracted accurately. Simulations show the SPI can correctly indicate the fault impulses under the influence of strong background noises, other harmonic components and aperiodic impulse and experiment analyses verify the effectiveness and correctness of the proposed method. PMID:28282883
Evaluating Descent and Ascent Trajectories Near Non-Spherical Bodies
NASA Technical Reports Server (NTRS)
Werner, Robert A.
2010-01-01
Spacecraft landing on small bodies pass through regions where conventional gravitation formulations using exterior spherical harmonics are inaccurate. An investigation shows that a formulation using interior solid spherical harmonics might be satisfactory. Interior spherical harmonic expansions are usable inside an imaginary, empty sphere. For this application, such a sphere could be positioned in empty space above the intended landing site and rotating with the body. When the spacecraft is inside this sphere, the interior harmonic expansion would be used instead of the conventional, exterior harmonic expansion. Coefficients can be determined by a least-squares fit to gravitation measurements synthesized from conventional formulations. Due to their unfamiliarity, recurrences for interior, as well as exterior, expansions are derived. Hotine's technique for partial derivatives of exterior spherical harmonics is extended to interior harmonics.
SU(N ) fermions in a one-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.
2017-09-01
We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.
Symmetry-controlled time structure of high-harmonic carrier fields from a solid
Langer, F.; Hohenleutner, M.; Huttner, U.; Koch, S. W.; Kira, M.; Huber, R.
2017-01-01
High-harmonic (HH) generation in crystalline solids1–6 marks an exciting development, with potential applications in high-efficiency attosecond sources7, all-optical bandstructure reconstruction8,9, and quasiparticle collisions10,11. Although the spectral1–4 and temporal shape5 of the HH intensity has been described microscopically1–6,12, the properties of the underlying HH carrier wave have remained elusive. Here we analyse the train of HH waveforms generated in a crystalline solid by consecutive half cycles of the same driving pulse. Extending the concept of frequency combs13–15 to optical clock rates, we show how the polarization and carrier-envelope phase (CEP) of HH pulses can be controlled by crystal symmetry. For some crystal directions, we can separate two orthogonally polarized HH combs mutually offset by the driving frequency to form a comb of even and odd harmonic orders. The corresponding CEP of successive pulses is constant or offset by π, depending on the polarization. In the context of a quantum description of solids, we identify novel capabilities for polarization- and phase-shaping of HH waveforms that cannot be accessed with gaseous sources. PMID:28572835
The warm, rich sound of valve guitar amplifiers
NASA Astrophysics Data System (ADS)
Keeports, David
2017-03-01
Practical solid state diodes and transistors have made glass valve technology nearly obsolete. Nevertheless, valves survive largely because electric guitar players much prefer the sound of valve amplifiers to the sound of transistor amplifiers. This paper discusses the introductory-level physics behind that preference. Overdriving an amplifier adds harmonics to an input sound. While a moderately overdriven valve amplifier produces strong even harmonics that enhance a sound, an overdriven transistor amplifier creates strong odd harmonics that can cause dissonance. The functioning of a triode valve explains its creation of even and odd harmonics. Music production software enables the examination of both the wave shape and the harmonic content of amplified sounds.
Solid-state laser source of narrowband ultraviolet B light for skin disease care
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong
2013-03-01
We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.
NASA Astrophysics Data System (ADS)
Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing
2017-07-01
We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Method of detecting system function by measuring frequency response
NASA Technical Reports Server (NTRS)
Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)
2012-01-01
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Method of detecting system function by measuring frequency response
Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID
2012-04-03
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Combined study of the solar neighbourhood kinematics - Spherical harmonics and Taylor expansions
NASA Astrophysics Data System (ADS)
Hernandez-Pajares, M.; Nunez, J.
1990-08-01
This paper relates two methods of analyzing the kinematic parameters of the local macroscopic motions of the Galaxy: (1) the Ogorodnikov-Milne model (OM) that consists in the three-dimensional Taylor expansion of the mean velocity field, and (2) the two-dimensional spherical harmonic development of the velocity components (SH). The theoretical relations between the SH coefficients and the second-order OM ones for the radial velocity v(r), and the galactic heliocentric components of the velocity U, V, W are presented. Only the hypothesis of separability of the stellar density function of the sample into angular and radial parts is needed. They are applied to 4732 A-M stars included in the Figueras (1986) sample.
Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model
NASA Technical Reports Server (NTRS)
Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.
2002-01-01
Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.
On the Retrieval of Geocenter Motion from Gravity Data
NASA Astrophysics Data System (ADS)
Rosat, S.; Mémin, A.; Boy, J. P.; Rogister, Y. J. G.
2017-12-01
The center of mass of the whole Earth, the so-called geocenter, is moving with respect to the Center of Mass of the solid Earth because of the loading exerted by the Earth's fluid layers on the solid crust. Space geodetic techniques tying satellites and ground stations (e.g. GNSS, SLR and DORIS) have been widely employed to estimate the geocenter motion. Harmonic degree-1 variations of the gravity field are associated to the geocenter displacement. We show that ground records of time-varying gravity from Superconducting Gravimeters (SGs) can be used to constrain the geocenter motion. Two major difficulties have to be tackled: (1) the sensitivity of surface gravimetric measurements to local mass changes, and in particular hydrological and atmospheric variabilities; (2) the spatial aliasing (spectral leakage) of spherical harmonic degrees higher than 1 induced by the under-sampling of station distribution. The largest gravity variations can be removed from the SG data by subtracting solid and oceanic tides as well as atmospheric and hydrologic effects using global models. However some hydrological signal may still remain. Since surface water content is well-modelled using GRACE observations, we investigate how the spatial aliasing in SG data can be reduced by employing GRACE solutions when retrieving geocenter motion. We show synthetic simulations using complete surface loading models together with GRACE solutions computed at SG stations. In order to retrieve the degree-one gravity variations that are associated with the geocenter motion, we use a multi-station stacking method that performs better than a classical spherical harmonic stacking when the station distribution is inhomogeneous. We also test the influence of the network configuration on the estimate of the geocenter motion. An inversion using SG and GRACE observations is finally presented and the results are compared with previous geocenter estimates.
Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.
Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang
2006-07-01
To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.
NASA Technical Reports Server (NTRS)
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
The Mars Reconnaissance Orbiter (MRO) spacecraft has three two-axis gimbal assemblies that support and move the High Gain Antenna and two solar array wings. The gimbal assemblies are required to move almost continuously throughout the mission's seven-year lifetime, requiring a large number of output revolutions for each actuator in the gimbal assemblies. The actuator for each of the six axes consists of a two-phase brushless dc motor with a direct drive to the wave generator of a size-32 cup-type harmonic gear. During life testing of an actuator assembly, the harmonic gear teeth failed completely, leaving the size-32 harmonic gear with a maximum output torque capability less than 10% of its design capability. The investigation that followed the failure revealed limitations of the heritage material choices that were made for the harmonic gear components that had passed similar life requirements on several previous programs. Additionally, the methods used to increase the stiffness of a standard harmonic gear component set, while accepted practice for harmonic gears, is limited in its range. The stiffness of harmonic gear assemblies can be increased up to a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
Methods of producing compounds from plant material
Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.
2006-01-03
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Methods of producing compounds from plant materials
Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL
2010-01-26
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; ...
2015-04-30
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
Strong-field and attosecond physics in solids
Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...
2014-10-08
We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-21
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
NASA Astrophysics Data System (ADS)
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-01
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
Ship Detection and Measurement of Ship Motion by Multi-Aperture Synthetic Aperture Radar
2014-06-01
Reconstructed periodic components of the Doppler histories shown in Fig. 27, (b) splined harmonic component amplitudes as a function of range...78 Figure 42: (a) Reconstructed periodic components of the Doppler histories shown in Figure 30, (b) Splined amplitudes of the...Figure 29 (b) Splined amplitudes of the harmonic components. ............................................ 79 Figure 44: Ship focusing by standard
Dual aperture dipole magnet with second harmonic component
Praeg, Walter F.
1985-01-01
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
Dual aperture dipole magnet with second harmonic component
Praeg, W.F.
1983-08-31
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
The non-hydrostatic figures of the terrestrial planets
NASA Technical Reports Server (NTRS)
Runcorn, S. K.
1985-01-01
Solid state creep being exponentially dependent on temperature must dominate the mechanical behavior of the mantles of terrestrial planets beneath their lithospheres. General arguments suggest that the lithospheres of the Moon and Mars are about 200 km thick; the Earth, Venus and Mercury much less. Short wavelength gravity anomalies are explained by the finite strength of the lithosphere: the lunar mascons being an example. The good correlation of the Venus and Mars gravity anomalies with topography up to spherical harmonics of degrees 10-15 is in striking contrast to the lack of correlation between the long wavelength components of the geoid and the continent-ocean distribution or even the plates. Attempts have been made to explain the former correlations by isostatic models but the depths of compensation seem implausible. Low degree harmonics of the gravity fields of the terrestrial planets as is certainly the case in the Earth must arise from the density variations driving solid state convection. In the case of Venus the less dense differentiated materials of the highlands seems to be positioned over the singular points of the convection pattern. Thus the correlated gravity field does not arise from the highlands but from the density difference in the convecting interior. In the Earth lack of correlation seems to arise from the fact that the plates have moved relative to the convection pattern the last 100 M yr.
NASA Astrophysics Data System (ADS)
Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.
2006-12-01
Advances in Laser Technology and nonlinear Optical techniques can be effectively utilized for LIDAR applications in space and atmospheric sciences to achieve better flexibility and control of the available optical power. Using such devices, one can achieve highly accurate and resolved, measurement of the distribution for atmospheric scattering layers. In the present investigation a diode double end pumped high repetition rate, multi wavelength Nd:YAG laser is designed, fabricated and various laser beam parameters have been characterized for LIDAR applications. Nonlinear optical techniques have been employed to generate higher harmonics like 532nm, 355nm and 266nm for various spectral studies. The experimental setup mainly consists of two Fiber coupled pump laser diodes (Model FAP- 81-30C-800B, Coherent Inc, USA) with a maximum output power of 30Watt at a wavelength of 807-810nm at 30°C set temperature. A second harmonic LBO crystal cut for critical phase matching placed within the laser resonator is provided for converting a fraction of the fundamental beam to a second harmonic beam. A type II frequency tripling LBO nonlinear crystal (cut for critical phase matching) is also located inside the laser resonator. The third harmonic beam and the unconverted fundamental beam are then directed across a type I fourth harmonic LBO crystal cut for critical phase matching where a portion of the fundamental beam and a portion of the third harmonic beam are converted to a fourth harmonic frequency when both fundamental and third harmonic beams propagate through the frequency quadrupling crystal. The resulting beams which are the fundamental (1064nm), second harmonic (532nm), third harmonic (355nm) and fourth harmonic (266nm) are then directed to a fourth harmonic separator in which the fourth harmonic beam is separated from the fundamental beam. A maximum average power of 12W at 1064nm, 8W at 532nm, 5W at 355nm and 3W at 266nm have been measured at a repetition rate of 10KHz. A minimum pulse width of 25ns have been observed.
Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space
NASA Astrophysics Data System (ADS)
Ivanov, Kamen G.; Pavlis, Nikolaos K.; Petrushev, Pencho
2017-12-01
Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly ζ , gravity anomaly Δ g , gravity disturbance δ g , north-south deflection of the vertical ξ , east-west deflection of the vertical η , and the second radial derivative T_{rr} of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed 10^{-6} and the memory (RAM) use is 9.3 GB.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie
2017-10-02
Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.
Solid harmonic wavelet scattering for predictions of molecule properties
NASA Astrophysics Data System (ADS)
Eickenberg, Michael; Exarchakis, Georgios; Hirn, Matthew; Mallat, Stéphane; Thiry, Louis
2018-06-01
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state-of-the-art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.
Newborn infants detect cues of concurrent sound segregation.
Bendixen, Alexandra; Háden, Gábor P; Németh, Renáta; Farkas, Dávid; Török, Miklós; Winkler, István
2015-01-01
Separating concurrent sounds is fundamental for a veridical perception of one's auditory surroundings. Sound components that are harmonically related and start at the same time are usually grouped into a common perceptual object, whereas components that are not in harmonic relation or have different onset times are more likely to be perceived in terms of separate objects. Here we tested whether neonates are able to pick up the cues supporting this sound organization principle. We presented newborn infants with a series of complex tones with their harmonics in tune (creating the percept of a unitary sound object) and with manipulated variants, which gave the impression of two concurrently active sound sources. The manipulated variant had either one mistuned partial (single-cue condition) or the onset of this mistuned partial was also delayed (double-cue condition). Tuned and manipulated sounds were presented in random order with equal probabilities. Recording the neonates' electroencephalographic responses allowed us to evaluate their processing of the sounds. Results show that, in both conditions, mistuned sounds elicited a negative displacement of the event-related potential (ERP) relative to tuned sounds from 360 to 400 ms after sound onset. The mistuning-related ERP component resembles the object-related negativity (ORN) component in adults, which is associated with concurrent sound segregation. Delayed onset additionally led to a negative displacement from 160 to 200 ms, which was probably more related to the physical parameters of the sounds than to their perceptual segregation. The elicitation of an ORN-like response in newborn infants suggests that neonates possess the basic capabilities of segregating concurrent sounds by detecting inharmonic relations between the co-occurring sounds. © 2015 S. Karger AG, Basel.
High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure
Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo
2016-01-01
Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374
Rosselló, J M; Dellavale, D; Bonetto, F J
2016-07-01
The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAc(HF)) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAc(HF) on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N ≫ 1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
Brunstrom, J M; Roberts, B
2001-07-01
When a partial of a periodic complex is mistuned, its change in pitch is greater than expected. Two experiments examined whether these partial-pitch shifts are related to the computation of global pitch. In experiment 1, stimuli were either harmonic or frequency-shifted (25% of F0) complexes. One partial was mistuned by +/- 4% and played with leading and lagging portions of 500 ms each, relative to the other components (1 s), in both monaural and dichotic contexts. Subjects indicated whether the mistuned partial was higher or lower in pitch when concurrent with the other components. Responses were positively correlated with the direction of mistuning in all conditions. In experiment 2, stimuli from each condition were compared with synchronous equivalents. Subjects matched a pure tone to the pitch of the mistuned partial (component 4). The results showed that partial-pitch shifts are not reduced in size by asynchrony. Similar asynchronies are known to produce a near-exclusion of a mistuned partial from the global-pitch computation. This mismatch indicates that global and partial pitch are derived from different processes. The similarity of the partial-pitch shifts observed for harmonic and frequency-shifted stimuli suggests that they arise from a grouping mechanism that is sensitive to spectral regularity.
A problem in representing the core magnetic field of the earth using spherical harmonics
NASA Technical Reports Server (NTRS)
Carle, H. M.; Harrison, C. G. A.
1982-01-01
Although there are computational advantages to the representation of the earth's magnetic field by spherical harmonic coefficients of the magnetic potential, up to the thirteenth degree and order, the following disadvantages emerge: (1) the use of spherical harmonics of up to a certain degree does not remove wavelengths greater than a certain value from the surface fields, and (2) the total field magnitudes represented by spherical harmonics up to a certain degree have minimum wavelengths equal to the circumference of the earth divided by twice the maximum degree of the harmonic used. The implications of the ways in which surface fields are separated into core and crustal components are discussed, and it is concluded that since field signals are generated in the core, the representation of the core field by spherical harmonics of potential does not adequately represent all core field components.
Simmons, Blake [San Francisco, CA; Domeier, Linda [Danville, CA; Woo, Noble [San Gabriet, CA; Shepodd, Timothy [Livermore, CA; Renzi, Ronald F [Tracy, CA
2008-04-01
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.
Methods for integrating a functional component into a microfluidic device
Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.
2014-08-19
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Walsh, James C.; Angstmann, Christopher N.; Duggin, Iain G.
2017-01-01
The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution. PMID:29040283
Dirty bosons in a three-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Khellil, Tama; Pelster, Axel
2017-09-01
We study a three-dimensional Bose-Einstein condensate in an isotropic harmonic trapping potential with an additional delta-correlated disorder potential and investigate the emergence of a Bose-glass phase for increasing disorder strength. At zero temperature a first-order quantum phase transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder strength, which agrees with the findings in the literature. Afterwards, we study the interplay between temperature and disorder fluctuations on the respective components of the particle density. In particular, we find for smaller disorder strengths that a superfluid region, a Bose-glass region, and a thermal region coexist. Furthermore, depending on the respective system parameters, three phase transitions are detected, namely, one from the superfluid to the Bose-glass phase, another one from the Bose-glass to the thermal phase, and finally one from the superfluid to the thermal phase. All these results are obtained by extending a quite recent Hartree-Fock mean-field theory for the dirty boson problem, which is based on the replica method, from the homogeneous case to a harmonic confinement.
Method, system and computer-readable media for measuring impedance of an energy storage device
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2016-01-26
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
The development of magnetic field measurement system for drift-tube linac quadrupole
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin
2015-06-01
In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.
Predicting phase equilibria in one-component systems
NASA Astrophysics Data System (ADS)
Korchuganova, M. R.; Esina, Z. N.
2015-07-01
It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.
Complexities of One-Component Phase Diagrams
ERIC Educational Resources Information Center
Ciccioli, Andrea; Glasser, Leslie
2011-01-01
For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…
Discrete mathematical physics and particle modeling
NASA Astrophysics Data System (ADS)
Greenspan, D.
The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.
Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity.
Roppo, V; Raineri, F; Raj, R; Sagnes, I; Trull, J; Vilaseca, R; Scalora, M; Cojocaru, C
2011-05-15
In this Letter, we experimentally demonstrate the enhancement of the inhomogeneous second harmonic conversion in the opaque region of a GaAs cavity with efficiencies of the order of 0.1% at 612 nm, using 3 ps pump pulses having peak intensities of the order of 10 MW/cm(2). We show that the conversion efficiency of the inhomogeneous, phase-locked second harmonic component is a quadratic function of the cavity factor Q. © 2011 Optical Society of America
Resonance energy transfer: The unified theory via vector spherical harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherentmore » in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.« less
NASA Technical Reports Server (NTRS)
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
1978-10-17
characteristics for optical second- harmonic generation. The collage component of conective tissue may be the principal site for the observed harmonic...Generation in Tissue ; Second Harmonic Generation in Collage; Glutathione, 5MB; Mechanisms; Conversion Efficiency; Significance of order UL AIM UY#m~wmev...sclera, and skin on 694 im. Q-switched ruby laser irradiation. A possible source of this second-harmonic generation was tissue collagen; because of
Efficient evaluation of three-center Coulomb integrals
Samu, Gyula
2017-01-01
In this study we pursue the most efficient paths for the evaluation of three-center electron repulsion integrals (ERIs) over solid harmonic Gaussian functions of various angular momenta. First, the adaptation of the well-established techniques developed for four-center ERIs, such as the Obara–Saika, McMurchie–Davidson, Gill–Head-Gordon–Pople, and Rys quadrature schemes, and the combinations thereof for three-center ERIs is discussed. Several algorithmic aspects, such as the order of the various operations and primitive loops as well as prescreening strategies, are analyzed. Second, the number of floating point operations (FLOPs) is estimated for the various algorithms derived, and based on these results the most promising ones are selected. We report the efficient implementation of the latter algorithms invoking automated programming techniques and also evaluate their practical performance. We conclude that the simplified Obara–Saika scheme of Ahlrichs is the most cost-effective one in the majority of cases, but the modified Gill–Head-Gordon–Pople and Rys algorithms proposed herein are preferred for particular shell triplets. Our numerical experiments also show that even though the solid harmonic transformation and the horizontal recurrence require significantly fewer FLOPs if performed at the contracted level, this approach does not improve the efficiency in practical cases. Instead, it is more advantageous to carry out these operations at the primitive level, which allows for more efficient integral prescreening and memory layout. PMID:28571354
Efficient evaluation of three-center Coulomb integrals.
Samu, Gyula; Kállay, Mihály
2017-05-28
In this study we pursue the most efficient paths for the evaluation of three-center electron repulsion integrals (ERIs) over solid harmonic Gaussian functions of various angular momenta. First, the adaptation of the well-established techniques developed for four-center ERIs, such as the Obara-Saika, McMurchie-Davidson, Gill-Head-Gordon-Pople, and Rys quadrature schemes, and the combinations thereof for three-center ERIs is discussed. Several algorithmic aspects, such as the order of the various operations and primitive loops as well as prescreening strategies, are analyzed. Second, the number of floating point operations (FLOPs) is estimated for the various algorithms derived, and based on these results the most promising ones are selected. We report the efficient implementation of the latter algorithms invoking automated programming techniques and also evaluate their practical performance. We conclude that the simplified Obara-Saika scheme of Ahlrichs is the most cost-effective one in the majority of cases, but the modified Gill-Head-Gordon-Pople and Rys algorithms proposed herein are preferred for particular shell triplets. Our numerical experiments also show that even though the solid harmonic transformation and the horizontal recurrence require significantly fewer FLOPs if performed at the contracted level, this approach does not improve the efficiency in practical cases. Instead, it is more advantageous to carry out these operations at the primitive level, which allows for more efficient integral prescreening and memory layout.
