Science.gov

Sample records for harshaw tld-700h dosemeters

  1. A STUDY ON THE UNCERTAINTY FOR THE ROUTINE DOSIMETRY SERVICE AT THE LEBANESE ATOMIC ENERGY COMMISSION USING HARSHAW 8814 DOSEMETERS.

    PubMed

    Rizk, C; Vanhavere, F

    2016-09-01

    The personal dosimetry service at the Lebanese Atomic Energy Commission uses Harshaw 8814 cards with LiF:Mg,Ti detectors. The dosemeters are read in a Harshaw 6600 TLD reader. In the process of accreditation for the ISO 17025 standard((1)), different influence factors are investigated and the uncertainty has been determined. The Individual Monitoring Service Laboratory-LAEC reads the dosemeters once it receives them from the customer, and new cards are immediately given for the next wearing period. The wearing period is 2 months. The dosemeter results are reported to the customers without background subtraction. Both Hp(10) and Hp(0.07) are reported. For this paper, only the uncertainty on Hp(10) will be focussed. The following factors are taken into account for the uncertainty: calibration factor, dosemeter homogeneity and repeatability, energy and angular dependence, non-linearity, temperature dependence, etc. Also the detection limit was determined. One of the important factors is the correction for fading. This fading correction depends on the procedure used such as storage temperatures, the time-temperature profile of the read-out, pre-heat and annealing conditions. Pre- and post-irradiation fading curves were measured for a storage period up to 182 d at room temperature (15-25°C). The resulting final combined standard uncertainty on the reported doses is of the order of 24 % for doses of ∼1 mSv. PMID:26443544

  2. Personal photon dosemeter trial--Devonport Royal Dockyard.

    PubMed

    Collison, Roger

    2005-03-01

    To establish an understanding of the operational responses of various personal dosemeters employed at Devonport and to assess new types of dosemeters, a photon dosemeter trial was conducted. Most day-to-day exposure is to relatively low dose rates. Therefore the suitability of each dosemeter for use within the relatively low Devonport dose rate environment has been assessed. The Panasonic TLD demonstrated a good representation of the dose within the medium to higher gamma energy ranges with an unexpected under-response at lower energies. The optically stimulated luminescent dosemeter showed a varied response within a degraded (60)Co environment. With consistent under-response, the NRPB TLD and film badge were found to generally be unsuitable for sites such as Devonport. The Harshaw TLD demonstrated a good representation of the dose. The RADOS RAD80 and QFD fail to meet current best industry standards. However, the QFD is the only direct reading dosemeter suitable for use where intrinsically safe equipment is required. The RADOS RAD52 and SAIC PD 2i show a reasonable representation of the dose received but should be adjusted to read within an operational (60)Co environment. Direct ion storage and Thermo [corrected] electronic personal dosemeters showed good representations of the dose. Inherent characteristics combined with the associated systems led to the conclusion that these dosemeters should be employed for preference. PMID:15798276

  3. Thermoluminescence dosimetry of a thermal neutron field and comparison with Monte Carlo calculations.

    PubMed

    Fernandes, A C; Santos, J P; Kling, A; Marques, J G; Gonçalves, I C; Carvalho, A Ferro; Santos, L; Cardoso, J; Osvay, M

    2004-01-01

    The characteristics of thermoluminescence dosemeters (TLDs) regarding the determination of photon and neutron absorbed doses were investigated in a thermal neutron beam. Harshaw TLD-100 (LiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti) were compared with similar materials from Solid Dosimetric Detector and Method Laboratory (People's Republic of China). Harshaw TLD-700H (7LiF:Mg,Cu,P) and aluminium oxide (Al2O3:Mg,Y) from Hungary were also considered for photon dose measurement. The neutron sensitivity of the investigated materials was measured and found to be consistent with values reported by other authors. A comparison was made between the TL dose measurements and results obtained via conventional methods. An agreement within 20% was obtained, which demonstrates the ability of TLD for measuring neutron and photon doses in a mixed field, using careful calibration procedures and determining the neutron sensitivity for the usage conditions. PMID:15367765

  4. Evaluation of Effective Sources in Uncertainty Measurements of Personal Dosimetry by a Harshaw TLD System

    PubMed Central

    Hosseini Pooya, SM; Orouji, T

    2014-01-01

    Background: The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective: In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. Method: These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. Results: The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. Conclusion: The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services. PMID:25505769

  5. Calibration of neutron albedo dosemeters.

    PubMed

    Schwartz, R B; Eisenhauer, C M

    2002-01-01

    It is shown that by calibrating neutron albedo dosemeters under the proper conditions, two complicating effects will essentially cancel out, allowing accurate calibrations with no need for explicit corrections. The 'proper conditions' are: a large room (> or = 8 m on a side). use of a D2O moderated 252Cf source, and a source-to-phantom calibration distance of approximately 70 cm. PMID:12212898

  6. FIELD CORRECTION FACTORS FOR PERSONAL NEUTRON DOSEMETERS.

    PubMed

    Luszik-Bhadra, M

    2016-09-01

    A field-dependent correction factor can be obtained by comparing the readings of two albedo neutron dosemeters fixed in opposite directions on a polyethylene sphere to the H*(10) reading as determined with a thermal neutron detector in the centre of the same sphere. The work shows that the field calibration technique as used for albedo neutron dosemeters can be generalised for all kind of dosemeters, since H*(10) is a conservative estimate of the sum of the personal dose equivalents Hp(10) in two opposite directions. This result is drawn from reference values as determined by spectrometers within the EVIDOS project at workplace of nuclear installations in Europe. More accurate field-dependent correction factors can be achieved by the analysis of several personal dosimeters on a phantom, but reliable angular responses of these dosemeters need to be taken into account. PMID:26493946

  7. Health Hazard Evaluation Report HETA 84-128-1601, Harshaw/Filtrol, Louisville, Kentucky

    SciTech Connect

    London, M.; Lee, S.A.; Morawetz, J.

    1985-06-01

    Environmental and breathing-zone samples were analyzed for 3,3'-dichlorobenzidine (DCB) and ortho-dianisidine (ODA) at Harshaw/Filtrol, Louisville, Kentucky in August, 1984. The evaluation was requested by the union to investigate possible exposures to suspected bladder carcinogens. Urine and skin samples were obtained from four potentially exposed workers and analyzed for ODA and DCB. The authors conclude that a potential health hazard exists due to ODA exposure at the facility. DCB does not pose a health risk. Recommendations include improving housekeeping and decontamination procedures for DCB, handling ODA as a suspect carcinogen by applying appropriate engineering controls and using personal protective equipment, and performing periodic monitoring for urinary DCB and ODA.

  8. Fast neutron dosemeter using pixelated detector Timepix.

    PubMed

    Bulanek, Boris; Ekendahl, Daniela; Prouza, Zdenek

    2014-10-01

    A Timepix detector covered with polyethylene convertors of different thicknesses is presented as a fast neutron real-time dosemeter. The application of different weighting factors in connection with the position of a signal in a Timepix detector enables one to obtain an energy-dependent signal equal to neutron dose equivalents. A simulation of a Timepix detector covered with polyethylene convertors using monoenergetic neutrons is presented. The experimental set-up of a dosemeter was also produced. The first results of detector response using different fast neutron sources are presented.

  9. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. PMID:17766258

  10. State of the Art in Electronic Dosemeters for Neutrons

    SciTech Connect

    Luszik-Bhadra, Marlies

    2011-05-05

    The paper presents an overview of electronic personal dosemeters for neutrons in mixed neutron/photon fields. The energy response of commercially available electronic dosemeters in quasi-monoenergetic neutron fields and their performance in working places is discussed. The response curves are extended to high-energy neutrons up to 100 MeV, new prototype dosemeters are described and discussed especially for use at high-energy accelerators and in space.

  11. SIMPLE SURFACE PLASMON RESONANCE-BASED DOSEMETER.

    PubMed

    Urbonavičius, Benas Gabrielis; Adlienė, Diana

    2016-06-01

    The interest to application of various surface plasmon resonance (SPR)-based sensors for the investigation of chemical and biological processes in thin layers deposited on the grating's surface/media is developing. Characterisation of processes as well as specimen's features might be performed analysing variations in optical properties (refraction index) of these thin layers. SPR sensors by default are characterised by high resolution and small uncertainties, and measurements might be performed in situ High-resolution, low-cost, SPR-based dosemeter concept has been proposed and realised depositing dose-sensitive nPAG gel layer onto diffraction grating's surface. The experimental set-up and method for information read out from the sensor were developed and implemented. Obtained results show a potential application of SPR-based dosemeter for dose measurements/mapping in steep gradient fields and/or large area fields. PMID:26535002

  12. Calibration of Far West Technology (FWT-60) radiachromic dye dosemeters

    SciTech Connect

    Mincher, B.J.; Zaidi, M.K.

    1992-08-01

    Radiachromic dye dosimetry was used to measure kilogray doses absorbed by various liquid samples during gamma-ray exposure in a spent nuclear fuel pool. The source of nuclear fuel was the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL). Calibrations were performed using a {sup 60}Co source and were run on bare dosemeters, as well as on dosemeters which mocked to simulate the samples. These dosemeters were prepared as a dye-impregnated nylon film and are commercially available. When exposed to gamma-ray doses of 0.5 to 200 kGy, a color change occurs which has an optical density proportional to absorbed dose. The difference in the calibration curves demonstrated the importance of irradiation of dosemeters under conditions as close to the actual samples as possible. Since these dosemeters could not be immersed directly in the organic solutions of interest, they were sandwiched between layers of lucite and stainless steel. This simulated the conditions inside an irradiated sample and provides a practical method of measuring absorbed doses. The reproducibility of measurements using the radiachromic dye dosemeters is also shown. 10 refs.

  13. Calibration of Far West Technology (FWT-60) radiachromic dye dosemeters

    SciTech Connect

    Mincher, B.J.; Zaidi, M.K.

    1992-01-01

    Radiachromic dye dosimetry was used to measure kilogray doses absorbed by various liquid samples during gamma-ray exposure in a spent nuclear fuel pool. The source of nuclear fuel was the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL). Calibrations were performed using a {sup 60}Co source and were run on bare dosemeters, as well as on dosemeters which mocked to simulate the samples. These dosemeters were prepared as a dye-impregnated nylon film and are commercially available. When exposed to gamma-ray doses of 0.5 to 200 kGy, a color change occurs which has an optical density proportional to absorbed dose. The difference in the calibration curves demonstrated the importance of irradiation of dosemeters under conditions as close to the actual samples as possible. Since these dosemeters could not be immersed directly in the organic solutions of interest, they were sandwiched between layers of lucite and stainless steel. This simulated the conditions inside an irradiated sample and provides a practical method of measuring absorbed doses. The reproducibility of measurements using the radiachromic dye dosemeters is also shown. 10 refs.

  14. Prediction analysis of dose equivalent responses of neutron dosemeters used at a MOX fuel facility.

    PubMed

    Tsujimura, N; Yoshida, T; Takada, C

    2011-07-01

    To predict how accurately neutron dosemeters can measure the neutron dose equivalent (rate) in MOX fuel fabrication facility work environments, the dose equivalent responses of neutron dosemeters were calculated by the spectral folding method. The dosemeters selected included two types of personal dosemeter, namely a thermoluminescent albedo neutron dosemeter and an electronic neutron dosemeter, three moderator-based neutron survey meters, and one special instrument called an H(p)(10) monitor. The calculations revealed the energy dependences of the responses expected within the entire range of neutron spectral variations observed in neutron fields at workplaces. PMID:21498409

  15. Development of a high range TLD dosemeter.

    PubMed

    Perle, Sander

    2006-01-01

    Global Dosimetry Solutions Inc. has developed a high range TLD dosemeter capable of measuring high-energy photon doses to 1 KGy. Additional correction factors have been established for as many as 10 various X ray and beta sources, allowing for high range monitoring of other sources and energies from 500 to 1000 Gy. The product utilizes TLD-100 and TLD-700 chips, available in three different configurations of very small size, and is offered at an economical price. Data analysis is quick, providing results within 24 h in most cases. This report describes the testing completed to support this product, primarily the determination of the supralinearity corrections necessary for doses up to 1 KGy. The test results are considered preliminary due to minimal data points between 0.5 and 1.0 KGy. Additional irradiations are being conducted to establish a more accurate statistical curve at this high dose level. Due to the high dose residual these dosimeters are considered for single use only.

  16. A passive radon dosemeter suitable for workplaces.

    PubMed

    Orlando, C; Orland, P; Patrizii, L; Tommasino, L; Tonnarini, S; Trevisi, R; Viola, P

    2002-01-01

    The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may he exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated. PMID:12408493

  17. Theoretical aspects of the design of a passive radon dosemeter.

    PubMed

    Wilkinson, P; Saunders, B J

    1985-10-01

    Some mathematical aspects of the development and design of a passive radon dosemeter are considered. In particular, a mathematical model is presented that is concerned with the gaseous diffusion of radon into a confined region bounded by a plastic material of known diffusion coefficient. The relationship between the time-integrated radon concentrations, inside and outside a sealed plastic container are derived. Estimates of the exposure of people to radon can be made using the time integrated radon concentration inside a calibrated container containing a CR-39 etched-track device. As a consequence of the analysis, it is possible to design a passive radon dosemeter that will be accurate, resistant to moisture and whose response will be independent of rapid variations in radon concentration. The possibility of using a container of this type for the measurement of diffusion coefficients is discussed.

  18. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.

    PubMed

    Santos, J P; Fernandes, A C; Gonçalves, I C; Marques, J G; Carvalho, A F; Santos, L; Cardoso, J; Osvay, M

    2006-01-01

    Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.

  19. Development of active environmental and personal neutron dosemeters.

    PubMed

    Nakamura, T; Nunomiya, T; Sasaki, M

    2004-01-01

    For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.

  20. A method for evaluating personal dosemeters in workplace with neutron fields.

    PubMed

    de Freitas Nascimento, Luana; Cauwels, Vanessa; Vanhavere, Filip

    2012-04-01

    Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom. PMID:21565843

  1. Development and testing of an active area neutron dosemeter.

    PubMed

    Brushwood, J M; Gow, J P D; Beeley, P A; Spyrou, N M

    2004-01-01

    This paper describes the design, development and testing of an active area neutron dosemeter (AAND). The classic moderator and central detector is retained but in AAND this arrangement is augmented by small thermal neutron detectors positioned within the moderating body. The outputs from these detectors are combined using an appropriately weighted linear superposition to fit both the ambient dose equivalent and the radiation weighting factor. Experimental verifications of both the modelled detector energy reponses and the overall AAND response are given. In the relatively soft D2O moderated 252Cf spectra, the AAND determined both the H*(10) and mean radiation weighting factor to better than +10%.

  2. Detectors/Dosemeters of galactic and solar cosmic rays.

    PubMed

    Tommasino, L

    2004-01-01

    Different passive multidetector stacks have been developed at the Italian National Agency for Environmental Protection (ANPA-stack), which makes it possible to measure directly ionising radiations, low-energy and high-energy neutrons, and high-energy charged (HZE) particles. The stack consists of several types of passive devices, namely recoil-track and fission-track detectors, bubble detectors, thermoluminescence dosemeters and an electronic personal dosemeter. Most of these detectors have been used on earth for the assessment of the occupational exposure, or in outer space for cosmic ray physics and/or for the assessment of the dose received by astronauts. A great deal of efforts and new developments have been required to make these detectors useful for in-flight measurements. As outcome of these extensive efforts, different new detectors have been developed, which exploit some of the most successful principles of radiation detection, such as the use of avalanche processes to facilitate the registration of nuclear tracks and the use of coincidence-counting to increase the signal-to-noise ratio. On the basis of these new detectors, different systems (generally referred to as ANPA-stack) have been obtained, which have been successfully applied for a variety of different measurements of cosmic ray radiation fields and doses. PMID:15273355

  3. Further investigations on CR-39 fast neutron personal dosemeter

    NASA Astrophysics Data System (ADS)

    Djeffal, S.; Lounis, Z.; Allab, M.; Izerrouken, M.

    1997-02-01

    A fast neutron personal dosemeter based on CR-39 nuclear track detectors has been developed in as simple a form as possible to be used in routine monitoring. It has been investigated during the last joint irradiation exposures to neutrons organised by EURADOS-CENDOS committee on the application of track detectors in neutron dosimetry. The energy response and the angle dependence of two types of CR-39 material, produced by Pershore Mouldings Ltd (as standard grade material) and American Acrylics (as dosimetry grade material), have been studied using neutron energies ranging from 144 keV up to 66 MeV and the 252Cf neutron spectrum at different angles of incidence, i.e. 0°, 30°, 60° and 85°. Irradiated detectors have been processed using a conventional chemical etching (CE) and a two-step electrochemical etching at low (200 Hz) and high (2 kHz) frequencies (ECE). Under the ECE etching conditions a 80 μSv minimum dose equivalent value is achieved. The response of these detectors to the ambient dose equivalent in the range 0.4-13 mSv has also been studied for monoenergetic neutron beams of 1.2, 5.3 and 15.1 MeV. The dosimetric characteristics of the proposed dosemeter have been much improved by using the ECE conditions. The variations and values of these characteristics approach the required ones in a better way than that given till now in previous works.

  4. Determination of relevant parameters for the use of electronic dosemeters in pulsed fields of ionising radiation.

    PubMed

    Zutz, H; Hupe, O; Ambrosi, P; Klammer, J

    2012-09-01

    Active electronic dosemeters using counting techniques are used for radioprotection purposes in pulsed radiation fields in X-ray diagnostics or therapy. The disadvantage of the limited maximum measurable dose rate becomes significant in these radiation fields and leads to some negative effects. In this study, a set of relevant parameters for a dosemeter is described, which can be used to decide whether it is applicable in a given radiation field or not. The determination of these relevant parameters-maximum measurable dose rate in the radiation pulse, dead time of the dosemeter, indication per counting event and measurement cycle time-is specified. The results of the first measurements on the determination of these parameters for an electronic personal dosemeter of the type Thermo Fisher Scientific EPD Mk2 are shown.

  5. Characterisation of an electronic radon gas personal dosemeter.

    PubMed

    Gründel, M; Postendörfer, J

    2003-01-01

    The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked. PMID:14756187

  6. 1983 ORNL intercomparison of personnel neutron and gamma dosemeters

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1985-01-01

    The Ninth Personnel Dosimetry Intercomparison Study was conducted during April 19-21, 1983, at the Oak Ridge National Laboratory. Dosemeters from 33 participating agencies were mounted on water-filled polyethylene elliptical phantoms and exposed to a range of low-level dose equivalents (0.02-0.45 mSv gamma and 0.49-11.14 mSv neutron) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the radiation source for six separate exposures which used four different shield conditions: unshielded and shielded with steel, steel/concrete, and concrete. Results of the neutron measurements indicate that it is not unusual for dose equivalent estimates made under the same conditions by different agencies to differ by more than a factor of 2. Albedo systems, which were the most popular neutron monitors in this study, provided the most accurate results with CR-39 recoil track being least accurate. Track and film neutron systems exhibited problems providing measurable indication of neutron exposure at dose equivalents of about 0.50 mSv. Gamma measurements showed that TLD and film systems generally overestimated dose equivalents in the mixed radiation fields with film exhibiting significant problems providing measurable indication of gamma exposure at dose equivalents lower than about 0.15 mSv. Under the conditions of this study in which exposures were carefully controlled and participants had information concerning exposure conditions and incident spectra prior to dosemeter analysis, only slightly more than half of all neutron and gamma dose equivalent estimates met regulatory accuracy standards relative to reference values. These results indicate that continued improvement of mixed-field personnel dosimetry is required by many participating organizations. 15 references, 30 tables.

  7. Household salt as a retrospective dosemeter using optically stimulated luminescence.

    PubMed

    Bernhardsson, Christian; Christiansson, Maria; Mattsson, Sören; Rääf, Christopher L

    2009-02-01

    The aim of this work was to investigate the potential of a selection of household salts (NaCl) as a retrospective dosemeter for ionising radiation using optically stimulated luminescence (OSL). The OSL-response of five brands of salt to an absorbed dose in the range from 1 mGy to 9 Gy was investigated using a Risø TL/OSL-15 reader and a (60)Co beam, allowing low dose-rate irradiations. The salt was optically stimulated with blue light (lambda = 470 +/- 30 nm) at a constant stimulation power (CW-OSL) of 20 mW cm(-2). A linear dose response relationship was found in the dose range from 1 mGy to about 100 mGy and above that level, the relationship becomes moderately supra-linear, at least up to 9 Gy. Depending on the sensitivity and background signal, the minimum detectable absorbed dose (MDD) for the household salt when kept at sealed conditions varied from 0.2 to 1.0 mGy, for the household salts investigated. In addition to its widespread abundance and availability, the low MDD suggests that household salt should seriously be considered as an emergency dosemeter. However, the OSL-properties of NaCl under normal household usage need to be more properly investigated as well as the variation in sensitivity by the quality of the radiation. A further optimisation of the read-out sequence for various brands of commercially available salt may further improve the sensitivity, in terms of luminescence yield, and the signal reproducibility. PMID:18797911

  8. A comparison of the response of PADC neutron dosemeters in high-energy neutron fields.

    PubMed

    Trompier, F; Boschung, M; Buffler, A; Domingo, C; Cale, E; Chevallier, M-A; Esposito, A; Ferrarini, M; Geduld, D R; Hager, L; Hohmann, E; Mayer, S; Musso, A; Romero-Esposito, M; Röttger, S; Smit, F D; Sashala Naik, A; Tanner, R; Wissmann, F; Caresana, M

    2014-10-01

    Within the framework of the EURADOS Working Group 11, a comparison of passive neutron dosemeters in high-energy neutron fields was organised in 2011. The aim of the exercise was to evaluate the response of poly-allyl-glycol-carbonate neutron dosemeters from various European dosimetry laboratories to high-energy neutron fields. Irradiations were performed at the iThemba LABS facility in South Africa with neutrons having energies up to 66 and 100 MeV. PMID:24298170

  9. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.

    PubMed

    Haninger, T; Henniger, J

    2016-09-01

    A new official albedo dosemeter based on thermoluminescent detectors has been introduced in 2015 by the individual monitoring service of the Helmholtz Zentrum München for monitoring persons who are exposed occupationally against photon and neutron radiation. To enhance the sensitivity for fast neutrons, a new badge with an enlarged albedo window has been developed at TU Dresden. The properties of the new albedo dosemeter are discussed, and the results of official intercomparisons and field calibrations are shown.

  10. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.