Theory of high-order harmonic generation for gapless graphene
NASA Astrophysics Data System (ADS)
Zurrón, Óscar; Picón, Antonio; Plaja, Luis
2018-05-01
We study the high-harmonic spectrum emitted by a single-layer graphene, irradiated by an ultrashort intense infrared laser pulse. We show the emergence of the typical non-perturbative spectral features, harmonic plateau and cut-off, for mid-infrared driving fields, at fluences below the damage threshold. In contrast to previous works, using THz drivings, we demonstrate that the harmonic cut-off frequency saturates with the intensity. Our results are derived from the numerical integration of the time-dependent Schrödinger equation using a nearest neighbor tight-binding description of graphene. We also develop a saddle-point analysis that reveals a mechanism for harmonic emission in graphene different from that reported in atoms, molecules and finite gap solids. In graphene, the first step is initiated by the non-diabatic crossing of the valence band electron trajectories through the Dirac points, instead of tunneling ionization/excitation. We include a complete identification of the trajectories contributing to any particular high harmonic and reproduce the harmonic cut-off scaling with the driving intensity.
NASA Astrophysics Data System (ADS)
Herrera, J. I.; Reddoch, T. W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.
Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing
Yan, Leyang; Zhang, Hui; Ye, Peiqing
2017-01-01
Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505
NASA Astrophysics Data System (ADS)
Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.
2002-12-01
The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from analysis of MGS radio tracking. The observed k2 =0.164+-0.016 is large enough to rule out a solid iron core. The inferred core radius Rc (1600km
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
Enhancement of the second plateau in solid high-order harmonic spectra by the two-color fields.
Li, Jin-Bin; Zhang, Xiao; Yue, Sheng-Jun; Wu, Hong-Mei; Hu, Bi-Tao; Du, Hong-Chuan
2017-08-07
We theoretically investigate high-order harmonic generation (HHG) from solids in two-color fields. It is found that under the premise of maintaining the same amplitude, the intensity of the second plateau can be enhanced by two to three orders in a proper two-color field compared with the result in the monochromatic field with the same frequency as the driving pulse of the two-color field. This can be attributed to the fact that most excited electrons can be driven to the top of the first conduction band due to the larger vector potential of the two-color fields, which leads to the higher electron population of upper conduction bands. Moreover, we also find that isolated attosecond pulses can be generated from solids by choosing a proper two-color field that allows the electrons to reach the top of the first conduction band only once. This work provides a promising method for extending the range of solid HHG spectra in experiments.
Interaction of finite-amplitude sound with air-filled porous materials
NASA Technical Reports Server (NTRS)
Nelson, D. A.
1985-01-01
The propagation of high intensity sound waves through an air-filled porus material was studied. The material is assumed: (1) to be rigid, incompressible, and homogeneous, and (2) to be adequately described by two properties: resistivity r and porosity. The resulting wave equation is still nonlinear, however, because of the u sgn(u) term in the resistivity. The equation is solved in the frequency domain as an infinite set of coupled inhomogeneous Helmholtz equations, one for each harmonic. An approximate but analytical solution leads to predictions of excess attenuation, saturation, and phase speed reduction for the fundamental component. A more general numerical solution is used to calculate the propagation curves for the higher harmonics. The u sgn(u) nonlinearity produces a cubic distortion pattern; when the input signal is a pure tone, only odd harmonic distortion products are generated.
Investigation of superharmonic sound propagation and imaging in biological tissues in vitro.
Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong
2006-04-01
This article presents both theoretical and experimental studies on the superharmonic generation and its imaging in biological tissues. A superharmonic component is defined as a summation of the third-, fourth-, and fifth-order harmonics. A superharmonic signal is produced using an 8-mm-diam, 2.5-MHz planar piston source that is excited by eight-cycle, 2.5-MHz tone bursts. Axial and lateral field distributions of the superharmonic component and the second harmonic are first calculated based on the nonlinear KZK model and then compared with those experimentally determined at two different source pressures of 0.5 and 1 MPa. Results indicate that the amplitude of the superharmonic component can exceed that of the second harmonic, depending on the axial distance and the fundamental pressure amplitude. Also, the 3-dB beamwidth of the superharmonic component is about 23% narrower than that of the second harmonic. Additional experiments are performed in vitro using liver and fatty tissues in transmission mode and produced two-dimensional images using the fundamental, the second harmonic, and the superharmonic signals. Although the clinical applicability of this work still needs to be assessed, these results indicate that the superharmonic image quality is better than that of the other two images.
Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview
NASA Astrophysics Data System (ADS)
Spada, Giorgio
2017-01-01
Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the "sea-level equation" (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of "fingerprints". Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the "GIA corrections" in the context of modern sea-level observations, based on tide gauges or satellite altimeters.
Summers, M.A.; Eimerl, D.; Boyd, R.D.
1982-06-10
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).
Summers, Mark A.; Eimerl, David; Boyd, Robert D.
1985-01-01
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").
Aluminum phosphate ceramics for waste storage
Wagh, Arun; Maloney, Martin D
2014-06-03
The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.
Crack detection using resonant ultrasound spectroscopy
Migliori, A.; Bell, T.M.; Rhodes, G.W.
1994-10-04
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.
Crack detection using resonant ultrasound spectroscopy
Migliori, Albert; Bell, Thomas M.; Rhodes, George W.
1994-01-01
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.
Localized sudden changes in the geomagnetic secular variation.
Alldredge, L.R.
1987-01-01
There is much debate as to whether there was a worldwide geomagnetic jerk in 1969 or 1970. It is agreed that there was an unusual sharp change in the secular variation in the east component, Y, in Europe at that time. This note points out how a localized sudden change in the secular variation pattern of one component in Europe can occur without having any large worldwide effects in any of the components. The accompanying changes in the spherical harmonic coefficients for such a localized change are also discussed. -after Author
NASA Astrophysics Data System (ADS)
Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; de Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.
2007-09-01
The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is “captured” and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ(3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small χ(2) discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roppo, Vito; Centini, Marco; Sibilia, Concita
The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not onlymore » second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small {chi}{sup (2)} discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.« less
Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.
Ciampa, Francesco; Mankar, Akash; Marini, Andrea
2017-11-07
Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.
Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT
2011-06-07
Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
Atomic-like high-harmonic generation from two-dimensional materials.
Tancogne-Dejean, Nicolas; Rubio, Angel
2018-02-01
The generation of high-order harmonics from atomic and molecular gases enables the production of high-energy photons and ultrashort isolated pulses. Obtaining efficiently similar photon energy from solid-state systems could lead, for instance, to more compact extreme ultraviolet and soft x-ray sources. We demonstrate from ab initio simulations that it is possible to generate high-order harmonics from free-standing monolayer materials, with an energy cutoff similar to that of atomic and molecular gases. In the limit in which electrons are driven by the pump laser perpendicularly to the monolayer, they behave qualitatively the same as the electrons responsible for high-harmonic generation (HHG) in atoms, where their trajectories are described by the widely used semiclassical model, and exhibit real-space trajectories similar to those of the atomic case. Despite the similarities, the first and last steps of the well-established three-step model for atomic HHG are remarkably different in the two-dimensional materials from gases. Moreover, we show that the electron-electron interaction plays an important role in harmonic generation from monolayer materials because of strong local-field effects, which modify how the material is ionized. The recombination of the accelerated electron wave packet is also found to be modified because of the infinite extension of the material in the monolayer plane, thus leading to a more favorable wavelength scaling of the harmonic yield than in atomic HHG. Our results establish a novel and efficient way of generating high-order harmonics based on a solid-state device, with an energy cutoff and a more favorable wavelength scaling of the harmonic yield similar to those of atomic and molecular gases. Two-dimensional materials offer a unique platform where both bulk and atomic HHG can be investigated, depending on the angle of incidence. Devices based on two-dimensional materials can extend the limit of existing sources.
Harmonic analysis of the precipitation in Greece
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Zerefos, C. S.
2009-04-01
Greece is a country with a big variety of climates due to its geographical position, to the many mountain ranges and also to the multifarious and long coastline. The mountainous volumes are of such orientation that influences the distribution of the precipitation, having as a result, Western Greece to present great differentiations from Central and Eastern Greece. The application of harmonic analysis to the annual variability of precipitation is the goal of this study, so that the components, which compose the annual variability, be elicited. For this purpose, the mean monthly precipitation data from 30 meteorological stations of National Meteorological Service were used for the time period 1950-2000. The initial target is to reduce the number of variables and to detect structure in the relationships between variables. The most commonly used technique for this purpose is the application of Factor Analysis to a table having as columns the meteorological stations-variables and rows the monthly mean precipitation, so that 2 main factors were calculated, which explain the 98% of total variability of precipitation in Greece. Factor 1, representing the so-called uniform field and interpreting the most of the total variance, refers in fact to the Mediterranean depressions, affecting mainly the West of Greece and also the East Aegean and the Asia Minor coasts. In the process, the Fourier Analysis was applied to the factor scores extracted from the Factor Analysis, so that 2 harmonic components are resulted, which explain above the 98% of the total variability of each main factor, and are due to different synoptic and thermodynamic processes associated with Greece's precipitation construction. Finally, the calculation of the time of occurrence of the maximum precipitation, for each harmonic component of each one of the two main factors, gives the spatial distribution of appearance of the maximum precipitation in the Hellenic region.
NASA Astrophysics Data System (ADS)
Naka, Yoshitsugu; Tsuboi, Ken-Ichiro; Kametani, Yukinori; Fukagata, Koji; Obi, Shinnosuke
We have performed experiments in a turbulent mixing layer with periodic forcing introduced by a Piezo Film Actuator (PFA). Three different lengths of PFAs have been used, and the effects of various combinations of forcing amplitudes and frequencies are investigated. The forcing at the first and second sub-harmonic frequencies against the natural frequency enhances the development of the thickness of the mixing layer: the mixing layer spreads due to the forcing. On the other hand, the forcing near the natural frequency suppresses the development: the mean velocity gradient becomes steeper than the no control case. The vector pattern of the periodic velocity components indicated the formation of the vortical structure. By forcing at the natural and its first sub-harmonic frequencies, two counter-rotating vortices are clearly observed in one period of forcing. By forcing at second sub-harmonic frequency, the vortical structure is found only in the downstream region. The distribution of the periodic Reynolds shear stress significantly varies with the forcing frequency and it takes a positive value when forcing occurs near the natural frequency. However, the total value of the Reynolds shear stress remains negative due to the contribution of the turbulent components.
Equation of State and Viscosity of Tantalum and Iron from First Principles
NASA Astrophysics Data System (ADS)
Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel
2011-03-01
To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.
Integrating solids and gases for attosecond pulse generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei
Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less
Integrating solids and gases for attosecond pulse generation
Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...
2017-08-21
Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
Exploring the complex free-energy landscape of the simplest glass by rheology.
Jin, Yuliang; Yoshino, Hajime
2017-04-11
For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate that standard rheological techniques can be used as powerful tools to examine nontrivial consequences of such complex free-energy landscapes. By extensive numerical simulations on a hard sphere glass under quasistatic shear at finite temperatures, we show that above the so-called Gardner transition density, the elasticity breaks down, the stress relaxation exhibits slow, and ageing dynamics and the apparent shear modulus becomes protocol-dependent. Being designed to be reproducible in laboratories, our approach may trigger explorations of the complex free-energy landscapes of a large variety of amorphous materials.
Exploring the complex free-energy landscape of the simplest glass by rheology
NASA Astrophysics Data System (ADS)
Jin, Yuliang; Yoshino, Hajime
2017-04-01
For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate that standard rheological techniques can be used as powerful tools to examine nontrivial consequences of such complex free-energy landscapes. By extensive numerical simulations on a hard sphere glass under quasistatic shear at finite temperatures, we show that above the so-called Gardner transition density, the elasticity breaks down, the stress relaxation exhibits slow, and ageing dynamics and the apparent shear modulus becomes protocol-dependent. Being designed to be reproducible in laboratories, our approach may trigger explorations of the complex free-energy landscapes of a large variety of amorphous materials.
Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S
2015-03-01
Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF.
Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry
2015-11-01
The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.
Quantum oscillations of nitrogen atoms in uranium nitride
NASA Astrophysics Data System (ADS)
Aczel, A. A.; Granroth, G. E.; MacDougall, G. J.; Buyers, W. J. L.; Abernathy, D. L.; Samolyuk, G. D.; Stocks, G. M.; Nagler, S. E.
2012-10-01
The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.
Quantum oscillations of nitrogen atoms in uranium nitride.
Aczel, A A; Granroth, G E; Macdougall, G J; Buyers, W J L; Abernathy, D L; Samolyuk, G D; Stocks, G M; Nagler, S E
2012-01-01
The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.
Introduction to Fourier Optics
ERIC Educational Resources Information Center
Huggins, Elisha
2007-01-01
Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…
The harmonic impact of electric vehicle battery charging
NASA Astrophysics Data System (ADS)
Staats, Preston Trent
The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.
Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background
NASA Astrophysics Data System (ADS)
Saari, Mohd Mawardi; Che Lah, Nurul Akmal; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji
2018-04-01
The static and dynamic magnetizations of low concentrated multi-core iron oxide nanoparticles solutions were investigated by a specially developed high-Tc Superconducting Quantum Interference Device (SQUID) magnetometer. The size distribution of iron oxide cores was determined from static magnetization curves concerning different concentrations. The simulated harmonics distribution was compared to the experimental results. Effect of the diamagnetic background from carrier liquid to harmonics distribution was investigated with respect to different intensity and position of peaks in the magnetic moment distribution using a numerical simulation. It was found that the diamagnetic background from carrier liquid of iron oxide nanoparticles affected the harmonics distribution as their concentration decreased and depending on their magnetic moment distribution. The first harmonic component was susceptible to the diamagnetic contribution of carrier liquid when the concentration was lower than 24 μg/ml. The second and third harmonics were affected when the peak position of magnetic moment distribution was smaller than m = 10-19 Am2 and the concentration was 10 ng/ml. A highly sensitive detection up to sub-nanogram of iron oxide nanoparticles in solutions can be achieved by utilizing second and third harmonic components.
Simulation of 100-300 GHz solid-state harmonic sources
NASA Technical Reports Server (NTRS)
Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.
1995-01-01
Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.
NASA Astrophysics Data System (ADS)
Grolet, Aurelien; Thouverez, Fabrice
2015-02-01
This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis; ...
2018-02-20
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data
NASA Astrophysics Data System (ADS)
Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning
2018-06-01
North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.
NASA Astrophysics Data System (ADS)
Stremoukhov, Sergey Yu; Andreev, Anatoly V.
2018-03-01
A simple model fully matching the description of the low- and high-order harmonic generation in extended media interacting with multicolor laser fields is proposed. The extended atomic media is modeled by a 1D chain of atoms, the number of atoms and the distance between them depend on the pressure of the gas and the length of the gas cell. The response of the individual atoms is calculated accurately in the frame of the non-perturbative theory where the driving field for each atom is calculated with account of dispersion properties of any multicolor field component. In spite of the simplicity of the proposed model it provides the detailed description of behaviour of harmonic spectra under variation of the gas pressure and medium length, it also predicts a scaling law for harmonic generation (an invariant). To demonstrate the wide range of applications of the model we have simulated the results of recent experiments dealing with spatially modulated media and obtained good coincidence between the numerical results and the experimental ones.
Bigelow, Timothy A
2009-01-01
High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.
Heat-flow properties of systems with alternate masses or alternate on-site potentials.
Pereira, Emmanuel; Santana, Leonardo M; Ávila, Ricardo
2011-07-01
We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.
Roos, P A; Li, Xiaoqin; Smith, R P; Pipis, Jessica A; Fortier, T M; Cundiff, S T
2005-04-01
We demonstrate carrier-envelope phase stabilization of a mode-locked Ti:sapphire laser by use of quantum interference control of injected photocurrents in a semiconductor. No harmonic generation is required for this stabilization technique. Instead, interference between coexisting single- and two-photon absorption pathways in the semiconductor provides a phase comparison between different spectral components. The phase comparison, and the detection of the photocurrent that it produces, both occur within a single low-temperature-grown gallium arsenide sample. The carrier-envelope offset beat note fidelity is 30 dB in a 10-kHz resolution bandwidth. The out-of-loop phase-noise level is essentially identical to the best previous measurements with the standard self-referencing technique.
Spherical harmonic analysis of a harmonic function given on a spheroid
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-07-01
A new analytical method for the computation of a truncated series of solid spherical harmonic coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived, using a transformation between surface and solid spherical HCs. A two-step procedure is derived to extend this transformation beyond degree and order (d/o) 520. The method is compared to the Hotine-Jekeli transformation in a numerical study based on the EGM2008 global gravity model. Both methods are shown to achieve submicrometre precision in terms of height anomalies for a model to d/o 2239. However, both methods result in spherical harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in gravity disturbances due to the different coordinate system used. While the Hotine-Jekeli transformation requires the use of an ellipsoidal coordinate system, the new method uses only spherical polar coordinates. The Hotine-Jekeli transformation is numerically more efficient, but the new method can more easily be extended to cases where (a linear combination of) normal derivatives of the function under consideration are given on the surface of the spheroid. It therefore provides a solution to many types of ellipsoidal boundary-value problems in the spectral domain.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... example, ammonium nitrate fertilizer and ferrosilicon. The term PDM is functionally equivalent to term... the same as for ammonium nitrate fertilizer, UN 2067. c. Four comments opposed the classification of... limitations for ammonium nitrate fertilizer should be ensured by monitoring and controlling temperature at the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... Purpose. 148.205 Ammonium nitrate and ammonium nitrate fertilizers. 148.220 Ammonium nitrate-phosphate fertilizers. 148.225 Calcined pyrites (pyritic ash, fly ash). 148.227 Calcium nitrate fertilizers. 148.230... tankage fertilizer. 148.325 Wood chips; wood pellets; wood pulp pellets. 148.330 Zinc ashes; zinc dross...
NASA Astrophysics Data System (ADS)
Williams, Gareth O.; Künzel, S.; Daboussi, S.; Iwan, B.; Gonzalez, A. I.; Boutu, W.; Hilbert, V.; Zastrau, U.; Lee, H. J.; Nagler, B.; Granados, E.; Galtier, E.; Heimann, P.; Barbrel, B.; Dovillaire, G.; Lee, R. W.; Dunn, J.; Recoules, V.; Blancard, C.; Renaudin, P.; de la Varga, A. G.; Velarde, P.; Audebert, P.; Merdji, H.; Zeitoun, Ph.; Fajardo, M.
2018-02-01
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. We compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data, suggestive of a temperature-dependent electronic structure in warm dense matter.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, J.I.; Reddoch, T.W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less
NASA Astrophysics Data System (ADS)
Kulagin, I. A.; Usmanov, T.
2009-07-01
It is shown for the first time that the use of autoionisation states for phase matching leads to the efficient selection of a single harmonic generated in a plateau region in plasma. The selected harmonic frequency can be tuned by changing the relative concentration of plasma components and tuning the fundamental radiation frequency. It is shown that the contrast of the selected harmonic can exceed 104.
A new approach to harmonic elimination based on a real-time comparison method
NASA Astrophysics Data System (ADS)
Gourisetti, Sri Nikhil Gupta
Undesired harmonics are responsible for noise in a transmission channel, power loss in power electronics and in motor control. Selective Harmonic Elimination (SHE) is a well-known method used to eliminate or suppress the unwanted harmonics between the fundamental and the carrier frequency harmonic/component. But SHE bears the disadvantage of its incapability to use in real-time applications. A novel reference-carrier comparative method has been developed which can be used to generate an SPWM signal to apply in real-time systems. A modified carrier signal is designed and tested for different carrier frequencies based on the generated SPWM FFT. The carrier signal may change for different fundamental to carrier ratio that leads to solving the equations each time. An analysis to find all possible solutions for a particular carrier frequency and fundamental amplitude is performed and found. This proves that there is no one global maxima instead several local maximas exists for a particular condition set that makes this method less sensitive. Additionally, an attempt to find a universal solution that is valid for any carrier signal with predefined fundamental amplitude is performed. A uniform distribution Monte-Carlo sensitivity analysis is performed to measure the window i.e., best and worst possible solutions. The simulations are performed using MATLAB and are justified with experimental results.
A framework to analyze the stochastic harmonics and resonance of wind energy grid interconnection
Cho, Youngho; Lee, Choongman; Hur, Kyeon; ...
2016-08-31
This study addresses a modeling and analysis methodology for investigating the stochastic harmonics and resonance concerns of wind power plants (WPPs). Wideband harmonics from modern wind turbines are observed to be stochastic, associated with real power production, and they may adversely interact with the grid impedance and cause unexpected harmonic resonance if not comprehensively addressed in the planning and commissioning of the WPPs. These issues should become more critical as wind penetration levels increase. We thus propose a planning study framework comprising the following functional steps: First, the best-fitted probability density functions (PDFs) of the harmonic components of interest inmore » the frequency domain are determined. In operations planning, maximum likelihood estimations followed by a chi-square test are used once field measurements or manufacturers' data are available. Second, harmonic currents from the WPP are represented by randomly-generating harmonic components based on their PDFs (frequency spectrum) and then synthesized for time-domain simulations via inverse Fourier transform. Finally, we conduct a comprehensive assessment by including the impacts of feeder configurations, harmonic filters, and the variability of parameters. We demonstrate the efficacy of the proposed study approach for a 100-MW offshore WPP consisting of 20 units of 5-MW full-converter turbines, a realistic benchmark system adapted from a WPP under development in Korea, and discuss lessons learned through this research.« less
Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces
NASA Astrophysics Data System (ADS)
Hyunjo, Jeong; Dan, Barnard
2011-08-01
Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.
Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.
Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo
2016-05-06
We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.
Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin
2011-12-01
To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.
Improved definition of crustal magnetic anomalies for MAGSAT data
NASA Technical Reports Server (NTRS)
Brown, R. D.; Frawley, J. F.; Davis, W. M.; Ray, R. D.; Didwall, E.; Regan, R. D. (Principal Investigator)
1982-01-01
The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component.
Harmonic analysis of spacecraft power systems using a personal computer
NASA Technical Reports Server (NTRS)
Williamson, Frank; Sheble, Gerald B.
1989-01-01
The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.
NASA Astrophysics Data System (ADS)
Sadrzadeh, M.; Langari, A.
2018-06-01
We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.
The phase diagram and transport properties of MgO from theory and experiment
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2013-06-01
Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
NASA Astrophysics Data System (ADS)
Claessens, S. J.; Hirt, C.
2015-10-01
A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
High-order harmonic generation from a two-dimensional band structure
NASA Astrophysics Data System (ADS)
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
Higher-order harmonics of limited diffraction Bessel beams
Ding; Lu
2000-03-01
We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.
Nondestructive ultrasonic characterization of engineering materials
NASA Technical Reports Server (NTRS)
Salama, K.
1985-01-01
The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1990-01-01
Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.
Waveform and polarization of compressional Pc 5 waves at geosynchronous orbit
NASA Astrophysics Data System (ADS)
Higuchi, Tomoyuki; Kokubun, Susumu
1988-12-01
The factors controlling the occurrence and the properties of compressional Pc 5 waves were examined by studying the statistical characteristics of compressional Pc 5 waves, using magnetic-field data obtained by GOES 2 and GOES 3 satellites during the August 1978 - August 1980 period. The compressional Pc 5 waves could be classified into the harmonic, transitional, and normal types, on the basis of the second-harmonic component in the compressional component of the magnetic field oscillation. It was found that the harmonic and the transitional waves have significant azimuthal perturbations and show right-handed polarization with respect to the local magnetic field, while most of the normal-type waves have small amplitude in the azimuthal component. The polarization properties of transverse perturbation, which may reflect the spatial inhomogeneity of the medium, are investigated.
Improved Efficiency Type II Second Harmonic Generation
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J., Jr.
2009-01-01
Second harmonic efficiency is limited by lateral and temporal separation of the ordinary and extraordinary components of the fundamental. A mode locked dual beam laser demonstrated these effects and a novel method to minimize them.
High temperature lubricating process
Taylor, R.W.; Shell, T.E.
1979-10-04
It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
High temperature lubricating process
Taylor, Robert W.; Shell, Thomas E.
1982-01-01
It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp; Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp
A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure componentsmore » and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.« less
Eutectics as improved pharmaceutical materials: design, properties and characterization.
Cherukuvada, Suryanarayan; Nangia, Ashwini
2014-01-28
Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Gareth O.; Künzel, S.; Daboussi, S.
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less
Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.
Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U
2016-04-18
We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.
Williams, Gareth O.; Künzel, S.; Daboussi, S.; ...
2018-02-14
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
Tang, Guiji; Tian, Tian; Zhou, Chong
2018-01-01
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time–time (IHTT) transform, by combining a Hilbert time–time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures. PMID:29662013
Alahnomi, Rammah A; Zakaria, Z; Ruslan, E; Ab Rashid, S R; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
Ruslan, E.; Ab Rashid, S. R.; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines). PMID:28934301
2014-01-01
Chaihu, prepared from the dried roots of Bupleurum Chinense DC (also known as bei Chaihu in Chinese) or Bupleurum scorzoneraefolium WILD (also known as nan Chaihu in Chinese), is a herbal medicine for harmonizing and soothing gan (liver) qi stagnation. Substantial pharmacological studies have been conducted on Chaihu and its active components (saikosaponins). One of the active components of Chaihu, saikosaponin-d, exhibited anticancer effects via autophagy induction. This article reviews the pharmacological findings for the roles of autophagy in the pharmacological actions of Chaihu and saikosaponins. PMID:25228909
Forced response unsteady aerodynamics in a multistage compressor
NASA Astrophysics Data System (ADS)
Capece, Vincent Ralph
The fundamental flow physics of the unsteady aerodynamics associated with forced vibrations in turbomachinery are investigated. Unique data are obtained through a series of experiments in a three stage axial flow research compressor which quantify the unsteady harmonic gust interaction phenomena over a range of operating and geometric conditions at high values of reduced frequency. In these experiments the effects of the following on the stator vane unsteady aerodynamics were quantified: (1) the steady aerodynamic loading, (2) the detailed waveform of the aerodynamic forcing function, including the chordwise and transverse gust components, (3) multistage blade row interactions, and (4) the solidity, ranging from a design value of 1.09 to an isolated airfoil. In addition, the effect of flow separation on the unsteady aerodynamics of an isolated airfoil was also investigated.
Spheroidal and Toroidal Modes for Tidal Kinetic Energy in Spherical Elastic Bodies
NASA Astrophysics Data System (ADS)
Getino, Juan; Escapa, Alberto; Garcia, Amelia
In this work, the total expression of the perturbation of the kinetic energy of rotation, when an elastic spherical solid is deformed due to the gravitational attraction of external bodies, is studied. We do not limit this study to any order in the expansion of the perturbing potential in spherical harmonics, and we consider in the expression of the displacement vector the complete solution, composed by spheroidal and toroidal modes. We show in a very simple way, by using the properties of the Legendre polynomials, that the toroidal modes have no contribution at all under the hypothesis of spherical body, and, among the spheroidal modes, only the term n=2 acts, therefore the perturbation produced by the spheroidal component for n=2 gathers the total perturbation.
Forecasting irregular variations of UT1-UTC and LOD data caused by ENSO
NASA Astrophysics Data System (ADS)
Niedzielski, T.; Kosek, W.
2008-04-01
The research focuses on prediction of LOD and UT1-UTC time series up to one-year in the future with the particular emphasis on the prediction improvement during El Nĩ o or La Nĩ a n n events. The polynomial-harmonic least-squares model is applied to fit the deterministic function to LOD data. The stochastic residuals computed as the difference between LOD data and the polynomial- harmonic model reveal the extreme values driven by El Nĩ o or La Nĩ a. These peaks are modeled by the n n stochastic bivariate autoregressive prediction. This approach focuses on the auto- and cross-correlations between LOD and the axial component of the atmospheric angular momentum. This technique allows one to derive more accurate predictions than purely univariate forecasts, particularly during El Nĩ o/La n Nĩ a events. n
Observations of z-dependent microbunching harmonic intensities using COTR in a SASE FEL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Biedron, S. G.; Dejus, R. J.
The nonlinear generation of harmonics in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) continues to be of interest. Complementary to such studies is the search for information on the electron beam microbunching harmonic components, which are revealed by coherent optical transition radiation (COTR) experiments. An initial z-dependent set of data has been obtained with the fundamental at 530 nm and the second harmonic at 265 nm. The latter data were collected after every other undulator in a nine-undulator string. These results are compared to estimates based on GINGER and an analytical model for nonlinear harmonic generation.
Beamed microwave power transmitting and receiving subsystems radiation characteristics
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.
Plasmon-shaped polarization gating for high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-12-01
We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.
Transient regime in second harmonic generation
NASA Astrophysics Data System (ADS)
Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine
2013-09-01
The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.
On the Harmonic Coupling of Components in Pairs of IIIb-III Bursts at Decameter Wavelengths
NASA Astrophysics Data System (ADS)
Brazhenko, A. I.; Melnik, V. N.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.; Panchenko, M.
2015-06-01
The properties of IIIb-III pairs observed by the URAN-2 radioThe properties of IIIb-III pairs observed by the URAN-2 radiotelescope at frequencies 16-32 MHz are analyzed. Observations of these bursts were hold in April, June and September 2011. Durations, frequency drift rates, simultaneous frequency ratio of pairs components and their polarizations are analyzed. Pro and contra of IIIb-III harmonic connection are discussed.
Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.
Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-11-18
We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.
Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models
NASA Astrophysics Data System (ADS)
Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.
2014-12-01
Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
Highly non-linear solid core photonic crystal fiber with one nano hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in
2015-08-28
The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for themore » SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.« less
Roberts, Brian; Holmes, Stephen D
2006-12-01
Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to +/-40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components.
Laser Raman spectroscopy of some local anesthetics
NASA Astrophysics Data System (ADS)
Alcolea, M.; Sigüenza, C.; Santos, M.; Gonzalez-Diaz, P. F.
1986-03-01
The Raman spectra of benzocaine and procaine hydrochlorides in solid phase are reported. From the assigned inversion and torsion modes we have also estimated the corresponding barriers by using the harmonic approximation.
QED effects induced harmonics generation in extreme intense laser foil interaction
NASA Astrophysics Data System (ADS)
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
Development of Dry Lubricated Harmonic Drives for Space Applications ('HarmLES')
NASA Astrophysics Data System (ADS)
Jansson, Markus; Koenen, Hans; Viviente, Jose-Luis; Tvaruzka, Adam; Merstallinger, Andreas
2013-09-01
Today, Harmonic Drive® gears are used in several space flight mechanisms as they provide advantages like zero backlash, a high gear stiffness and a high transmission accuracy. In most cases those gears are used in grease lubricated condition, whereas this is always linked to the risk of outgassing and limits significantly the operational temperature.In order to increase the temperature range, trials to apply solid lubricants to Harmonic Drive® gears, as commonly used for e. g. bearings, were performed. Based on these trials it was found that the gears can be operated even at -269°C. Anyhow, although being used in various cryogenic applications, the reachable lifetime is comparably short. Hence the EU - funded project harmLES was started in 2011 in order to increase the accessible lifetime by developing a new Harmonic Drive® gear type. This activity is based on an integrated approach covering gear design, materials and coating.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-06-27
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-01-01
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system. PMID:27355946
NASA Astrophysics Data System (ADS)
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Pattern masking: the importance of remote spatial frequencies and their phase alignment.
Huang, Pi-Chun; Maehara, Goro; May, Keith A; Hess, Robert F
2012-02-16
To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
Spectral control of high harmonics from relativistic plasmas using bicircular fields
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2018-04-01
We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
We present the high time resolution observations of one of the Langmuir wave packets obtained in the source region of a solar type III radio burst. This wave packet satisfies the threshold condition of the supersonic modulational instability, as well as the criterion of a collapsing Langmuir soliton, i.e., the spatial scale derived from its peak intensity is less than that derived from its short time scale. The spectrum of t his wave packet contains an intense spectral peak at local electron plasma frequency, f(sub pe) and relatively weaker peaks at 2f(sub pe) and 3f(sub pe). We apply the wavelet based bispectral analysis technique on this wave packet and compute the bicoherence between its spectral components. It is found that the bicoherence exhibits two peaks at (approximately f(sub pe), approximately f(sub pe)) and (approximately f(sub pe) approximately 2f(sub pe)), which strongly suggest that the spectral peak at 2f(sub pe) probably corresponds to the second harmonic radio emission, generated as a result of the merging of antiparallel propagating Langmuir waves trapped in the collapsing Langmuir soliton, and, the spectral peak at 3f(sub pe) probably corresponds to the third harmonic radio emission, generated as a result of merging of a trapped Langmuir wave and a second harmonic electromagnetic wave.
NASA Astrophysics Data System (ADS)
Emel'yanov, Vladimir I.; Seval'nev, D. M.
2009-07-01
The self-organisation of the surface-relief nanostructures in solids under the action of energy and particle fluxes is interpreted as the instability of defect-deformation (DD) gratings produced by quasi-static Lamb and Rayleigh waves and defect-concentration waves. The allowance for the nonlocality in the defects—lattice atom interaction with a simultaneous account for both (normal and longitudinal) defect-induced forces bending the surface layer leads to the appearance of two maxima in the dependence of the instability growth rate of DD waves on the wave number. Three-wave interactions of quasi-static coupled DD waves (second harmonic generation and wave vector mixing) are considered for the first time, which are similar to three-wave interactions in nonlinear optics and acoustics and lead to the enrichment of the spectrum of surface-relief harmonics. Computer processing of experimental data on laser-induced generation of micro- and nanostructures of the surface relief reveals the presence of effects responsible for the second harmonic generation and wave vector mixing.
Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.
Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K
2013-04-26
Coherent x-ray beams with a subfemtosecond (<10(-15) s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100 fs) infrared lasers focused to intensities surpassing 10(18) W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21) W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.
NASA Technical Reports Server (NTRS)
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
This paper will present a process for increasing the stiffness of harmonic gear assemblies and recommend a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
Shallow Water Quasi-Geostrophic Theory on the Sphere
NASA Astrophysics Data System (ADS)
Schubert, Wayne H.; Taft, Richard K.; Silvers, Levi G.
2009-02-01
Quasi-geostrophic theory forms the basis for much of our understanding of mid-latitude atmospheric dynamics. The theory is typically presented in either its f-plane form or its β-plane form. However, for many applications, including diagnostic use in global climate modeling, a fully spherical version would be most useful. Such a global theory does in fact exist and has for many years, but few in the scientific community seem to have ever been aware of it. In the context of shallow water dynamics, it is shown that the spherical version of quasigeostrophic theory is easily derived (re-derived) based on a partitioning of the flow between nondivergent and irrotational components, as opposed to a partitioning between geostrophic and ageostrophic components. In this way, the invertibility principle is expressed as a relation between the streamfunction and the potential vorticity, rather than between the geopotential and the potential vorticity. This global theory is then extended by showing that the invertibility principle can be solved analytically using spheroidal harmonic transforms, an advancement that greatly improves the usefulness of this "forgotten" theory. When the governing equation for the time evolution of the potential vorticity is linearized about a state of rest, a simple Rossby-Haurwitz wave dispersion relation is derived and examined. These waves have a horizontal structure described by spheroidal harmonics, and the Rossby-Haurwitz wave frequencies are given in terms of the eigenvalues of the spheroidal harmonic operator. Except for sectoral harmonics with low zonal wavenumber, the quasi-geostrophic Rossby-Haurwitz frequencies agree very well with those calculated from the primitive equations. One of the many possible applications of spherical quasi-geostrophic theory is to the study of quasi-geostrophic turbulence on the sphere. In this context, the theory is used to derive an anisotropic Rhines barrier in three-dimensional wavenumber space.
Third order harmonic imaging for biological tissues using three phase-coded pulses.
Ma, Qingyu; Gong, Xiufen; Zhang, Dong
2006-12-22
Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.
NASA Astrophysics Data System (ADS)
Regiec, Andrzej; Wojciechowski, Piotr; Pietraszko, Adam; Mączyński, Marcin
2018-06-01
Here, the Conductor-like Polarizable Continuum Model (CPCM) was used as a less demanding substitute of Periodic Boundary Conditions (PBC) method to attempt to reliably simulate infrared spectra and some structural parameters of solid compound - 5-amino-3-methyl-4-isoxazolecarbohydrazide (HIX). The measured relative electric permittivity of HIX was used as a simplified equivalent of electric intensity generating by other molecules of 5-amino-3-methyl-4-isoxazolecarbohydrazide in crystal structure. The application of CPCM has resulted in better conformity of calculated molecular parameters with experimentally found. Theoretical geometry was compared with data obtained with X-ray crystallography. Comparison of harmonic approximation with anharmonic one, based on the six selected characteristic vibrations, shows that non-scaled harmonic wavenumbers, calculated with CPCM, well correspond to experimental spectra. Additionally, the results point out that anharmonic approximation appeared to be strong sensitive for input geometry and calculation parameters used, so the results are sometimes unreliable, especially for low wavenumbers. Also, the new feasible ways of the synthesis of the titled compound is presented, one of which is particularly easy and highly efficient.
Phase locked neural activity in the human brainstem predicts preference for musical consonance.
Bones, Oliver; Hopkins, Kathryn; Krishnan, Ananthanarayan; Plack, Christopher J
2014-05-01
When musical notes are combined to make a chord, the closeness of fit of the combined spectrum to a single harmonic series (the 'harmonicity' of the chord) predicts the perceived consonance (how pleasant and stable the chord sounds; McDermott, Lehr, & Oxenham, 2010). The distinction between consonance and dissonance is central to Western musical form. Harmonicity is represented in the temporal firing patterns of populations of brainstem neurons. The current study investigates the role of brainstem temporal coding of harmonicity in the perception of consonance. Individual preference for consonant over dissonant chords was measured using a rating scale for pairs of simultaneous notes. In order to investigate the effects of cochlear interactions, notes were presented in two ways: both notes to both ears or each note to different ears. The electrophysiological frequency following response (FFR), reflecting sustained neural activity in the brainstem synchronised to the stimulus, was also measured. When both notes were presented to both ears the perceptual distinction between consonant and dissonant chords was stronger than when the notes were presented to different ears. In the condition in which both notes were presented to the both ears additional low-frequency components, corresponding to difference tones resulting from nonlinear cochlear processing, were observable in the FFR effectively enhancing the neural harmonicity of consonant chords but not dissonant chords. Suppressing the cochlear envelope component of the FFR also suppressed the additional frequency components. This suggests that, in the case of consonant chords, difference tones generated by interactions between notes in the cochlea enhance the perception of consonance. Furthermore, individuals with a greater distinction between consonant and dissonant chords in the FFR to individual harmonics had a stronger preference for consonant over dissonant chords. Overall, the results provide compelling evidence for the role of neural temporal coding in the perception of consonance, and suggest that the representation of harmonicity in phase locked neural firing drives the perception of consonance. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Theoretical analysis of chirp excitation of contrast agents
NASA Astrophysics Data System (ADS)
Barlow, Euan; Mulholland, Anthony J.; Nordon, Alison; Gachagan, Anthony
2010-01-01
Analytic expressions are found for the amplitude of the first and second harmonics of the Ultrasound Contrast Agent's (UCA's) dynamics when excited by a chirp. The dependency of the second harmonic amplitude on the system parameters, the UCA shell parameters, and the insonifying signal parameters is then investigated. It is shown that optimal parameter values exist which give rise to a clear increase in the second harmonic component of the UCA's motion.
NASA Technical Reports Server (NTRS)
Chao, B. F.
1983-01-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
NASA Astrophysics Data System (ADS)
Chao, B. F.
1983-12-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K; Daniel, Claus
2013-05-28
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K.; Daniel, Claus
2015-11-19
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Minami, Keiichiro; Miyata, Kazunori; Otani, Atsushi; Tokunaga, Tadatoshi; Tokuda, Shouta; Amano, Shiro
2018-05-01
To determine steep increase of corneal irregularity induced by advancement of pterygium. A total of 456 eyes from 456 consecutive patients with primary pterygia were examined for corneal topography and advancement of pterygium with respect to the corneal diameter. Corneal irregularity induced by the pterygium advancement was evaluated by Fourier harmonic analyses of the topographic data that were modified for a series of analysis diameters from 1 mm to 6 mm. Incidences of steep increases in the asymmetry or higher-order irregularity components (inflection points) were determined by using segmented regression analysis for each analysis diameter. The pterygium advancement ranged from 2% to 57%, with a mean of 22.0%. Both components showed steep increases from the inflection points. The inflection points in the higher-order irregularity component altered with the analysis diameter (14.0%-30.6%), while there was no alternation in the asymmetry components (35.5%-36.8%). For the former component, the values at the inflection points were obtained in a range of 0.16 to 0.25 D. The Fourier harmonic analyses for a series of analysis diameters revealed that the higher-order irregularity component increased with the pterygium advancement. The analysis results confirmed the precedence of corneal irregularity due to pterygium advancement.
High-harmonic generation from Bloch electrons in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Ghimire, Shambhu; Reis, David A.; Schafer, Kenneth J.; Gaarde, Mette B.
2015-04-01
We study the generation of high-harmonic radiation by Bloch electrons in a model transparent solid driven by a strong midinfrared laser field. We solve the single-electron time-dependent Schrödinger equation (TDSE) using a velocity-gauge method [M. Korbman et al., New J. Phys. 15, 013006 (2013), 10.1088/1367-2630/15/1/013006] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494], which allows us to separate interband and intraband contributions to the time-dependent current. We find that the interband and intraband contributions display very different time-frequency characteristics. We show that solutions in these two bases are equivalent under a unitary transformation but that, unlike the velocity-gauge method, the Houston state treatment is numerically unstable when more than a few low-lying energy bands are used.
A new ultrasonic transducer for improved contrast nonlinear imaging
NASA Astrophysics Data System (ADS)
Bouakaz, Ayache; ten Cate, Folkert; de Jong, Nico
2004-08-01
Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of such a transducer design for improved contrast detection.
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
Processing of harmonics in the lateral belt of macaque auditory cortex.
Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P
2014-01-01
Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB.
Processing of harmonics in the lateral belt of macaque auditory cortex
Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P.
2014-01-01
Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations (“coos”). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB. PMID:25100935
DOT National Transportation Integrated Search
2015-06-01
This report assesses the impacts of a prototype of Dynamic Speed Harmonization (SPD-HARM) with Queue Warning (Q-WARN), which are two component applications of the Intelligent Network Flow Optimization (INFLO) bundle. The assessment is based on an ext...