    PubMed

    Haninger, T; Henniger, J

    2016-09-01

    A new official albedo dosemeter based on thermoluminescent detectors has been introduced in 2015 by the individual monitoring service of the Helmholtz Zentrum München for monitoring persons who are exposed occupationally against photon and neutron radiation. To enhance the sensitivity for fast neutrons, a new badge with an enlarged albedo window has been developed at TU Dresden. The properties of the new albedo dosemeter are discussed, and the results of official intercomparisons and field calibrations are shown. PMID:26405220

  11. Personal neutron dosimetry in nuclear power plants using etched track and albedo thermoluminescence dosemeters.

    PubMed

    Fernández, F; Bakali, M; Amgarou, K; Nourreddine, A; Mouhssine, D

    2004-01-01

    Measurement of the personal dose equivalent rates for neutrons is a difficult task because available dosemeters do not provide the required energy response and sensitivity. Furthermore, the available wide calibration spectra recommended by the International Standard Organisation does not reproduce adequately the spectra encountered in practical situations of the nuclear industry. There is a real necessity to characterise the radiation field, in which workers can be exposed, and to calibrate personal dosemeters in order to determine the dose equivalent in these installations. For this reason, we measure the neutron spectrum with our Bonner sphere system and we fold this spectrum with energy-dependent fluence-to-dose conversion coefficients to obtain the reference dose equivalent rate. This reference value is then compared with the personal dosemeter reading to determine a field-specific correction factor. In this paper, we present the values of this field-specific correction factor for etched track and albedo thermoluminescence dosemeters at three measurement locations inside the containment building of the Vandellòs II nuclear power plant. We have found that assigning to each personal dosemeter the mean value of the field-specific correction factors of the three measurement locations, allows the evaluation of neutron personal dose equivalent rate with a relative uncertainty of approximately 25 and 15% for the PADC and albedo dosemeters, respectively. PMID:15353734

  12. Feasibility study of extremity dosemeter based on polyallyldiglycolcarbonate (CR-39) for neutron exposure.

    PubMed

    Chau, Q; Bruguier, P

    2007-01-01

    In nuclear facilities, some activities such as reprocessing, recycling and production of bare fuel rods expose the workers to mixed neutron-photon fields. For several workplaces, particularly in glove boxes, some workers expose their hands to mixed fields. The mastery of the photon extremity dosimetry is relatively good, whereas the neutron dosimetry still raises difficulties. In this context, the Institute for Radiological Protection and Nuclear Safety (IRSN) has proposed a study on a passive neutron extremity dosemeter based on chemically etched CR-39 (PADC: polyallyldiglycolcarbonate), named PN-3, already used in routine practice for whole body dosimetry. This dosemeter is a chip of plastic sensitive to recoil protons. The chemical etching process amplifies the size of the impact. The reading system for tracks counting is composed of a microscope, a video camera and an image analyser. This system is combined with the dose evaluation algorithm. The performance of the dosemeter PN-3 has been largely studied and proved by several laboratories in terms of passive individual neutron dosemeter which is used in routine production by different companies. This study focuses on the sensitivity of the extremity dosemeter, as well as its performance in the function of the level of the neutron energy. The dosemeter was exposed to monoenergetic neutron fields in laboratory conditions and to mixed fields in glove boxes at workplaces.

  13. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  14. Numerical and experimental results of the operational neutron dosemeter 'Saphydose-N'.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Ndontchueng-Moyo, M; Bolognese-Milsztajn, T; Rannou, A

    2004-01-01

    Since 1993, the Institute for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricité de France (EDF), a R&D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics.

  15. Numerical and experimental results of the operational neutron dosemeter 'Saphydose-N'.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Ndontchueng-Moyo, M; Bolognese-Milsztajn, T; Rannou, A

    2004-01-01

    Since 1993, the Institute for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricité de France (EDF), a R&D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics. PMID:15353645

  16. The first operational dosemeter for neutrons which complies with IEC standard 1323.

    PubMed

    Lahaye, T; Cutarella, D; Ménard, S; Bolognese-Milsztajn, T

    2001-01-01

    Individual neutron dosimetry represents one of the current difficulties in the field of radiological protection of workers. Since March 1999, the regulatory requirements in France for active (i.e. operational) dosimetry have been those of ICRP Publication 60, applicable from May 2000, necessitating the introduction of a new generation of neutron dosemeters. Over the last few years, the Institute for Nuclear Safety and Protection has been studying an individual electronic dosemeter for neutrons based on a semiconducting detector, capable of meeting the specifications laid down by a neutron dosimetry work group, including members from all the main players in the French nuclear industry. In 1998, the IPSN began transferring technology to the Saphymo company which, by the end of 2001, will be marketing Saphydose-n, the first individual dosemeter for neutrons which complies with IEC Standard 1323. This dosemeter is of compact design and can assess the individual dose equivalent Hp(10) in mixed neutron and gamma radiation fields. It wil be usable in any nuclear facility without prior knowledge of the average neutron spectrum or of the neutron-gamma ratio. It will be possible to connect the Saphydose-n dosemeter to any of the existing gamma deserter terminals to read the dose data and recharge the batteries. PMID:11586740

  17. A THIN-LAYER LIF THERMOLUMINESCENCE DOSEMETER SYSTEM WITH FAST READOUT FOR THE USE IN PERSONAL DOSIMETRY SERVICES.

    PubMed

    Walbersloh, J; Busch, F

    2016-09-01

    A newly developed thermoluminescence dosemeter system is presented that is suitable for application in fields where personal monitoring of a large number of users is required. The system presented here is intended to be used as the upcoming main dosemeter for whole body dosimetry at the dosimetry service of the MPA NRW (Germany) with ∼110,000 evaluations per month.

  18. Design of a finger ring extremity dosemeter based on OSL readout of alpha-Al2O3:C.

    PubMed

    Durham, J S; Zhang, X; Payne, F; Akselrod, M S

    2002-01-01

    A finger-ring dosemeter and reader has been designed that uses OSL readout of alpha-Al2O3:C (aluminium oxide). The use of aluminium oxide is important because it allows the sensitive element of the dosemeter to be a very thin layer that reduces the beta and gamma energy dependence to acceptable levels without compromising the required sensitivity for dose measurement. OSL readout allows the ring dosemeter to be interrogated with minimal disassembly. The ring dosemeter consists of three components: aluminium oxide powder for measurement of dose, an aluminium substrate that gives structure to the ring, and an aluminised Mylar cover to prevent the aluminium oxide from exposure to light. The thicknesses of the three components have been optimised for beta response using the Monte Carlo computer code FLUKA. A reader was also designed and developed that allows the dosemeter to be read after removing the Mylar. Future efforts are discussed. PMID:12382706

  19. Developing a method and deriving an uncertainty budget for the internal calibration of dosemeters for radiographic equipment.

    PubMed

    Worrall, M; Sutton, D G

    2015-03-01

    Any institution wishing to perform an internal cross calibration of its diagnostic dosemeters should first quantify the uncertainty associated with this to demonstrate that it remains appropriate for the measurements being undertaken.An uncertainty budget for internal cross calibration that covers a range of locally used dosemeters has been derived using the methodology of the International Atomic Energy Agency. The specific internal cross calibration protocol requirements necessary for this uncertainty budget to be valid are discussed.The final quantified uncertainty is 5.31%; this is dominated by the 5% uncertainty associated with the calibration of the reference instrument. The next largest contributions are from differences in temperature and pressure and dosemeter energy dependence.It has been demonstrated that with careful adherence to a well designed internal cross calibration protocol, dosemeters can be calibrated in-house against a calibrated reference dosemeter with very little increase in the associated calibration uncertainty.

  20. A gamma/neutron-discriminating, Cooled, Optically Stimulated Luminescence (COSL) dosemeter

    SciTech Connect

    Eschbach, P.A.; Miller, S.D.

    1992-07-01

    The Cooled Optically Stimulated Luminescence (COSL) of CaF{sub 2}:Mn (grain sizes from 0.1 to 100 microns) powder embedded in a hydrogenous matrix is reported as a function of fast-neutron dose. When all the CaF{sub 2}:Mn grains are interrogated at once, the COSL plastic dosemeters have a minimum detectable limit of 1 cSv fast neutrons; the gamma component from the bare {sup 252}cf exposure was determined with a separate dosemeter. We report here on a proton-recoil-based dosemeter that generates pulse height spectra, much like the scintillator of Hornyak, (2) to provide information on both the neutron and gamma dose.

  1. Use of composites of topaz-glass as TSEE and TL dosemeters.

    PubMed

    de Magalhães, C M S; Souza, D N; Caldas, L V E

    2006-01-01

    The properties of the thermally stimulated exoelectron emission (TSEE) and thermoluminescent (TL) emission of topaz-glass composites were studied with the aim of using them as solid-state dosemeters. The TSEE response was studied as a function of radiation energy and as a function of absorbed dose. Topaz-glass composites presented a linear TL and TSEE response to dose within a range of 0.01-1 Gy. The topaz-glass composites presented higher TSEE peaks than topaz-Teflon pellets. In the dosimetry of radiotherapic fields normally the responses of the topaz-glass dosemeters are comparable to topaz-Teflon pellets. The results confirmed that these new dosemeters can be useful in monitoring the quality of the radiation sources. This dose mapping technique is particularly useful in investigating dose distribution throughout a planned target volume.

  2. Independent evaluation of optically stimulated luminescence (OSL) 'dot' dosemeters for environmental monitoring.

    PubMed

    Timilsina, Bindu; Gesell, Thomas F

    2011-01-01

    Optically stimulated luminescence (OSL) 'dot' dosemeters (manufactured by Landauer®) are reported to have a high degree of environmental stability, high level of sensitivity and provide wide range of dose measuring capabilities from 0.05 mGy to 100 Gy. The optical read out method is fast and relatively simple and permits repeated read out, but few studies have been performed about its application in monitoring radiation in the environment. This study was initiated to independently test the performance of OSL dot dosemeters for the application of measuring doses of radiation in the outdoor environment. Testing was performed in the laboratory to evaluate reproducibility and stability and in the field to evaluate accuracy relative to calibrated high-pressure ionisation chambers. The results showed that OSL dot dosemeters had good reproducibility and stability in both laboratory and field tests and met the performance requirements of standards of the American National Standards Institute.

  3. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  4. Summary of personal neutron dosemeter results obtained within the EVIDOS project.

    PubMed

    Luszik-Bhadra, M; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; Derdau, D; d'Errico, F; Fiechtner, A; Kyllönen, J-E; Lacoste, V; Lievens, B; Lindborg, L; Lovefors Daun, A; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

    2007-01-01

    Within the EC project EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'), different types of active neutron personal dosemeters (and some passive ones) were tested in workplace fields at nuclear installations in Europe. The results of the measurements which have been performed up to now are summarised and compared to our currently best estimates of the personal dose equivalent Hp(10). Under- and over-readings by more than a factor of two for the same dosemeter in different workplace fields indicate that in most cases the use of field-specific correction factors is required. PMID:17449908

  5. Preliminary studies to develop a personal dosemeter for use by aircraft crew.

    PubMed

    Stokes, R P; Talbot, L

    2001-03-01

    This paper describes preliminary work to develop a cosmic-radiation dosemeter for use by military aircraft crew. The dosemeter is based on a combination of CR-39 etched-track detectors and TLD-700 thermoluminescent detectors. It is intended that the CR-39 be used to assess the neutron dose, while the TLD-700 is used to assess the photon and charged particle dose. The sensitivity of CR-39 to the neutron component of cosmic radiation was estimated by irradiating samples of the plastic at the CERN-CEC High Energy Reference Field Facility. This facility produced a radiation field with a neutron spectrum resembling that of the neutron component of cosmic radiation at typical airflight altitudes. The response of the CR-39 was linear over the range of doses studied (0.2-6.0 mSv) and there was no significant fading in the 6-month period after irradiation. The TLD-700 component of the dosemeter was calibrated using 137Cs gamma rays. The response of the TLD-700 was linear over the range of doses studied (0.01-5.0 mSv) with no significant fading in the 6-month period after irradiation. It was concluded that a combination of CR-39 and TLD-700 detectors would provide an effective cosmic-radiation dosemeter for use by military aircraft crew. PMID:11281525

  6. Introduction of a thermal response to the DSTL PADC personal neutron dosemeter.

    PubMed

    Mills, R G; Spyrou, N M; Stokes, R P; Holloway, I E; Beeley, P A

    2004-01-01

    The response of the Defence Science and Technology Laboratory (DSTL) PADC personal neutron dosemeter is strongly dependent upon neutron energy, with a range of 300-500 tracks per cm2 per mSv for energies between 1 and 5 MeV. Below 1 MeV the response drops off sharply. This lack of sensitivity is undesirable when the dosemeter is employed with the softened fission spectra encountered in the workplace. In order to incorporate a thermal response, a polypropylene converter doped with LiF has been placed directly in front of the PADC elements. Tritons produced in the thermal neutron reaction 6Li (n,t)alpha at 2.7 MeV will then penetrate the PADC, leaving a trail of damage. The reaction rate within the converter has been calculated using MCNP for thermal neutrons and a range of higher energies, while transport of the tritons is modelled using the SRIM/TRIM package to determine the resultant track density and depth distribution. The modelling and experimental work have demonstrated that a concentration of 0.2% natural lithium by weight results in a track density in a thermal field comparable with that produced per unit personal dose equivalent by neutrons greater than 1 MeV in the standard dosemeter. Additional MCNP modelling has demonstrated that the dosemeters' albedo response to intermediate energy neutrons can be enhanced considerably by placing a boron-doped shield in front of the converter and increasing its lithium concentration. PMID:15353665

  7. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry.

    PubMed

    Fiechtner, A; Boschung, M; Wernli, C

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. PMID:17578876

  8. Application of TL dosemeters for dose distribution measurements at high temperatures in nuclear reactors.

    PubMed

    Osvay, M; Deme, S

    2006-01-01

    Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.

  9. Field calibration of dosemeters used for routine measurements at flight altitudes.

    PubMed

    Wissmann, F; Burmeister, S; Dönsdorf, E; Heber, B; Hubiak, M; Klages, T; Langner, F; Möller, T; Meier, M

    2010-08-01

    Intercomparisons of dosemeters used in radiation protection are performed routinely in reference radiation fields under well-defined conditions. In the case of the radiation protection of aircrew members, such reference fields either do not exist or they can be partially simulated by accelerator-based fields. Another method is to perform simultaneous measurements on board an aircraft under constant flight conditions, i.e. at defined latitude, longitude and altitude. The intercomparison presented in this work is the second one of its kind. As reference instruments, two types of tissue-equivalent proportional counters (TEPC) were used in comparison with different silicon detector systems. The excellent agreement of the FDOScalc code, which is based on measurements made by PTB during different phases of solar cycle 23 with the TEPC measurements and the results of the preceding project "Coordinated Access to Aircraft for Transnational Environmental Research" (CAATER) even allows the in-field calibration of the Si dosemeters.

  10. A PRACTICAL APPROACH TO PERFORM THE ISOTROPY TEST FOR EXTREMITY DOSEMETERS.

    PubMed

    Gultresa, J; Llansana, J; Roig, M; Ginjaume, M

    2016-09-01

    The requirements for determining extremity dosemeter performance have evolved over the past decade. In 2010, the Spanish Nuclear Safety Council (CSN) adopted a national protocol with performance requirements based on ISO 12794. Because of the lack of symmetry of ISO 4037-3 calibration phantoms, the isotropy test set up in the sagittal plane presented several challenges both for individual monitoring services and for calibration labs. This article proposes and validates a practical approach to reduce the number of irradiations. Results show that wrist and ring dosemeters in this study meet the ISO 12794 requirements for the isotropy test. However, additional studies would be needed to verify the newer IEC 62387 Standard. PMID:26747847

  11. Measurement models for passive dosemeters in view of uncertainty evaluation using the Monte Carlo method.

    PubMed

    van Dijk, J W E

    2014-12-01

    Two measurement models for passive dosemeters such as thermoluminescent dosemeter, optically stimulated luminescence, radio-photoluminescence, photographic film or track etch are discussed. The first model considers the dose evaluation with the reading equipment as a single measurement, the one-stage model. The second model considers the build-up of a latent signal or latent image in the detector during exposure and the evaluation using a reader system as two separate measurements, the two-stage model. It is discussed that the two-stage model better reflects the cause and effect relations and the course of events in the daily practice of a routine dosimetry service. The one-stage model will be non-linear in crucial input quantities which can give rise to erroneous behavior of the uncertainty evaluation based on the law of propagation of uncertainty. Input quantities that show an asymmetric probability distributions propagate through the one-stage model in a physically not relevant way.

  12. EURADOS IC2012N: FURTHER INFORMATION DERIVED FROM AN EURADOS INTERNATIONAL COMPARISON OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Chevallier, M-A; Fantuzzi, E; Cruz-Suarez, R; Luszik-Bhadra, M; Mayer, S; Thomas, D J; Tanner, R; Vanhavere, F

    2016-09-01

    In 2012, the European Radiation Dosimetry Group (EURADOS) performed an intercomparison for neutron dosemeters that are intended to measure personal dose equivalent, Hp(10). A total of 31 participants registered with 34 dosimetry systems. The irradiation tests were chosen to provide the participants with useful information on their dosimetry systems, i.e. linearity, reproducibility, responses for different energies and angles and to simulated workplace fields. This paper gives details of the extensive information derived from the exercise. PMID:26715777

  13. ENERGY AND ANGULAR DEPENDENCE OF RADIOPHOTOLUMINESCENT GLASS DOSEMETERS FOR EYE LENS DOSIMETRY.

    PubMed

    Silva, E H; Knežević, Ž; Struelens, L; Covens, P; Ueno, S; Vanhavere, F; Buls, N

    2016-09-01

    Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0  up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruđer Bošković Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary.

  14. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  15. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values.

  16. Development and characterization of real-time personal neutron dosemeter with two silicon detectors

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakamura, T.; Tsujimura, N.; Ueda, O.; Suzuki, T.

    1998-12-01

    We have developed a new real-time personal neutron dosemeter containing two neutron sensors, a fast and a slow neutron sensor. The former sensor is a p-type silicon semiconductor detector. The slow neutron sensor is also a p-type silicon semiconductor detector and natural boron is doped on the aluminum electrode to produce 10B(n,α) reactions. A thin polyethylene radiator is contacted on the front surface of each sensor to produce recoil protons. The neutron detection efficiencies of these sensors were measured in a thermal neutron field and monoenergetic neutron fields from 8 keV to 22 MeV. By taking the weighted sum of counts given by the two sensors, the detection efficiency could be made to approach to the fluence-to-dose equivalent conversion factor given by ICRP 51. Field tests of the performance of this neutron dosemeter were performed in the radiation environments around several nuclear facilities, including reactor, accelerator, radioisotope and nuclear fuel handling facilities. Based on the results of these field tests, we conclude that our dosemeter is able to provide a reading of the neutron dose equivalent within a factor of 2 margin of accuracy.

  17. FIRST EURADOS INTERCOMPARISON EXERCISE OF EYE LENS DOSEMETERS FOR MEDICAL APPLICATIONS.

    PubMed

    Clairand, I; Ginjaume, M; Vanhavere, F; Carinou, E; Daures, J; Denoziere, M; Silva, E H; Roig, M; Principi, S; Van Rycheghem, L

    2016-09-01

    In the context of the decrease in the eye lens dose limit for occupational exposure to 20 mSv per year stated by the recent revision of the European Basic Safety Standards Directive 2013/59/EURATOM, the European Radiation Dosimetry Group (EURADOS) has organised in 2014, for the first time, an intercomparison exercise for eye lens dosemeters. The main objective was to assess the capabilities of the passive eye lens dosemeters currently in use in Europe for occupational monitoring in medical fields. A total of 20 European individual monitoring services from 15 different countries have participated. The dosemeters provided by the participants were all composed of thermoluminescent detectors, of various types and designs. The irradiations were carried out with several photon fields chosen to cover the energy and angle ranges encountered in medical workplace. Participants were asked to report the doses in terms of Hp(3) using their routine protocol. The results provided by each participant were compared with the reference delivered doses. All the results were anonymously analysed. Results are globally satisfactory since, among the 20 participants, 17 were able to provide 90 % of their response in accordance with the ISO 14146 standard requirements. PMID:26163384

  18. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values. PMID:26763903

  19. Operational specifications of the laser illuminated track etch scattering dosemeter reader.

    PubMed

    Moore, M E; Gepford, H J; Hoffman, J M; McKeever, R J; Devine, R T

    2006-01-01

    The personnel dosimetry operations team at the Los Alamos National Laboratory (LANL) has accepted the laser illuminated track etch scattering (LITES) dosemeter reader into its suite of radiation dose measurement instruments. The LITES instrument transmits coherent light from a He-Ne laser through the pertinent track etch foil and a photodiode measures the amount of light scattered by the etched tracks. A small beam stop blocks the main laser light, while a lens refocuses the scattered light into the photodiode. Three stepper motors in the current LITES system are used to position a carousel that holds 36 track etch dosemeters (TEDs). Preliminary work with the LITES system demonstrated the device had a linear response in counting foils subjected to exposures up to 50 mSv (5.0 rem). The United States Department of Energy requires that the annual general employee dose not exceed 50 mSv (5.0 rem). On a regular basis, LANL uses the Autoscan-60 reader system (Thermo Electron Corp.) for counting track etch dosemeters. However, LANL uses a 15 h etch process for CR-39 dosemeters, and this produces more and larger track etch pits than the 6 h etch used by many institutions. Therefore, LANL only uses the Autoscan-60 for measuring neutron dose equivalent up to exposure levels of approximately 3 mSv (300 mrem). The LITES system has a measured lower limit of detection of approximately 0.6 mSv (60 mrem), and it has a correlation coefficient of R (2) = 0.99 over an exposure range up to 500 mSv (50.0 rem). A series of blind studies were done using three methods: the Autoscan-60 system, manual counting by optical microscope and the LITES instrument. A collection of track etch dosemeters of unknown neutron dose equivalent (NDE) were analysed using the three methods, and the performance coefficient (PC) was calculated when the NDE became known. The Autoscan-60 and optical microscope methods had a combined PC = 0.171, and the LITES instrument had a PC = 0.194, where a PC less than or

  20. Reproducibility of TL measurements in a mixed field of thermal neutrons and photons.

    PubMed

    Fernandes, A C; Gonçalves, I C; Ferro Carvalho, A; Santos, J; Cardoso, J; Santos, L; Osvay, M

    2002-01-01

    The reproducibility of measurements performed with GR-100 (LiF:Mg,Ti) from the Solid Dosimetric Detector and Method Laboratory (DML) China, GR-107 (7LiF:Mg,Ti, DML), TLD-700H (7LiF:Mg.Cu,P, Harshaw) and Al2O3:Mg,Y (Hungary) in photon and mixed photon-neutron fields was investigated. Mixed-field irradiations were performed in a thermal neutron field generated at a nuclear reactor. GR-100 sensitivity decreased after mixed-field irradiations, while no significant change was found for the other materials. Using GR-100 for the dosimetry of mixed and high-intensity fields requires careful procedures. PMID:12382796

  1. Eye lens monitoring for interventional radiology personnel: dosemeters, calibration and practical aspects of H p (3) monitoring. A 2015 review.

    PubMed

    Carinou, Eleftheria; Ferrari, Paolo; Bjelac, Olivera Ciraj; Gingaume, Merce; Merce, Marta Sans; O'Connor, Una

    2015-09-01

    A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended. PMID

  2. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).

    PubMed

    Zeyrek, C T; Gündüz, H

    2012-09-01

    This study gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silène experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together. PMID:22389154

  3. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  4. ENEA extremity dosemeter based on LiF(Mg,Cu,P) to evaluate Hp(3,alpha).