Dynamics and control of instrumented harmonic drives
NASA Technical Reports Server (NTRS)
Kazerooni, H.; Ellis, S. R. (Principal Investigator)
1995-01-01
Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
NASA Astrophysics Data System (ADS)
Moustafa, Sabry Gad Al-Hak Mohammad
Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is shown to vary slowly with system-size. This allow us to get the FE in the thermodynamic limit by extrapolating the one isomer results to infinity and correct for that by the effect from considering proton-disorder measured at a small system. These techniques are applied to empty hydrates (of types: SI, SII, and SH) to estimate their thermodynamic stability. For conditions where the harmonic model fails, performing MS is needed to estimate rigorously the full (harmonic plus anharmonic) quantity. Although several MS methods are available for that purpose, they do not benefit from the harmonic nature of crystals---which represents the main contribution and is cheap to compute. In other words, those "conventional" methods always "start from scratch" even at states where anharmonic part is negligible. In this work, we develop very efficient MS methods that leverage information, on-the-fly, from the harmonic behavior of configurations such that the anharmonic contributions are directly measured. The approach is named harmonically-mapped averaging (HMA) for the rest of this thesis. Since the major contribution of thermodynamic properties comes from the harmonic nature of crystal, the fluctuations in the anharmonic quantities is to be small; hence, uncertainty associated with the HMA method is small. The HMA method is given in a general formulation such that it can handle properties related to both first- and second-derivatives of free energy. The HMA approach is first applied to Lennard-Jones (LJ) model. First- and second-derivatives of FE with respect to temperature and volume yield the following properties: energy, pressure, isochoric heat capacity, bulk modulus, and thermal pressure coefficient. A considerable improvement in the efficiency of measuring those properties is observed even at melting conditions where anharmonicity is non-negligible. First-derivative properties are computed with 100 to 10,000 times less computational effort, while speedup for the second-derivative properties exceeds a millionfold for the highest density examined. In addition, the finite-size and long-range cutoff effects of the anharmonic contribution is much smaller than those due to harmonic part. Therefore, we were able to get the thermodynamic limit of thermodynamic properties by extrapolating the harmonic contribution to infinity and fix that with the anharmonic contribution from MS of small systems. Moreover, the anharmonic trajectory shows better features than the conventional one; it equilibrates almost instantaneously and data is less correlated (i.e. good statistics can be obtained with shorter trajectory). As a byproduct of the HMA, the free energy along an isochore is computed using thermodynamic integration (TI) technique of energy. Again, the HMA shows substantial improvement (50--1000 speedup) over the well-known Frenkel-Ladd integration (with Einstein crystal reference) method. Finally, to test the method against a more sophisticated model, we applied it to an embedded-atom-model (EAM) model of iron system. The results show a qualitatively similar behavior as that of LJ model. Finally, the method is applied to tackle one of the long-standing problems of Earth science; namely, the crystal structure of the Earth's inner core (IC). (Abstract shortened by UMI.).
Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser
NASA Astrophysics Data System (ADS)
Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.
2008-10-01
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Observation of high-order polarization-locked vector solitons in a fiber laser.
Tang, D Y; Zhang, H; Zhao, L M; Wu, X
2008-10-10
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Crossover between few and many fermions in a harmonic trap
NASA Astrophysics Data System (ADS)
Grining, Tomasz; Tomza, Michał; Lesiuk, Michał; Przybytek, Michał; Musiał, Monika; Moszynski, Robert; Lewenstein, Maciej; Massignan, Pietro
2015-12-01
The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are studied by means of the coupled-cluster method. For few fermions we recover the results of exact diagonalization, yet with this method we are able to study much larger systems. We compute the energy, the chemical potential, the pairing gap, and the density profile of the trapped clouds, smoothly mapping the crossover between the few-body and many-body limits. The energy is found to converge surprisingly rapidly to the many-body result for every value of the interaction strength. Many more particles are instead needed to give rise to the nonanalytic behavior of the pairing gap, and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the shell structure of the trap.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills
NASA Astrophysics Data System (ADS)
Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier
2015-04-01
One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case
NASA Astrophysics Data System (ADS)
Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.
2016-11-01
This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.
Linear and Nonlinear Time Reverse Acoustics in Geomaterials
NASA Astrophysics Data System (ADS)
Sutin, A.; Johnson, P. A.; Tencate, J.
2004-12-01
Linear and Nonlinear Time Reverse Acoustics in Geomaterials P. A. Johnson, A.Sutin and J. TenCate Time Reversal Acoustics (TRA) is one of the most interesting topics to have emerged in modern acoustics in the last 40 years. Much of the seminal research in this area has been carried out by the group at the Laboratoire Ondes et Acoustique at the University of Paris 7, who have demonstrated the ability and robustness of TRA (using Time Reversal Mirrors) to provide spatial control and focusing of an ultrasonic beam (e.g. Fink, 1999). The ability to obtain highly focused signals with TRA has numerous applications, including lithotripsy, ultrasonic brain surgery, nondestructive evaluation and underwater acoustic communication. Notably, the study of time reversal in solids and in the earth is still relatively new. The problem is fundamentally different from the purely acoustic one due to the excitation and propagation of both compressional (bulk) and shear waves as well as the scattering and potentially high dissipation of the medium. We conducted series of TRA experiments in different solids using direct-coupled transducers on solids in tandem with a large bandwidth laser vibrometer detector. A typical time reversal experiment was carried out using the following steps (Sutin et al. 2004a). Laboratory experiments were conducted in different geomaterials of different shapes and sizes, including Carrera marble, granite and Berea sandstone. We observed that, in spite of potentially huge numbers of wave conversions (e.g., compressional to shear, shear to compressional, compressional/shear to surface waves, etc.) for each reflection at each free surface, time reversal still provides significant spatial and temporal focusing in these different geophysical materials. The typical size of the focal area is approximately equivalent to the shear wavelength and the focal area, but becomes larger with increasing wave attenuation (Sutin et al. 2004a; Delsanto et al., 2003)). The TR-induced focusing of wave energy at a point in space and time is ideal from the perspective of enhancing elastic wave, nonlinear response (for example, higher harmonic generation or wave modulation effects). We call this technique Nonlinear Time Reverse Acoustics (NLTRA) (Sutin et a. 2004b). We investigated the harmonic generation in TRA signals focused above a small crack (2mm) in a glass cube. Large second harmonic amplitudes were observed above the crack. Scanning of the surface by applying the laser vibrometer simultaneous with TRA focusing of the signal to an array of corresponding scanning points provided nonlinear imaging of the surface, showing all cracks in the scanned region. References: Delsanto, P. P., P. A. Johnson, M. Scalerandi, J. A. TenCate, LISA simulations of time-reversed acoustic and elastic wave experiments, J. of Physics D: Applied Physics 35, 3145-3152, (2003). M. Fink, Time Reversed Acoustics, Scientific American, 91-97 (1999). Sutin, A., J. TenCate and P. A. Johnson, Single-channel time reversal in elastic solids, J. Acoust. Soc. Am., in press (2004a). Sutin, A., P. Johnson, and J. TenCate, Development of nonlinear time reverse acoustics (NLTRA) method for crack detection in solids, Proceedings of the World Congress on Acoustics (Paris) [http://www.sfa.asso.fr/wcu2003/] 121-124 (2003b).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir; CEA, DEN, Département d'Etudes des Réacteurs, Service de Physique Expérimentale, Laboratoire Dosimétrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance
2015-10-15
Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectralmore » bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.« less
Temporal and frequency characteristics of a narrow light beam in sea water.
Luchinin, Alexander G; Kirillin, Mikhail Yu
2016-09-20
The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.
Gibbsian Stationary Non-equilibrium States
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-09-01
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
Vogel, Martin; Wingert, Axel; Fink, Rainer H A; Hagl, Christian; Ganikhanov, Feruz; Pfeffer, Christian P
2015-10-01
Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Atomic kinetic energy, momentum distribution, and structure of solid neon at zero temperature
NASA Astrophysics Data System (ADS)
Cazorla, C.; Boronat, J.
2008-01-01
We report on the calculation of the ground-state atomic kinetic energy Ek and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51(6)K , which agrees perfectly with the recent prediction made by Timms , 41(2)K , based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4-20K , and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid He4 in terms of the Debye model in order to assess the relevance of anharmonic effects in Ne.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganeev, R A
We discuss the emergence of interest in the high-order harmonic generation (HHG) of ultrashort pulses propagated through laser-produced plasmas. It is shown that, during the last few years, substantial amendments of plasma HHG allowed in some cases the characteristics of gas HHG to be surpassed. The attractiveness of a new approach in coherent extreme ultraviolet radiation generation is demonstrated, which can also be used as a tool for laser-ablation-induced HHG spectroscopy of a giant class of solids. We present general ideas and prospects for this relatively new field of nonlinear optics. (review)
Comparison of simulated and measured nonlinear ultrasound fields
NASA Astrophysics Data System (ADS)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-03-01
In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.
Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M
2012-04-14
The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.
Koulaguina, Elena; Drisdelle, Brandi Lee; Alain, Claude; Grimault, Stephan; Eck, Douglas; Vachon, François; Jolicoeur, Pierre
2015-04-01
When the frequency of one harmonic, in a sound composed of many harmonics, is briefly mistuned and then returned to the 'in-tune' frequency and phase, observers report hearing this harmonic as a separate tone long after the brief period of mistuning - a phenomenon called harmonic enhancement. Here, we examined the consequence of harmonic enhancement on listeners' ability to detect a brief amplitude notch embedded in one of the harmonics after the period of mistuning. When present, the notch was either on the enhanced harmonic or on a different harmonic. Detection was better on the enhanced harmonic than on a non-enhanced harmonic. This finding suggests that attention was drawn to the enhanced harmonic (which constituted a new sound object) thereby easing the processing of sound features (i.e., a notch) within that object. This is the first evidence of a functional consequence of the after-effect of transient mistuning on auditory perception. Moreover, the findings provide support for an attention-based explanation of the enhancement phenomenon.
NASA Astrophysics Data System (ADS)
Golaraei, Ahmad; Raja, Vaishnavi; Akens, Margarete K.; Wilson, Brian C.; Barzda, Virginijus
2017-07-01
Linear polarization-in, polarization-out second-harmonic generation microscopy was used to study the effect of Photodynamic therapy treatment on enhancing the healing of femur fracture by investigating the ultrastructure of collagen as a major component of bone matrix.
Second-harmonic generation from a thin spherical layer and No-generation conditions
NASA Astrophysics Data System (ADS)
Kapshai, V. N.; Shamyna, A. A.
2017-09-01
In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.
NASA Technical Reports Server (NTRS)
Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)
2003-01-01
A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.
NASA Technical Reports Server (NTRS)
Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)
2008-01-01
A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.
NASA Technical Reports Server (NTRS)
Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)
2004-01-01
A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.
The integration of nonsimultaneous frequency components into a single virtual pitch.
Ciocca, V; Darwin, C J
1999-04-01
The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.
Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry.
Pasciuto, Ilaria; Bergamini, Elena; Iosa, Marco; Vannozzi, Giuseppe; Cappozzo, Aurelio
2017-02-28
The Harmonic Ratio (HR) is an index based on the spectral analysis of lower trunk accelerations that is commonly used to assess the quality of gait. However, it presents several issues concerning reliability and interpretability. As a consequence, the literature provides very different values albeit corresponding to the same populations. In the present work, an improved harmonic ratio (iHR) was defined, relating the power of the intrinsic harmonics (i.e. associated with the symmetric component of gait) to the total power of the signal for each stride, leading to a normalised index ranging from 0 to 100%. The effect of the considered number of harmonics and strides on the estimate of both HR and iHR was assessed. The gait of three groups of volunteers was investigated: young healthy adults, elderly women and male trans-femoral amputees. Both HR and iHR were able to discriminate gait deviations from the gait of young healthy adults. Moreover, iHR proved to be more robust with respect to the number of considered harmonics and strides, and to exhibit a lower inter-stride variability. Additionally, using a normalised index as iHR led to a more straightforward interpretation and improved comparability. The importance of standardised conditions for the index evaluation was unveiled, and, in order to enhance the future comparability of the index, the following guidelines were presented: considering at least 20 harmonics and 20 strides; expressing the acceleration components in a repeatable, anatomical, local system of reference; and evaluating the iHR index, rather than the traditional HR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J
2011-09-01
This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.
Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.
de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael
2015-01-26
We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.
Comparison of light harmonic generation in Al and Ge consisted silicate materials
NASA Astrophysics Data System (ADS)
Smirnov, Vitaly A.; Vostrikova, Liubov I.
2018-04-01
The silicate materials are perspective for different areas of laser physics and photonics. In this paper the comparison of the nonlinear conversion with the generation of the light harmonic in Al- and Ge-containing silicate materials is presented. The peculiarities of the processes of the light harmonic generation in dependence on the concentrations of the chemical components are discussed and the influences of the additional small inclusion of the elements of fifth group and the rare-earth elements are estimated.
Sek, Aleksander; Moore, Brian C J
2003-05-01
Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, B. H.; Applied Science and Technology, University of California, Berkeley, California 94720; Tilborg, J. van
Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}≲0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ∼6.5×10{sup −7}, divergence ∼7−15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configurationmore » enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.« less
HarmLES- Development of Dry Lubricated Harmonic Drives® Gears for Space Applications
NASA Astrophysics Data System (ADS)
Jansson, Markus; Koenen, Hans; Brizuela, Marta; Vivente, Jose-Luis; Merstallinger, Andreas
2015-09-01
Harmonic Drive® gears are used in several space flight mechanisms such as SADM’s or pointing mechanisms. Main reasons for choosing the gears are advantages like zero backlash, high gear stiffness and high transmission accuracy. Nowadays typically grease lubrication is used, whereas this is linked to the risk of outgassing and limits the operational temperature.In order to increase the temperature range, trials to apply solid lubricants to Harmonic Drive® gears, were performed. Based on these trials it was found that the gears can be operated even at -269°C. Anyhow, although being used in various cryogenic applications, the reachable lifetime is comparably short. So as to improve the achievable endurance an essential development was necessary. Hence the EU - funded project HarmLES was executed in order to significantly increase the accessible lifetime. Following an integrated approach covering gear design, materials and coating, the prototype of a new Harmonic Drive® gear type was developed.
NASA Technical Reports Server (NTRS)
Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)
2003-01-01
A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.
Miller, Patrick J O; Samarra, Filipa I P; Perthuison, Aurélie D
2007-06-01
This study investigates how particular received spectral characteristics of stereotyped calls of sexually dimorphic adult killer whales may be influenced by caller sex, orientation, and range. Calls were ascribed to individuals during natural behavior using a towed beamforming array. The fundamental frequency of both high-frequency and low-frequency components did not differ consistently by sex. The ratio of peak energy within the fundamental of the high-frequency component relative to summed peak energy in the first two low-frequency component harmonics, and the number of modulation bands off the high-frequency component, were significantly greater when whales were oriented towards the array, while range and adult sex had little effect. In contrast, the ratio of peak energy in the first versus second harmonics of the low-frequency component was greater in calls produced by adult females than adult males, while orientation and range had little effect. The dispersion of energy across harmonics has been shown to relate to body size or sex in terrestrial species, but pressure effects during diving are thought to make such a signal unreliable in diving animals. The observed spectral differences by signaler sex and orientation suggest that these types of information may be transmitted acoustically by freely diving killer whales.
Woodall, Christopher W; Rondeux, Jacques; Verkerk, Pieter J; Ståhl, Göran
2009-10-01
Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study is to describe the status, DW components measured, sample methods employed, and DW component thresholds used by national forest inventories that currently inventory DW around the world. Study results indicate that most countries do not inventory forest DW. Globally, we estimate that about 13% of countries inventory DW using a diversity of sample methods and DW component definitions. A common feature among DW inventories was that most countries had only just begun DW inventories and employ very low sample intensities. There are major hurdles to harmonizing national forest inventories of DW: differences in population definitions, lack of clarity on sample protocols/estimation procedures, and sparse availability of inventory data/reports. Increasing database/estimation flexibility, developing common dimensional thresholds of DW components, publishing inventory procedures/protocols, releasing inventory data/reports to international peer review, and increasing communication (e.g., workshops) among countries inventorying DW are suggestions forwarded by this study to increase DW inventory harmonization.
The Satellite Data Thematic Core Service within the EPOS Research Infrastructure
NASA Astrophysics Data System (ADS)
Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Buonanno, Sabatino; Zeni, Giovanni; Wright, Tim; Hooper, Andy; Diament, Michel; Ostanciaux, Emilie; Mandea, Mioara; Walter, Thomas; Maccaferri, Francesco; Fernandez, Josè; Stramondo, Salvatore; Bignami, Christian; Bally, Philippe; Pinto, Salvatore; Marin, Alessandro; Cuomo, Antonio
2017-04-01
EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model, 3D displacement maps, seismic hazard maps). Moreover, the services will release both on-demand and systematic products. The latter will be generated and made available to the users on a continuous basis, by processing each Sentinel-1 data once acquired, over a defined number of areas of interest; while the former will allow users to select data, areas, and time period to carry out their own analyses via an on-line platform. The satellite components will be integrated within the EPOS infrastructure through a common and harmonized interface that will allow users to search, process and share remote sensing images and results. This gateway to the satellite services will be represented by the ESA- Geohazards Exploitation Platform (GEP), a new cloud-based platform for the satellite Earth Observations designed to support the scientific community in the understanding of high impact natural disasters. Satellite Data TCS will use GEP as the common interface toward the main EPOS portal to provide EPOS users not only with data products but also with relevant processing and visualisation software, thus allowing users to gather and process on a cloud-computing infrastructure large datasets without any need to download them locally.
Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun
2013-08-14
Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wyse, Lonce
An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive interactions, and a "harmonic sieve" mechanism whereby the strength of a pitch depends only on spectral regions near harmonics. The model is evaluated using data involving mistuned components, shifted harmonics, complex tones with varying phase relationships, and continuous spectra such as rippled noise and narrow noise bands.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Stone, R. G.
1989-01-01
A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.
Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics
NASA Astrophysics Data System (ADS)
Matikas, T. E.; Paipetis, A.; Kostopoulos, V.
2008-06-01
This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.
NASA Astrophysics Data System (ADS)
Rubano, Andrea; Mou, Sen; Paparo, Domenico
2018-05-01
Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.
Hu, Yi; Loizou, Philipos C
2010-01-01
Pre-processing based noise-reduction algorithms used for cochlear implants (CIs) can sometimes introduce distortions which are carried through the vocoder stages of CI processing. While the background noise may be notably suppressed, the harmonic structure and/or spectral envelope of the signal may be distorted. The present study investigates the potential of preserving the signal's harmonic structure in voiced segments (e.g., vowels) as a means of alleviating the negative effects of pre-processing. The hypothesis tested is that preserving the harmonic structure of the signal is crucial for subsequent vocoder processing. The implications of preserving either the main harmonic components occurring at multiples of F0 or the main harmonics along with adjacent partials are investigated. This is done by first pre-processing noisy speech with a conventional noise-reduction algorithm, regenerating the harmonics, and vocoder processing the stimuli with eight channels of stimulation in steady speech-shaped noise. Results indicated that preserving the main low-frequency harmonics (spanning 1 or 3 kHz) alone was not beneficial. Preserving, however, the harmonic structure of the stimulus, i.e., the main harmonics along with the adjacent partials, was found to be critically important and provided substantial improvements (41 percentage points) in intelligibility.
Decomposition of fluctuating initial conditions and flow harmonics
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi
2014-01-01
Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.
Power system frequency estimation based on an orthogonal decomposition method
NASA Astrophysics Data System (ADS)
Lee, Chih-Hung; Tsai, Men-Shen
2018-06-01
In recent years, several frequency estimation techniques have been proposed by which to estimate the frequency variations in power systems. In order to properly identify power quality issues under asynchronously-sampled signals that are contaminated with noise, flicker, and harmonic and inter-harmonic components, a good frequency estimator that is able to estimate the frequency as well as the rate of frequency changes precisely is needed. However, accurately estimating the fundamental frequency becomes a very difficult task without a priori information about the sampling frequency. In this paper, a better frequency evaluation scheme for power systems is proposed. This method employs a reconstruction technique in combination with orthogonal filters, which may maintain the required frequency characteristics of the orthogonal filters and improve the overall efficiency of power system monitoring through two-stage sliding discrete Fourier transforms. The results showed that this method can accurately estimate the power system frequency under different conditions, including asynchronously sampled signals contaminated by noise, flicker, and harmonic and inter-harmonic components. The proposed approach also provides high computational efficiency.
Meziane, A; Norris, A N; Shuvalov, A L
2011-10-01
Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America
Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2013-01-01
A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.
A decision modeling for phasor measurement unit location selection in smart grid systems
NASA Astrophysics Data System (ADS)
Lee, Seung Yup
As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.
Seicean, Andrada; Mosteanu, Ofelia; Seicean, Radu
2017-01-07
New technologies in endoscopic ultrasound (EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration (EUS-FNA) diagnostic rate. This paper reviews the principle, indications, main literature results, limitations and future expectations for each of the methods presented. Contrast-enhanced harmonic EUS uses a low mechanical index and highlights slow-flow vascularization. This technique is useful for differentiating solid and cystic pancreatic lesions and assessing biliary neoplasms, submucosal neoplasms and lymph nodes. It is also useful for the discrimination of pancreatic masses based on their qualitative patterns; however, the quantitative assessment needs to be improved. The detection of small solid lesions is better, and the EUS-FNA guidance needs further research. The differentiation of cystic lesions of the pancreas and the identification of the associated malignancy features represent the main indications. Elastography is used to assess tissue hardness based on the measurement of elasticity. Despite its low negative predictive value, elastography might rule out the diagnosis of malignancy for pancreatic masses. Needle confocal laser endomicroscopy offers useful information about cystic lesions of the pancreas and is still under evaluation for use with solid pancreatic lesions of lymph nodes.
Jeong, Hyunjo; Barnard, Daniel; Cho, Sungjong; Zhang, Shuzeng; Li, Xiongbing
2017-11-01
This paper presents analytical and experimental techniques for accurate determination of the nonlinearity parameter (β) in thick solid samples. When piezoelectric transducers are used for β measurements, the receiver calibration is required to determine the transfer function from which the absolute displacement can be calculated. The measured fundamental and second harmonic displacement amplitudes should be modified to account for beam diffraction and material absorption. All these issues are addressed in this study and the proposed technique is validated through the β measurements of thick solid samples. A simplified self-reciprocity calibration procedure for a broadband receiver is described. The diffraction and attenuation corrections for the fundamental and second harmonics are explicitly derived. Aluminum alloy samples in five different thicknesses (4, 6, 8, 10, 12cm) are prepared and β measurements are made using the finite amplitude, through-transmission method. The effects of diffraction and attenuation corrections on β measurements are systematically investigated. When diffraction and attenuation corrections are all properly made, the variation of β between different thickness samples is found to be less than 3.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Reciprocal relations for transmission coefficients - Theory and application
NASA Technical Reports Server (NTRS)
Qu, Jianmin; Achenbach, Jan D.; Roberts, Ronald A.
1989-01-01
The authors present a rigorous proof of certain intuitively plausible reciprocal relations for time harmonic plane-wave transmission and reflection at the interface between a fluid and an anisotropic elastic solid. Precise forms of the reciprocity relations for the transmission coefficients and for the transmitted energy fluxes are derived, based on the reciprocity theorem of elastodynamics. It is shown that the reciprocity relations can be used in conjunction with measured values of peak amplitudes for transmission through a slab of the solid (water-solid-water) to obtain the water-solid coefficients. Experiments were performed for a slab of a unidirectional fiber-reinforced composite. Good agreement of the experimentally measured transmission coefficients with theoretical values was obtained.
Kale, Sushrut; Micheyl, Christophe; Heinz, Michael G.
2013-01-01
Listeners with sensorineural hearing loss (SNHL) often show poorer thresholds for fundamental-frequency (F0) discrimination, and poorer discrimination between harmonic and frequency-shifted (inharmonic) complex tones, than normal-hearing (NH) listeners—especially when these tones contain resolved or partially resolved components. It has been suggested that these perceptual deficits reflect reduced access to temporal-fine-structure (TFS) information, and could be due to degraded phase-locking in the auditory nerve (AN) with SNHL. In the present study, TFS and temporal-envelope (ENV) cues in single AN-fiber responses to bandpass-filtered harmonic and inharmonic complex tones were measured in chinchillas with either normal hearing or noise-induced SNHL. The stimuli were comparable to those used in recent psychophysical studies of F0 and harmonic/inharmonic discrimination. As in those studies, the rank of the center component was manipulated to produce different resolvability conditions, different phase relationships (cosine and random phase) were tested, and background noise was present. Neural TFS and ENV cues were quantified using cross-correlation coefficients computed using shuffled cross-correlograms between neural responses to REF (harmonic) and TEST (F0- or frequency-shifted) stimuli. In animals with SNHL, AN-fiber tuning curves showed elevated thresholds, broadened tuning, best-frequency shifts, and downward shifts in the dominant TFS response component; however, no significant degradation in the ability of AN fibers to encode TFS or ENV cues was found. Consistent with optimal-observer analyses, the results indicate that TFS and ENV cues depended only on the relevant frequency shift in Hz and thus were not degraded because phase-locking remained intact. These results suggest that perceptual “TFS-processing” deficits do not simply reflect degraded phase-locking at the level of the AN. To the extent that performance in F0 and harmonic/inharmonic discrimination tasks depend on TFS cues, it is likely through a more complicated (sub-optimal) decoding mechanism, which may involve “spatiotemporal” (place-time) neural representations. PMID:23716215
Mercury's Crustal Magnetic Field from MESSENGER Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Johnson, C.
2017-12-01
We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.
NASA Astrophysics Data System (ADS)
Routh, Bikash
2018-04-01
The present paper aims at review on different aspects of harmonic drive gear to identify literature gap for future research. The present article is started first making the comparative study of harmonic drive gear over conventional gear, highlighting its historical background, its application, limitation etc. and then describing working principle of each and every components of it with detail dimensioning and modelling. The present article is further extended to study the different design aspects i.e. synthesis of tooth profiles, lubrication, stress, strain, torque, load sharing, kinematics error and vibration in details etc., identifying problems and then suggesting future perspective for the performance improvement of harmonic drive gear.
Expansion into lattice harmonics in cubic symmetries
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.
2018-05-01
On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.
Micro sculpting technology using DPSSL
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun
2003-11-01
Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.
Pulse compression of harmonic chirp signals using the fractional fourier transform.
Arif, M; Cowell, D M J; Freear, S
2010-06-01
In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
More About the Phase-Synchronized Enhancement Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
2004-01-01
A report presents further details regarding the subject matter of "Phase-Synchronized Enhancement Method for Engine Diagnostics" (MFS-26435), NASA Tech Briefs, Vol. 22, No. 1 (January 1998), page 54. To recapitulate: The phase-synchronized enhancement method (PSEM) involves the digital resampling of a quasi-periodic signal in synchronism with the instantaneous phase of one of its spectral components. This resampling transforms the quasi-periodic signal into a periodic one more amenable to analysis. It is particularly useful for diagnosis of a rotating machine through analysis of vibration spectra that include components at the fundamental and harmonics of a slightly fluctuating rotation frequency. The report discusses the machinery-signal-analysis problem, outlines the PSEM algorithms, presents the mathematical basis of the PSEM, and presents examples of application of the PSEM in some computational simulations.
Method of forming components for a high-temperature secondary electrochemical cell
Mrazek, Franklin C.; Battles, James E.
1983-01-01
A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
Bottom boundary layer forced by finite amplitude long and short surface waves motions
NASA Astrophysics Data System (ADS)
Elsafty, H.; Lynett, P.
2018-04-01
A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.
Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources
NASA Astrophysics Data System (ADS)
Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.
2018-03-01
Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.
Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil
NASA Astrophysics Data System (ADS)
Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing
2017-05-01
The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.
The oscillatory entrainment of virtual pitch perception
Aksentijevic, Aleksandar; Northeast, Anthony; Canty, Daniel; Elliott, Mark A.
2013-01-01
Evidence suggests that synchronized brain oscillations in the low gamma range (around 33 Hz) are involved in the perceptual integration of harmonic complex tones. This process involves the binding of harmonic components into “harmonic templates” – neural structures responsible for pitch coding in the brain. We investigated the hypothesis that oscillatory harmonic binding promotes a change in pitch perception style from spectral (frequency) to virtual (relational). Using oscillatory priming we asked 24 participants to judge as rapidly as possible, the direction of an ambiguous target with ascending spectral and descending virtual contour. They made significantly more virtual responses when primed at 29, 31, and 33 Hz and when the first target tone was harmonically related to the prime, suggesting that neural synchronization in the low gamma range could facilitate a shift toward virtual pitch processing. PMID:23630515
Investigation Of Plasma Critical Surface Rippling By Harmonics Generation In Laser Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racz, E.; Foeldes, I. B.; Szatmari, S.
2006-01-15
Experiments were carried out by a tightly focused, prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). Intense 2{omega}, 3{omega} and near threshold 4{omega} were generated in laser plasmas on solid surfaces for p- and s-polarized 1.5{center_dot}1017 W/cm2 radiation intensity. Directionality and polarization properties were investigated depending on the laser intensity and polarization. The observations showed diffuse propagation of harmonics for intensities above 1016 W/cm2 and the polarization of harmonics was mixed for the highest intensities. The explanation of these results is surface rippling of the plasma critical surface because of the Rayleigh-Taylor instability, whichmore » is an intrinsic consequence of the unstable balance between light pressure and plasma expansion.« less
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.
2015-01-01
Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.
Evaluation of geopotential and luni-solar perturbations by a recursive algorithm
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.
1975-01-01
The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.
Optical response of semiconductors in a dc-electric field
NASA Astrophysics Data System (ADS)
Prussel, Lucie; Veniard, Valerie
A deep understanding of the optical properties of solids is crucial for the improvement of nonlinear materials and devices. It offers the opportunity to search for new materials with specific properties. One way to tune some of those properties is to apply an electrostatic field. This gives rise to electro-optic effects. The most known among those is the Pockel or linear electro-optic effect (LEO), which is a second order response property described by the susceptibility χ (2) (- ω ω , 0) . An important nonlinear process is the second harmonic generation (SHG), where two photons are absorbed by the material. While this process is sensitive to the symmetry of the material, adding a static field would enable a nonlinear response from every material, including centrosymmetric ones. This happens through a third order process, named EFISH (Electric Field Induced Second Harmonic) for which the susceptibility of interest is χ (3) (- 2 ω ω , ω , 0) . We have developed a theoretical approach and a numerical tool to study these two nonlinear properties (LEO and EFISH) in the context of Time-dependent Density Functional Theory (TDDFT), and we have applied it to the case of bulk SiC and GaAs as well as layered systems such as Ge/SiGe.
Shaping the third-harmonic radiation from silicon nanodimers
Wang, Lei; Kruk, Sergey; Xu, Lei; ...
2017-01-23
Recent progress in the study of resonant light confinement in high-index dielectric nanostructures suggests a new route for achieving efficient control of both electric and magnetic components of light. It also leads to the enhancement of nonlinear effects near electric and magnetic Mie resonances with an engineered radiation directionality. Furthermore we study the third-harmonic generation from dimers composed of pairs of two identical silicon nanoparticles and demonstrate, both numerically and experimentally, that the multipolar harmonic modes generated by the dimers near the Mie resonances allow the shaping of the directionality of nonlinear radiation.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-07-01
The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.
Suomi, Visa; Edwards, David; Cleveland, Robin
2015-12-01
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jun; Fan, Ting-Bo; Xu, Di; Zhang, Dong
2014-10-01
Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong
2015-08-01
Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
The harmonic organization of auditory cortex.
Wang, Xiaoqin
2013-12-17
A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.
Identification of limit cycles in multi-nonlinearity, multiple path systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Barron, O. L.
1979-01-01
A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.
Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T
2010-07-01
Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.
Individual differences reveal the basis of consonance.
McDermott, Josh H; Lehr, Andriana J; Oxenham, Andrew J
2010-06-08
Some combinations of musical notes are consonant (pleasant), whereas others are dissonant (unpleasant), a distinction central to music. Explanations of consonance in terms of acoustics, auditory neuroscience, and enculturation have been debated for centuries. We utilized individual differences to distinguish the candidate theories. We measured preferences for musical chords as well as nonmusical sounds that isolated particular acoustic factors--specifically, the beating and the harmonic relationships between frequency components, two factors that have long been thought to potentially underlie consonance. Listeners preferred stimuli without beats and with harmonic spectra, but across more than 250 subjects, only the preference for harmonic spectra was consistently correlated with preferences for consonant over dissonant chords. Harmonicity preferences were also correlated with the number of years subjects had spent playing a musical instrument, suggesting that exposure to music amplifies preferences for harmonic frequencies because of their musical importance. Harmonic spectra are prominent features of natural sounds, and our results indicate that they also underlie the perception of consonance. 2010 Elsevier Ltd. All rights reserved.
An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter
NASA Astrophysics Data System (ADS)
Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu
2017-05-01
Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.
Selective suppression of high-order harmonics within phase-matched spectral regions.
Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren
2017-04-01
Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.
An Introductory Idea for Teaching Two-Component Phase Diagrams
ERIC Educational Resources Information Center
Peckham, Gavin D.; McNaught, Ian J.
2011-01-01
The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…
High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft
NASA Astrophysics Data System (ADS)
Kumamoto, Atsushi; Tsuchiya, Fuminori; Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Imachi, Tomohiko; Ozaki, Mitsunori; Matsuda, Shoya; Shoji, Masafumi; Matsuoka, Aayako; Katoh, Yuto; Miyoshi, Yoshizumi; Obara, Takahiro
2018-05-01
The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) spacecraft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one component of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR frequency by the computer was checked and corrected if needed by the human operator. Electron number density derived from the determined UHR frequency will be useful for the investigation of the storm-time evolution of the plasmasphere and topside ionosphere.[Figure not available: see fulltext.
Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin
2012-01-01
Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631
Impact of Climatic Variability on Atmospheric Mass Distribution and GRACE-Derived Gravity Fields
NASA Technical Reports Server (NTRS)
Salstein, David A.; Rosen, Richard D.; Ponte, Rui M.; Frey, Herbert (Technical Monitor)
2003-01-01
During the period we calculated the atmospheric data sets related to its mass and angular momentum distribution. For mass, we determined the various harmonics from the NCEP-NCAR reanalysis, especially the low-order harmonics that are useful in studying the gravitation distribution as will be determined from the GRACE mission. Atmospheric mass is also related to the atmospheric loading on the solid Earth; we cooperated with scientists who needed the atmospheric mass information for understanding its contributions to the overall loading, necessary for vertical and horizontal coordinate estimation. We calculated atmospheric angular momentum from the NCEP-NCAR reanalyses and 4 operational meteorological centers, based on the motion (wind) terms and the mass (surface pressure) terms. These are associated with motions of the planet, including its axial component causing changes in the length of day, more related to the winds, and the equatorial component related to motions of the pole, more related to the mass. Tasks related to the ocean mass and angular momentum were added to the project as well. For these we have noted the ocean impact on motions of the pole as well as the torque mechanisms that relate the transfer of angular momentum between oceans and solid earth. The activities of the project may be summarized in the following first manuscript written in December 2002, for a symposium that Dr. Salstein attended on Geodynamics. We have continued to assess ocean angular momentum (OAM) quantities derived from bottom pressure and velocity fields estimated with our finite-difference barotropic (single layer) model. Three years of output (1993-95) from a run without any data constraints was compared to output from a corresponding run that was constrained by altimeter data using a Kalman filter and smoother scheme. Respective OAM time series were combined with corresponding atmospheric series and compared to observed polar motion. The constrained OAM series provided slightly better variance reduction than the unconstrained series. Analysis provided a check on the estimation scheme and pointed to further work to improve the determination of OAM using this method. A significant effort was also devoted to quantifying effects of uncertainties in high frequency winds on the mean and seasonal momentum exchange between atmosphere and oceans.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Hang
2018-04-01
The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.
2007-07-21
the spin coherent states P-representation", Conference on Quantum Computations and Many- Body Systems, February 2006, Key West, FL 9. B. N. Harmon...solid-state spin-based qubit systems was the focus of our project. Since decoherence is a complex many- body non-equilibrium process, and its...representation of the density matrix, see Sec. 3 below). This work prompted J. Taylor from the experimental group of C. Marcus and M. Lukin (funded by
Human sperm steer with second harmonics of the flagellar beat.
Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens
2017-11-10
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Spherical harmonic analysis of a model-generated climatology
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1981-01-01
Monthly mean fields of 850 mb temperature (T850), 500 mb geopotential height (G500) and sea level pressure (SLP) were generated in the course of a five-year climate simulation run with a global general circulation model. Both the model-generated climatology and an observed climatology were subjected to spherical harmonic analysis, with separate analyses of the globe and the Northern Hemisphere. Comparison of the dominant harmonics of the two climatologies indicates that more than 95% of the area-weighted spatial variance of G500 and more than 90% of that of T850 are explained by fewer than three components, and that the model adequately simulates these large-scale characteristics. On the other hand, as many as 25 harmonics are needed to explain 95% of the observed variance of SLP, and the model simulation of this field is much less satisfactory. The model climatology is also evaluated in terms of the annual cycles of the dominant harmonics.
Remote detection of methane with a 1.66-microm diode laser.
Uehara, K; Tai, H
1992-02-20
High-sensitivity real-time remote detection of methane in air with a 1.66-microm distributed-feedback diode laser operating at room temperature is demonstrated by laboratory simulations. The laser current was modulated at a high frequency of ~5 MHz, and the laser-center frequency was locked onto a methane-absorption line. The laser light directed toward the probed region was received after one-way transmission or further reflection from a topographic target. The methane absorption was detected by the second-harmonic component in the optical-power variation. The minimum-detectable concentration-path-length product in the transmission scheme was 0.3 part in 10(6) m for a signal averaging time of 1.3 s. In the reflection scheme, the amount of methane could be measured from the ratio of the fundamental and second-harmonic signal intensities independently of the received power.
A novel method for producing low cost dynamometric wheels based on harmonic elimination techniques
NASA Astrophysics Data System (ADS)
Gutiérrez-López, María D.; García de Jalón, Javier; Cubillo, Adrián
2015-02-01
A method for producing low cost dynamometric wheels is presented in this paper. For carrying out this method, the metallic part of a commercial wheel is instrumented with strain gauges, which must be grouped in at least three circumferences and in equidistant radial lines. The strain signals of the same circumference are linearly combined to obtain at least two new signals that only depend on the tyre/road contact forces and moments. The influence of factors like the angle rotated by the wheel, the temperature or the centrifugal forces is eliminated in them by removing the continuous component and the largest possible number of harmonics, except the first or the second one, of the strain signals. The contact forces and moments are obtained from these new signals by solving two systems of linear equations with three unknowns each. This method is validated with some theoretical and experimental examples.
Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection
NASA Astrophysics Data System (ADS)
Woodard, Martin F.
2017-08-01
A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.
A solid-state NMR method to determine domain sizes in multi-component polymer formulations
NASA Astrophysics Data System (ADS)
Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon
2015-12-01
Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).
Method of forming components for a high-temperature secondary electrochemical cell
Mrazek, F.C.; Battles, J.E.
1981-05-22
A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.
Three-dimensional simulation of free-electron laser harmonics with FRED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, W.M.; Scharlemann, E.T.; Fawley, W.M.
1989-11-20
FRED3D, a single-mode three-dimensional version of the FEL simulation code FRED, has been modified to follow the growth of signal components at the fundamental frequency and at even and odd harmonics. The Wiggle-averaged particle and field equations for this multi-mode formulation are derived here, and their implementation in FRED3D is discussed. 12 refs.
A complete set of two-dimensional harmonic vortices on a spherical surface
NASA Astrophysics Data System (ADS)
Esparza, Christian; Rendón, Pablo Luis; Ley Koo, Eugenio
2018-03-01
The solutions of the Euler equations on a spherical surface are constructed, starting from a vector velocity potential A in the radial direction and with a two-dimensional spherical harmonic variation of order m and well-defined parity under \\varphi \\mapsto -\\varphi . The solutions are well-behaved on the entire surface and continuous at the position of a parallel circle θ ={θ }0, where the vorticity is shown to be harmonically distributed. The velocity field is evaluated as the curl of the vector potential: it is shown that the velocity is divergenceless and distributed on the spherical surface. Its polar components at the parallel circle are shown to be continuous, confirming its divergenceless nature, while its azimuthal components are discontinuous at the circle, and their discontinuity is a measure of the vorticity in the radial direction. A closed form for the velocity field lines is also obtained in terms of fixed values of the scalar harmonic function associated with the vector potential. Additionally, the connections of the solutions on a spherical surface with their circular, elliptic and bipolar counterparts on the equatorial plane are implemented via stereographic projections.
Solid-State NMR Study of the Cicada Wing.
Gullion, John D; Gullion, Terry
2017-08-17
Wings of flying insects are part of the cuticle which forms the exoskeleton. The primary molecular components of cuticle are protein, chitin, and lipid. How these components interact with one another to form the exoskeleton is not completely understood. The difficulty in characterizing the cuticle arises because it is insoluble and noncrystalline. These properties severely limit the experimental tools that can be used for molecular characterization. Solid-state nuclear magnetic resonance experiments have been used in the past to characterize the exoskeleton of beetles and have found that chitin and protein make comparable contributions to the molecular matrix. However, little work has been done to characterize the components of the wing, which includes vein and membrane. In this work, solid-state NMR was used to characterize the wing of the 17-year cycle cicada (Magicicada cassini) that appeared in northern West Virginia during the summer of 2016. The NMR results show noticeable differences between the molecular components of the vein and membrane.
[Application of the elliptic fourier functions to the description of avian egg shape].
Ávila, Dennis Denis
2014-12-01
Egg shape is difficult to quantify due to the lack of an exact formula to describe its geometry. Here I described a simple algorithm to characterize and compare egg shapes using Fourier functions. These functions can delineate any closed contour and had been previously applied to describe several biological objects. I described, step by step, the process of data acquisition, processing and the use of the SHAPE software to extract function coefficients in a study case. I compared egg shapes in three birds' species representing different reproductive strategies: Cuban Parakeet (Aratinga euops), Royal Tern (Thalasseus maximus) and Cuban Blackbird (Dives atroviolaceus). Using 73 digital pictures of eggs kept in Cuban scientific collections, I calculated Fourier descriptors with 4, 6, 8, 16 and 20 harmonics. Descriptors were reduced by a Principal Component Analysis and the scores of the eigen-values that account for 90% of variance were used in a Lineal Discriminant Function to analyze the possibility to differentiate eggs according to its shapes. Using four harmonics, the first five component accounted for 97% of shape variances; more harmonics diluted the variance increasing to eight the number of components needed to explain most of the variation. Convex polygons in the discriminant space showed a clear separation between species, allowing trustful discrimination (classification errors between 7-15%). Misclassifications were related to specific egg shape variability between species. In the study case, A. euops eggs were perfectly classified, but for the other species, errors ranged from 5 to 29% of misclassifications, in relation to the numbers or harmonics and components used. The proposed algorithm, despite its apparent mathematical complexity, showed many advantages to describe eggs shape allowing a deeper understanding of factors related to this variable.
Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.
Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A
2016-07-25
We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.
High-efficency stable 213-nm generation for LASIK application
NASA Astrophysics Data System (ADS)
Wang, Zhenglin; Alameh, Kamal; Zheng, Rong
2005-01-01
213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.
Particle Velocity Measuring System
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)
1998-01-01
Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.
Fluidics platform and method for sample preparation
Benner, Henry W.; Dzenitis, John M.
2016-06-21
Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.
Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi
2018-05-01
The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.
2012 MULTIPHOTON PROCESSES GRC, JUNE 3-8, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Barry
2012-03-08
The sessions will focus on: Attosecond science; Strong-field processes in molecules and solids; Generation of harmonics and attosecond pulses; Free-electron laser experiments and theory; Ultrafast imaging; Applications of very high intensity lasers; Propagation of intense laser fields.
Experiments on Laser Beam Jitter Control with Applications to a Shipboard Free Electron Laser
2007-12-01
factor one half converts from peak to rms values. This psd was then converted to units of ( mrms /s2)2/Hz by dividing by the square of the given voltage...the root mean square value in units of mrms for a given frequency range. (3) Vibration Measurement Results. The total displacement from 1-400 Hz...The mass may represent, for example, a component of an FEL. The support, s, is harmonically excited at a peak displacement amplitude of xs. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, G.C.
1991-03-01
In this paper general equations for the asynchronous squirrel-cage motor which contain the influence of space harmonics and the mutual slotting are derived by using among others the power-invariant symmetrical component transformation and a time-dependent transformation with which, under certain circumstances, the rotor-position angle can be removed from the coefficient matrix. The developed models implemented in a machine-independent computer program form powerful tools, with which the influence of space harmonics in relation to the geometric data of specific motors can be analyzed for steady-state and transient performances.
Riporto, Jérémy; Demierre, Alexis; Kilin, Vasyl; Balciunas, Tadas; Schmidt, Cédric; Campargue, Gabriel; Urbain, Mathias; Baltuska, Andrius; Le Dantec, Ronan; Wolf, Jean-Pierre; Mugnier, Yannick; Bonacina, Luigi
2018-05-03
We demonstrate the simultaneous generation of second, third, and fourth harmonics from a single dielectric bismuth ferrite nanoparticle excited using a telecom fiber laser at 1560 nm. We first characterize the signals associated with different nonlinear orders in terms of spectrum, excitation intensity dependence, and relative signal strengths. Successively, on the basis of the polarization-resolved emission curves of the three harmonics, we discuss the interplay of susceptibility tensor components at different orders and show how polarization can be used as an optical handle to control the relative frequency conversion properties.
NASA Technical Reports Server (NTRS)
Takahashi, H.; Yahagi, N.
1985-01-01
The spherical harmonic analysis of cosmic ray neutron data from the worldwide network neutron monitor stations during the years, 1966 to 1969 was carried out. The second zonal harmonic component obtained from the analysis corresponds to the Pole-Equator anisotropy of the cosmic ray neutron intensity. Such an anisotropy makes a semiannual variation. In addition to this, it is shown that the Pole-Equator anisotropy makes a variation depending on the interplanetary magnetic field (IMF) sector polarities around the passages of the IMF sector boundary. A mechanism to interpret these results is also discussed.
NASA Astrophysics Data System (ADS)
Dityatyev, Oleg A.; Smidt, Peer; Stefanovich, Sergey Yu; Lightfoot, Philip; Dolgikh, Valery A.; Opperman, Heinrich
2004-09-01
Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system were studied by X-ray, DTA and second harmonic generation (SHG). The samples were synthesized by solid state reactions of the Bi, Te and Se oxides. The phase diagram is interpreted as a quasibinary peritectic one with wide ranges of solid solutions on the basis of both compounds. The SHG study showed Bi 2SeO 5 to undergo a phase transition at about 250 °C. Neutron diffraction (25-650 °C) showed no major changes in the structure of Bi 2SeO 5 at high temperatures. However, the analysis of the oxygen atom thermal factors and site occupancies suggested that the mechanism of the phase transformation is an order-disorder transition involving reorientation of the SeO 3 group.
Universal linear and nonlinear electrodynamics of a Dirac fluid
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dmitry N.; Fogler, Michael M.
2018-03-01
A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.
Review on solid electrolytes for all-solid-state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li
2018-06-01
All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.
Investigation on thixojoining to produce hybrid components with intermetallic phase
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2018-05-01
Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.
The harmonic organization of auditory cortex
Wang, Xiaoqin
2013-01-01
A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544
Strategic placement of stereogenic centers in molecular materials for second harmonic generation.
Gangopadhyay, P; Rao, D Narayana; Agranat, Israel; Radhakrishnan, T P
2002-01-01
Basic aspects of the nonlinear optical phenomenon of second harmonic generation (SHG) and the assembly of molecular materials for SHG are reviewed. Extensive use of chirality as a convenient tool to generate noncentrosymmetricity in molecular lattices, an essential requirement for the development of quadratic nonlinear optical materials, is noted. An overview of our investigations of chiral diaminodicyanoquinodimethanes is presented, which provides insight into a systematic approach to the effective deployment of chirality to achieve optimal molecular orientations for enhanced solid state SHG. Extension of these ideas to the realization of strong SHG in materials based on helical superstructures is outlined.
The radio-frequency fluctuation effect on the floating harmonic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan
2016-08-15
The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less
Lateral density anomalies and the earth's gravitational field
NASA Technical Reports Server (NTRS)
Lowrey, B. E.
1978-01-01
The interpretation of gravity is valuable for understanding lithospheric plate motion and mantle convection. Postulated models of anomalous mass distributions in the earth and the observed geopotential as expressed in the spherical harmonic expansion are compared. In particular, models of the anomalous density as a function of radius are found which can closely match the average magnitude of the spherical harmonic coefficients of a degree. These models include: (1) a two-component model consisting of an anomalous layer at 200 km depth (below the earth's surface) and at 1500 km depth (2) a two-component model where the upper component is distributed in the region between 1000 and 2800 km depth, and(3) a model with density anomalies which continuously increase with depth more than an order of magnitude.
Direct determination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time series
NASA Astrophysics Data System (ADS)
Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Gross, R. S.; Heflin, M. B.; Jiang, Y.; Parker, J. W.
2013-12-01
The longest-wavelength surface mass transport includes three degree-one spherical harmonic components involving hemispherical mass exchanges. The mass load causes geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. Estimation of the degree-1 surface mass changes through CM-CF and degree-1 deformation signatures from space geodetic techniques can thus complement GRACE's time-variable gravity data to form a complete change spectrum up to a high resolution. Currently, SLR is considered the most accurate technique for direct geocenter motion determination. By tracking satellite motion from ground stations, SLR determines the motion between CM and the geometric center of its ground network (CN). This motion is then used to approximate CM-CF and subsequently for deriving degree-1 mass changes. However, the SLR network is very sparse and uneven in global distribution. The average number of operational tracking stations is about 20 in recent years. The poor network geometry can have a large CN-CF motion and is not ideal for the determination of CM-CF motion and degree-1 mass changes. We recently realized an experimental Terrestrial Reference Frame (TRF) through station time series using the Kalman filter and the RTS smoother. The TRF has its origin defined at nearly instantaneous CM using weekly SLR measurement time series. VLBI, GNSS and DORIS time series are combined weekly with those of SLR and tied to the geocentric (CM) reference frame through local tie measurements and co-motion constraints on co-located geodetic stations. The unified geocentric time series of the four geodetic techniques provide a much better network geometry for direct geodetic determination of geocenter motion. Results from this direct approach using a 90-station network compares favorably with those obtained from joint inversions of GPS/GRACE data and ocean bottom pressure models. We will also show that a previously identified discrepancy in X-component between direct SLR orbit-tracking and inverse determined geocenter motions is largely reconciled with the new unified network.
A Methodology for the Parametric Reconstruction of Non-Steady and Noisy Meteorological Time Series
NASA Astrophysics Data System (ADS)
Rovira, F.; Palau, J. L.; Millán, M.
2009-09-01
Climatic and meteorological time series often show some persistence (in time) in the variability of certain features. One could regard annual, seasonal and diurnal time variability as trivial persistence in the variability of some meteorological magnitudes (as, e.g., global radiation, air temperature above surface, etc.). In these cases, the traditional Fourier transform into frequency space will show the principal harmonics as the components with the largest amplitude. Nevertheless, meteorological measurements often show other non-steady (in time) variability. Some fluctuations in measurements (at different time scales) are driven by processes that prevail on some days (or months) of the year but disappear on others. By decomposing a time series into time-frequency space through the continuous wavelet transformation, one is able to determine both the dominant modes of variability and how those modes vary in time. This study is based on a numerical methodology to analyse non-steady principal harmonics in noisy meteorological time series. This methodology combines both the continuous wavelet transform and the development of a parametric model that includes the time evolution of the principal and the most statistically significant harmonics of the original time series. The parameterisation scheme proposed in this study consists of reproducing the original time series by means of a statistically significant finite sum of sinusoidal signals (waves), each defined by using the three usual parameters: amplitude, frequency and phase. To ensure the statistical significance of the parametric reconstruction of the original signal, we propose a standard statistical t-student analysis of the confidence level of the amplitude in the parametric spectrum for the different wave components. Once we have assured the level of significance of the different waves composing the parametric model, we can obtain the statistically significant principal harmonics (in time) of the original time series by using the Fourier transform of the modelled signal. Acknowledgements The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (València, Spain). This study has been partially funded by the European Commission (FP VI, Integrated Project CIRCE - No. 036961) and by the Ministerio de Ciencia e Innovación, research projects "TRANSREG” (CGL2007-65359/CLI) and "GRACCIE” (CSD2007-00067, Program CONSOLIDER-INGENIO 2010).
Tajima, Shogo; Koda, Kenji
2015-01-01
A limited number of pulmonary adenocarcinoma cases with morule-like components have been described to date, and the most frequent histological subtype is papillary-predominant adenocarcinoma. Occasionally, this type of adenocarcinoma is associated with solid-predominant adenocarcinoma. EGFR mutations are predominant in adenocarcinoma with morule-like components, followed by ALK rearrangements. Herein, we present 2 cases of solid-predominant adenocarcinoma with morule-like components harboring either an EGFR or KRAS mutation. This KRAS-mutant case is the first to be associated with morule-like components, to the best of our knowledge. Both cases showed transition between micropapillary and morule-like components. Transition between morule-like and solid components was also observed in both cases. Although a few cases of solid-predominant adenocarcinoma have been shown to harbor morule-like components, this type of transition has not been previously well described. We surmised that the solid components of some EGFR-mutant adenocarcinomas might be derived from morule-like components.
Alexeenko, V. M.; Mazarakis, M. G.; Kim, A. A.; ...
2016-09-19
Here, we describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354–1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeenko, V. M.; Mazarakis, M. G.; Kim, A. A.
Here, we describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354–1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.
The effect of pumping noise on the characteristics of a single-stage parametric amplifier
NASA Astrophysics Data System (ADS)
Medvedev, S. Iu.; Muzychuk, O. V.
1983-10-01
An analysis is made of the operation of a single-stage parametric amplifier based on a varactor with a sharp transition. Analytical expressions are obtained for the statistical moments of the output signal, the signal-noise ratio, and other characteristics in the case when the output signal and the pump are a mixture of harmonic oscillation and Gaussian noise. It is shown that, when a noise component is present in the pump, an increase of its harmonic component to values close to the threshold leads to a sharp decrease in the signal-noise ratio at the amplifier output.
Extraction of nonlinear waveform in turbulent plasma
NASA Astrophysics Data System (ADS)
Kin, F.; Itoh, K.; Fujisawa, A.; Kosuga, Y.; Sasaki, M.; Yamada, T.; Inagaki, S.; Itoh, S.-I.; Kobayashi, T.; Nagashima, Y.; Kasuya, N.; Arakawa, H.; Yamasaki, K.; Hasamada, K.
2018-06-01
Streamers and their mediator have been known to exist in linear cylindrical plasmas [Yamada et al., Nat. Phys. 4, 721 (2008)]. Conditional averaging is applied to extract the nonlinear characteristics of a mediator, which has been simply treated as a linear wave. This paper reports that a mediator should have higher harmonic components generated by self-couplings, and the envelope of a streamer should be generated with not only fundamental but also higher harmonic components of the mediator. Moreover, both the mediator and the envelope of the streamer have common features with solitary waves, i.e., the height should increase inversely as the square of their localization width.
Harmonically mode-locked erbium-doped waveguide laser
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.
2004-08-01
The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.
Biot-Savart helicity versus physical helicity: A topological description of ideal flows
NASA Astrophysics Data System (ADS)
Sahihi, Taliya; Eshraghi, Homayoon
2014-08-01
For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.
Bromine, Dioxide, OBrO: Spectroscopic Properties, Molecular Structure, and Harmonic Force Field
NASA Technical Reports Server (NTRS)
Mueller, G.; Miller, C.; Cohen, E.
1996-01-01
The unstable OBrO radical, which might play a role in atmospheric chemistry, has been observed in the gas phase over a solid product of the O + Br subscript 2 reaction. Under certain conditions BrO, OBrO, and Br subscript 2 O could be observed simultaneously.
In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effort ...
In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effor...
Determination of rotor harmonic blade loads from acoustic measurements
NASA Technical Reports Server (NTRS)
Kasper, P. K.
1975-01-01
The magnitude of discrete frequency sound radiated by a rotating blade is strongly influenced by the presence of a nonuniform distribution of aerodynamic forces over the rotor disk. An analytical development and experimental results are provided for a technique by which harmonic blade loads are derived from acoustic measurements. The technique relates, on a one-to-one basis, the discrete frequency sound harmonic amplitudes measured at a point on the axis of rotation to the blade-load harmonic amplitudes. This technique was applied to acoustic data from two helicopter types and from a series of test results using the NASA-Langley Research Center rotor test facility. The inferred blade-load harmonics for the cases considered tended to follow an inverse power law relationship with harmonic blade-load number. Empirical curve fits to the data showed the harmonic fall-off rate to be in the range of 6 to 9 db per octave of harmonic order. These empirical relationships were subsequently used as input data in a compatible far field rotational noise prediction model. A comparison between predicted and measured off-axis sound harmonic levels is provided for the experimental cases considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.; ...
2017-04-26
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
Robillard, Tony; Montealegre-Z, Fernando; Desutter-Grandcolas, Laure; Grandcolas, Philippe; Robert, Daniel
2013-06-01
Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.
Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.
Validation of an "Intelligent Mouthguard" Single Event Head Impact Dosimeter.
Bartsch, Adam; Samorezov, Sergey; Benzel, Edward; Miele, Vincent; Brett, Daniel
2014-11-01
Dating to Colonel John Paul Stapp MD in 1975, scientists have desired to measure live human head impacts with accuracy and precision. But no instrument exists to accurately and precisely quantify single head impact events. Our goal is to develop a practical single event head impact dosimeter known as "Intelligent Mouthguard" and quantify its performance on the benchtop, in vitro and in vivo. In the Intelligent Mouthguard hardware, limited gyroscope bandwidth requires an algorithm-based correction as a function of impact duration. After we apply gyroscope correction algorithm, Intelligent Mouthguard results at time of CG linear acceleration peak correlate to the Reference Hybrid III within our tested range of pulse durations and impact acceleration profiles in American football and Boxing in vitro tests: American football, IMG=1.00REF-1.1g, R2=0.99; maximum time of peak XYZ component imprecision 3.6g and 370 rad/s2; maximum time of peak azimuth and elevation imprecision 4.8° and 2.9°; maximum average XYZ component temporal imprecision 3.3g and 390 rad/s2. Boxing, IMG=1.00REF-0.9 g, R2=0.99, R2=0.98; maximum time of peak XYZ component imprecision 3.9 g and 390 rad/s2, maximum time of peak azimuth and elevation imprecision 2.9° and 2.1°; average XYZ component temporal imprecision 4.0 g and 440 rad/s2. In vivo Intelligent Mouthguard true positive head impacts from American football players and amateur boxers have temporal characteristics (first harmonic frequency from 35 Hz to 79 Hz) within our tested benchtop (first harmonic frequency<180 Hz) and in vitro (first harmonic frequency<100 Hz) ranges. Our conclusions apply only to situations where the rigid body assumption is valid, sensor-skull coupling is maintained and the ranges of tested parameters and harmonics fall within the boundaries of harmonics validated in vitro. For these situations, Intelligent Mouthguard qualifies as a single event dosimeter in American football and Boxing.
Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777
Summary of the electromagnetic compatibility evaluation of the proposed satellite power system
NASA Technical Reports Server (NTRS)
Morrison, E. L., Jr.; Grant, W. B.; Davis, K. C.
1980-01-01
The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately.
NASA Technical Reports Server (NTRS)
Fink, R. A.; Ellis, R. C.
1996-01-01
The trend toward smaller satellites has challenged component manufacturers to reduce the size, weight, and cost of their products while maintaining high performance. Both a new stepper motor and a new harmonic drive were developed to meet this need. The resulting actuator embodies small angle stepper technology usually reserved for larger units and incorporates an integral approach to harmonic drive design. By product simplifications, costs were significantly reduced over prior designs.
Exact Extremal Statistics in the Classical 1D Coulomb Gas
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory
2017-08-01
We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.
Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro
2013-01-01
Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.
Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.
Majerz, Irena; Dziembowska, Teresa
2018-04-01
The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.
The double high tide at Port Ellen: Doodson's criterion revisited
NASA Astrophysics Data System (ADS)
Byrne, Hannah A. M.; Mattias Green, J. A.; Bowers, David G.
2017-07-01
Doodson proposed a minimum criterion to predict the occurrence of double high (or double low) waters when a higher-frequency tidal harmonic is added to the semi-diurnal tide. If the phasing of the harmonic is optimal, the condition for a double high water can be written bn2/a > 1 where b is the amplitude of the higher harmonic, a is the amplitude of the semi-diurnal tide, and n is the ratio of their frequencies. Here we expand this criterion to allow for (i) a phase difference ϕ between the semi-diurnal tide and the harmonic and (ii) the fact that the double high water will disappear in the event that b/a becomes large enough for the higher harmonic to be the dominant component of the tide. This can happen, for example, at places or times where the semi-diurnal tide is very small. The revised parameter is br2/a, where r is a number generally less than n, although equal to n when ϕ = 0. The theory predicts that a double high tide will form when this parameter exceeds 1 and then disappear when it exceeds a value of order n2 and the higher harmonic becomes dominant. We test these predictions against observations at Port Ellen in the Inner Hebrides of Scotland. For most of the data set, the largest harmonic of the semi-diurnal tide is the sixth diurnal component, for which n = 3. The principal lunar and solar semi-diurnal tides are about equal at Port Ellen and so the semi-diurnal tide becomes very small twice a month at neap tides (here defined as the smallest fortnightly tidal range). A double high water forms when br2/a first exceeds a minimum value of about 1.5 as neap tides are approached and then disappears as br2/a then exceeds a second limiting value of about 10 at neap tides in agreement with the revised criterion.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
NASA Astrophysics Data System (ADS)
Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan
2015-09-01
Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.
NASA Astrophysics Data System (ADS)
Edler, Karl T.
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl
NASA Astrophysics Data System (ADS)
Diao, Liyong
This thesis deals with design, fabrication and modeling of bistable and multi-stable switching dynamics and second-harmonic generation in two groups of thin film coupled cavity photonic crystal structures. The first component studies optical bistability and multistability in such structures. Optical bistability and multistability are modelled by a nonlinear transfer matrix method. The second component is focused on the modelling and experimental measurement of second-harmonic generation in such structures. It is found that coupled cavity structures can reduce the threshold and index change for bistable operation, but single cavity structures can do the same. However, there is a clear advantage in using coupled cavity structures for multistability in that the threshold for multistability can be reduced. Second-harmonic generation is enhanced by field localization due to the resonant effect at the fundamental wavelength in single and coupled cavity structures by simulated and measured results. The work in this thesis makes three significant contributions. First, in the successful fabrication of thin film coupled cavity structures, the simulated linear transmissions of such structures match those of the fabricated structures almost exactly. Second, the newly defined figure of merit at the maximum transmission point on the bistable curve can be used to compare the material damage tolerance to any other Kerr effect nonlinear gate. Third, the simulated second-harmonic generation agrees excellently with experimental results. More generally optical thin film fabrication has commercial applications in many industry sections, such as electronics, opto-electronics, optical coating, solar cell and MEMS.
NASA Astrophysics Data System (ADS)
Masoumi, S.; Safari, A.; Sharifi, M.; Sam Khaniani, A.
2011-12-01
In order to investigate regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities in the region of Iran derived from about five years of Global Positioning System Radio Occultation (GPS RO) observations by FORMOSAT-3/COSMIC satellites. Although the obtained results are slightly different from the expected ones due to the low horizontal resolution of RO measurements, high vertical resolution of the observations enables us to detect not only the Total Electron Content (TEC) variations, but also periodic patterns of electron densities in different altitudes of the ionosphere. Dominant diurnal and annual signals, together with their Fourier series decompositions, and also periods close to 27 days are obtained, which is consistent with the previous analyses on TEC. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, which is probably due to the effect of geomagnetic field. By the investigation of the frequencies at different local times, the semiannual signal is more significant than the annual one in the daytime, while the annual frequency is dominant at night. By the detection of the phases of the components, it is revealed that the annual signal has its maximum in summer at high altitudes, and in winter at lower altitudes. This suggests the effect of neutral compositions in the lower atmosphere. Further, the semiannual component peaks around equinox during the day, while its maximum mostly occurs in solstice at night. Since RO measurements can be used to derive TEC along the signal path between a GPS satellite and a receiver, study on the potentiality of using these observations for the prediction of electron densities and its application to the ionospheric correction of the single frequency receivers is suggested.