    PubMed

    Mariotti, F; Fantuzzi, E; Morelli, B; Gualdrini, G; Botta, M C; Uleri, G; Bordy, J M; Denoziere, M

    2011-03-01

    Recent epidemiological studies suggest a rather low-dose threshold (<0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimised and current dose limits for the eye lens may be reduced in the future. ICRP Publication 103 on H(p)(d), in §(136), reads that '… a depth d = 3 mm has been proposed for the rare case of monitoring the dose to the lens of the eye. In practice, however, H(p)(3) has rarely been monitored and H(p)(0.07) can be used for the same monitoring purpose… '. As recommended on the EU 'Technical recommendations for monitoring individuals occupationally exposed to external radiation', a test on the ENEA TL extremity dosemeter is herein reported. The results within the actual EU founded Optimization of RAdiation protection for MEDical staff (ORAMED) Project, whose WP2 is aimed at the quantity H(p)(3) and eye lens dosimetry in practice, are taken into account. The paper summarises the main aspects of the study carried out at ENEA-Radiation Protection Institute (Bologna, Italy) to provide practical solutions (in the use and the design) to evaluate the response of the ENEA TL extremity dosemeter in terms of H(p)(3).

  5. Efficiency of a radiophotoluminescence glass dosemeter for low-earth-orbit space radiation.

    PubMed

    Yasuda, H; Fujitaka, K

    2002-01-01

    Chips of a radiophotoluminescence glass dosemeter (RPLG) were used for measurements of space radiation during a 9.8 d Shuttle-Mir mission (STS-91) at an altitude of 400 km and an inclination of 51.65 degrees. Two of RPLG chips were put into each of 59 positions in or on a life-size human phantom. The RPLG values equivalent to 137Cs gamma ray absorbed doses were found to be systematically lower than those of a Mg2SiO4:Tb thermoluminescence dosemeter (TDMS). In comparison with the organ or tissue absorbed dose and dose equivalent values that were estimated using a combination of TDMS and plastic nuclear track detectors, the efficiencies of the RPLG chips were about 80% for the water absorbed dose and about 40% for the dose equivalent. Whereas the percentage values will change during different missions, such additional information obtained from small RPLG chips is useful for improving the reliability of radiation dosimetry in space. PMID:12382940

  6. Development of advanced-type multi-functional electronic personal dosemeter.

    PubMed

    Nunomiya, T; Abe, S; Aoyama, K; Nakamura, T

    2007-01-01

    An advanced-type small, light, multi-functional electronic personal dosemeter has been developed using silicon semiconductor radiation detectors for dose management of workers at nuclear power plants and accelerator facilities. This dosemeter is 62 x 82 x 27 mm(3) in size and approximately 130 g in weight, which is capable of measuring personal gamma ray and neutron dose equivalents, Hp(10), simultaneously. The neutron dose equivalent can be obtained using two types of silicon semiconductors: a slow-neutron sensor (<1 MeV) and a fast-neutron sensor (>1 MeV). The slow neutron sensor is a 10 x 10 mm(2) p-type silicon on which a natural boron layer is deposited around an aluminium electrode. The fast neutron sensor is also a 10 x 10 mm(2) p-type silicon crystal on which an amorphous silicon hydride is deposited. The neutron energy response corresponding to the fluence-to-dose-equivalent conversion coefficient given by ICRP Publication 74 has been evaluated using a monoenergetic neutron source from 250 keV to 15 MeV at the Fast Neutron Laboratory of Tohoku University. As the result, the Hp(10) response to neutrons in the energy range of 250 keV and 4.4 MeV within +/-50% difference has been obtained. PMID:17704353

  7. Efficiency of a radiophotoluminescence glass dosemeter for low-earth-orbit space radiation

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Fujitaka, K.; Badhwar, G. D. (Principal Investigator)

    2002-01-01

    Chips of a radiophotoluminescence glass dosemeter (RPLG) were used for measurements of space radiation during a 9.8 d Shuttle-Mir mission (STS-91) at an altitude of 400 km and an inclination of 51.65 degrees. Two of RPLG chips were put into each of 59 positions in or on a life-size human phantom. The RPLG values equivalent to 137Cs gamma ray absorbed doses were found to be systematically lower than those of a Mg2SiO4:Tb thermoluminescence dosemeter (TDMS). In comparison with the organ or tissue absorbed dose and dose equivalent values that were estimated using a combination of TDMS and plastic nuclear track detectors, the efficiencies of the RPLG chips were about 80% for the water absorbed dose and about 40% for the dose equivalent. Whereas the percentage values will change during different missions, such additional information obtained from small RPLG chips is useful for improving the reliability of radiation dosimetry in space.

  8. Performance of the EPD-N2 dosemeter for monitoring aircrew doses.

    PubMed

    Scherpelz, R I; Cezeaux, J R

    2015-03-01

    United States Air Force (USAF) aircrew fly at altitudes and for durations where doses from cosmic radiation are significant enough to warrant monitoring. This study evaluated a candidate radiological monitoring system for USAF aircrew, the Thermo Scientific electronic personnel dosemeter (EPD-N2). The evaluation consisted of characterising the device in a well-characterised radiation field at a European Organization for Nuclear Research (CERN) accelerator, and aboard an USAF aircraft. The performance of the EPDs was evaluated by comparison with accepted values for dose at the CERN facility, comparison with the value calculated by flight dose software and comparison with the value estimated by a tissue-equivalent proportional counter aboard the aircraft. This study recommends that a correction factor of 1/CF = 1/3.9 be applied to EPD-N2 measurements aboard aircraft flights. The uncertainty in this correction factor is 11.8 %. PMID:25108394

  9. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    PubMed

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed.

  10. Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters.

    PubMed

    Bottollier-Depois, J-F; Trompier, F; Clairand, I; Spurny, F; Bartlett, D; Beck, P; Lewis, B; Lindborg, L; O'Sullivan, D; Roos, H; Tommasino, L

    2004-01-01

    Owing to their professional activity, flight crews may receive a dose of some millisieverts within a year; airline passengers may also be concerned. The effective dose is to be estimated using various experimental and calculation tools. The European project DOSMAX (Dosimetry of Aircrew Exposure during Solar Maximum) was initiated in 2000 extending to 2004 to complete studies over the current solar cycle during the solar maximum phase. To compare various dosemeters in real conditions simultaneously in the same radiation field, an intercomparison was organised aboard a Paris-Tokyo round-trip flight. Both passive and active detectors were used. Good agreement was observed for instruments determining the different components of the radiation field; the mean ambient dose equivalent for the round trip was 129 +/- 10 microSv. The agreement of values obtained for the total dose obtained by measurements and by calculations is very satisfying.

  11. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. PMID:27150515

  12. CHARACTERIZATION OF AN ACTIVE DOSEMETER ACCORDING TO IEC 61526:2010.

    PubMed

    Cardoso, J; Santos, J A M; Santos, L; Alves, J G; Oliveira, C

    2016-09-01

    The active personal dosemeter, RaySafe i2, allows the measurement and record of Hp(10) in real time, every second, via wireless technology for real-time display on a portable computer and/or a local network. The system seems particularly attractive for individual monitoring at clinical facilities where high intensity and varying radiation fields may occur, as it enables the user to acknowledge and optimize the dose and dose rate values in real time for each procedure. Prior to its use, the system was characterized at the Metrology Laboratory of Ionizing Radiation of IST-LPSR aiming at the metrological characterization of the system in accordance with IEC 61526:2010 for metrological control purposes and to verify the technical specifications stated by the manufacturer. PMID:27103641

  13. DEVELOPMENT OF SIMULATED WORKPLACE FIELDS AT KRISS FOR PERFORMANCE TEST OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Kim, Yunho

    2016-09-01

    Simulated workplace neutron fields have been developed at the Korea Research Institute of Standards and Science (KRISS). An (241)Am-Be neutron source and a cylindrical moderator composed of stainless steel and heavy water were installed in a 10-cm-thick concrete block with dimensions of 150 × 120 × 120 cm(3) The neutron energy spectrum at a distance of 66.5 cm was measured using a Bonner sphere spectrometer and was found to agree with the spectrum obtained from the Monte Carlo N-Particle Extended simulation to within 5 %. The neutron fluence-to-personal dose equivalent conversion coefficients were (20.8-43.6) pSv·cm(2) and were thus in good agreement with those of reactor fields. The results showed that the KRISS-simulated workplace neutron fields can be used for performance tests and the calibration service of neutron personal dosemeters. PMID:26541186

  14. A passive neutron dosemeter based on a CR-39 track detector with multi-field evaluation

    NASA Astrophysics Data System (ADS)

    Savvidis, E.; Alberts, W. G.; Luszik-Bhadra, M.; Zamani, M.

    1994-11-01

    A passive neutron personal dosemeter is proposed which is based on a single CR-39 track detector, covered at four positions with different converters and absorbers. Its dose equivalent response has been investigated with respect to its energy and angle dependence, covering energies from thermal up to 15 MeV and angles of incidence up to 85°. A position-related readout of the electrochemically etched CR-39 detector resulted in four response functions with significant differences for thermal, intermediate and fast neutrons. By an appropriate linear combination of the readings a dose equivalent response has been achieved which varies only within a factor of 2 for thermal neutrons and in the energy range from 20 keV to 15 MeV and shows an acceptable over-response of a factor of 4 for intermediate energy neutrons.

  15. Ten years of personal neutron dosimetry with albedo dosemeters in The Netherlands.

    PubMed

    Draaisma, F S; Verhagen, H W

    2002-01-01

    Since 1987, the dosimetry service of the Netherlands Energy Research Foundation (ECN) has been certified by the Dutch government to perform personal dosimetry, using thermoluminescence dosemeters (TLDs). Performing neutron personal dosimetry requires a rather large investment in readers, TLDs and personnel to operate the service. About 800 persons are subjected to routine neutron monitoring in The Netherlands and their annual neutron doses are a relatively small fraction (less than 10%) of the annual Hp(10). In general, the measured neutron dose values are low (on average 93% of the users receive an annual neutron dose <0.2 mSv). The collective annual (neutron) dose has tended to decrease since 1992, but incidentally high doses have been observed. Leaving these incidents out, the average collective annual neutron doses for the different users of neutron sources are about the same. PMID:12382755

  16. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    PubMed

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. PMID:26378225

  17. EURADOS INTERCOMPARISONS IN EXTERNAL RADIATION DOSIMETRY: SIMILARITIES AND DIFFERENCES AMONG EXERCISES FOR WHOLE-BODY PHOTON, WHOLE-BODY NEUTRON, EXTREMITY, EYE-LENS AND PASSIVE AREA DOSEMETERS.

    PubMed

    Romero, Ana M; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Figel, Markus; Dombrowski, Harald

    2016-09-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. PMID:26759475

  18. Comparison of neutron dose quantities and instrument and dosemeter readings at representative locations in an MOX fuel fabrication plant

    NASA Astrophysics Data System (ADS)

    Bartlett, D. T.; Hager, L. G.; Tanner, R. J.; Haley, R. M.; Cooper, A. J.

    2002-01-01

    The relationships between operational and protection quantities, and values of personal dosemeter and instrument readings have been determined for a recently designed MOX fuel fabrication plant. The relationships between the quantities, and the readings of personal dosemeters are sensitive to both the energy and direction distribution of neutron fluence. The energy distributions were calculated using the Monte Carlo code MCBEND. The direction distribution was addressed by calculating independently, spectral components for which the direction distribution could be reasonably assumed. At representative locations, and for assumed worker orientations, the radiation field is analysed as having, in general, three components—a direct, unidirectional component from the nearest identified discrete source, which is considered incident A-P, several unidirectional components from other such sources which are treated as a rotational component and a scattered isotropic component. The calculated spectra were folded with conversion coefficients for personal dose equivalent, Hp(10) slab (A-P, ROT and ISO), effective dose, E, (A-P, ROT and ISO), ambient dose equivalent, H*(10), personal dosemeter (AP, ROT and ISO) and survey instrument response characteristics.

  19. EURADOS INTERCOMPARISONS ON WHOLE-BODY DOSEMETERS FOR PHOTONS FROM 2008 TO 2014.

    PubMed

    Figel, Markus; Stadtmann, Hannes; Grimbergen, Tom W M; McWhan, Andrew; Romero, Ana M

    2016-09-01

    Starting in 2008 the European Dosimetry Group (EURADOS) has been performing international intercomparisons on photon whole-body dosemeters for individual monitoring services. These intercomparisons were organised (on a biannual basis) in 2008, 2010, 2012 and 2014, each time with a similar set-up but with small alterations in the subsequent irradiation plans. With an increasing number of participants and participating systems, this intercomparison action has become an important tool for individual monitoring services to test their whole-body dosimetry systems, compare their results with other services or systems and to improve the quality of their dosimetry. The paper presents and compares the results of these four intercomparisons and compares the dosimetric results for the participating system types. Major dosimetric problems of the individual monitoring services are identified, and trends in the dosimetric performance of the different systems are shown. This gives the opportunity to identify some dosimetry issues that should be improved by application of the monitoring services' quality assurance systems and QA procedures.

  20. On optically stimulated luminescence properties of household salt as a retrospective dosemeter.

    PubMed

    Timar-Gabor, Alida; Trandafir, Oana

    2013-08-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) in the UV (270-370 nm) spectral region have been investigated for five types of table salt (NaCl) available in Romanian supermarkets with a view to applying them in retrospective dosimetry. The salt samples gave bright TL signals with two main peaks at ∼100°C and at 300 or 260°C, depending on the origin of the salt and bright OSL signals under continuous stimulation with blue light. The OSL signal (stimulated at 100°C after a pre-heat of 10 s at 150°C) was used for investigations in a standard multiple aliquot procedure. The dose-response was found to be linear in the dose range investigated (up to ∼100 mGy) and the lower limit of detection for the samples varied from ∼0.01 to 14 mGy. These characteristics, along with the widespread abundance and low cost of household salt, confirm its potential as a retrospective dosemeter. PMID:23443414

  1. Active personal dosemeters in interventional radiology: tests in laboratory conditions and in hospitals.

    PubMed

    Clairand, I; Bordy, J-M; Daures, J; Debroas, J; Denozière, M; Donadille, L; Ginjaume, M; Itié, C; Koukorava, C; Krim, S; Lebacq, A-L; Martin, P; Struelens, L; Sans-Mercé, M; Tosic, M; Vanhavere, F

    2011-03-01

    The work package 3 of the ORAMED project, Collaborative Project (2008-11) supported by the European Commission within its seventh Framework Programme, is focused on the optimisation of the use of active personal dosemeters (APDs) in interventional radiology and cardiology (IR/IC). Indeed, a lack of appropriate APD devices is identified for these specific fields. Few devices can detect low-energy X rays (20-100 keV), and none of them are specifically designed for working in pulsed radiation fields. The work presented in this paper consists in studying the behaviour of some selected APDs deemed suitable for application in IR/IC. For this purpose, measurements under laboratory conditions, both with continuous and pulsed X-ray beams, and tests in real conditions on site in different European hospitals were performed. This study highlights the limitations of APDs for this application and the need of improving the APD technology so as to fulfil all needs in the IR/IC field.

  2. On optically stimulated luminescence properties of household salt as a retrospective dosemeter.

    PubMed

    Timar-Gabor, Alida; Trandafir, Oana

    2013-08-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) in the UV (270-370 nm) spectral region have been investigated for five types of table salt (NaCl) available in Romanian supermarkets with a view to applying them in retrospective dosimetry. The salt samples gave bright TL signals with two main peaks at ∼100°C and at 300 or 260°C, depending on the origin of the salt and bright OSL signals under continuous stimulation with blue light. The OSL signal (stimulated at 100°C after a pre-heat of 10 s at 150°C) was used for investigations in a standard multiple aliquot procedure. The dose-response was found to be linear in the dose range investigated (up to ∼100 mGy) and the lower limit of detection for the samples varied from ∼0.01 to 14 mGy. These characteristics, along with the widespread abundance and low cost of household salt, confirm its potential as a retrospective dosemeter.

  3. Energy and angular dependences of common types of personal dosemeters in the mirror of the First national intercomparison of individual dosimetric monitoring laboratories in Ukraine.

    PubMed

    Chumak, V; Deniachenko, N; Volosky, V

    2015-12-01

    In depth analysis of the results of the First National Intercomparison of individual dosimetry laboratories in Ukraine has revealed energy and angular responses of the most common types of personal dosemeters and dosi metric systems. Participating laboratories use 9 different types of dosimetric systems - automatic, semi automat ic and manual. If was found that energy dependences of the most common dosemeter types in Ukraine generally correspond to the literature data on respective TLD materials (LiF:Mg,Cu,P, LiF:Mg,TiandAl2O3:С), however, due to peculiarities of holders (filters) and dose algorithms, for some dosimetry systems the energy dependences can be improved (compensated). Angular dependences proved to be more pronounced: only two systems revealed weak dependence of response on the incident angle, for other systems at large angles (α=60°) dosemeters overestimate true dose values. PMID:26695907

  4. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.

    PubMed

    Caresana, M; Ferrarini, M; Parravicini, A; Sashala Naik, A

    2014-10-01

    In this paper, the evaluation of the dosimetric capability of a detector based on a CR-39 solid-state nuclear track detector coupled to a 1 cm thickness of PMMA radiator was made with the aim of understanding the applicability of this technique to personal and environmental neutron dosimetry. The dosemeter has been exposed to monoenergetic and quasi-monoenergetic neutron beams at PTB in Braunschweig, Germany and at Ithemba Laboratories, in Faure, South Africa, with peak energies ranging from 0.565 to 100 MeV. The results showed a response that is almost independent of the neutron energy in the whole energy range.

  5. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.

    PubMed

    Caresana, M; Ferrarini, M; Parravicini, A; Sashala Naik, A

    2014-10-01

    In this paper, the evaluation of the dosimetric capability of a detector based on a CR-39 solid-state nuclear track detector coupled to a 1 cm thickness of PMMA radiator was made with the aim of understanding the applicability of this technique to personal and environmental neutron dosimetry. The dosemeter has been exposed to monoenergetic and quasi-monoenergetic neutron beams at PTB in Braunschweig, Germany and at Ithemba Laboratories, in Faure, South Africa, with peak energies ranging from 0.565 to 100 MeV. The results showed a response that is almost independent of the neutron energy in the whole energy range. PMID:24324248

  6. Characterisation of energy response of Al2O3:C optically stimulated luminescent dosemeters (OSLDs) using cavity theory

    PubMed Central

    Scarboro, S. B.; Kry, S. F.

    2013-01-01

    Aluminium oxide (Al2O3:C) is a common material used in optically stimulated luminescent dosemeters (OSLDs). OSLDs have a known energy dependence, which can impact on the accuracy of dose measurements, especially for lower photon energies, where the dosemeter can overrespond by a factor of 3–4. The purpose of this work was to characterise the response of Al2O3:C using cavity theory and to evaluate the applicability of this approach for polyenergetic photon beams. The cavity theory energy response showed good agreement (within 2 %) with the corresponding measured values. A comparison with measured values reported in the literature for low-energy polyenergetic spectra showed more varied agreement (within 6 % on average). The discrepancy between these results is attributed to differences in the raw photon energy spectra used to calculate the energy response. Analysis of the impact of the photon energy spectra versus the mean photon energy showed improved accuracy if the energy response was determined using the entire photon spectrum rather than the mean photon energy. If not accounted for, the overresponse due to photon energy could introduce substantial inaccuracy in dose measurement using OSLDs, and the results of this study indicate that cavity theory may be used to determine the response with reasonable accuracy. PMID:22653437

  7. Bias and uncertainty of penetrating photon dose measured by film dosemeters in an epidemiological study of US nuclear workers.

    PubMed

    Daniels, R D; Schubauer-Berigan, M K

    2005-01-01

    A retrospective exposure assessment of 1269 study subjects was completed for use in a multi-site case-control study of the relationship between protracted workplace external radiation exposure and leukaemia mortality. The majority of exposure data result from film badge monitoring programmes at the four US weapons production facilities and a US Naval shipyard. Bias and uncertainty in reported exposures among study facilities and across time were as result of differences in incident photon energy, exposure geometry, dosemeter type and dosimetry methods. These sources of measurement uncertainty were examined by facility and time to derive bias factors (B) for normalising exposures. In conjunction with facility reported results, the bias factors provide a means to estimate the equivalent dose, penetrating to a depth of 10 mm [H(p)(10)] and the equivalent dose to the active bone marrow for use in the epidemiological study. Uncertainty was expressed as the constructed 95% confidence interval (i.e. the 2.5th-97.5th% range) of the estimated parameter. The bias factors indicate that recorded exposures provide a reasonable estimate of H(p)(10) (bias factor near unity) and overestimate equivalent dose to active bone marrow (H(T)) by a factor between 1.2 and 1.7. On average, dosemeter-response uncertainties estimated using Monte Carlo simulation were approximately +/-19 and +/-33% for H(p)(10) and H(T), respectively.

  8. Analysis of QUADOS problem on TLD-ALBEDO personal dosemeter responses using discrete ordinates and Monte Carlo methods.

    PubMed

    Kodeli, Ivo; Tanner, Rick

    2005-01-01

    In the scope of QUADOS, a Concerted Action of the European Commission, eight calculational problems were prepared in order to evaluate the use of computational codes for dosimetry in radiation protection and medical physics, and to disseminate "good practice" throughout the radiation dosimetry community. This paper focuses on the analysis of the P4 problem on the 'TLD-albedo dosemeter: neutron and/or photon response of a four-element TL-dosemeter mounted on a standard ISO slab phantom'. Altogether 17 solutions were received from the participants, 14 of those transported neutrons and 15 photons. Most participants (16 out of 17) used Monte Carlo methods. These calculations are time-consuming, requiring several days of CPU time to perform the whole set of calculations and achieve good statistical precision. The possibility of using deterministic discrete ordinates codes as an alternative to Monte Carlo was therefore investigated and is presented here. In particular the capacity of the adjoint mode calculations is shown. PMID:16381782

  9. Improvement and calibration of a SSNT personal dosemeter and study of importance of albedo factor for dose calculation.

    PubMed

    Torkzadeh, F; Taheri, M

    2007-01-01

    The Neutriran albedo neutron dosemeter has been improved and calibrated for neutron personal dosimetry. The Monte Carlo code MCNP4b was used to calculate the thermal neutrons backscattered from the body (albedo factor). Backscattering from the wall, ceiling and floor in calibration room was considered also via simulation by MCNP4C. A semi automated counting system applying a high-resolution scanner was used for counting of tracks. An 241Am source was used to produce similar alpha particles from 10B (n,alpha)7Li reaction for the optimisation of scanner parameters to distinguish and separate the tracks in SSNTD, which lead to a better distinction between etched alpha tracks and, consequently, a higher linear region of dose characteristic. PMID:16980708

  10. Performance of the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P

    2006-01-01

    This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.