NASA Astrophysics Data System (ADS)
Fong Chao, B.
1983-12-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980) which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. Principal conclusion of this analysis are that (1) the ILS data support the multiple-component hypothesis of the Chandler wobble (it is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograte motion, a behavior that is inconsistent with the hypothesis of a single Chandler period excited in a temporally and/or spatially random fashion). (2) the four-component Chandler wobble model ``explains'' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation, (3) the annual wobble is shown to be rather stationary over the years both in amplitude and in phase and no evidence is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
NASA Astrophysics Data System (ADS)
Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min
2018-02-01
A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.
Hybrid Composite Material and Solid Particle Erosion Studies
NASA Astrophysics Data System (ADS)
Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.
2018-04-01
Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Ho, Hau My; Lin, Binhua; Rice, Stuart A
2006-11-14
We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.
Glass-ceramic joint and method of joining
Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Clinton, TN; Pederson, Larry R [Kennewick, WA
2003-03-18
The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al.sub.2 O.sub.3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO.sub.2 with up to 50 mol % B.sub.2 O.sub.3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al.sub.2 O.sub.3 -M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
A. Smith, Nicholas; A. Folland, Nicholas; Martinez, Diana M.; Trainor, Laurel J.
2017-01-01
Infants learn to use auditory and visual information to organize the sensory world into identifiable objects with particular locations. Here we use a behavioural method to examine infants' use of harmonicity cues to auditory object perception in a multisensory context. Sounds emitted by different objects sum in the air and the auditory system must figure out which parts of the complex waveform belong to different sources (auditory objects). One important cue to this source separation is that complex tones with pitch typically contain a fundamental frequency and harmonics at integer multiples of the fundamental. Consequently, adults hear a mistuned harmonic in a complex sound as a distinct auditory object (Alain et al., 2003). Previous work by our group demonstrated that 4-month-old infants are also sensitive to this cue. They behaviourally discriminate a complex tone with a mistuned harmonic from the same complex with in-tune harmonics, and show an object-related event-related potential (ERP) electrophysiological (EEG) response to the stimulus with mistuned harmonics. In the present study we use an audiovisual procedure to investigate whether infants perceive a complex tone with an 8% mistuned harmonic as emanating from two objects, rather than merely detecting the mistuned cue. We paired in-tune and mistuned complex tones with visual displays that contained either one or two bouncing balls. Four-month-old infants showed surprise at the incongruous pairings, looking longer at the display of two balls when paired with the in-tune complex and at the display of one ball when paired with the mistuned harmonic complex. We conclude that infants use harmonicity as a cue for source separation when integrating auditory and visual information in object perception. PMID:28346869
Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi
2016-06-27
An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.
Nonlinear electromagnetic responses of active molecular motors in live cells and organelles
NASA Astrophysics Data System (ADS)
Nawarathna, Dharmakirthi; Gardner, Jeffrey; Cardenas, Gustavo; Warmflash, David; Miller, John; Widger, William; Claycomb, James
2006-03-01
The response of biological cells to an oscillatory electric field contains both linear and nonlinear (eg. induced harmonic) components. At low frequencies (about 10Hz), harmonic generation by budding yeast cells is observed. These induced harmonics are sensitive to sodium metavanadate, an inhibitor, and glucose, a substrate, respectively, of P-type ATPase membrane pumps. At higher frequencies, two peaks, around 3kHz and 12kHz, are observed in the frequency-dependent harmonic responses. These are sensitive to potassium cyanide, a respiratory inhibitor that blocks cytochrome c oxidase, an enzyme of the mitochondrial respiratory chain. We have also measured the response of uncoupled mitochondria extracted from bovine heart cells, for which a second harmonic sensitive to pericidin A and carboxin is detected at applied frequencies of 3-4kHz. Finally, in coupled mouse mitochondria, an ADP sensitive peak (12-15kHz) is observed, likely due to the F0 domain of ATP synthase, which acts as a molecular turbine.
Type III bursts in interplanetary space - Fundamental or harmonic?
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Steinberg, J. L.; Hoang, S.
1984-01-01
ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.
A use of regression analysis in acoustical diagnostics of gear drives
NASA Technical Reports Server (NTRS)
Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Kobrinskiy, A. A.; Sokolova, A. G.
1973-01-01
A study is presented of components of the vibration spectrum as the filtered first and second harmonics of the tooth frequency which permits information to be obtained on the physical characteristics of the vibration excitation process, and an approach to be made to comparison of models of the gearing. Regression analysis of two random processes has shown a strong dependence of the second harmonic on the first, and independence of the first from the second. The nature of change in the regression line, with change in loading moment, gives rise to the idea of a variable phase shift between the first and second harmonics.
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
NASA Astrophysics Data System (ADS)
Yang, Yang; Chu, Zhigang; Shen, Linbang; Ping, Guoli; Xu, Zhongming
2018-07-01
Being capable of demystifying the acoustic source identification result fast, Fourier-based deconvolution has been studied and applied widely for the delay and sum (DAS) beamforming with two-dimensional (2D) planar arrays. It is, however so far, still blank in the context of spherical harmonics beamforming (SHB) with three-dimensional (3D) solid spherical arrays. This paper is motivated to settle this problem. Firstly, for the purpose of determining the effective identification region, the premise of deconvolution, a shift-invariant point spread function (PSF), is analyzed with simulations. To make the premise be satisfied approximately, the opening angle in elevation dimension of the surface of interest should be small, while no restriction is imposed to the azimuth dimension. Then, two kinds of deconvolution theories are built for SHB using the zero and the periodic boundary conditions respectively. Both simulations and experiments demonstrate that the periodic boundary condition is superior to the zero one, and fits the 3D acoustic source identification with solid spherical arrays better. Finally, four periodic boundary condition based deconvolution methods are formulated, and their performance is disclosed both with simulations and experimentally. All the four methods offer enhanced spatial resolution and reduced sidelobe contaminations over SHB. The recovered source strength approximates to the exact one multiplied with a coefficient that is the square of the focus distance divided by the distance from the source to the array center, while the recovered pressure contribution is scarcely affected by the focus distance, always approximating to the exact one.
Hodge Decomposition of Information Flow on Small-World Networks.
Haruna, Taichi; Fujiki, Yuuya
2016-01-01
We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.
Zhu, Li; Bharadwaj, Hari; Xia, Jing; Shinn-Cunningham, Barbara
2013-01-01
Two experiments, both presenting diotic, harmonic tone complexes (100 Hz fundamental), were conducted to explore the envelope-related component of the frequency-following response (FFRENV), a measure of synchronous, subcortical neural activity evoked by a periodic acoustic input. Experiment 1 directly compared two common analysis methods, computing the magnitude spectrum and the phase-locking value (PLV). Bootstrapping identified which FFRENV frequency components were statistically above the noise floor for each metric and quantified the statistical power of the approaches. Across listeners and conditions, the two methods produced highly correlated results. However, PLV analysis required fewer processing stages to produce readily interpretable results. Moreover, at the fundamental frequency of the input, PLVs were farther above the metric's noise floor than spectral magnitudes. Having established the advantages of PLV analysis, the efficacy of the approach was further demonstrated by investigating how different acoustic frequencies contribute to FFRENV, analyzing responses to complex tones composed of different acoustic harmonics of 100 Hz (Experiment 2). Results show that the FFRENV response is dominated by peripheral auditory channels responding to unresolved harmonics, although low-frequency channels driven by resolved harmonics also contribute. These results demonstrate the utility of the PLV for quantifying the strength of FFRENV across conditions. PMID:23862815
NASA Astrophysics Data System (ADS)
Frazer, Gordon J.; Anderson, Stuart J.
1997-10-01
The radar returns from some classes of time-varying point targets can be represented by the discrete-time signal plus noise model: xt equals st plus [vt plus (eta) t] equals (summation)i equals o P minus 1 Aiej2(pi f(i)/f(s)t) plus vt plus (eta) t, t (epsilon) 0, . . ., N minus 1, fi equals kfI plus fo where the received signal xt corresponds to the radar return from the target of interest from one azimuth-range cell. The signal has an unknown number of components, P, unknown complex amplitudes Ai and frequencies fi. The frequency parameters fo and fI are unknown, although constrained such that fo less than fI/2 and parameter k (epsilon) {minus u, . . ., minus 2, minus 1, 0, 1, 2, . . ., v} is constrained such that the component frequencies fi are bound by (minus fs/2, fs/2). The noise term vt, is typically colored, and represents clutter, interference and various noise sources. It is unknown, except that (summation)tvt2 less than infinity; in general, vt is not well modelled as an auto-regressive process of known order. The additional noise term (eta) t represents time-invariant point targets in the same azimuth-range cell. An important characteristic of the target is the unknown parameter, fI, representing the frequency interval between harmonic lines. It is desired to determine an estimate of fI from N samples of xt. We propose an algorithm to estimate fI based on Thomson's harmonic line F-Test, which is part of the multi-window spectrum estimation method and demonstrate the proposed estimator applied to target echo time series collected using an experimental HF skywave radar.
NASA Astrophysics Data System (ADS)
Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.
2015-06-01
Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning pyroelectric microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of pyroelectric scanning with SHG-microscopy in a single experimental setup leading to complementary pyroelectric and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a pyroelectric response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.
Spectroscopic Studies of Molecular Systems relevant in Astrobiology
NASA Astrophysics Data System (ADS)
Fornaro, Teresa
2016-01-01
In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of double-ζ quality such as N07D and SNSD. Such a protocol has been then applied to the dimers of nucleobases in order to study the perturbation on the vibrational frequencies and infrared intensities induced by the intermolecular hydrogen-bonding interactions. Efforts have been made to challenge the problems of simulating strongly anharmonic vibrations within hydrogen-bonded bridges, focusing on the requirement of a very accurate description of the underlying potential energy surface. Improvements for such vibrations have been achieved by means of hybrid models, where the harmonic part of the force-field is computed at a higher level of theory like B2PLYP, or by application of the less demanding ONIOM B2PLYP:B3LYP scheme, which is a focused model where only the part of the molecular system forming the hydrogen bonds is treated at B2PLYP level of theory. Moreover, for improving the vibrational frequencies of modes like the stretching of C=O and N-H functional groups, which are particularly sensitive to hydrogen-bonding, correction parameters for the B3LYP-D3/N07D frequencies have been determined. Afterwards, the treatment of the vibrational properties of nucleobases in condensed phases has been faced, focusing on uracil in the solid state. In particular, a heptamer cluster of uracil molecules has been considered as model to represent the properties in the solid state. The relative vibrational frequencies have been computed at anharmonic level within the VPT2 framework, combining two cost-effective approaches, namely the hybrid B3LYP-D3/N07D:DFTBA model, where the harmonic frequencies are computed with B3LYP-D3/N07D method and the anharmonic corrections are evaluated with the less expensive DFTBA method, and the reduced dimensionality VPT2 (RD-VPT2) approach, in which only selected vibrational modes are calculated anharmonically (including the couplings with the other modes) while the remaining modes are treated at the harmonic level, using the B3LYP-D3/N07D method only. The reliability of such theoretical results has been validated with respect to experiments, by performing infrared measurements of uracil in the solid state through the Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) technique. The good performance in predicting the experimental shifts of the vibrational frequencies of uracil due to the intermolecular hydrogen bonds in the solid state with respect to uracil isolated in Argon matrix, has allowed also to provide some new assignments of the experimental spectrum of uracil in the solid state. Finally, the study of molecule-mineral interactions has been addressed, investigating experimentally the thermodynamics of the adsorption process of nucleic acid components on brucite, a serpentinite-hosted hydrothermal mineral, through determination of the equilibrium adsorption isotherms. Additionally, surface complexation studies have been carried out to get the stoichiometry of surface reactions and the associated electrical work. Such surface complexation modeling has provided reasonable inferences for the possible surface complexes, determining the number of inner/outer-sphere linkages for the adsorbates and the number of surface sites involved in the reaction stoichiometry. However, to distinguish the specific functional groups which constitute the points of attachment to the surface, further quantum mechanical simulations on the energetics of these complexes and spectroscopic characterizations are in progress.
Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William
2006-08-01
Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.
Lenore White Harmon: One Woman's Career Development.
ERIC Educational Resources Information Center
Fouad, Nadya A.
1997-01-01
Presents biographical information on Lenore White Harmon, noted professor, counselor, and researcher. In a question-and-answer section, Harmon describes her early career decisions, work history, research efforts, professional contributions, important influences and reflections on her career development. (KW)
NASA Astrophysics Data System (ADS)
Garrick-Bethell, I.; Perera, V.; Nimmo, F.; Zuber, M. T.
2013-12-01
The origin and nature of the long-wavelength shape of the Moon has been a puzzle for at least 100 years [1-5]. Understanding its origin would provide insight into the patterns of mare volcanism, early thermal evolution, the history of the Moon's orientation, and the Moon's orbital evolution. Previously, we explained the shape and structure of the lunar farside highlands with a model of early tidal heating in the crust [6]. However, we left open the problem of the rest of the Moon's low-order shape, and we did not consider the lunar gravity field together with topography. To address these problems, and further assess the tidal-rotation (spherical harmonic degree-2) origins of the lunar shape, we consider three effects: the Moon's degree-1 spherical harmonics, the Moon's largest basins and mascons, and the choice of reference frame in which we analyze topography. We find that removing the degree-1 terms from a topography map helps illustrate the Moon's degree-2 shape, since the degree-1 harmonics have relatively high power. More importantly, however, when we fit spherical harmonics to topography outside of the largest lunar basins (including South-Pole Aitken, Imbrium, Serenitatis, Nectaris, and Orientale), the degree-2 coefficient values change significantly. When these best-fit harmonics are rotated into a reference frame that only contains the C2,0 and C2,2 harmonics (equivalent to the frame that would have once faced the Earth if the early Moon's shape controlled the moments of inertia), we find that gravity and topography data together imply a mixture of compensated and uncompensated degree-2 topography components. The compensated topography component can be explained by global-scale tidal heating in the early crust, while the uncompensated component can be explained by a frozen 'fossil bulge' that formed at a semi-major axis of about 32 Earth radii. To check these explanations, we can examine the ratios of the C2,0 and C2,2 harmonics for each component. We find that the values of C2,0/C2,2 are approximately equal to the values expected for each unique process: -1.3 and -1.0, for compensated (tidal-heating) and uncompensated (fossil bulge) topography components, respectively. However, if we had not removed the effects of large basins, the ratios would not be in agreement. In conclusion, a combination of early tidal heating in the crust and a frozen fossil bulge can help explain the global, pre-basin shape of the Moon. References [1] W.F. Sedgwick, On the figure of the Moon, Messenger Math. 27 (1898) 171. [2] H. Jeffreys, On the figures of the Earth and Moon, Geophys. J. Int. 4 (1937) 1-13. [3] H.C. Urey, et al., Note on the internal structure of the Moon, Ap. J. 129 (1959) 842. [4] K. Lambeck, S. Pullan, The lunar fossil bulge hypothesis revisited, Phys. Earth Planet. Inter. 22 (1980) 29-35. [5] D.J. Stevenson, Origin and implications of the degree two lunar gravity field, Proc. Lunar Sci. Conf. 32nd (2001) 1175. [6] I. Garrick-Bethell, et al., Structure and formation of the lunar farside highlands, Science 330 (2010) 949-951.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
Electronic spectroscopy of UO(2)Cl(2) isolated in solid Ar.
Jin, Jin; Gondalia, Raj; Heaven, Michael C
2009-11-12
Laser-induced fluorescence spectra have been recorded for uranyl chloride isolated in a solid Ar matrix. Pulsed excitation was examined using a XeCl excimer laser (308 nm) and a dye laser operating in the 19500-27500 cm-1 range. Several absorption and emission band systems were observed. The emission spectra were characterized by a nearly harmonic vibrational progression with a frequency of 840 cm-1 starting at 20323 cm-1. The electronic absorption spectra were dominated by five harmonic vibrational progressions with frequencies of approximately 710 cm-1. Comparisons with theoretical calculations indicate that all of the transitions observed were associated with the UO2+2 subunit. They involved the promotion of an electron from a bonding orbital to the metal-centered 5f(delta) and 5f(phi) orbitals. Band origins and vibrational constants for five excited states were obtained. Fluorescence was observed from the lowest-energy excited state alone, regardless of the excitation wavelength. The decay curve was found to be biexponential, with characteristic decay lifetimes of 50 and 260 micros.
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
NASA Technical Reports Server (NTRS)
Teklu, T. B.; Gholap, A. V.; Gopalswamy, N.; Yashiro, S.; Makela, P.; Akiyama, S.; Thakur, N.; Xie, H.
2016-01-01
We report on a case study of the complex type II radio burst of 2012 January 19 and its association with a white-light coronal mass ejection (CME). The complexity can be described as the appearance of an additional type II burst component and strong intensity variation. The dynamic spectrum shows a pair of type II bursts with fundamental harmonic structures, one confined to decameter-hectometric (DH) wavelengths and the other extending to kilometric (km) wavelengths. By comparing the speeds obtained from white-light images with that speed of the shock inferred from the drift rate, we show that the source of the short-lived DH component is near the nose.
Teaching Resource Recovery in Social Studies. Resource Recovery Education Program.
ERIC Educational Resources Information Center
National Center for Resource Recovery, Inc., Washington, DC.
This guide, one component of the Resource Recovery Education Kit (see SO 007 866 for a description), contains ideas and activities for teaching about solid waste disposal in secondary level social studies classes. Among the course objectives are the following: (1) to explore the impact of our society on the problem of solid waste and the need for…
NASA Technical Reports Server (NTRS)
Zeng, X. C.; Stroud, D.
1989-01-01
The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Simulation of 6 to 3 to 1 merge and squeeze of Au77+ bunches in AGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, C. J.
2016-05-09
In order to increase the intensity per Au77+ bunch at AGS extraction, a 6 to 3 to 1 merge scheme was developed and implemented by K. Zeno during the 2016 RHIC run. For this scheme, 12 Booster loads, each consisting of a single bunch, are delivered to AGS per AGS magnetic cycle. The bunch from Booster is itself the result of a 4 to 2 to 1 merge which is carried out on a flat porch during the Booster magnetic cycle. Each Booster bunch is injected into a harmonic 24 bucket on the AGS injection porch. In order to fitmore » into the buckets and allow for the AGS injection kicker rise time, the bunch width must be reduced by exciting quadrupole oscillations just before extraction from Booster. The bunches are injected into two groups of six adjacent harmonic 24 buckets. In each group the 6 bunches are merged into 3 by bringing on RF harmonic 12 while reducing harmonic 24. This is a straightforward 2 to 1 merge (in which two adjacent bunches are merged into one). One ends up with two groups of three adjacent bunches sitting in harmonic 12 buckets. These bunches are accelerated to an intermediate porch for further merging. Doing the merge on a porch that sits above injection energy helps reduce losses that are believed to be due to the space-charge force acting on the bunched particles. (The 6 to 3 merge is done on the injection porch because the harmonic 24 frequency on the intermediate porch would be too high for the AGS RF cavities.) On the intermediate porch each group of 3 bunches is merged into one by bringing on RF harmonics 8 and 4 and then reducing harmonics 12 and 8. One ends up with 2 bunches, each the result of a 6 to 3 to 1 merge and each sitting in a harmonic 4 bucket. This puts 6 Booster loads into each bunch. Each merged bunch needs to be squeezed into a harmonic 12 bucket for subsequent acceleration. This is done by again bringing on harmonic 8 and then harmonic 12. Results of simulations of the 6 to 3 to 1 merge and the subsequent squeeze into harmonic 12 buckets are presented in this note. In particular, they provide a benchmark for what can be achieved with the available RF voltages.« less
Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul
2014-09-01
This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.« less
Diabat Interpolation for Polymorph Free-Energy Differences.
Kamat, Kartik; Peters, Baron
2017-02-02
Existing methods to compute free-energy differences between polymorphs use harmonic approximations, advanced non-Boltzmann bias sampling techniques, and/or multistage free-energy perturbations. This work demonstrates how Bennett's diabat interpolation method ( J. Comput. Phys. 1976, 22, 245 ) can be combined with energy gaps from lattice-switch Monte Carlo techniques ( Phys. Rev. E 2000, 61, 906 ) to swiftly estimate polymorph free-energy differences. The new method requires only two unbiased molecular dynamics simulations, one for each polymorph. To illustrate the new method, we compute the free-energy difference between face-centered cubic and body-centered cubic polymorphs for a Gaussian core solid. We discuss the justification for parabolic models of the free-energy diabats and similarities to methods that have been used in studies of electron transfer.
Diode-pumped UV refractive surgery laser
NASA Astrophysics Data System (ADS)
Lin, Jui T.; Hwang, Ming-Yi; Huang, C. H.