  11. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study

    PubMed Central

    Schulze, D; Wolff, J; Rottke, D

    2014-01-01

    Objectives: The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Methods: Organ and effective dose measurements were performed using 40 TLD and 20 MOSFET dosemeters that were alternately placed in 20 different locations in 1 anthropomorphic RANDO® head phantom (the Phantom Laboratory, Salem, NY). The phantom was exposed to four different CBCT default maxillofacial protocols using small (4 × 5 cm) to full face (20 × 17 cm) fields of view (FOVs). Results: The TLD effective doses ranged between 7.0 and 158.0 µSv and the MOSFET doses between 6.1 and 175.0 µSv. The MOSFET and TLD effective doses acquired using four different (FOV) protocols were as follows: face maxillofacial (FOV 20 × 17 cm) (MOSFET, 83.4 µSv; TLD, 87.6 µSv; −5%); teeth, upper jaw (FOV, 8.5 × 5.0 cm) (MOSFET, 6.1 µSv; TLD, 7.0 µSv; −14%); tooth, mandible and left molar (FOV, 4 × 5 cm) (MOSFET, 10.3 µSv; TLD, 12.3 µSv; −16%) and teeth, both jaws (FOV, 10 × 10 cm) (MOSFET, 175 µSv; TLD, 158 µSv; +11%). The largest variation in organ and effective dose was recorded in the small FOV protocols. Conclusions: Taking into account the uncertainties of both measurement methods and the results of the statistical analysis, the effective doses acquired using MOSFET dosemeters were found to be in good agreement with those obtained using TLD dosemeters. The MOSFET dosemeters constitute a feasible alternative for TLDs for the effective dose assessment of CBCT devices in the maxillofacial region. PMID:25143020

  12. Photon energy response of luminescence dosemeters and its impact on assessment of Hp(10) and Hp(0.07) in mixed fields of varying energies of photons and beta radiation.

    PubMed

    Pradhan, A S

    2002-01-01

    X and gamma rays continue to remain the main contributors to the dose to humans. As these photons of varying energies are encountered in various applications, the study of photon energy response of a dosemeter is an important aspect to ensure the accuracy in dose measurement. Responses of dosemeters have to be experimentally established because for luminescence dosemeters, they depend not only on the effective atomic number (ratio of mass energy absorption coefficients of dosemeter and tissue) of the detector, but also considerably on the luminescence efficiency and the material surrounding the dosemeters. Metal filters are generally used for the compensation of energy dependence below 200 keV and/or to provide photon energy discrimination. It is noted that the contribution to Hp(0.07) could be measured more accurately than Hp(10). For the dosemeters exhibiting high photon energy-dependent response, estimation of the beta component of Hp(0.07) becomes very difficult in the mixed field of beta radiation and photons of energy less than 100 keV. Recent studies have shown that the thickness and the atomic number of metal filters not only affect the response below 200 keV but also cause a significant over-response for high energy (>6 MeV) photons often encountered in the environments of pressurised heavy water reactors and accelerators. PMID:12382729

  13. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility.

  14. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    PubMed

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. PMID:26276807

  15. On the use of LiF:Mg,Ti thermoluminescence dosemeters in space--a critical review.

    PubMed

    Horowitz, Y S; Satinger, D; Fuks, E; Oster, L; Podpalov, L

    2003-01-01

    The use of LiF:Mg,Ti thermoluminescence dosemeters (TLDs) in space radiation fields is reviewed. It is demonstrated in the context of modified track structure theory and microdosimetric track structure theory that there is no unique correlation between the relative thermoluminescence (TL) efficiency of heavy charged particles, neutrons of all energies and linear energy transfer (LET). Many experimental measurements dating back more than two decades also demonstrate the multivalued, non-universal, relationship between relative TL efficiency and LET. It is further demonstrated that the relative intensities of the dosimetric peaks and especially the high-temperature structure are dependent on a large number of variables, some controllable, some not. It is concluded that TL techniques employing the concept of LET (e.g. measurement of total dose, the high-temperature ratio (HTR) methods and other combinations of the relative TL efficiency of the various peaks used to estimate average Q or simulate Q-LET relationships) should be regarded as lacking a sound theoretical basis, highly prone to error and, as well, lack of reproducibility/universality due to the absence of a standardised experimental protocol essential to reliable experimental methodology.

  16. On the use of LiF:Mg,Ti thermoluminescence dosemeters in space--a critical review.

    PubMed

    Horowitz, Y S; Satinger, D; Fuks, E; Oster, L; Podpalov, L

    2003-01-01

    The use of LiF:Mg,Ti thermoluminescence dosemeters (TLDs) in space radiation fields is reviewed. It is demonstrated in the context of modified track structure theory and microdosimetric track structure theory that there is no unique correlation between the relative thermoluminescence (TL) efficiency of heavy charged particles, neutrons of all energies and linear energy transfer (LET). Many experimental measurements dating back more than two decades also demonstrate the multivalued, non-universal, relationship between relative TL efficiency and LET. It is further demonstrated that the relative intensities of the dosimetric peaks and especially the high-temperature structure are dependent on a large number of variables, some controllable, some not. It is concluded that TL techniques employing the concept of LET (e.g. measurement of total dose, the high-temperature ratio (HTR) methods and other combinations of the relative TL efficiency of the various peaks used to estimate average Q or simulate Q-LET relationships) should be regarded as lacking a sound theoretical basis, highly prone to error and, as well, lack of reproducibility/universality due to the absence of a standardised experimental protocol essential to reliable experimental methodology. PMID:14653322

  17. A real-time, high-resolution optical fibre dosemeter based on optically stimulated luminescence (OSL) of KBr:Eu, for potential use during the radiotherapy of cancer.

    PubMed

    Gaza, R; McKeever, S W S

    2006-01-01

    A real-time optically stimulated luminescence (OSL) dosimetry system for potential in vivo use during radiotherapy treatments is proposed. Single-crystal europium-doped KBr samples were grown in a Bridgman furnace, and characterised using optical absorption techniques. An algorithm for the processing of the OSL signal was defined for use in real-time measurements, and its performance was studied on data obtained with a home-built reader, using optical-fibre-coupled dosemeters. OSL dose-response, fading properties and temperature dependence of the signal were investigated in correlation with the concentration of Eu(2+) dopant in the sample. PMID:16644971

  18. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    PubMed

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  19. Analysis of neutron and photon response of a TLD-ALBEDO personal dosemeter on an ISO slab phantom using TRIPOLI-4.3 Monte Carlo code.

    PubMed

    Lee, Y K

    2005-01-01

    TRIPOLI-4.3 Monte Carlo transport code has been used to evaluate the QUADOS (Quality Assurance of Computational Tools for Dosimetry) problem P4, neutron and photon response of an albedo-type thermoluminescence personal dosemeter (TLD) located on an ISO slab phantom. Two enriched 6LiF and two 7LiF TLD chips were used and they were protected, in front or behind, with a boron-loaded dosemeter-holder. Neutron response of the four chips was determined by counting 6Li(n,t)4He events using ENDF/B-VI.4 library and photon response by estimating absorbed dose (MeV g(-1)). Ten neutron energies from thermal to 20 MeV and six photon energies from 33 keV to 1.25 MeV were used to study the energy dependence. The fraction of the neutron and photon response owing to phantom backscatter has also been investigated. Detailed TRIPOLI-4.3 solutions are presented and compared with MCNP-4C calculations. PMID:16381740

  20. Technical Performance of the Luxel Al2O3:C Optically Stimulated Luminescence Dosemeter Element at Radiation Oncology and Nuclear Accident Dose Levels

    SciTech Connect

    Miller, Steven D.; Murphy, Mark K.

    2006-12-12

    The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2?70 Gy and 0.1?5 Gy, respectively. In terms of solid-state passive dosimetry; thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye, and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al2O3:C, for these dosimetry applications, using the optically-stimulated luminescence (OSL) readout method. There have been few investigations of Al2O3:C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al2O3:C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters, and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favorable performance characteristics for the Al2O3:C dosemeter are a wide dynamic range(0.001 to 100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye, and photostimulable-phosphor based films, as well as TLDs.

  1. Current challenges in personal dosimetry at the US DOE Hanford site.

    PubMed

    Rathbone, B A; McDonald, J C; Traub, R J

    2002-01-01

    An overview is presented of the dosimetry system, dose equivalent calculation methodology, and QA/QC practices used at the US Department of Energy Hanford site. It describes some of the problems encountered in accurately measuring dose equivalent quantities under a broad range of field conditions that do not necessarily correlate with laboratory calibration conditions and the approach taken to solve these problems. Personnel at Hanford are monitored with a combination of Harshaw model 8825 and 8816 thermoluminescence dosemeters and CR-39 etched track dosemeters. Extremities are monitored using the ICN MeasuRing loaded with a Harshaw XD740 chipstrate TLD. All dosemeters employ LiF:Mg,Ti elements that are read on-site with Harshaw model 8800 and 6600 TLD readers. CR-39 dosemeters are electrochemically etched in non-commercial etch chambers and counted with an automated track counting system developed by Pacific Northwest National Laboratory. Problems with over response of the 8825 with respect to Hp(0.07), under-response of the 8825 with respect to Hp(3), and over response of the 8825 with respect to Hp(10) in Hanford's 90Sr/90Y beta radiation fields are discussed. Approaches to measurement of the operational quantities for field conditions and algorithm solutions to the above problems are described. Methods used to calibrate the ring dosemeter for Hanford field conditions together with limitations of the ring dosemeter in measuring Hp(0.07) for extremities, particularly when covered with protective clothing, are also discussed. PMID:12382727

  2. Analysis of anomalous data produced by Harshaw Model 8801 thermoluminescent dosimeter cards

    SciTech Connect

    Sonder, E.; Ahmed, A.B.

    1993-05-01

    A large number of dosimeters that have produced abnormal data during field assignment have been stored, reirradiated, and studied. Results are summarized and comparisons are made with normal dosimeters. Summarized here are anomalous glow curve shapes, distributions of anomalies in the residual luminescent responses, and historical and repeat-irradiation behavior of abnormal dosimeters. The results indicate that by far the most frequent abnormal data involve elevated readings from Chip 3, accompanied by excess luminescence at temperatures higher than that of the normal radiation produced band. There is no sharp division between normal and abnormal dosimeters (dosimeters yielding excess luminescence at high temperature). Rather, dosimeters exhibit a continuum of behavior from very good (little high temperature luminescence) to clearly abnormal behavior. The excess luminescence emitted at high temperature in abnormal dosimeters is not proportional to absorbed dose; it has a radiation-independent average value that depends on the dosimeter but varies erratically above and below that average for consecutive anneals. At relatively high radiation exposures (>100 mR), the amount of excess high temperature luminescence becomes unimportant and abnormal data are rare.

  3. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  4. Preliminary results on bubble detector as personal neutron dosemeter.

    PubMed

    Ponraju, D; Krishnan, H; Viswanathan, S; Indira, R

    2011-03-01

    The bubble detector is demonstrated as one of the best suitable neutron detectors for neutron dose rate measurements in the presence of high-intense gamma fields. Immobilisation of a volatile liquid in a superheated state and achieving uniform distribution of tiny superheated droplets were a practical challenge. A compact and reusable bubble detector with high neutron sensitivity has been developed at the Indira Gandhi Centre for Atomic Research by immobilising the superheated droplets in a suitable polymer matrix. Two types of bubble detectors have been successfully developed, one by incorporating isobutane for measuring fast neutron and another by incorporating Freon-12 for both fast and thermal neutron. The performance of the detector has been tested using 5 Ci Am-Be neutron source and the results are described. PMID:21217133

  5. Development of thermal neutron-sensitive glass dosemeter containing lithium.

    PubMed

    Maki, Daisuke; Kobayashi, Hatsumi; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Tanaka, Teruya; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    New radiophotoluminescence (RPL) phosphate glass containing (6)Li was successfully made from the powder of NaPO(3), Al(PO(3))(3), LiOH, HPO(3) and AgCl. The ternary diagram of NaPO(3)-Al(PO(3))(3)-LiPO(3) has clarified the region where satisfactory RPL characteristics of the glass are kept up. The synthesised phosphate glass indicated good RPL characteristics on the condition that the content of LiPO(3) was below 10 wt%. Gamma-ray irradiation experiments showed that the newly synthesised phosphate glass had satisfactory linearity and wide dynamic range in dose measurement and low variation in sensitivity. It was confirmed from thermal neutron irradiation experiments that a pair of the newly synthesised phosphate glass containing enriched (6)Li and (7)Li, or (n)Li and enriched (7)Li could be effectively used for the evaluation of thermal neutron dosimetry.

  6. Multisphere neutron spectrometric system with thermoluminescence dosemeters: sensitive improvement.

    PubMed

    Gregori, B; Papadópulos, S; Cruzate, J; Kunst, J J

    2002-01-01

    In this work, a neutron spectrometric system based on a set of moderating spheres with thermoluminescence detectors (TLD) is presented. The system at the Nuclear Regulatory Authority (ARN) Dosimetry Laboratory consists of 12 solid spheres made of high-density polyethylene (p = 0.95 g x cm(-3)), with diameters ranging from 2" to 12" and TLD sensitive to thermal and gamma radiation, namely TLD-600 and TLD-700, located at the centre of the spheres. The neutron response matrix for this Bonner Sphere Spectrometer (BSS) was calculated using the MCNP-IVB code and the library ENDF/B-VI in the energy range between thermal neutrons and 100 MeV. The neutron spectrum was obtained using the LOUH182 unfolding code. The improvement in sensitivity of the system is based on the election of a different heating cycle of the TLD that allows an increase in sensitivity by a factor of 2.6 compared with the standard laboratory treatment. The system response for the calibration with an Am-Be source is presented.

  7. A comparison of personal dose equivalent measurements made by personal dosemeters

    NASA Astrophysics Data System (ADS)

    Cechak, T.; Davidkova, J.; Kodl, O.; Novacek, P.; Papirnik, P.; Petrova, K.; Prasek, P.; Martincik, J.; Sochor, V.

    2014-11-01

    Individual monitoring services for external radiation were tested in the Czech Republic. The results of the tests show that they are dosimetry systems authorized and regularly tested in the Czech Republic having outliers for low energy region and angle of 50 degree and greater. With the highest probability, it can be stated that the processing equipment does not determine the angle of exposure reliably. These cases may have caused overestimations of Hp(10) in the special conditions occurring e.g. in interventional radiology and cardiology procedures.

  8. Application Of The Thermoluminescent Dosemeters For The Measurement Of Low Level Background

    SciTech Connect

    Stochioiu, Ana I.; Sahagia, Maria C.; Mihai, Felicia S.; Tudor, Ion L.; Lupescu, Henrieta I.

    2007-04-23

    The results obtained in the measurement of the low level radiation background by using a thermoluminescent (TL) system, in a former salt mine, designed to be used as an underground laboratory , are presented.

  9. Elimination of redundant thermoluminescent dosemeter monitoring at Oyster Creek nuclear generating station

    SciTech Connect

    Schwartz, P.E.

    1989-01-01

    The Oyster Creek direct radiation monitoring network has long been operating using several time-scale measurements. This network is used to assess the radiation levels during normal plant operations as well as to set the background radiation levels used to determine the radiological impact of a nonroutine release of radioactivity from the plant. Through analysis of the behavior of the monthly and quarterly activity of several types of direct radiation monitoring, the successful elimination of redundant and artificially high measurement techniques has been done in concert with providing the community with most efficient direct radiation monitoring methods. Dose rates from external radiation sources are measured around licensed U.S. Nuclear Regulatory Commission (NRC) facilities using passive detectors known as thermoluminescent dosimeters (TLDs). These detectors provide a quantitative measurement of the radiation levels in the are in which they are placed. The detected radiation could be the result of cosmic or naturally occurring origin in the air and on the ground, prior nuclear weapons testing, and activity from a nuclear facility. This paper describes the TLD network placed around the Oyster Creek nuclear generating station (OCNGS) and the comparisons between TLDs of different manufacturers and of different resident times and the successful elimination of the less accurate monthly TLD for the purpose of cost containment.

  10. Response of TL dosemeters to cosmic radiation on board passenger aircraft.

    PubMed

    Bilski, P; Budzanowski, M; Marczewska, B; Olko, P

    2002-01-01

    Measurements were performed with various LiF based TLDs on board seven Polish aircraft, flying long-distance or middle-distance routes. All of the 7LiF detectors used (various types of 7LiF:Mg,Ti and 7LiF:Mg,Cu,P detectors), which measure the non-neutron component of the radiation field, produced consistent results. It was found that the characteristics of the TLD response (ratio of different detector responses, glow curve shapes) after doses of radiation at flying altitudes differ from those obtained after exposure at the CERN facility (CERF), suggesting a lower contribution of densely ionising radiation. The neutron induced TL signal was also more affected by the thickness of the holder, suggesting the presence of a softer neutron energy spectrum at flight altitudes. Further in-flight and CERF exposures of detectors are planned to resolve these issues.

  11. Anomalous results with the widely used NRPB/SSI-type passive radon dosemeter.

    PubMed

    Paridaens, J

    2010-12-01

    In an industrial hall, with large variations of radon concentration within minutes, simultaneous measurements were done with two types of passive radon detectors and an active radon measuring device. The widely used passive radon detector of the National Radiological Protection Board (NRPB) [Health Protection Agency (former NRPB) (HPA)]/Statens strålskyddsinstitut (Swedish Radiation Protection Institute) (SSI) type produced anomalous results, seemingly uncorrelated to the radon concentration which was in the order of hundreds of becquerels per metre, usually underestimating but occasionally overestimating. We tried to reproduce similar exposure characteristics in our laboratory, but failed to reproduce the anomalous readings. We suspected, but could not prove, that the anomalous results were due to the combination of high radon concentration gradients, with pressure-driven air exchange between the inside of the detector holder and the outside atmosphere. Moreover, this theory was at least partly contradicted when we drilled holes in the detector holder. Although of interest, this effect is not likely to have substantially influenced any radon surveys, given the unusual nature of the exposure that caused the effect.

  12. Alarm inhalation dosemeter for long living radioactive dust due to an uncontrolled release

    SciTech Connect

    Streil, T.; Oeser, V.; Rambousky, R.; Buchholz, F. W.

    2008-08-07

    MyRIAM is the acronym for My Radioactivity In Air Monitor and points out that the device was designed for personal use to detect any radioactivity in the air at the place and at the moment of danger. The active air sampling process enables a detection limit several orders of magnitude below that of Gamma detectors. Therefore, it is the unique way to detect dangerous exposures in time.Individual protection against inhalation of long living radioactive dust (LLRD) saves human life and health. LLRD may occur in natural environment as well as in case of nuclear accidence or military and terrorist attacks. But in any case, the immediate warning of the population is of great importance. Keep in mind: it is very easy to avoid LLRD inhalation--but you have to recognize the imminent danger. The second requirement of gap-less documentation and reliable assessment of any derived LLRD exposure is building the link to Dosimetry applications.The paper demonstrates the possibility to design small and low cost air samplers, which can be used as personal alarm dosimeters and fulfil the requirements mentioned above.Several test measurements taken by a mobile phone sized MyRIAM, shall be used to demonstrate the correctness of this statement.

  13. Performance of pellets and composites of natural colourless topaz as radiation dosemeters.

    PubMed

    Souza, D N; Lima, J F; Valerio, M E G; Caldas, L V E

    2002-01-01

    The aim of the present work is to investigate the possibility of using the properties of the thermoluminescent emission (TL) of Brazilian natural topaz for dosimetric applications. Topaz is an aluminium fluorsilicate with general composition of Al2(SiO4)(F,OH)2 found with relative abundance in Brazil and in other parts of the world. Topaz from Santo Antonio do Jacinto, Minas Gerais. Brazil, was used in this work, in the form of pellets of topaz mixed with Teflon and composites made with topaz embedded in a glass matrix. The TL sensitivity was tested between 10(-4) and 10(4) Gy. The TL peak intensity increases with the dose before saturation, which occurs around 2 kGy. The peak intensity showed a strong dependence with radiation energy. The effect of visible light and the behaviour of the TL signals after successive irradiation-reading-annealing cycles are presented and discussed.

  14. Alarm inhalation dosemeter for long living radioactive dust due to an uncontrolled release

    NASA Astrophysics Data System (ADS)

    Streil, T.; Oeser, V.; Rambousky, R.; Buchholz, F. W.

    2008-08-01

    MyRIAM is the acronym for My Radioactivity In Air Monitor and points out that the device was designed for personal use to detect any radioactivity in the air at the place and at the moment of danger. The active air sampling process enables a detection limit several orders of magnitude below that of Gamma detectors. Therefore, it is the unique way to detect dangerous exposures in time. Individual protection against inhalation of long living radioactive dust (LLRD) saves human life and health. LLRD may occur in natural environment as well as in case of nuclear accidence or military and terrorist attacks. But in any case, the immediate warning of the population is of great importance. Keep in mind: it is very easy to avoid LLRD inhalation—but you have to recognize the imminent danger. The second requirement of gap-less documentation and reliable assessment of any derived LLRD exposure is building the link to Dosimetry applications. The paper demonstrates the possibility to design small and low cost air samplers, which can be used as personal alarm dosimeters and fulfil the requirements mentioned above. Several test measurements taken by a mobile phone sized MyRIAM, shall be used to demonstrate the correctness of this statement.

  15. CALIBRATION OF THERMOLUMINESCENCE AND FILM DOSEMETERS FOR SKIN DOSES FROM HIGH-ACTIVITY MICROPARTICLES.

    PubMed

    Eakins, J S; Hager, L G; Tanner, R J

    2016-09-01

    The use of EXT-RAD™ extremity TLDs and radiochromic film to measure doses from primarily beta-emitting microparticles is discussed. Specific calibration techniques have been developed, using both Monte Carlo modelling and experiments. Results for a (90)Sr/(90)Y microparticle are presented to illustrate the general techniques and to demonstrate reasonable agreement between the dosimetry methods.

  16. Detection of thermal neutrons with a CMOS pixel sensor for a future dosemeter

    SciTech Connect

    Vanstalle, M.; Husson, D.; Higueret, S.; Le, T. D.; Nourreddine, A. M.

    2011-07-01

    The RaMsEs group (Radioprotection et Mesures Environnementales) is developing a new compact device for operational neutron dosimetry. The electronic part of the detector is made of an integrated active pixel sensor, originally designed for tracking in particle physics. This device has useful features for neutrons, such as high detection efficiency for charged particles, good radiation resistance, high readout speed, low power consumption and high rejection of photon background. A good response of the device to fast neutrons has already been demonstrated [1]. In order to test the sensibility of the detector to thermal neutrons, experiments have been carried out with a 512 x 512 pixel CMOS sensor on a californium source moderated with heavy water (Cf.D{sub 2}O) on the Van Gogh irradiator at the LMDN, IRSN, Cadarache (France)). A thin boron converter is used to benefit from the significant cross section of the {sup 10}B (n,{alpha}) {sup 7}Li reaction. Results show a high detection efficiency (around 10{sup -3}) of the device to thermal neutrons. Our measurements are in good agreement with GEANT4 Monte Carlo simulations. (authors)

  17. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    SciTech Connect

    Horst, Felix Czarnecki, Damian; Zink, Klemens

    2015-11-15

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types

  18. Assessment of medical occupational radiation doses in Costa Rica.

    PubMed

    Mora, P; Acuña, M

    2011-09-01

    Participation of the University of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H(p)(10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs. PMID:21856694

  19. Operational specifications of the L.I.T.E.S. (Laser Illuminated Track Etch Scattering) dosemeter reader.

    SciTech Connect

    Moore, M. E.; Devine, R. T.; Gepford, H. J.; McKeever, R. J.; Hoffman, J. M.

    2004-01-01

    The Personnel Dosimetry Operations Team at the Los Alamos National Laboratory (LANL) has accepted the LITES dosimeter reader into its suite of radiation dose measurement instruments. The LITES instrument transmits coherent light from a HeNe laser through the pertinent track etch foil and a photodiode measures the amount of light scattered by the etched tracks. A small beam stop blocks the main laser light, while a lens refocuses the scattered light into the photodiode. Three stepper motors in the current LITES system are used to position a carousel that holds 36 track etch dosimeters. Preliminary work with the LITES system demonstrated the device had a linear response in counting foils subjected to exposures up to 50 mSv (5.0 rem). The United States Department of Energy requires that annual general employee dose not exceed 50 mSv (5.0 rem). On a regular basis, LANL uses the Autoscan 60 reader system (Thermo Electron Corp.) for counting track etch dosimeters. However, LANL uses a 15 hour etch process for CR39 dosimeters, and this produces more and larger track etch pits than the 6 hour etch used by many institutions. Therefore, LANL only uses the Autoscan 60 for measuring neutron dose equivalent up to exposure levels of about 3 mSv (300 mrem). The LITES system has a measured lower limit of detection (LLD) of about 0.6 mSv (60 mrem), and it has a correlation coefficient of R{sup 2} = 0.99 over an exposure range up to 500 mSv (50.0 rem). A series of blind studies were done using three methods: the Autoscan 60 system, manual counting by optical microscope, and the LITES instrument. A collection of track etch dosimeters of unknown NDE (neutron dose equivalent) were analyzed using the three methods, and the (PC) performance coefficient was calculated when the NDE became known. The Autoscan 60 and optical microscope methods had a combined PC = 0.171, and the LITES instrument had a PC = 0.194, where a PC less than or equal to 0.300 is considered satisfactory.

  20. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry.

    PubMed

    Bordy, J M; Gualdrini, G; Daures, J; Mariotti, F

    2011-03-01

    The work package two of the ORAMED project--Collaborative Project (2008-2011) supported by the European Commission within its seventh Framework Programme--is devoted to the study of the eye lens dosimetry. A first approach is to implement the use of H(p)(3) by providing new sets of conversion coefficients and well suited calibration and type test procedures. This approach is presented in other papers in the proceedings of this conference. Taking into account that the eye lens is an organ close to the surface of the body, another approach would be to directly estimate the absorbed dose to the eye lens, D(lens,est) through a special calibration procedure although this quantity is not directly measurable. This paper is a methodological paper that tries to identify the critical aspects of a dosimetry in terms of D(lens).

  1. Evaluation of dose equivalent by the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Chau, Q; Lahaye, T

    2007-01-01

    This paper presents the results of measurements made with the electronic personal neutron Saphydose-N during the four campaigns of the European contract EVIDOS (EValuation of Individual DOSimetry in mixed neutron and photon radiation fields). These measurements were performed at Institute for Radiological Protection and Nuclear Safety (IRSN) in France (C0), at the Krümmel Nuclear Power Plant in Germany (C1), at the VENUS Research Reactor and the Belgonucléaire fuel processing plant in Belgium (C2) and at the Ringhals Nuclear Power Plant in Sweden (C3). The results for Saphydose-N are compared with reference values for dose equivalent.

  2. Thermal expansion data for eight optical materials from 60 K to 300 K.

    PubMed

    Browder, J S; Ballard, S S

    1977-12-01

    Coefficients of linear thermal expansion are reported, in the range 60 K to room temperature, for eight optical materials: Polytran potassium chloride and Polytran calcium fluoride-Harshaw; chemical-vapor-deposited (CVD) zinc sulfide and zinc selenide-Raytheon; germanium (single-crystal and polycrystal); crystalline magnesium fluoride, potassium dihydrogen phosphate (KDP), and lithium niobate-Harshaw. The last three are anisotropic crystals; thermal expansion was measured both parallel and perpendicular to the c axis. PMID:20174331

  3. Measurements of the thermal expansion of six optical materials, from room temperature to 250 degrees C.

    PubMed

    Ballard, S S; Brown, S E; Browder, J S

    1978-04-01

    Coefficients of linear thermal expansion are reported in the range from room temperature to 250 degrees C for six optical materials: Polytran potassium chloride and Polytran calcium fluoride-Harshaw; chemical-vapordeposited (CVD) zinc selenide and zinc sulfide-Raytheon; single-crystal germanium-Eagle-Picher; and lithium niobate-Harshaw. For the last named, an anisotropic crystal, thermal expansion was measured both parallel and perpendicular to the c axis. Curves are given to illustrate the expansion behavior of the materials over the 60-500-K range. PMID:20197949

  4. CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry

    NASA Astrophysics Data System (ADS)

    Bahl, Shaila; Lochab, S. P.; Kumar, Pratik

    2016-02-01

    With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.

  5. Novel reference radiation fields for pulsed photon radiation installed at PTB.

    PubMed

    Klammer, J; Roth, J; Hupe, O

    2012-09-01

    Currently, ∼70 % of the occupationally exposed persons in Germany are working in pulsed radiation fields, mainly in the medical sector. It has been known for a few years that active electronic dosemeters exhibit considerable deficits or can even fail completely in pulsed fields. Type test requirements for dosemeters exist only for continuous radiation. Owing to the need of a reference field for pulsed photon radiation and accordingly to the upcoming type test requirements for dosemeters in pulsed radiation, the Physikalisch-Technische Bundesanstalt has developed a novel X-ray reference field for pulsed photon radiation in cooperation with a manufacturer. This reference field, geared to the main applications in the field of medicine, has been well characterised and is now available for research and type testing of dosemeters in pulsed photon radiation.

  6. Personal neutron dosimetry at a research reactor facility.

    PubMed

    Kamenopoulou, V; Carinou, E; Stamatelatos, I E

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve.

  7. Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field.

    PubMed

    Marrale, M; Brai, M; Gennaro, G; Triolo, A; Bartolotta, A; D'Oca, M C; Rosi, G

    2007-01-01

    In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known to be much more sensitive to thermal neutrons than simple alanine.

  8. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. PMID:24639589

  9. PROPERTIES OF THE BEOSL DOSIMETRY SYSTEM IN THE FRAMEWORK OF A LARGE-SCALE PERSONAL MONITORING SERVICE.

    PubMed

    Haninger, T; Hödlmoser, H; Figel, M; König-Meier, D; Henniger, J; Sommer, M; Jahn, A; Ledtermann, G; Eßer, R

    2016-09-01

    The Individual Monitoring Service of the Helmholtz Zentrum München is currently using the BeOSL dosimetry system for monitoring ∼15 000 persons per month. This dosimetry system has a modular structure and represents a complete new concept on handling dosemeters in a large-scale dosimetry service. It is based on optically stimulated luminescence dosemeters made of beryllium oxide. The dosimetric and operational properties of the system are shown and discussed.

  10. PROPERTIES OF THE BEOSL DOSIMETRY SYSTEM IN THE FRAMEWORK OF A LARGE-SCALE PERSONAL MONITORING SERVICE.

    PubMed

    Haninger, T; Hödlmoser, H; Figel, M; König-Meier, D; Henniger, J; Sommer, M; Jahn, A; Ledtermann, G; Eßer, R

    2016-09-01

    The Individual Monitoring Service of the Helmholtz Zentrum München is currently using the BeOSL dosimetry system for monitoring ∼15 000 persons per month. This dosimetry system has a modular structure and represents a complete new concept on handling dosemeters in a large-scale dosimetry service. It is based on optically stimulated luminescence dosemeters made of beryllium oxide. The dosimetric and operational properties of the system are shown and discussed. PMID:26424135

  11. TL detectors for gamma ray dose measurements in criticality accidents.

    PubMed

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. PMID:17369267

  12. Current Challenges in Personal Dosimetry at the U.S. DOE Hanford Site

    SciTech Connect

    Rathbone, Bruce A. ); McDonald, Joseph C. ); Traub, Richard J. )

    2002-10-01

    Abstract - This paper presents an overview of the dosimetry system, dose equivalent calculation methodology, and QA/QC practices used at the U.S. Department of Energy Hanford site. It describes some of the problems encountered in accurately measuring dose equivalent quantities under a broad range of field conditions that do not necessarily correlate with laboratory calibration conditions and the approach taken to solve these problems. Personnel at Hanford are monitored with a combination of Harshaw model 8825 and 8816 thermoluminescent dosimeters and CR-39? track etch dosimeters. Extremities are monitored using the ICN MeasuRing loaded with a Harshaw XD740 chipstrate TLD. All dosimeters employ LiF:Mg,Ti elements that are read onsite with Harshaw model 8800 and 6600 TLD readers. CR-39? dosimeters are electrochemically etched in non-commercial etch chambers and counted with an automated track counting system developed by Pacific Northwest National Laboratory. Problems with over response of the 8825 with respect to Hp(0.07), under response of the 8825 with respect to Hp(3), and over response of the 8825 with respect to Hp(10) in Hanford's 90Sr/90Y beta radiation fields are discussed. Approaches to measurement of the operational quantities for field conditions and algorithm solutions to the above problems are described. Methods used to calibrate the ring dosimeter for Hanford field conditions together with limitations of the ring dosimeter in measuring Hp(0.07) for extremities, particularly when covered with protective clothing, are also discussed.

  13. Optimization of the photon response for a LiF thermoluminescent dosimeter

    SciTech Connect

    Carnell, R.C.

    1998-12-31

    A Harshaw LiF TLD card holder was optimized for maximum discrimination between different energies of irradiating photons in order to improve the dosimetric response. Since dose is proportional energy deposited, a theoretical model was created to estimate the TLD response by calculating the energy deposition. These results correlated with experimental data from NIST to within 20%. In order to increase the accuracy of the model, energy deposition calculations were made using the MCNP particle transport program. MCNP improved the correlation of the modeled data with the experimental data. Next, Harshaw`s 8825 card holder was optimized for photon energy determination by analyzing the card holder`s response with different filter materials and thickness. This analysis showed that increasing the copper filter thickness by 20 times and doubling the tin filter thickness compared to the original 8825 design improved the TLD`s photon energy determination response. The improved 8825 card holder was constructed and experiments were conducted at Armstrong Laboratories. The MCNP model predicted the experimental response of the card holder to within two standard deviations for all beams except M60. Finally, recommendations for a new card holder were made by Naval Dosimetry Center which included a modified filter for improved dose determination.

  14. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe--a review based on the EURADOS questionnaire.

    PubMed

    Olko, P; Currivan, L; van Dijk, J W E; Lopez, M A; Wernli, C

    2006-01-01

    Among the activities of EURADOS Working Group 2 formed by experts from several European countries is the harmonisation of individual monitoring as part of radiation protection of occupationally exposed persons. Here, we provide information about thermoluminescent detectors (TLDs) applied by the European dosimetric services and the dosimetric characteristics of dosemeters in which these detectors are applied. Among 91 services from 29 countries which responded to the EURADOS questionnaire, 61 apply dosemeters with TLDs for the determination of personal dose equivalent H(p)(10) for photons and beta radiation, and 16 services use TLDs for neutron albedo dosemeters. Those most frequently used are standard lithium fluoride TLDs (mainly TLD-100, TLD-700, Polish MTS-N and MTS-7, Russian DTG-4), high-sensitive lithium fluoride (GR-200, MCP-N) and lithium borate TLDs. Some services use calcium sulphate and calcium fluoride detectors. For neutron dosimetry, most services apply pairs of LiF:Mg,Ti TLDs with (6)Li and (7)Li. The characteristics (energy response) of individual dosemeters are mainly related to the energy response of the detectors and filters applied. The construction of filters in dosemeters applied for measurements of H(p)(10) and their energy response are also reviewed. PMID:16581929

  15. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  16. Dose evaluation from multiple detector outputs using convex optimisation.

    PubMed

    Hashimoto, Makoto; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation.

  17. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  18. Determination of the absorbed dose and the average LET of space radiation in dependence on shielding conditions.

    PubMed

    Vana, N; Schoner, W; Noll, M; Fugger, M; Akatov, Y; Shurshakov, V

    1999-01-01

    The HTR method, developed for determination of absorbed dose and average LET of mixed radiation fields in space, was applied during several space missions on space station MIR, space shuttles and satellites. The method utilises the changes of peak height ratios in the glow curves in dependence on the linear energy transfer LET. Due to the small size of the dosemeters the evaluation of the variation of absorbed dose and average LET in dependence on the position of the dosemeters inside the space station is possible. The dose and LET distribution was determined during the experiment ADLET where dosemeters were exposed in two positions with different shielding conditions and during two following experiments (MIR-95, MIR-96) using six positions inside the space station. The results were compared with the shielding conditions of the positions. Calculations of the absorbed dose were carried out for comparison. Results have shown that the average LET increases with increasing absorbing thickness while the absorbed dose decreases.

  19. Liquefaction of bituminous coals using disposable ore catalysts and hydrogen. Final report, February 7, 1982-July 31, 1982

    SciTech Connect

    Mathur, V.K.

    1982-09-01

    There are a number of problems associated with the production of liquid fuels from coal. The most complex is the use of commercial catalysts which are expensive, with short life, and cannot be recovered or regenerated. The objective of this study was to conduct experiments on coal hydrogenation using low cost mineral ores as disposable catalysts. Coal samples from Blacksville Mine, Pittsburgh Bed were hydrogenated using a number of ores, ore concentrates and industrial waste products as catalysts. Experiments were also conducted using a commercial catalyst (Harshaw Chemicals, 0402T) and no catalyst at all to compare the results. Since iron pyrite has been reported to be a good disposable catalyst, experiments were also conducted using pyrite individually as well as in admixture with other ores or concentrates. The liquefaction was conducted at 425/sup 0/C under 2000 psig (13,790 kPa) hydrogen pressure for a reaction time of 30 minutes using SRC-II heavy distillate as a vehicle oil. The conclusions of this study are as follows: (a) Results of liquefaction using two cycle technique showed that the catalytic activity of iron pyrite could be enhanced by adding materials like limonite, laterite or red mud. Iron pyrite in admixture with limonite ore or molybdenum oxide concentrate gave the best results among all the binary mixtures studied. (b) Iron pyrite with molybdenum oxide concentrate and cobaltic hydroxide cake (metal loading in each case the same as in Harshaw catalyst) gave results which compared favorably with those obtained using the Harshaw catalyst. It is recommended that work on this project should be continued exploring other ores and their mixtures for their catalytic activity for coal liquefaction.

  20. Improved catalysts for coal liquefaction: Quarterly report No. 10 for the period November 30, 1986 to February 28, 1987

    SciTech Connect

    Haynes, H.W. Jr.; McCormick, R.L.

    1987-03-24

    One deactivation run was completed during the last quarter using a catalyst prepared from a Harshaw/Filtrol titania support (JK02). This catalyst had a much lower surface area than the benchmark commercial catalyst (Amocat 1A) and consequent lower hydrogenation activity. The JK02 catalysts maintained its activity very well however and deactivation paralleled that of the benchmark catalyst. Silica-magnesia and nitrided activated carbon were tested as catalyst supports in batch reactor initial activity studies. Silica-magnesia did not perform well but a nitrided activated carbon supported catalyst has been selected for activity maintenance testing in the next quarter. 10 refs., 5 figs., 11 tabs.

  1. A preliminary study to determine the diagnostic reference level using dose–area product for limited-area cone beam CT

    PubMed Central

    Endo, A; Katoh, T; Vasudeva, SB; Kobayashi, I; Okano, T

    2013-01-01

    Objectives: The aim of this study was to measure the dose–area product (DAP) of limited-area cone beam CT (CBCT) units used by dental offices, and to evaluate the rationale of the DAP with an aid of optically stimulated luminescence (OSL) dosemeter in measuring radiation dose. Method: The DAPs of 21 CBCT units used in the dental offices of Tokyo and the surrounding areas from five different manufacturers were measured using OSL nanoDot dosemeter. An assembly of OSL dosemeters with an X-ray film was exposed by CBCT units at exposure parameters commonly used in each dental office. DAP values were then calculated as expressed in mGy cm2. Results: DAP values ranged from 126.7 mGy cm2 to 1476.9 mGy cm2, depending on the units used. Conclusion: OSL dosemeter coupled with film can be utilized for a large-scale study to measure DAP. The DAP values for individual CBCT units depend not only on the field of view, but also on the exposure parameters adapted by the dental offices. PMID:23420859

  2. Dose measurements in space by the Hungarian Pille TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I; Akatov, Y A; Reitz, G; Arkhanguelski, V V

    2002-10-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 microGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised. PMID:12440428

  3. Dose measurements in space by the Hungarian Pille TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I; Akatov, Y A; Reitz, G; Arkhanguelski, V V

    2002-10-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 microGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised.

  4. Some developments in neutron and charged particle dosimetry.

    PubMed

    Bos, Adrie J J; d'Errico, Francesco

    2006-01-01

    There is an increasing need for dosimetry of neutrons and charged particles. Increasing exposure levels are reported in the nuclear industry, deriving from more frequent in-service entries at commercial nuclear power plants, and from increased plant decommissioning and refurbishment activities. Another need stems from the compliance with requirements of the regulations and standards. The European Council directive 96/29 requires dosimetric precautions if the effective dose exceeds 1 mSv a(-1). On average, aircrew members exceed this value. Further, there is a trend of increasing use of charged particles in radiotherapy. The present situation is that we have reasonably good photon dosemeters, but neutron and charged particle dosemeters are still in need of improvements. This work highlights some of the developments in this field. It is mainly concentrated on some developments in passive dosimetry, in particular thermally and optically stimulated luminescent detectors, indicating the direction of ongoing research. It shows that passive dosemeters are still a very active field. Active dosemeters will not be discussed with the exception of new developments in microdosimetric measurements [new types of tissue equivalent proportional counters (TEPCs)]. The TEPC is unique in its ability to provide a simultaneous determination of neutron / charged particle / gamma ray doses, or dose equivalents using a single detector. PMID:16987918

  5. Reproducibility study of TLD-100 micro-cubes at radiotherapy dose level.

    PubMed

    da Rosa, L A; Regulla, D F; Fill, U A

    1999-03-01

    The precision of the thermoluminescent response of Harshaw micro-cube dosimeters (TLD-100), evaluated in both Harshaw thermoluminescent readers 5500 and 3500, for 1 Gy dose value, was investigated. The mean reproducibility for micro-cubes, pre-readout annealed at 100 degrees C for 15 min, evaluated with the manual planchet reader 3500, is 0.61% (1 standard deviation). When micro-cubes are evaluated with the automated hot-gas reader 5500, reproducibility values are undoubtedly worse, mean reproducibility for numerically stabilised dosimeters being equal to 3.27% (1 standard deviation). These results indicate that the reader model 5500, or, at least, the instrument used for the present measurements, is not adequate for micro-cube evaluation, if precise and accurate dosimetry is required. The difference in precision is apparently due to geometry inconsistencies in the orientation of the imperfect micro-cube faces during readout, requiring careful and manual reproducible arrangement of the selected micro-cube faces in contact with the manual reader planchet.

  6. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect

    Pryor, W.A.

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  7. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect

    Pryor, W.A.

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  8. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  9. The patient as a radioactive source: an intercomparison of survey meters for measurements in nuclear medicine.

    PubMed

    Uhrhan, K; Drzezga, A; Sudbrock, F

    2014-11-01

    In this work, the radiation exposure in nuclear medicine is evaluated by measuring dose rates in the proximity of patients and those in close contact to sources like capsules and syringes. A huge number of different survey meters (SMs) are offered commercially. This topic has recently gained interest since dosemeters and active personal dosemeters (APD) for the new dose quantities (ambient and directional dose equivalent) have become available. One main concern is the practical use of SMs and APD in daily clinical routines. Therefore, the radiation field of four common radiopharmaceuticals containing (18)F, (90)Y, (99m)Tc and (131)I in radioactive sources or after application to the patient was determined. Measurements were carried out with different SMs and for several distances. Dose rates decline significantly with the distance to the patient, and with some restrictions, APD can be used as SMs.

  10. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39.

  11. Temperature response of a number of plastic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Sohrabpour, M.; Kazemi, A. A.; Mousavi, H.; Solati, K.

    1993-10-01

    Various plastic dosemeters are employed for dosimetry control of radiation processing within gamma and electron irradiation facilities. The temperature response of a dosimeter is important when the dose to such a dosimeter is accumulated under varying irradiation temperatures. Such measurements would be significant for proper assessment of the dose for better process control, as well as, performance evaluation of dosimetry systems. In this work we have developed a high current peltier junction temperature controller system for our Gammacell-220. This system has been designed to regulate the operating temperature of the irradiation chamber in the range of 0 to 80 C this system has been applied to measure the temperature response of the red perspex, a local clear PMMA, Gammex, Gammachrome, and Gafchromic dosimeters. The curves of relative performance or variation of the induced optical densities of the above dosemeters versus the irradiation temperature at fixed dose values are obtained.

  12. A method to characterise site, urban and regional ambient background radiation.

    PubMed

    Passmore, C; Kirr, M

    2011-03-01

    Control dosemeters are routinely provided to customers to monitor the background radiation so that it can be subtracted from the gross response of the dosemeter to arrive at the occupational dose. Landauer, the largest dosimetry processor in the world with subsidiaries in Australia, Brazil, China, France, Japan, Mexico and the UK, has clients in approximately 130 countries. The Glenwood facility processes over 1.1 million controls per year. This network of clients around the world provides a unique ability to monitor the world's ambient background radiation. Control data can be mined to provide useful historical information regarding ambient background rates and provide a historical baseline for geographical areas. Historical baseline can be used to provide site or region-specific background subtraction values, document the variation in ambient background radiation around a client's site or provide a baseline for measuring the efficiency of clean-up efforts in urban areas after a dirty bomb detonation.

  13. Personal neutron dosimetry in the space station MIR and the Space Shuttle.

    PubMed

    Luszik-Bhadra, M; Matzke, M; Otto, T; Reitz, G; Schuhmacher, H

    1999-06-01

    A passive neutron dosemeter based on nuclear track detectors and TLD's was used in 1995 and 1997 on the MIR station and in Space Shuttle flights to MIR. As it is equipped with neutron converters and shieldings of different types the track detector system allows the neutron dose equivalent to be determined in rough energy intervals. The results of the measurements on the MIR station and in the Space Shuttle flights are presented and the influence of charged particles in the complex mixed radiation field in space is discussed. Improvements are possible by means of a new active neutron dosemeter which is under development at the PTB. First measurements with a prototype in the high-energy reference fields at CERN are presented and discussed.