1993-07-01
Ophthalmic applications of medical lasers have been extensively explored recently because of their market potential. Refractive surgical lasers represent one of the major development efforts due to the large population of eye disorders: about 160 million people in the USA and more than 2 billion worldwide. The first refractive laser developed was the ArF excimer laser at 193 nm in 1987 - 88 for a procedure called photorefractive keratectomy (PRK). More recently, solid state refractive lasers have also been explored for preliminary clinical trials. These lasers include Nd:YLF (picosecond at 1054 nm), doubled-Nd:YAG (nanosecond at 532 nm), Ho:YAG (microsecond at 2100 nm) and ultraviolet (UV) lasers generated from the harmonic of Ti:sapphire-laser (205 - 220 nm) and Nd:YAG (at 213 nm).
Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.
2016-01-01
We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592
Poole, P. L.; Krygier, A.; Cochran, G. E.; ...
2016-08-25
Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less
Jaccoud, Cristiane; Magrini, Alessandra
2014-02-15
With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.
2018-03-01
High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo
2014-12-01
Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
NASA Astrophysics Data System (ADS)
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2015-09-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
An examination of the concept of driving point receptance
NASA Astrophysics Data System (ADS)
Sheng, X.; He, Y.; Zhong, T.
2018-04-01
In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.
Prediction of nonlinear optical properties of organic materials. General theoretical considerations
NASA Technical Reports Server (NTRS)
Cardelino, B.; Moore, C.; Zutaut, S.
1993-01-01
The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and polymeric third-order optical properties will also be considered.
Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow
Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.
2015-03-19
In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of themore » polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ 0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ 0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ 0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.« less
Reaction wheel low-speed compensation using a dither signal
NASA Astrophysics Data System (ADS)
Stetson, John B., Jr.
1993-08-01
A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.
NASA Technical Reports Server (NTRS)
Liu, Ketao (Inventor); Uetrecht, David S. (Inventor)
2002-01-01
A method, apparatus, article of manufacture, and a memory structure for compensating for instrument induced spacecraft jitter is disclosed. The apparatus comprises a spacecraft control processor for producing an actuator command signal, a signal generator, for producing a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and at least one spacecraft control actuator, communicatively coupled to the spacecraft control processor and the signal generator for inducing satellite motion according to the actuator command signal and the cancellation signal. The method comprises the steps of generating a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and providing the cancellation signal to a spacecraft control actuator. The apparatus comprises a storage device tangibly embodying the method steps described above.
NASA Astrophysics Data System (ADS)
Fiuza, S. M.; Van Besien, E.; Milhazes, N.; Borges, F.; Marques, M. P. M.
2004-05-01
A conformational analysis of 3-(3,4,5-trihydroxyphenyl)-2-propenoic acid (3,4,5-trihydroxycinnamic acid, THPPE), a trihydroxylated cinnamic acid analogous to caffeic acid (a natural compound often present in diet), was carried out by Raman spectroscopy coupled to Ab initio MO calculations. Apart from the optimised geometrical parameters for the most stable conformers of this compound, and for one of its dimeric species, the corresponding harmonic vibrational frequencies, as well as potential-energy profiles for rotation around several bonds within the molecule, were obtained. Twenty one distinct conformers were found for THPPE, the lowest energy ones—THPPE 1 and THPPE 2—displaying a completely planar geometry. The conformational preferences of this system were thus found to be mainly ruled by the stabilising effect of π-electron delocalisation. At the light of these results, a complete assignment of the corresponding solid state Raman spectra was performed.
Trilateral interlaboratory with SSL (WLEDi) luminaire
NASA Astrophysics Data System (ADS)
Burini Junior, E. C.; Santos, E. R.; Assaf, L. O.
2018-03-01
The IEE/USP laboratory and two others, all belonging to RBLE (Brazilian Network of Test Laboratories) participated in a trilateral comparison performed from measurement independently of participants interaction. The results from electric and photometric measurements carried out on samples of Solid State Lighting - SSL, Inorganic White Light Emitting Diode (WLEDi) luminaires by three accredited laboratories were considered in order to point out mutual deviations and to verify the confidence in a bilateral comparison. The first analysis revealed a maximum deviation of 4.2 % between the luminous intensity attributed by one laboratory and the arithmetic mean value from three laboratories. The largest standard uncertainty value of 1.9 % was estimated for Total Harmonic Distortion of electric current THDi and the lowest value, 0.4 %, to the luminous flux. The extreme deviation for one parameter results was 7.2 % at maximum luminous intensity and the lowest was 1.7 % for luminous flux.
The basis of musical consonance as revealed by congenital amusia
Cousineau, Marion; McDermott, Josh H.; Peretz, Isabelle
2012-01-01
Some combinations of musical notes sound pleasing and are termed “consonant,” but others sound unpleasant and are termed “dissonant.” The distinction between consonance and dissonance plays a central role in Western music, and its origins have posed one of the oldest and most debated problems in perception. In modern times, dissonance has been widely believed to be the product of “beating”: interference between frequency components in the cochlea that has been believed to be more pronounced in dissonant than consonant sounds. However, harmonic frequency relations, a higher-order sound attribute closely related to pitch perception, has also been proposed to account for consonance. To tease apart theories of musical consonance, we tested sound preferences in individuals with congenital amusia, a neurogenetic disorder characterized by abnormal pitch perception. We assessed amusics’ preferences for musical chords as well as for the isolated acoustic properties of beating and harmonicity. In contrast to control subjects, amusic listeners showed no preference for consonance, rating the pleasantness of consonant chords no higher than that of dissonant chords. Amusics also failed to exhibit the normally observed preference for harmonic over inharmonic tones, nor could they discriminate such tones from each other. Despite these abnormalities, amusics exhibited normal preferences and discrimination for stimuli with and without beating. This dissociation indicates that, contrary to classic theories, beating is unlikely to underlie consonance. Our results instead suggest the need to integrate harmonicity as a foundation of music preferences, and illustrate how amusia may be used to investigate normal auditory function. PMID:23150582
Characterization of second and third order optical nonlinearities of ZnO sputtered films
NASA Astrophysics Data System (ADS)
Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.
2006-03-01
We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
Efficient Third Harmonic Generation for Wind Lidar Applications
NASA Technical Reports Server (NTRS)
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
An investigation of crankshaft oscillations for cylinder health diagnostics
NASA Astrophysics Data System (ADS)
Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.
2005-09-01
The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.
Fault diagnosis of rolling element bearings with a spectrum searching method
NASA Astrophysics Data System (ADS)
Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo
2017-09-01
Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.
Efficient nonlinear optical conversion of 1.319-micron laser radiation
NASA Astrophysics Data System (ADS)
Byer, Robert L.; Eckardt, Robert C.
1993-01-01
The accomplishments of this program are in the development and application of periodically poled nonlinear optical materials for nonlinear frequency-conversion. We have demonstrated the use of periodically poled lithium niobate (PPLN) as a bulk material for external resonant cavity second-harmonic generation with continuous-wave (cw) output power of 1.7 W. Work that is following this investigation is showing that planar waveguides of PPLN may well be the most satisfactory method of generation of 10's of mW of the 659-nm harmonic of the 1.32-micrometer Nd:YAG laser. We encountered major obstacles obtaining multilayer dielectric coatings necessary to pursue our proposed design of monolithic bulk optical harmonic generators. Additional alternative approaches such as discrete component resonant second harmonic generation employing single domain and periodically poled bulk crystals and monolithic single domain resonators formed by total internal reflection remain under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1980-01-01
Spherical harmonic analysis was used to analyze the observed climatological (C) fields of temperature at 850 mb, geopotential height at 500 mb, and sea level pressure. The spherical harmonic method was also applied to the corresponding "model climatological" fields (M) generated by a general circulation model, the "GISS climate model." The climate model was initialized with observed data for the first of December 1976 at 00. GMT and allowed to generate five years of meteorological history. Monthly means of the above fields for the five years were computed and subjected to spherical harmonic analysis. It was found from the comparison of the spectral components of both sets, M and C, that the climate model generated reasonable 500 mb geopotential heights. The model temperature field at 850 mb exhibited a generally correct structure. However, the meridional temperature gradient was overestimated and overheating of the continents was observed in summer.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
Alternative first-principles calculation of entropy for liquids
Meyer, Edmund R.; Ticknor, Christopher; Kress, Joel D.; ...
2016-04-15
Here, w present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and improved upon by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. The liquid VACF is decomposed into two components, one gas and one solid, and each contribution's entropic portion is calculated. But, we fit both the gas and solid portions of the VACF in the time domain. This approach is applied to a single-component liquid (a two-phase model of liquidmore » Al at the melt line) and two different two-component systems: a superionic-to-superionic (bcc to fcc) phase transition in H 2 O at high temperatures and pressures and a metastable liquid state of MgO. Finally, for all three examples, comparisons to existing results in the literature demonstrate the validity of our alternative.« less
[Practical skills of harmonic scalpel in laparoscopic gastrointestinal surgery].
Li, Guo-xin
2013-10-01
Harmonic scalpel, one of the most commonly used energy tools, have been recognized as an important revolutionary development in surgical device. Due to its convenience in cutting, coagulating, and dissecting harmonic scalpel has been increasingly used to performed surgery by more and more surgeons. In gastrointestinal surgeries, however, many manipulationssuch as dissecting soft connective tissues off the stomach or colon, isolating and cutting particular vessels, would require proper techniques in handling harmonic scalpels. Thus, based on our experiences of using harmonic scalpel in laparoscopic gastrointestinal surgeries, we summarized a "nine-word tactics", which may be helpful for beginners to use harmonic scalpels in a proper and efficient manner.
Wireless Damage Location Sensing System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)
2012-01-01
A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.
Wang, Huilin; Jiang, Yan; Ding, Mingya; Li, Jin; Hao, Jia; He, Jun; Wang, Hui; Gao, Xiu-Mei; Chang, Yan-Xu
2018-02-03
A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... coating solids, as applied] Baked Air dried Coating type Kilograms Pounds per per liter gallon (lb/ kg/l... per volume of coating solids, as applied] Baked Air dried Coating type kg/l lb/gal kg/l lb/gal General....3 lb/gal was revised to 3.34 lb/gal in the Baked--``General, One Component'' and ``General, Multi...
Belaineh, Getachew; Sumner, David; Carter, Edward; Clapp, David
2013-01-01
Potential evapotranspiration (PET) and reference evapotranspiration (RET) data are usually critical components of hydrologic analysis. Many different equations are available to estimate PET and RET. Most of these equations, such as the Priestley-Taylor and Penman- Monteith methods, rely on detailed meteorological data collected at ground-based weather stations. Few weather stations collect enough data to estimate PET or RET using one of the more complex evapotranspiration equations. Currently, satellite data integrated with ground meteorological data are used with one of these evapotranspiration equations to accurately estimate PET and RET. However, earlier than the last few decades, historical reconstructions of PET and RET needed for many hydrologic analyses are limited by the paucity of satellite data and of some types of ground data. Air temperature stands out as the most generally available meteorological ground data type over the last century. Temperature-based approaches used with readily available historical temperature data offer the potential for long period-of-record PET and RET historical reconstructions. A challenge is the inconsistency between the more accurate, but more data intensive, methods appropriate for more recent periods and the less accurate, but less data intensive, methods appropriate to the more distant past. In this study, multiple methods are harmonized in a seamless reconstruction of historical PET and RET by quantifying and eliminating the biases of the simple Hargreaves-Samani method relative to the more complex and accurate Priestley-Taylor and Penman-Monteith methods. This harmonization process is used to generate long-term, internally consistent, spatiotemporal databases of PET and RET.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
Klein-Hennig, Martin; Dietz, Mathias; Hohmann, Volker
2018-03-01
Both harmonic and binaural signal properties are relevant for auditory processing. To investigate how these cues combine in the auditory system, detection thresholds for an 800-Hz tone masked by a diotic (i.e., identical between the ears) harmonic complex tone were measured in six normal-hearing subjects. The target tone was presented either diotically or with an interaural phase difference (IPD) of 180° and in either harmonic or "mistuned" relationship to the diotic masker. Three different maskers were used, a resolved and an unresolved complex tone (fundamental frequency: 160 and 40 Hz) with four components below and above the target frequency and a broadband unresolved complex tone with 12 additional components. The target IPD provided release from masking in most masker conditions, whereas mistuning led to a significant release from masking only in the diotic conditions with the resolved and the narrowband unresolved maskers. A significant effect of mistuning was neither found in the diotic condition with the wideband unresolved masker nor in any of the dichotic conditions. An auditory model with a single analysis frequency band and different binaural processing schemes was employed to predict the data of the unresolved masker conditions. Sensitivity to modulation cues was achieved by including an auditory-motivated modulation filter in the processing pathway. The predictions of the diotic data were in line with the experimental results and literature data in the narrowband condition, but not in the broadband condition, suggesting that across-frequency processing is involved in processing modulation information. The experimental and model results in the dichotic conditions show that the binaural processor cannot exploit modulation information in binaurally unmasked conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
NASA Astrophysics Data System (ADS)
Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang
2017-10-01
Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.
NASA Astrophysics Data System (ADS)
Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke
2018-05-01
We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.
Absolute measurement of undulator radiation in the extreme ultraviolet
NASA Astrophysics Data System (ADS)
Maezawa, H.; Mitani, S.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Mikuni, A.; Kitamura, H.; Sasaki, T.
1983-04-01
The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy γ, the field parameter K, and the angle of observation ϴ in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula λ n= {λ 0}/{2nγ 2}( {1+K 2}/{2}+γϴ 2 and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed.
NASA Astrophysics Data System (ADS)
Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.
2018-03-01
Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.
Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.
Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I
2011-07-01
Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.
NASA Astrophysics Data System (ADS)
Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun
2018-03-01
We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.
Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules
2017-06-12
for all rotary wing aircraft platforms. Tonal amplitudes are tabular based solely on engine revolutions per minute (RPM) and blade count. (4...Power Spectral Density (PSD) format with superimposed sinusoidal components that are associated with the rotor speeds and blade count of each...harmonics are not limited to the 3rd harmonic of the blade passage as in MIL-STD- TOP 01-2-603 12 June 2017 5 810. In addition, attempts were
Probing the interatomic potential of solids with strong-field nonlinear phononics
NASA Astrophysics Data System (ADS)
von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.
2018-03-01
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
EPOS data and service provision to scientists and other stakeholders
NASA Astrophysics Data System (ADS)
Cocco, Massimo; EPOS Team
2017-04-01
EPOS brings together European nations and combines solid Earth science infrastructures and their associated data and services together with the scientific expertise into one integrated delivery system for solid Earth science. By improving and facilitating the integration, access, use, and re-use of solid Earth science data, data products, services and facilities EPOS is developing a holistic, sustainable, multidisciplinary research platform to provide coordinated access to harmonized and quality controlled data from diverse Earth science disciplines, together with tools for their use in analysis and modelling. EPOS has been designed with the vision of creating a single distributed pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS is presently in its implementation phase, which consists of the EPOS IP project and the legal establishment of EPOS-ERIC. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project. The EPOS implementation phase will last from 2015 to 2019. The key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core Services (ICS) to provide a novel research platform to different stakeholders; designing the access to distributed computational resources (ICS-D); ensuring sustainability and governance of TCS and EPOS-ERIC. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will present and discuss the data and service provision focusing on the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during the next eigheen months. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet Earth and in contributing to prepare society for geo-hazards. Understanding how the Earth works as a system is critically important to modern society. Society needs resources to support home life, industry and business and it needs security in the face of natural hazards. Volcanic eruptions, earthquakes, floods, landslides, tsunamis, weather, and global climate change are all Earth phenomena impacting on society. Solid Earth science by bringing together many diverse disciplines such as geology, seismology, geodesy, volcanology, geomagnetism as well as chemistry and physics as they all apply to the workings of Earth, is the place where to find answers on how to maintain the Earth a safe, prosperous, and habitable planet.
One-Dimensional Harmonic Model for Biomolecules
Krizan, John E.
1973-01-01
Following in spirit a paper by Rosen, we propose a one-dimensional harmonic model for biomolecules. Energy bands with gaps of the order of semi-conductor gaps are found. The method is discussed for general symmetric and periodic potential functions. PMID:4709518
First-principles calculation of entropy for liquid metals.
Desjarlais, Michael P
2013-12-01
We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.
First-principles calculation of entropy for liquid metals
NASA Astrophysics Data System (ADS)
Desjarlais, Michael P.
2013-12-01
We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.
Composite Solid Electrolyte Containing Li+- Conducting Fibers
NASA Technical Reports Server (NTRS)
Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu
2006-01-01
Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.
Yu, Xiaozhi; Ren, Jindong; Zhang, Qian; Liu, Qun; Liu, Honghao
2017-04-01
Reach envelopes are very useful for the design and layout of controls. In building reach envelopes, one of the key problems is to represent the reach limits accurately and conveniently. Spherical harmonics are proved to be accurate and convenient method for fitting of the reach capability envelopes. However, extensive study are required on what components of spherical harmonics are needed in fitting the envelope surfaces. For applications in the vehicle industry, an inevitable issue is to construct reach limit surfaces with consideration of the seating positions of the drivers, and it is desirable to use population envelopes rather than individual envelopes. However, it is relatively inconvenient to acquire reach envelopes via a test considering the seating positions of the drivers. In addition, the acquired envelopes are usually unsuitable for use with other vehicle models because they are dependent on the current cab packaging parameters. Therefore, it is of great significance to construct reach envelopes for real vehicle conditions based on individual capability data considering seating positions. Moreover, traditional reach envelopes provide little information regarding the assessment of reach difficulty. The application of reach envelopes will improve design quality by providing difficulty-rating information about reach operations. In this paper, using the laboratory data of seated reach with consideration of the subjective difficulty ratings, the method of modeling reach envelopes is studied based on spherical harmonics. The surface fitting using spherical harmonics is conducted for circumstances both with and without seat adjustments. For use with adjustable seat, the seating position model is introduced to re-locate the test data. The surface fitting is conducted for both population and individual reach envelopes, as well as for boundary envelopes. Comparison of the envelopes of adjustable seat and the SAE J287 control reach envelope shows that the latter is nearly at the middle difficulty level. It is also found that the abilities of reach envelope models in expressing the shape of the reach limits based on spherical harmonics depends both on the terms in the model expression and on the data used to fit the envelope surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laparoscopic nephrectomy using the harmonic scalpel.
Helal, M; Albertini, J; Lockhart, J; Albrink, M
1997-08-01
Laparoscopic nephrectomy is gaining popularity. Improved instrumentation is making surgery easier with fewer complications. Our first three laparoscopic nephrectomies using the Harmonic Scalpel were performed on two women and one man. The surgical indications were nonfunctioning kidneys (two left, one right) with hypertension in one patient and stone disease in two. The three patients had a mean age of 46.3 years. The average hospital stay was 4 days, the average operative time 3.7 hours, and the average blood loss 160 mL. No complications occurred. Patients resumed oral intake within 8 hours postoperatively. We found the Harmonic Scalpel easy and safe to use. It saved time, was cost effective, and was capable of easily controlling small-vessel bleeding. In conclusion, the Harmonic Scalpel could be used effectively for both dissection and bleeding control without suction or other instrumentation.
Laser system using regenerative amplifier
Emmett, John L. [Pleasanton, CA
1980-03-04
High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.
Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.
Ceramic and polymeric solid electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.
2018-02-01
In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.
Water–solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures
Ghorab, Mohamed K.; Toth, Scott J.; Simpson, Garth J.; Mauer, Lisa J.; Taylor, Lynne S.
2016-01-01
Amorphous and crystalline solids are commonly found together in a variety of pharmaceutical and food products. In this study, the influence of co-formulation of amorphous maltodextrins (MDs) and crystalline sucrose (S) on moisture sorption, deliquescence, and glass transition (Tg) properties of powder blends was investigated. Individual components and binary mixtures of four different molecular weight MDs with sucrose in 1:1 w/w ratios were exposed to various relative humidity (RH) environments and their equilibrium and dynamic moisture contents were monitored. The deliquescence point (RH0) and dissolution behavior of sucrose alone and in blends was also monitored by polarized light microscopy and second harmonic generation imaging. In S:MD blends, the deliquescence RH of sucrose was lower than the RH0 of sucrose alone, and synergistic moisture sorption also occurred at RHs lower than the RH0. Intimate contact of sucrose crystals with the amorphous MDs resulted in complete dissolution of sucrose at RH < RH0. When blends were stored at conditions exceeding the Tg of the individual MDs (25 °C and 60%, 49% and 34%RH for MD21, MD29 and MD40, respectively), the Tg of the blends was lower than that of individual MDs. Thus, co-formulation of amorphous MDs with crystalline sucrose sensitizes the blend to moisture, potentially leading to deleterious changes in the formulation if storage conditions are not adequately controlled. PMID:23477494
Three-in-one resonance tube for harmonic series sound wave experiments
NASA Astrophysics Data System (ADS)
Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul
2017-07-01
In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and a plastic stopper. The resonance tube is utilized with visual analyser freeware to detect, display and measure the resonance frequencies for each harmonic series. The speeds of sound in air, v, are determined from the gradient of the 2(L+e) versus n fn-1 , 4(L+e) versus n fn-1 and 2L versus n fn-1 graphs for both-open-end, one-closed-end and both-closed-end tubes, respectively. The compatibility of a resonance tube for a harmonic series experiment is determined by comparing the experimental and standard values of v. The use of a resonance tube produces accurate results for v within a 1.91% error compared to its standard value. It can also be used to determine the values of end correction, e, in both-open-end and one-closed-end tubes. The special resonance tube can also be used for the values of n for a harmonic series experiment in the three types of resonance tubes: both-open-end, one-closed-end and both-closed-end tubes.
Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science
NASA Technical Reports Server (NTRS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-01-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.