  14. Responses of TLD Mg2SiO4:Tb and radiophotoluminescent glass to heavy charged particles and space radiation.

    PubMed

    Yasuda, H; Fujitaka, K

    2000-01-01

    The LET dependences of thermoluminescence dosimeters of Mg2SiO4:Tb (TLMS) and radiophotoluminescent glass dosemeters (RPLG) were examined using high energy, heavy ion beams. TLMS kept its efficiency below 10 keV micrometer-1 and decreased almost linearly with the logarithm of LET for higher LET particles. The efficiency of RPLG decreased more gradually than TLMS although its reduction was observed at a lower LET region around 0.5 keV micrometer-1. Accordingly, the ratio of TLMS to RPLG valued showed a maximum peak around 20 keV micrometer-1 of LET. The results obtained with both dosemeters in the 40 day space mission in the Russian space station Mir showed that not only dose level but also radiation quality were varying considerable in the Mir Core Module.

  15. A method to characterise site, urban and regional ambient background radiation.

    PubMed

    Passmore, C; Kirr, M

    2011-03-01

    Control dosemeters are routinely provided to customers to monitor the background radiation so that it can be subtracted from the gross response of the dosemeter to arrive at the occupational dose. Landauer, the largest dosimetry processor in the world with subsidiaries in Australia, Brazil, China, France, Japan, Mexico and the UK, has clients in approximately 130 countries. The Glenwood facility processes over 1.1 million controls per year. This network of clients around the world provides a unique ability to monitor the world's ambient background radiation. Control data can be mined to provide useful historical information regarding ambient background rates and provide a historical baseline for geographical areas. Historical baseline can be used to provide site or region-specific background subtraction values, document the variation in ambient background radiation around a client's site or provide a baseline for measuring the efficiency of clean-up efforts in urban areas after a dirty bomb detonation. PMID:20959341

  16. Experimental determination of the dose deposition profile of a 90Sr beta source.

    PubMed

    Gaza, R; Bulur, E; McKeever, S W S; Soares, C G

    2006-01-01

    Three different methods for characterising the dose deposition profile of a (90)Sr/(90)Y radioactive source are described: GAFChromic film dosimetry, Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL). For the film measurements, GAFChromic film samples were stacked at different depths between polyethylene terephthalate (PET) foils. For TL, the thickness of a TLD-500 dosemeter was gradually reduced by polishing and the TL from chips of different thickness was used in conjunction with a mathematical model based on the exponential attenuation of dose inside the crystal to determine the decay constant for the dose-depth profile. Finally, an OSL reader with confocal stimulation / detection capabilities was used to map the two-dimensional dose distribution in TLD-500 dosemeters as a function of depth. The shapes of the dose deposition profiles obtained from all the investigated methods are in good agreement. PMID:16644945

  17. Thermoluminescence dosimetric characteristics of beta irradiated salt.

    PubMed

    Murthy, K V R; Pallavi, S P; Rahul, G; Patel, Y S; Sai Prasad, A S; Elangovan, D

    2006-01-01

    The thermoluminescence (TL) characteristics of sodium chloride (NaCl), known as common salt, used for cooking purposes (iodised salt), have been studied in the present paper considering its usage as an 'accidental dosemeter' in the case of a nuclear fallout. TL characteristics of common salt have been examined under excitation with a beta dose of 20 Gy from a 90Sr beta source. The salt specimens are used in the form of discs. The average salt grain that sticks to the disc is measured to be approximately 1 mg. The TL of the beta irradiated salt is recorded in the conventional TL apparatus. Initially three peaks were observed at 133, 205 and 238 degrees C. All three peaks are well resolved, having maximum intensity at 238 degrees C. The material under investigation, i.e. 'common salt' possesses many good dosimetric properties and therefore this can be considered as an 'accidental dosemeter'.

  18. A practical method to evaluate radiofrequency exposure of mast workers.

    PubMed

    Alanko, Tommi; Hietanen, Maila

    2008-01-01

    Assessment of occupational exposure to radiofrequency (RF) fields in telecommunication transmitter masts is a challenging task. For conventional field strength measurements using manually operated instruments, it is difficult to document the locations of measurements while climbing up a mast. Logging RF dosemeters worn by the workers, on the other hand, do not give any information about the location of the exposure. In this study, a practical method was developed and applied to assess mast workers' exposure to RF fields and the corresponding location. This method uses a logging dosemeter for personal RF exposure evaluation and two logging barometers to determine the corresponding height of the worker's position on the mast. The procedure is not intended to be used for compliance assessments, but to indicate locations where stricter assessments are needed. The applicability of the method is demonstrated by making measurements in a TV and radio transmitting mast.

  19. Factors influencing uncertainty in measurement of electric fields close to the body in personal RF dosimetry.

    PubMed

    Iskra, S; McKenzie, R; Cosic, I

    2010-06-01

    This paper provides an insight into factors that can influence uncertainty in measurements at 900 MHz of electric fields close to the body for use in personal dosimetry. Computational simulations using the finite difference time domain method were used to determine the total electric field near the surface of the torso of heterogeneous (adult and child) human body models for a set of exposure scenarios that simulated both spatially constant and randomly varying incident fields. Modelling has shown that a properly responding isotropic electric field dosemeter mounted between 10 and 50 mm of the torso will on average underestimate the incident field strength by up to 6.45 dB. In the worst case (i.e. spatially constant field), the standard deviation or uncertainty reached 6.42 dB. Uncertainty was reduced to <2.17 dB by combining the simultaneous outputs of a pair of body-worn dosemeters (mounted front and rear of torso).

  20. A A field test for extremity dose assessment during outages at Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2013-05-01

    During maintenance on the water chamber of a steam generator, the pressuriser heater and the pressure tube feeder in nuclear power plants, workers are likely to receive high radiation doses due to the severe workplace conditions. In particular, it is expected that workers' hands would receive the highest radiation doses because of their contact with the radioactive materials. In this study, field tests for extremity dose assessments in radiation workers undertaking contact tasks with high radiation doses were conducted during outages at pressurised water reactors and pressurised heavy water reactors in Korea. In the test, the radiation workers were required to wear additional thermoluminescent dosemeters (TLDs) on their backs and wrists and an extremity dosemeter on the finger, as well as a main TLD on the chest while performing the maintenance tasks. PMID:23091221

  1. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39. PMID:15353669

  2. DOSE MEASUREMENTS TO THE LENS IN NUCLEAR MEDICINE AND IN FLUOROSCOPY-GUIDED INTERVENTIONAL PROCEDURES: ANALYSIS OF THE RESULTS AND ASSESSMENT OF THE EFFECTIVENESS OF PROTECTIVE EYEWEAR ANTI-X.

    PubMed

    Sarti, G; Busca, F; Carpano, L; Dottore, F Del; Dall'ara, D; Sanniti, S

    2016-09-01

    The new limit of 20 mSv to the lens raises the need for further assessment of the equivalent dose to the lens for nuclear medicine and interventional radiology operators. (a) A measurement campaign was performed in nuclear medicine, (b) a routine monitoring was organised in interventional procedures and (c) the effectiveness of protective eyewear was assessed. In nuclear medicine, for photon fields, the adequacy of Hp(0.07) of dosemeter worn on the trunk is confirmed; with (90)Y, the annual values of Hp(3) measured in therapeutic session are <5 mSv. In interventional procedures, routine monitoring of the dose to the lens must be maintained where the values of Hp(0.07) dosemeter worn on the trunk are higher than one-third of the new limits. The measures carried out have shown that the attenuation factor mean of the protective glasses is equal to ∼4 (range 1.7-11.4).

  3. Variations in backscatter observed in PMMA whole-body dosimetry slab phantoms.

    PubMed

    Schwahn, Scott O; Gesell, Thomas F

    2008-01-01

    Polymethyl methacrylate (PMMA) is a useful material for dosimetry phantoms in many ways including approximate tissue equivalence, stability, accessibility and ease of use. However, recent studies indicate that PMMA may have some unanticipated variation in backscatter from one phantom to another. While the reasons behind the variations have not been identified, it has been demonstrated that the backscatter from one phantom to another may vary by as much as 15%, resulting in a dosemeter response variation of as much as 5%. This unexpected contribution to uncertainty in delivered dose to a dosemeter may be quite large compared to the normally estimated uncertainty, potentially causing problems with calibration and performance testing. This paper includes data supporting the differences in backscatter among phantoms, and results from tests on the phantoms performed in an effort to identify possible causes.

  4. A Brazilian government external individual monitoring service: experience since 1972.

    PubMed

    Mauricio, Claudia L P; Martins, Marcelo M; Ramos, Elisabete Vargas; Souza-Santos, Denison

    2011-03-01

    Instituto de Radioproteção e Dosimetria, a Brazilian government research institute, provides individual monitoring services since 1972. Its dosemeters are: film-based thorax for whole body photons, thermoluminescence dosimetry (TLD) albedo for whole body neutrons and TLD ring for extremity photons. About 6000 radiation workers are currently being monitored with film dosemeters in 256 different facilities in Brazil, most of them working in health-related activities. Around 400 Brazilian radiation workers are monitored with TLD albedo neutron monitor and about 500 workers use TLD rings. This paper describes the monitoring systems used, presents the results obtained in internal quality programs and in intercomparison exercises and analyses the measured dose values from 1985 to 2009. PMID:21148166

  5. The suitability of diazochrome KBL film for UV dosimetry.

    PubMed

    Moseley, H; Robertson, J; O'Donoghue, J

    1984-06-01

    A promising material for use in a UV film badge dosemeter is diazo film. The optical density of this substance changes on exposure to ultraviolet radiation. The present paper reports some of the relevant factors in the processing of the film and also on its spectral sensitivity. It is evident from our results that development time and volume and concentration of ammonia solution should be standardised. However, after the film has been developed, it is not affected by subsequent UV exposure or by storage for up to one month. Although maximum sensitivity occurs at 405 nm, there is still an easily measurable response at 254 nm. It is concluded that provided procedures are standardised, Diazochrome KBL film is an inexpensive, convenient material for a UV film badge dosemeter with measurable sensitivity down to 254 nm. PMID:6463103

  6. The importance of the direction distribution of neutron fluence, and methods of determination

    NASA Astrophysics Data System (ADS)

    Bartlett, D. T.; Drake, P.; d'Errico, F.; Luszik-Bhadra, M.; Matzke, M.; Tanner, R. J.

    2002-01-01

    For the estimation of non-isotropic quantities such as personal dose equivalent and effective dose, and for the interpretation of the readings of personal dosemeters, it is necessary to determine both the energy and direction distributions of the neutron fluence. In fact, for workplace fields, the fluence and dose-equivalent responses of dosemeters and the relationships of operational and protection quantities, are frequently more dependent on the direction than on the energy distribution. In general, the direction distribution will not be independent of the energy distribution, and simultaneous determination of both may be required, which becomes a complex problem. The extent to which detailed information can be obtained depends on the spectrometric properties and on the angle dependence of the response of the detectors used. Methods for the determination of direction distributions of workplace fields are described.

  7. A practical method to evaluate radiofrequency exposure of mast workers.

    PubMed

    Alanko, Tommi; Hietanen, Maila

    2008-01-01

    Assessment of occupational exposure to radiofrequency (RF) fields in telecommunication transmitter masts is a challenging task. For conventional field strength measurements using manually operated instruments, it is difficult to document the locations of measurements while climbing up a mast. Logging RF dosemeters worn by the workers, on the other hand, do not give any information about the location of the exposure. In this study, a practical method was developed and applied to assess mast workers' exposure to RF fields and the corresponding location. This method uses a logging dosemeter for personal RF exposure evaluation and two logging barometers to determine the corresponding height of the worker's position on the mast. The procedure is not intended to be used for compliance assessments, but to indicate locations where stricter assessments are needed. The applicability of the method is demonstrated by making measurements in a TV and radio transmitting mast. PMID:19054796

  8. Eye dose monitoring of PET/CT workers

    PubMed Central

    O'Connor, U; O'Reilly, G

    2014-01-01

    Objective: The objective of the study was to measure eye dose [Hp(3)] to workers in a busy positron emission tomography (PET)/CT centre. Doses were compared with the proposed new annual dose limit of 20 mSv. Methods: We used a newly designed dosemeter to measure eye dose [Hp(3)]. Eye dosemeters were worn with an adjustable headband, with the dosemeter positioned adjacent to the left eye. The whole-body dose was also recorded using electronic personal dosemeter (EPD® Mk2; Thermo Electron Corporation, Waltham, MA). Exposed staff included radiographers, nurses and healthcare assistants. Results: The radiographers received the highest exposure of the staff groups studied, with one radiographer receiving an exposure of 0.5 mSv over the 3-month survey period. The estimated maximum eye dose for 1 year is approximately 2 mSv. The numeric value for eye dose was compared with the numeric value for personal dose equivalent to see if one could be used as an indicator for the other. From our data, a conservative estimate of eye dose Hp(3) (mSv) can be made as being up to approximately twice the numeric value for whole-body dose [Hp(10)] (mSv). Conclusion: Eye dose was found to be well within the new proposed annual limit at our PET/CT centre. Routine whole-body dose measurements may be a useful starting point for assessing whether eye dose monitoring should be prioritized in a PET facility. Advances in knowledge: Following the proposal of a reduced eye dose limit, this article provides new measurement data on staff eye doses for PET/CT workers. PMID:25109711

  9. Implementation of an electronic personal dosimetry system (EPD) at Oldbury-on-Severn power station.

    PubMed

    Clarke, P W; Weeks, A R

    2001-03-01

    This article presents the implementation of an electronic personal dosemeter (EPD) as a film badge replacement at Oldbury-on-Severn power station, which is the first major site to use an approval issued by the UK Health and Safety Executive (HSE) for dose measurement by an EPD. The practicalities and history behind the introduction of an EPD for personal dosimetry are described. PMID:11281529

  10. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.

    PubMed

    Lee, YoungJu; Won, Yuho; Kang, Kidoo

    2015-04-01

    Passive integrating dosemeters [thermoluminescent dosimeter (TLD) and optically stimulated luminescence (OSL)] are the only legally permitted individual dosemeters for occupational external radiation exposure monitoring in Korea. Also its maximum issuing cycle does not exceed 3 months, and the Korean regulations require personal dosemeters for official assessment of external radiation exposure to be issued by an approved or rather an accredited dosimetry service according to ISO/IEC 17025. KHNP (Korea Hydro & Nuclear Power, LTD), a unique operating company of nuclear power plants (NPPs) in Korea, currently has a plan to extend a TLD issuing cycle from 1 to 3 months under the authors' fading error criteria, ±10%. The authors have performed a feasibility study that minimises post-irradiation fading effects within their maximum reading cycle employing pre-heating technique. They repeatedly performed irradiation/reading a bare TLD chip to determine optimum pre-heating conditions by analysing each glow curve. The optimum reading conditions within the maximum reading cycle of 3 months were decided: a pre-heating temperature of 165°C, a pre-heating time of 9 s, a heating rate of 25°C s(-1), a reading temperature of 300°C and an acquisition time of 10 s. The fading result of TLD-600 and TLD-700 carried by newly developed time temperature profile (TTP) showed a much smaller fading effect than that of current TTP. The result showed that the fading error due to a developed TTP resulted in a ∼5% signal loss, whereas a current TTP caused a ∼15% loss. The authors also carried out a legal performance test on newly developed TTP to confirm its possibility as an official dosemeter. The legal performance tests that applied the developed TTP satisfied the criteria for all the test categories. PMID:25301971

  11. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of the Assistant Secretary for Policy, Safety, and Environment. Part 5. Overview and assessment

    SciTech Connect

    Bair, W.J.

    1985-02-01

    Research conducted in 1984 is briefly described. Research areas include: (1) uncertainties in modeling source/receptor relations for acidic deposition; (2) health physics support and assistance to the DOE; (3) technical guidelines for radiological calibrations; (4) personnel neutron dosemeter evaluation and upgrade program; (5) beta measurement evaluation and upgrade; (6) accreditation program for occupational exposure measurements; (7) assurance program for Remedial Action; (8) environmental protection support and assistance; (9) hazardus waste risk assessment; and (10) radiation policy studies. (ACR)

  12. Thermoluminescence glow-curve characteristics of LiF phosphors at high doses of gamma radiation

    NASA Astrophysics Data System (ADS)

    Benny, P. G.; Khader, S. A.; Sarma, K. S. S.

    2013-05-01

    High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1-60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5-50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.

  13. Evaluation of new and conventional thermoluminescent phosphors for environmental monitoring using automated thermoluminescent dosimeter readers

    SciTech Connect

    Rathbone, B.A.; Endres, A.W.; Antonio, E.J.

    1994-10-01

    In recent years, there has been considerable interest in a new generation of super-sensitive thermoluminescent (TL) phosphors for potential use in routine personnel and environmental monitoring. Two of these phosphors, {alpha}-Al{sub 2}O{sub 3}:C and LiF:Mg,Cu,P, are evaluated in this paper for selected characteristics relevant to environmental monitoring, along with two conventional phosphors widely used in environmental monitoring, LiF:Mg,Ti and CaF{sub 2}:Dy. The characteristics evaluated are light-induced fading, light-induced background, linearity and variability at low dose, and the minimum measurable dose. These characteristics were determined using an automated commercial dosimetry system (Harshaw System 8800) and routine processing protocols. Annealing and readout protocols for each phosphor were optimized for use in a large-scale environmental monitoring program.

  14. Optimum parameters of TLD100 powder used for radiotherapy beams calibration check

    SciTech Connect

    Arib, M. . E-mail: mehenna.arib@comena-dz.org; Yaich, A.; Messadi, A.; Dari, F.

    2006-10-01

    External audit of the absorbed dose determination from radiotherapy machines is performed using Lithium fluoride (LiF) TLD-100. Optimal parameters needed to obtain highly accurate dosage from LiF powder was investigated, including the setup of the Harshaw 4000 reader. A linear correspondence between the thermoluminescent signal and the mass of the powder was observed, demonstrating that the dose can be evaluated with small samples of powder. The reproducibility of the thermoluminescence dosimeter (TLD) readings obtained with up to 10 samples from 1 capsule containing 160 mg of powder was around 1.5% (1 standard deviation [SD]). The time required for the manual evaluation of TLDs can be improved by 3 readings without loss of accuracy. Better reproducibility is achieved if the capsules are evaluated 7 days after irradiation using a nitrogen flow of 300 cc/min.

  15. Metallurgical analysis and high temperature degradation of the black chrome solar selective absorber

    SciTech Connect

    Lampert, C.M.

    1980-03-01

    The characteristics of black chrome, a solar selective absorber, have been the object of much interest by solar materials scientists. For this study, a well known coating, Harshaw Chemical Company's Chromonyx was selected for detailed scrutiny of its properties and degradation modes when exposed to high temperatures. Both as-plated and annealed microstructural models were presented. Technical means used in this microstructural characterization were: scanning and transmission electron microscopy, Auger depth profiling hemispherical reflectance and energy dispersive x-ray analysis. From these results a physical metallurgical model for wavelength selective properties of the coating was developed. Thus, it was observed that black chrome degraded as Cr/sub 2/O/sub 3/ oxide particles grew and chromium depleted. This effect was pronounced in air and to a lesser degree in medium vacuum. Oxidation by preferential diffusion and outgassing which causes structural changes, may take place.

  16. Characterisation of OSL and OSLN droplets for dosimetry.

    PubMed

    Nascimento, L F; D'Agostino, E; Vaniqui, A C S; Saldarriaga, C; Vanhavere, F; De Deene, Y

    2014-10-01

    In spite of considerable progress in neutron dosimetry, there is no dosemeter that is capable of measuring neutron doses independently of the neutron spectrum with good accuracy. Carbon-doped aluminium oxide (Al2O3:C) is a sensitive material for ionising radiation (beta-ray, X ray and electron) and has been used for applications in personal and medical dosimetry as an optically stimulated luminescence (OSL) dosemeter. Al2O3:C has a low sensitivity to neutron radiation; this prevents its application to neutron fields, representing a disadvantage of Al2O3:C-OSL when compared with LiF, which is used as a thermoluminescent detector. Recently an improvement for neutron dosimetry (Passmore and Kirr. Neutron response characterisation of an OSL neutron dosemeter. Radiat. Prot. Dosim. 2011; 144: 155-60) uses Al2O3:C coated with (6)Li2CO3 (OSLN),which gives the high-sensitive response as known for Al2O3:C with the advantage of being also sensitive to thermal neutrons. In this article, the authors compare small-size detectors (droplets) of Al2O3:C (OSL) and of Al2O3:C+(6)Li2CO3 (OSLN) and discuss the advantages and drawbacks of both materials, regarding size vs. response.

  17. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir.

    PubMed

    Berger, T; Hajek, M; Schöner, W; Fugger, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V; Kartashov, D

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems. Moscow. Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities. Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LETinfinity) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. PMID:12382930

  18. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system

    NASA Technical Reports Server (NTRS)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I.

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  19. Characterisation of OSL and OSLN droplets for dosimetry.

    PubMed

    Nascimento, L F; D'Agostino, E; Vaniqui, A C S; Saldarriaga, C; Vanhavere, F; De Deene, Y

    2014-10-01

    In spite of considerable progress in neutron dosimetry, there is no dosemeter that is capable of measuring neutron doses independently of the neutron spectrum with good accuracy. Carbon-doped aluminium oxide (Al2O3:C) is a sensitive material for ionising radiation (beta-ray, X ray and electron) and has been used for applications in personal and medical dosimetry as an optically stimulated luminescence (OSL) dosemeter. Al2O3:C has a low sensitivity to neutron radiation; this prevents its application to neutron fields, representing a disadvantage of Al2O3:C-OSL when compared with LiF, which is used as a thermoluminescent detector. Recently an improvement for neutron dosimetry (Passmore and Kirr. Neutron response characterisation of an OSL neutron dosemeter. Radiat. Prot. Dosim. 2011; 144: 155-60) uses Al2O3:C coated with (6)Li2CO3 (OSLN),which gives the high-sensitive response as known for Al2O3:C with the advantage of being also sensitive to thermal neutrons. In this article, the authors compare small-size detectors (droplets) of Al2O3:C (OSL) and of Al2O3:C+(6)Li2CO3 (OSLN) and discuss the advantages and drawbacks of both materials, regarding size vs. response. PMID:24381203

  20. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system.

    PubMed

    Deme, S; Apathy, I; Hejja, I; Lang, E; Feher, I

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  1. Passive detectors for neutron personal dosimetry: state of the art.

    PubMed

    d'Errico, Francesco; Bos, Adrie J J

    2004-01-01

    Passive, solid-state detectors still dominate the field of neutron personal dosimetry, mainly thanks to their low cost, high reliability and elevated throughput. However, the recent appearance in the market of several electronic personal dosemeters for neutrons presents a challenge to the exclusive use of passive systems for primary or official dosimetry. This scenario drives research and development activities on passive dosemeters towards systems offering greater accuracy of response and lower detection limits. In addition, further applications and properties of the passive detectors, which are not met by the electronic devices, are also being explored. In particular, extensive investigations are in progress on the use of solid-state detectors for aviation and space dosimetry, where high-energy neutron fields are encountered. The present situation is also stimulating an acceleration in the development of international standards on performance and test requirements for passive dosimetry systems, which can expedite significantly the implementation of techniques in commercial personal dosimetry services. Upcoming standards will cover thermoluminescence albedo dosemeters, etched-track detectors, superheated emulsions and direct ion storage chambers, attesting to the level of maturity reached by these techniques. This work reviews the developments in the field of passive neutron dosimetry emerged since the previous Neutron Dosimetry Symposium, reporting on the current status of the subject and indicating the direction of ongoing research. PMID:15353644

  2. Sensitivity variation of doped Fricke gel irradiated with monochromatic synchrotron X rays between 33.5 and 80 keV.

    PubMed

    Corde, Stéphanie; Adam, Jean-François; Biston, Marie-Claude; Joubert, Aurélie; Charvet, Anne-Marie; Estève, François; Le Bas, Jean-François; Elleaume, Hélène; Balosso, Jacques

    2005-01-01

    An experimental binary radiotherapy proposes the concomitant use of a high-Z compound and synchrotron X rays for enhancing radiation dose selectively in tumours by a photoelectric effect. This study aimed at measuring the resulting dose enhancement in irradiated material. A doped Fricke gel dosemeter model was manufactured with 10 mg ml(-1) of iodine (Telebrix) or barium (Micropaque). Samples were irradiated with a monochromatic synchrotron beam at 33.5, 50, 65 and 80 keV. The ensuing enhancement of the sensitivity of the dosemeter was derived from the nuclear magnetic resonance relaxation rates measured at different X-ray doses. Our results demonstrate (1) the preservation of a linear relationship between relaxation rates and X-ray doses for dosemeters doped with high-Z atoms and (2) a clear energy-dependent sensitivity enhancement for barium-doped Fricke gels. This enhancement was neither reproducible with iodinated compounds nor clearly related to the expected dose enhancement factor. However 1% barium sulphate in the gel could significantly improve the gel's response when it was irradiated by low-energy X rays.

  3. Dose assessment of aircrew using passive detectors.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Summerer, L; Vana, N

    2002-01-01

    Radiation exposure of aircrew is a serious concern which has been given special emphasis in the European Council directive 96/29/Euratom. The cosmic ray induced neutron component can contribute more than 50% to the biologically relevant dose at aviation altitudes. Various computational approaches to route dose assessment, e.g. CARI, are in use nowadays and are compared with experimental data. Measurements of aircrew exposure usually involve extensive instrumentation in order to cover the whole particle spectrum and energy range present inside aircraft. Due to their small size and easy handling, thermoluminescence dosemeters represent an appropriate alternative. Previous measurements onboard aircraft applying the high-temperature ratio method with LiF:Mg,Ti dosemeters for the determination of an 'averaged' linear energy transfer of mixed radiation fields demonstrate the ability of this method to evaluate the dose equivalent, according to the Q(LETinfinity) relationship proposed by the ICRP. Measurements with CaF2:Tm dosemeters are currently in progress and are discussed here.

  4. Dose received by occupationally exposed workers at a nuclear medicine department

    SciTech Connect

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  5. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  6. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  7. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    SciTech Connect

    Avila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; Gamboa de Buen, I.; Buenfil, A. E.; Brandan, M. E.

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  8. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  9. Dosimetry at an interim storage for spent nuclear fuel.

    PubMed

    Králík, M; Kulich, V; Studeny, J; Pokorny, P

    2007-01-01

    The Czech nuclear power plant Dukovany started its operation in 1985. All fuel spent from 1985 up to the end of 2005 is stored at a dry interim storage, which was designed for 60 CASTOR-440/84 casks. Each of these casks can accommodate 84 fuel assemblies from VVER 440 reactors. Neutron-photon mixed fields around the casks were characterized in terms of ambient dose equivalent measured by standard area dosemeters. Except this, neutron spectra were measured by means of a Bonner sphere spectrometer, and the measured spectra were used to derive the corresponding ambient dose equivalent due to neutrons.

  10. EURADOS PROGRAMME OF INTERCOMPARISONS FOR INDIVIDUAL MONITORING SERVICES: SEVEN YEARS OF DEVELOPMENT AND FUTURE PLANS.

    PubMed

    Grimbergen, T; Figel, M; McWhan, A; Romero, A M; Stadtmann, H

    2016-09-01

    In 2008 the European Radiation Dosimetry Group (EURADOS) started a new programme of intercomparisons for individual monitoring services (IMS). The aim was to provide the possibility to IMS in Europe to participate in dosimetry intercomparions with regular time intervals with all types of dosemeter systems that are used routinely to monitor workers for exposure to external radiation. A self-evaluation of the programme shows that, apart from a few problems encountered, the programme can be judged as fit for its purpose. The results of a questionnaire among the participants support this conclusion. The conclusions encourage EURADOS to continue this programme of self-sustained intercomparisons for IMS.

  11. Optically stimulated luminescence (OSL) response of Al2O3:C, BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors.

    PubMed

    Kumar, Pratik; Bahl, Shaila; Sahare, P D; Kumar, Surender; Singh, Manveer

    2015-12-01

    This paper investigates the optically stimulated luminescence (OSL) response of BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors for different doses and bleaching durations. The results have also been compared with the commercially available Landauer Al2O3:C (Luxel®) dosemeter. Nanocrystalline K2Ca2(SO4)3:Eu is known to be a sensitive thermoluminescent phosphor, but its OSL response is hardly reported. At first, pellets of nanocrystalline K2Ca2(SO4)3:Eu powder were prepared by adding Teflon as a binder. Their OSL signal was compared with that of the material in pure form, i.e. without adding the binder (in 100:1 ratio). It was observed that adding the binder does not appreciably affect the OSL intensity. On comparison with the commercially available Al2O3:C from Landauer, it was found that K2Ca2(SO4)3:Eu is around 15 times less sensitive than Al2O3:C. 'Homemade' BaFCl:Eu phosphor has also been studied. The intensity of BaFCl:Eu was ∼20 times more than the standard Al2O3:C dosemeter and ∼200 times more sensitive than K2Ca2(SO4)3:Eu in the dose range of 13-200 cGy. OSL dosemeters are believed to give luminescence signal even if they are read before, i.e. multiple reading may be possible under suitable conditions after single exposure. This was also checked for all the prepared dosemeters and it was found that Al2O3:C showed the least decrease of <2 %, followed by BaFCl:Eu of 15 % and K2Ca2(SO4)3:Eu with 20 %. Finally, Al2O3:C and BaFCl:Eu phosphors were also studied for their optical bleaching durations to which the respective signals get completely removed so that the phosphor can be re-used. It was observed that BaFCl:Eu is bleached faster and more easily than Al2O3:C. PMID:25646524

  12. Natural gamma radioactivity in the villages of Kanyakumari District, Tamil Nadu, India.

    PubMed

    Padua, Jeni Chandar; Basil Rose, M R

    2013-01-01

    In situ radiometric survey carried out in 81 revenue villages of Kanyakumari District, Tamil Nadu, India, using a portable radiation dosemeter/detector, revealed the existence of radiation hotspots along the coastal belt. A close observation of the coastal villages specifically revealed high background radioactivity in 14 coastal villages. A very high intrinsic anomalous radioactivity of 41.03 μSv h(-1) was observed, in a famous tourist spot in the coastal belt of Kanyakumari District. This is the highest level of radiation registered in South India, which is extremely higher than the permissible world average and is suggestive of causing severe clinical problems on continuous and prolonged exposure.

  13. Assessment of the radiological safety of a Genoray portable dental X-ray unit

    PubMed Central

    Hafezi, L; Manafi, F; Talaeipour, A R

    2015-01-01

    Objectives: The portable dental radiographic systems are generally used in emergency situations (e.g. during natural disasters) for disabled/aged patients and in patient rooms. This study assesses the output exposure of a portable dental radiographic system measured using thermoluminescent dosemeters (TLDs). Methods: Occupational exposure of the operator was determined when the portable dental unit was used for mandibular and maxillary teeth exposure. Results: The doses of some critical organs of an operator were measured using TLDs implanted within the Rando phantom. Conclusions: Considering the annual organ dose limits, the eye lens dose limit is the main factor determining the frequency of system application. PMID:25343709

  14. Computed Tomography: Image and Dose Assessment

    NASA Astrophysics Data System (ADS)

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodríguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernández, L. A.

    2006-09-01

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  15. Dosimetry at an interim storage for spent nuclear fuel.

    PubMed

    Králík, M; Kulich, V; Studeny, J; Pokorny, P

    2007-01-01

    The Czech nuclear power plant Dukovany started its operation in 1985. All fuel spent from 1985 up to the end of 2005 is stored at a dry interim storage, which was designed for 60 CASTOR-440/84 casks. Each of these casks can accommodate 84 fuel assemblies from VVER 440 reactors. Neutron-photon mixed fields around the casks were characterized in terms of ambient dose equivalent measured by standard area dosemeters. Except this, neutron spectra were measured by means of a Bonner sphere spectrometer, and the measured spectra were used to derive the corresponding ambient dose equivalent due to neutrons. PMID:17526479

  16. Photon doses in NPL standard neutron fields.

    PubMed

    Roberts, N J; Horwood, N A; McKay, C J

    2014-10-01

    Standard neutron fields are invariably accompanied by a photon component due to the neutron-generating reactions and secondary neutron interactions in the surrounding environment. A set of energy-compensated Geiger-Müller (GM) tubes and electronic personal dosemeters (EPDs) have been used to measure the photon dose rates in a number of standard radionuclide and accelerator-based neutron fields. The GM tubes were first characterised in standard radioisotope and X-ray photon fields and then modelled using MCNP to determine their photon dose response as a function of energy. Values for the photon-to-neutron dose equivalent ratios are presented and compared with other published values.

  17. A new fully integrated X-ray irradiator system for dosimetric research.

    PubMed

    Richter, D; Mittelstraß, D; Kreutzer, S; Pintaske, R; Dornich, K; Fuchs, M

    2016-06-01

    A fully housed X-ray irradiator was developed for use within lexsyg or Magnettech desktop equipment. The importance of hardening of the low energy photon radiation is discussed, its performance and feasibility is empirically shown and sustained by basic numerical simulations. Results of the latter for various materials are given for different X-ray source settings in order to provide estimates on the required setup for the irradiation of different geometries and materials. A Si-photodiode provides real-time monitoring of the X-ray-irradiator designed for use in dosimetric dating and other dosimetric application where irradiation of small samples or dosemeters is required. PMID:27041090

  18. Radiation exposure measurement onboard civil aircraft.

    PubMed

    Beaujean, R; Burmeister, S; Petersen, F; Reitz, G

    2005-01-01

    The active dosemeter DOSTEL based on two silicon planar detectors was flown on civil aircraft flights to study the radiation exposure of air crew members. The altitude and latitude dependence of count and dose rates as well as long-term variations are measured. After calibration of the DOSTEL response against measurements of a TEPC instrument, total dose-equivalent values for various flights are compared with H*(10) calculations by EPCARD yielding a ratio of 1.02 +/- 0.09 (standard variation).

  19. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed. PMID:24106330

  20. Radon exhalation rate from the soil, sand and brick samples collected from NWFP and FATA, Pakistan.

    PubMed

    Rahman, Said; Mati, N; Matiullah; Ghauri, Badar

    2007-01-01

    In order to characterise the building materials as an indoor radon source, knowledge of the radon exhalation rate from these materials is very important. In this regard, soil, sand and brick samples were collected from different places of the North West Frontier Province (NWFP) and Federally Administered Tribal Areas (FATA), Pakistan. The samples were processed and placed in plastic containers. NRPB radon dosemeters were installed in it at heights of 25 cm above the surface of the samples and containers were then hermetically sealed. After 40-80 d of exposure to radon, CR-39 detectors were removed from the dosemeter holders and etched in 25% NaOH at 80 degrees C for 16 h. From the measured radon concentration values, (222)Rn exhalation rates were determined. Exhalation rate form soil, sand and brick samples was found to vary from 114 +/- 11 to 416 +/- 9 mBq m(-2) h(-1), 205 +/- 16 to 291 +/- 13 mBq m(-2) h(-1) and 245 +/- 12 to 365 +/- 11 mBq m(-2) h(-1), respectively.

  1. External radiation exposure of personnel in nuclear medicine from 18F, 99mTC and 131I with special reference to fingers, eyes and thyroid.

    PubMed

    Leide-Svegborn, S

    2012-04-01

    The radiation exposure of fingers, thyroid and eyes of workers handling radiopharmaceuticals during various nuclear medicine procedures was measured using thermoluminescent dosemeters. Dosemeters were placed on the finger tips of 19 workers on several different occasions for various procedures. Additionally, the routinely determined whole-body doses to various groups of workers were analysed. The finger dose measurements demonstrated clear differences between the various tasks, from 0.0012 µGy MBq(-1) (unpacking and installing (99)Mo/(99m)Tc-generator) to 3.0 µGy MBq(-1) (syringe withdrawal, injection and waste handling of (18)F-FDG). As long as the worker was handling (99m)Tc, the dose to the fingers was well below the ICRP dose limits, even when the activity was high. Special concern should, however, be devoted to the handling of (18)F, since the dose to the fingers could easily reach the dose limits. The estimated dose to eyes and thyroid was well below the dose limits. Since the introduction of the positron emission tomography/computed tomography facility, the annual whole-body dose has increased for those directly involved in the handling of (18)F. The annual whole-body dose of 0.2-2.5 mGy was, however, well below the dose limits.

  2. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  3. A SOLUTION FOR NEUTRON PERSONAL DOSIMETRY IN THE ABSENCE OF WORKPLACE SPECTROMETRY.

    PubMed

    Hajek, M; Cruz Suárez, R

    2016-09-01

    In view of the widely varying energy spectra encountered in practical situations, accuracy of neutron dose assessment requires detailed knowledge of detector responses and workplace conditions to achieve an adequate level of protection. If the neutron spectrum should be a priori unknown and no measurement of the workplace spectrum is available, the 'Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes' published in the International Atomic Energy Agency Technical Report Series offers a broad range of reference spectra that may be appropriate for many applications. The proposed approach applies a correction factor based on the ratio of 'personal dose equivalent indices' for a particular workplace spectrum and a reference field used for calibration of the dosemeter response. Amendments in the definition of operational quantities as well as introduction of new modalities that, for example, may be expected to give increased importance to high-energy neutrons necessitate frequent revision of the Compendium. Results from the European Radiation Dosimetry Group Intercomparison 2012 for neutron personal dosemeters provide evidence that workplace fields are insufficiently reflected. This is proposed to be considered as an improvement opportunity. PMID:26396264

  4. Neutron measurements in the Vandellòs II nuclear power plant with a Bonner sphere system.

    PubMed

    Fernández, F; Bakali, M; Tomás, M; Muller, H; Pochat, J L

    2004-01-01

    In some Spanish nuclear power plants of pressurised water reactor (PWR) type, albedo thermoluminescence dosemeters are used for personal dosimetry while survey meters, based on a thermal-neutron detector inside a cylindrical or spherical moderator, are used for dose rate assessment in routine monitoring. The response of both systems is highly dependent on the energy of the existing neutron fields. They are usually calibrated by means of ISO neutron sources with energy distributions quite different from those encountered at these installations. Spectrometric measurements with a Bonner sphere system (BSS) allow us to determine the reference dosimetric values. The UAB group, under request from the National Coordinated Research Action, was in charge of characterising the neutron fields and evaluating the response of personal dosemeters at several measurement points inside the containment building of the Catalan Nuclear Power Plant Vandellòs II. The neutron fields were characterised at five places using the UAB-BSS and a home made unfolding code called MITOM. The results obtained confirm the presence of low-energy components in the neutron field in most of the selected points. Moreover, we have found no influence of the nuclear fuel burning on the shape of the spectrum.

  5. Development of a technique for improving coefficient of variation of CaSO4:Dy teflon-based TLD personnel monitoring system in low-dose region.

    PubMed

    Pradhan, S M; Sneha, C; Sahai, M K; Chougaonkar, M P; Babu, D A R

    2015-12-01

    In view of the importance of zero-dose background (null signal) in influencing the coefficient of variation in low-dose region, a technique for the estimation of the same from composite (gross) signal is developed for CaSO4:Dy-based personnel monitoring system being used in India. The technique is based on simple analysis of glow curves (GCs) of unexposed and exposed dosemeters, evolution of trend/model for the zero-dose curves, generation of simulation protocol for individual zero-dose curves, establishment of characteristics of GCs of exposed dosemeters and finally preparation of an algorithm to segregate the components from composite signal. The technique offers the separation of real-time background and gives superior results over other method of approximation of the background. The results also prove efficiency of the empirical trending and simulation protocol of background GCs. The proposed technique can be implemented in routine monitoring without any extra man hours and reader time.

  6. Space radiation measurements on-board ISS--the DOSMAP experiment.

    PubMed

    Reitz, G; Beaujean, R; Benton, E; Burmeister, S; Dachev, Ts; Deme, S; Luszik-Bhadra, M; Olko, P

    2005-01-01

    The experiment 'Dosimetric Mapping' conducted as part of the science program of NASA's Human Research Facility (HRF) between March and August 2001 was designed to measure integrated total absorbed doses (ionising radiation and neutrons), heavy ion fluxes and its energy, mass and linear energy transfer (LET) spectra, time-dependent count rates of charged particles and their corresponding dose rates at different locations inside the US Lab at the International Space Station. Owing to the variety of particles and energies, a dosimetry package consisting of thermoluminescence dosemeter (TLD) chips and nuclear track detectors with and without converters (NTDPs), a silicon dosimetry telescope (DOSTEL), four mobile silicon detector units (MDUs) and a TLD reader unit (PILLE) with 12 TLD bulbs as dosemeters was used. Dose rates of the ionising part of the radiation field measured with TLD bulbs applying the PILLE readout system at different locations varied between 153 and 231 microGy d(-1). The dose rate received by the active devices fits excellent to the TLD measurements and is significantly lower compared with measurements for the Shuttle (STS) to MIR missions. The comparison of the absorbed doses from passive and active devices showed an agreement within +/- 10%. The DOSTEL measurements in the HRF location yielded a mean dose equivalent rate of 535 microSv d(-1). DOSTEL measurements were also obtained during the Solar Particle Event on 15 April 2001. PMID:16604663

  7. Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry.

    PubMed

    Koukorava, C; Carinou, E; Simantirakis, G; Vrachliotis, T G; Archontakis, E; Tierris, C; Dimitriou, P

    2011-03-01

    The present study is focused on the personnel doses during several types of interventional radiology procedures. Apart from the use of the official whole body dosemeters (thermoluminescence dosemeter type), measurements were performed to the extremities and the eyes using thermoluminescent loose pellets. The mean doses per kerma area product were calculated for the monitored anatomic regions and for the most frequent types of procedures. Higher dose values were measured during therapeutic procedures, especially embolisations. The maximum recorded doses during a single procedure were 1.8 mSv to the finger (nephrostomy), 2.1 mSv to the wrist (liver chemoembolisation), 0.6 mSv to the leg (brain embolisation) and 2.4 mSv to the eye (brain embolisation). The annual doses estimated for the operator with the highest workload according to the measurements and the system's log book were 90.4 mSv to the finger, 107.9 mSv to the wrist, 21.6 mSv to the leg and 49.3 mSv to the eye. Finally, the effect of the beam angulation (i.e. projection) and shielding equipment on the personnel doses was evaluated. The measurements were performed within the framework of the ORAMED (Optimization of RAdiation Protection for MEDical staff) project.

  8. Efficacy of lead foil for reducing doses in the head and neck: a simulation study using digital intraoral systems

    PubMed Central

    Silva, A I V; Brasil, D M; Vasconcelos, K F; Haiter Neto, F; Boscolo, F N

    2015-01-01

    Objectives: To assess the efficacy of lead foils in reducing the radiation dose received by different anatomical sites of the head and neck during periapical intraoral examinations performed with digital systems. Methods: Images were acquired through four different manners: phosphor plate (PSP; VistaScan® system; Dürr Dental GmbH, Bissingen, Germany) alone, PSP plus lead foil, complementary metal oxide semiconductor (CMOS; DIGORA® Toto, Soredex®, Tuusula, Finland) alone and CMOS plus lead foil. Radiation dose was measured after a full-mouth periapical series (14 radiographs) using the long-cone paralleling technique. Lithium fluoride (LiF 100) thermoluminescent dosemeters were placed in an anthropomorphic phantom at points corresponding to the tongue, thyroid, crystalline lenses, parotid glands and maxillary sinuses. Results: Dosemeter readings demonstrated the efficacy of the addition of lead foil in the intraoral digital X-ray systems provided in reducing organ doses in the selected structures, approximately 32% in the PSP system and 59% in the CMOS system. Conclusions: The use of lead foils associated with digital X-ray sensors is an effective alternative for the protection of different anatomical sites of the head and neck during full-mouth periapical series acquisition. PMID:26084474

  9. Occupational radiation exposure during removal of radioactive reactor components from GRR-1 pool.

    PubMed

    Kontogeorgakos, D; Tzika, F; Valakis, S; Stamatelatos, I E

    2011-03-01

    The aim of the study was to control occupational exposure during the removal of radioactive reactor components from a Greek research reactor pool. The method comprised the prediction of the radiation levels, the design of special shielding structures and the occupational dose assessment. Activation calculations were performed using the FISPACT code to predict the source term. Monte Carlo simulations using MCNP code were utilized to estimate the ambient dose equivalent rates. The results of the calculations were verified by measurements and were found to be in good agreement. Thermoluminescence dosemeter (TLD) and electronic personal dosemeter (EPD) were implemented to measure the radiation exposure of the workers. The total collective dose of 14 participating workers was 0.15 man mSv. The maximum individual effective dose was 0.02 mSv, and the maximum extremity equivalent dose was 0.09 mSv. The discussed method provides a useful tool enabling work planning during reactor decommissioning and renovation activities ensuring that exposures will be maintained ALARA. PMID:21051436

  10. Development of age-specific Japanese head phantoms for dose evaluation in paediatric head CT examinations.

    PubMed

    Yamauchi-Kawaura, C; Fujii, K; Akahane, K; Yamauchi, M; Narai, K; Aoyama, T; Katsu, T; Obara, S; Imai, K; Ikeda, M

    2015-02-01

    In this study, the authors developed age-specific physical head phantoms simulating the physique of Japanese children for dose evaluation in paediatric head computed tomography (CT) examinations. Anatomical structures at 99 places in 0-, 0.5-, 1- and 3-y-old Japanese patients were measured using DICOM viewer software from CT images, and the head phantom of each age was designed. For trial manufacture, a 3-y-old head phantom consisting of acrylic resin and gypsum was produced by machine processing. Radiation doses for the head phantom were measured with radiophotoluminescence glass dosemeters and Si-pin photodiode dosemeters. To investigate whether the phantom shape was suitable for dose evaluation, organ doses in the same scan protocol were compared between the 3-y-old head and commercially available anthropomorphic phantoms having approximately the same head size. The doses of organs in both phantoms were equivalent. The authors' designed paediatric head phantom will be useful for dose evaluation in paediatric head CT examinations.

  11. Aircrew exposure monitoring: results of 2001 to 2003 studies.

    PubMed

    Spurný, F; Turek, K; Vlcek, B; Dachev, Ts

    2004-01-01

    Aircrew exposure represents one of the recent subjects of occupational individual dosimetry. Since 1991 many new results have been found; there is however a need to gather further data on this exposure and its variation with geomagnetic position, solar activity and flight route parameters. Since 2001, many individual and six long-term monitoring programmes have been conducted onboard aircraft of Czech Airlines (CSA). In these programmes, a Si-diode spectrometer was fixed in an aircraft. Together with it, passive dosemeters thermoluminescent detector, track-etch based neutron dosemeter linear energy transfer and spectrometer) were exposed. More than 700 regular commercial flights were monitored in this manner. CSA supplied us also with full navigation data, which allowed us to calculate the exposure levels using EPCARD 3.2 and CARI6 codes. Direct experimental readings obtained with the detectors mentioned above were interpreted on the basis of calibrations in on-Earth reference fields and compared with calculated data. A satisfactory correlation between all sets of data was observed.

  12. Monte Carlo-derived TLD cross-calibration factors for treatment verification and measurement of skin dose in accelerated partial breast irradiation.

    PubMed

    Garnica-Garza, H M

    2009-03-21

    Monte Carlo simulation was employed to calculate the response of TLD-100 chips under irradiation conditions such as those found during accelerated partial breast irradiation with the MammoSite radiation therapy system. The absorbed dose versus radius in the last 0.5 cm of the treated volume was also calculated, employing a resolution of 20 microm, and a function that fits the observed data was determined. Several clinically relevant irradiation conditions were simulated for different combinations of balloon size, balloon-to-surface distance and contents of the contrast solution used to fill the balloon. The thermoluminescent dosemeter (TLD) cross-calibration factors were derived assuming that the calibration of the dosemeters was carried out using a Cobalt 60 beam, and in such a way that they provide a set of parameters that reproduce the function that describes the behavior of the absorbed dose versus radius curve. Such factors may also prove to be useful for those standardized laboratories that provide postal dosimetry services.

  13. OCCUPATIONAL DOSE ASSESSMENT IN INTERVENTIONAL CARDIOLOGY IN SERBIA.

    PubMed

    Kaljevic, J; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Bozovic, P; Antic, V

    2016-09-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent Hp(10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. PMID:26464526

  14. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  15. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy

    PubMed Central

    O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G

    2015-01-01

    This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212

  16. Occupational radiation exposure during removal of radioactive reactor components from GRR-1 pool.

    PubMed

    Kontogeorgakos, D; Tzika, F; Valakis, S; Stamatelatos, I E

    2011-03-01

    The aim of the study was to control occupational exposure during the removal of radioactive reactor components from a Greek research reactor pool. The method comprised the prediction of the radiation levels, the design of special shielding structures and the occupational dose assessment. Activation calculations were performed using the FISPACT code to predict the source term. Monte Carlo simulations using MCNP code were utilized to estimate the ambient dose equivalent rates. The results of the calculations were verified by measurements and were found to be in good agreement. Thermoluminescence dosemeter (TLD) and electronic personal dosemeter (EPD) were implemented to measure the radiation exposure of the workers. The total collective dose of 14 participating workers was 0.15 man mSv. The maximum individual effective dose was 0.02 mSv, and the maximum extremity equivalent dose was 0.09 mSv. The discussed method provides a useful tool enabling work planning during reactor decommissioning and renovation activities ensuring that exposures will be maintained ALARA.

  17. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  18. Neutron measurements in the Vandellòs II nuclear power plant with a Bonner sphere system.

    PubMed

    Fernández, F; Bakali, M; Tomás, M; Muller, H; Pochat, J L

    2004-01-01

    In some Spanish nuclear power plants of pressurised water reactor (PWR) type, albedo thermoluminescence dosemeters are used for personal dosimetry while survey meters, based on a thermal-neutron detector inside a cylindrical or spherical moderator, are used for dose rate assessment in routine monitoring. The response of both systems is highly dependent on the energy of the existing neutron fields. They are usually calibrated by means of ISO neutron sources with energy distributions quite different from those encountered at these installations. Spectrometric measurements with a Bonner sphere system (BSS) allow us to determine the reference dosimetric values. The UAB group, under request from the National Coordinated Research Action, was in charge of characterising the neutron fields and evaluating the response of personal dosemeters at several measurement points inside the containment building of the Catalan Nuclear Power Plant Vandellòs II. The neutron fields were characterised at five places using the UAB-BSS and a home made unfolding code called MITOM. The results obtained confirm the presence of low-energy components in the neutron field in most of the selected points. Moreover, we have found no influence of the nuclear fuel burning on the shape of the spectrum. PMID:15353701

  19. Characterization of neutron reference fields at US Department of Energy calibration fields.

    PubMed

    Olsher, R H; McLean, T D; Mallett, M W; Seagraves, D T; Gadd, M S; Markham, Robin L; Murphy, R O; Devine, R T

    2007-01-01

    The Health Physics Measurements Group at the Los Alamos National Laboratory (LANL) has initiated a study of neutron reference fields at selected US Department of Energy (DOE) calibration facilities. To date, field characterisation has been completed at five facilities. These fields are traceable to the National Institute for Standards and Technology (NIST) through either a primary calibration of the source emission rate or through the use of a secondary standard. However, neutron spectral variation is caused by factors such as room return, scatter from positioning tables and fixtures, source anisotropy and spectral degradation due to source rabbits and guide tubes. Perturbations from the ideal isotropic point source field may impact the accuracy of instrument calibrations. In particular, the thermal neutron component of the spectrum, while contributing only a small fraction of the conventionally true dose, can contribute a significant fraction of a dosemeter's response with the result that the calibration becomes facility-specific. A protocol has been developed to characterise neutron fields that relies primarily on spectral measurements with the Bubble Technology Industries (BTI) rotating neutron spectrometer (ROSPEC) and the LANL Bonner sphere spectrometer. The ROSPEC measurements were supplemented at several sites by the BTI Simple Scintillation Spectrometer probe, which is designed to extend the ROSPEC upper energy range from 5 to 15 MeV. In addition, measurements were performed with several rem meters and neutron dosemeters. Detailed simulations were performed using the LANL MCNPX Monte Carlo code to calculate the magnitude of source anisotropy and scatter factors.

  20. Doses to skin during dynamic perfusion computed tomography of the liver.

    PubMed

    Beganovic, Adnan; Sefic-Pasic, Irmina; Skopljak-Beganovic, Amra; Kristic, Spomenka; Sunjic, Svjetlana; Mekic, Amra; Gazdic-Santic, Maja; Drljevic, Advan; Samek, Davorin

    2013-01-01

    Many new computed tomography (CT) techniques have been introduced during the recent years, one of them being CT-assisted dynamic perfusion imaging (perfusion CT, PCT). Many concerns were raised when first cases of deterministic radiation effects were reported. This paper shows how radiochromic films can be utilised as passive dosemeters for use in PCT. Radiochromic dosemeters undergo a colour change directly and do not require chemical processing. Prior to their use, they need to be calibrated. Films are placed on top and on the right side of the patient and exposed during the procedure. Readout is performed using a densitometer. Results show that average local skin doses are 0.51±0.07 and 0.42±0.04 Gy on top and on the lateral side of the patient, respectively. Results of the patient dosimetry (local skin doses) are consistent. This is due to the fact that each patient had the same CT protocol used for imaging (120 kV, 60 mA and C(vol) of 247.75 mGy). Radiochromic films designed for interventional radiology can be effectively used for local skin dose measurements in perfusion CT. Dose values obtained are below the threshold needed for deterministic effects (erythema, hair loss, etc.). These effects might happen if inappropriate CT protocol is used; one that is usually used for routine imaging.

  1. Dosimetry verification on VMAT and IMRT radiotherapy techniques: In the case of prostate cancer

    NASA Astrophysics Data System (ADS)

    Maulana, A.; Pawiro, S. A.

    2016-03-01

    Radiotherapy treatment depends on the accuracy of the dose delivery to patients, the purpose of the study is to verify the dose in IMRT and VMAT technique in prostate cancer cases correspond to TPS dose using phantom base on ICRU No.50. The dose verification of the target and OAR was performed by placing the TLD Rod LiF100 and EBT2 Gafchromic film at slab hole of pelvic part of the Alderson RANDO phantom for prostate cancer simulation. The Exposed TLDs was evaluated using the TLD Reader Harshaw while EBT2 film was scanned using Epson scanner. The point dose measurements were compared between planned dose and measured dose at target volume and OAR. The result is the dose difference at target volume, bladder and rectum for IMRT and VMAT are less than 5%. On the other hand, the dose difference at the Femoral head is more than 5% for both techniques because the location of OAR already in low gradient dose. Furthermore, the difference dose of the target volume for IMRT technique tends to be smaller than VMAT either for TLD and EBT2 film detectors. From the measurement showed that the delivered dose on the phantom simulation match with ICRU No.50 criteria.

  2. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation.

    PubMed

    Nawi, Siti Nurasiah Binti Mat; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Nor, Roslan Bin Md; Maah, Mohd Jamil

    2015-01-01

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987

  3. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  4. A TLD dose algorithm using artificial neural networks

    SciTech Connect

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-12-31

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.

  5. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation

    PubMed Central

    Mat Nawi, Siti Nurasiah Binti; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Md Nor, Roslan Bin; Maah, Mohd Jamil

    2015-01-01

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a 60Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987

  6. Interim status report of the TMI personnel-dosimetry project

    SciTech Connect

    Rich, B.L.; Alvarez, J.L.; Adams, S.R.

    1981-06-01

    The current 2-chip TLD personnel dosimeter in use at Three Mile Island (TMI) has been shown inadequate for the anticipated high beta/gamma fields during TMI recovery operations in some areas. This project surveyed the available dosimeter systems, set up an Idaho National Engineering Laboratory (INEL) prototype system, and compared this system with those commercial systems that could be made immediately available for comparison. Of the systems tested, the new INEL personnel dosimeter was found to produce the most accurate results for use in recovery operations at TMI-2. The other multiple-chip or multiple-filter systems were found less desirable at present. The most prominent deficiencies in the INEL dosimeter stem from the fact that it lacks a completely automated reader and its x-ray and thermal neutron responses require additional development. A automated prototype reader system may be in operation by the end of CY-1981. Three alternatives for operational dosimetry are discussed. A combination of a modified version of the presently used Harshaw 2-chip dosimeter and the INEL dosimeter is recommended.

  7. Geochemistry of soils from the San Rafael Valley, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Folger, Helen W.; Gray, Floyd

    2013-01-01

    This study was conducted to determine whether surficial geochemical methods can be used to identify subsurface mineraldeposits covered by alluvium derived from surrounding areas. The geochemical investigation focused on an anomalous geo-physical magnetic high located in the San Rafael Valley in Santa Cruz County, Arizona. The magnetic high, inferred to be asso-ciated with a buried granite intrusion, occurs beneath Quaternary alluvial and terrace deposits. Soil samples were collected at a depth of 10 to 30 centimeters below land surface along transects that traverse the inferred granite. The samples were analyzed by inductively coupled plasma-mass spectrometry and by the partial-leach Mobile Metal Ion™ method. Principal component and factor analyses showed a strong correlation between the soils and source rocks hosting base-metal replacement deposits in the Harshaw and Patagonia Mining Districts. Factor analysis also indicated areas of high metal concentrations associated with the Meadow Valley Flat. Although no definitive geochemical signature was identified for the inferred granite, concentrations otungsten and iron in the surrounding area were slightly elevated.

  8. Position-sensitive detectors of the detector group at Jülich

    NASA Astrophysics Data System (ADS)

    Engels, R.; Clemens, U.; Kemmerling, G.; Nöldgen, H.; Schelten, J.

    2009-06-01

    The detector group of the Central Institute of Electronics at the Forschungszentrum Jülich GmbH was founded in 1968. First developments aimed at a detector system with a position-sensitive BF 3 proportional counter for small-angle neutron scattering, which was later used at a beamline of the research reactor FRJ2. At the end of the 1970s first measurements were carried out with photomultiplier (PM)-based detector systems linked with a LiI crystal from Harshaw. Based on this experience we started with the spectrum of position-sensitive neutron scintillation detectors, which have been developed and designed in our institute during the last three decades comprising several high-resolution linear and two-dimensional detectors. The general design of those detectors is based on a modified Anger principle using an array of PMs and a 1 mm 6Li glass scintillator. The sensitive detector area varies on the type of the PMs used and is related to the spatial resolution of the detector type. The neutron sensitivity at 1 Å is about 65% and the remaining gamma sensitivity is less than 10 -4 with a maximum count rate up to 500 kHz depending on the used detector system.

  9. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P. )

    1988-09-01

    The pore structures of two types of catalyst support material were studied: {gamma}-alumina and silica aerogel. The alumina samples were commercial catalyst supports made in 1/8 inch diameter pellet form by Harshaw Chemical. Aerogels were prepared by forming a gel in a two-step, base-catalyzed process using TEOS, followed by supercritical drying to form the aerogel. Two different aerogels were made, one undergoing the drying process immediately after gel formation (non-aged), and the other being aged in the gel state for two weeks in a basic solution of 0.1 molar NH{sub 4}OH at 323 K before being supercritically dried (aged). The aging process is believed to alter the aerogel pore structure. The pore size distribution of the alumina material was determined via NMR and compared to results obtained by mercury intrusion and nitrogen adsorption/condensation techniques. The pore size distributions of the two aerogel samples were measured via NMR and nitrogen adsorption/condensation; the material was too compressible for porosimetry.

  10. In vivo evaluating skin doses for lung cancer patients undergoing volumetric modulated arc therapy treatment.

    PubMed

    Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi

    2015-01-01

    This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.

  11. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  12. Mixed-radiation discrimination using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Skopec, Marlene

    This work has developed, analyzed, and tested methods to discriminate among different types of radiation exposures using the glow curves of thermoluminescent dosimeters (TLDs). Thermoluminescent materials, Harshaw LiF:Mg,Ti (TLD-100) and CaF2:Tm (TLD-300), were exposed to pure proton, pure photon (x-ray and gamma), and mixed fields to examine and use differences in the thermoluminescent (TL) glow curve shapes for the purpose of radiation type discrimination. The effect of radiation type exposure order on thermoluminescent glow curve shape and the principle of superposition of glow curves were evaluated. Using computerized glow curve deconvolution (CGCD), no significant differences in glow curve shape or magnitude were found. Results demonstrated that the superposition of pure field glow curves is a valid method of simulating mixed field glow curves (i.e., the principle of superposition holds). Two robust and novel techniques for radiation type discrimination were developed: vector representation (VR) and principal component analysis (PCA). In VR, vectors were constructed from glow curve points and classified based on the vector inner product with a unit vector and vector magnitude. In PCA, variations in the glow curves due to radiation type are classified according to one principal component. The two methods were tested for accuracy using leave-one-out validation (LOOV) with classification based on the Mahalanobis distance. Overall, both techniques performed equally well, with over 92% accurate three category classification using the high temperature peak of TLD-100 and nearly 100% correct classification in TLD-300.

  13. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation.

    PubMed

    Nawi, Siti Nurasiah Binti Mat; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Nor, Roslan Bin Md; Maah, Mohd Jamil

    2015-08-20

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium.

  14. Synthesis and thermoluminescence properties of rare earth-doped NaMgBO3 phosphor.

    PubMed

    Khan, Z S; Ingale, N B; Omanwar, S K

    2016-05-01

    Rare earth (Dy(3+) and Sm(3+))-doped sodium magnesium borate (NaMgBO3) is synthesized by solution combustion synthesis method keeping their thermoluminescence properties in mind. The reaction produced very stable crystalline NaMgBO3:RE (RE = Dy(3+), Sm(3+)) phosphors. The phosphors are exposed to (60)Co gamma-ray radiations dose of varying rate from 5 to 25 Gy, and their TL characteristics with kinetic parameters are studied. NaMgBO3:Dy(3+) phosphor shows two peaks for lower doping concentration of Dy(3+) while it reduced to single peak for the higher concentrations of activator Dy(3+). NaMgBO3:Dy(3+) shows the major glow peak around 200 °C while NaMgBO3:Sm(3+) phosphors show two well-separated glow peaks at 200 and 332 °C respectively. The thermoluminescence intensity of these phosphors was compare with the commercially available TLD-100 (Harshaw) phosphor. The TL responses for gamma-ray radiations dose were found to be linear from 5 to 25 Gy for both phosphors while the fading in each case is calculated for the tenure of 45 days.

  15. Climax spent fuel dosimetry. Short term exposure, 8 March 1983

    SciTech Connect

    Quam, W.; DeVore, T.

    1984-06-01

    The second short-term exposure (performed 8 March 1983) in Hole CFH3 at the Climax Spent Fuel Test site is described. These short-term (1 hour long) exposures are intended to provide an independent measurement of the exposure rate at the wall and the 0.51-m and 0.66-m locations. Only CaF{sub 2} TLD`s were used in the second short-term exposure. Harshaw chips were cut to 0.32 x 0.18 x 0.09 cm size and aged by several exposure/readout/bakeout cycles until all odd chips were weeded out and the remaining chips exhibited stable sensitivities. Exposure at Climax was done by removing the existing long-term dosimetry strings and inserting identical strings using the CaF{sub 2} TLD`s in the stainless steel holders. The first short-term exposure produced absorbed doses as high as {similar_to}000 rads-LiF. The linearity corrections determined for the CaF{sub 2} TLD`s at these exposure levels were {similar_to}2%. The present post-exposure calibration method used calibration doses very close to those encountered in the field.

  16. A proposed four-element neutron-photon-beta thermoluminescence dosimeter.

    PubMed

    Liu, J C; Sims, C S; Ahmed, A B

    1992-09-01

    It is common practice for a worker exposed to a mixed field with neutrons to wear both a photon-beta dosimeter and a neutron dosimeter. In this study, a thermoluminescence dosimeter has been designed and is proposed for use in mixed fields. The maximum applicable ranges of the mixed field can have photons with unknown energy from 20 keV to 2 MeV, betas with unknown energy from 147Pm to 90Sr-Y, and neutrons of known energy from thermal to 15 MeV. This proposed dosimeter (a combination of Harshaw beta-gamma thermoluminescence dosimeter and albedo neutron thermoluminescence dosimeter) has an advantage of using a minimum number of thermoluminescence dosimeter elements (therefore, making it less costly) to measure the dose equivalents in a mixed field of neutron, photon, and beta radiation. The basic dosimeter design consists of four thermoluminescence elements of TLD-600 and TLD-700 with different filtrations. Using the high-temperature peak methodology for TLD-600 and a filtration algorithm, the neutron, photon, and beta dose equivalents in a mixed field can be determined. The design, detection principle, and three dosimetric algorithms for three versions of the basic design of the four-element dosimeter are presented and discussed. The work that is required for the proposed dosimeter to be usable when it is made is also presented. PMID:1644568

  17. Vertical distribution of radiation dose rates in the water of a brackish lake in Aomori Prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Iyogi, Takashi; Ueda, Shinji; Hisamatsu, Shun'ichi

    2015-11-01

    Seasonal radiation dose rates were measured with glass dosemeters housed in watertight cases at various depths in the water of Lake Obuchi, a brackish lake in Aomori Prefecture, Japan, during fiscal years 2011-2013 to assess the background external radiation dose to aquatic biota in the lake. The mean radiation dose in the surface water of the lake was found to be 27 nGy h(-1), which is almost the same as the absorption dose rate due to cosmic ray reported in the literature. Radiation dose rates decreased exponentially with water depth down to a depth of 1 m above the bottom sediment. In the water near the sediment, the dose rate increased with depth owing to the emission of γ-rays from natural radionuclides in the sediment.

  18. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area.

    PubMed

    Sundal, A V; Strand, T

    2004-01-01

    Results of indoor gamma radiation and radon measurements in 95 wooden dwellings located in a Norwegian thorium-rich carbonatite area using thermoluminescent dosemeters and CR-39 alpha track detectors, respectively, are reported together with a thorough analysis of the indoor data with regard to geological factors. Slightly enhanced radium levels and thorium concentrations of several thousands Bq kg(-1) in the carbonatites were found to cause elevated indoor radon-222 levels and the highest indoor gamma dose rates ever reported from wooden houses in Norway. An arithmetic mean indoor gamma dose rate of 200 nGy h(-1) and a maximum of 620 nGy h(-1) were obtained for the group of dwellings located directly on the most thorium-rich bedrock. PMID:15312702

  19. Studies of beam induced radiation for experiment 735 at the CO interaction region and its effect on detector components

    SciTech Connect

    Turkot, F.; Hojvat, C.; Anderson, W.; Lindsey, C.S.; Biswas, N.; Piekarz, J.; Bujak, A.

    1985-06-12

    A series of measurement is reported that were conducted to evaluate the amount of radiation present in the Fermilab Collider tunnel under different circumstances. Also to be determined is the effect of radiation on scintillators, phototubes, and their electronics, possible damage to drift chamber wires due to high counting rates and possible damage to the drift chamber electronics. Background and resulting trigger rates are evaluated and the effect of local shielding is studied. Results of radiation measurements made during beam-on operation are presented. The detectors used include: two arrays of LiF crystal dosemeters, three scintillation counter telescopes, a modified ion chamber, and six sample pieces of Bicron plastic scintillators. (LEW)

  20. Energy and angular anisotropy optimisation of a p-type diode for in vivo dosimetry in photon-beam radiotherapy.

    PubMed

    Greene, Simon; Price, Robert A

    2005-01-01

    We present simulation work using the Monte Carlo code MCNPX that shows that there is a possibility of improving the silicon p-type diode as a radiation dosemeter, by altering the construction of the diode. Altering the diode die thickness can reduce the inherent angular anisotropy of the diode, with little effect on its energy response. Conversely, the contact material and geometry have a large impact on the energy response with little effect on the inherent angular anisotropy. By correct choice of contact material, the typical over-response -100 keV relative to the response at 60Co energy can be reduced from approximately 20 to 4. It is expected that further enhancements may be made with different geometries and materials.

  1. VERIFICATION OF INDICATED SKIN ENTRANCE AIR KERMA FOR CARDIAC X-RAY-GUIDED INTERVENTION USING GAFCHROMIC FILM.

    PubMed

    Nilsson Althén, J; Sandborg, M

    2016-06-01

    The aim of this work was to verify the indicated maximum entrance surface air kerma (ESAK) using a GE Innova IGS 520 imaging system during cardiac interventional procedures. Gafchromic XR RV3 films were used for the patient measurements to monitor the maximum ESAK. The films were scanned and calibrated to measure maximum ESAK. Thermoluminescent dosemeters were used to measure the backscatter factor from an anthropomorphic thorax phantom. The measured backscatter factor, 1.53, was in good agreement with Monte Carlo simulations but higher than the one used by the imaging system, 1.20. The median of the ratio between indicated maximum ESAK and measured maximum ESAK was 0.68. In this work, the indicated maximum ESAK by the imaging system's dose map model underestimates the measured maximum ESAK by 32 %. The threshold ESAK for follow-up procedures for patient with skin dose in excess of 2 Gy will be reduced to 1.4 Gy. PMID:26541185

  2. Dosimetric monitoring in Ukraine--present status and path to the future.

    PubMed

    Chumak, V; Boguslavskaya, A

    2007-01-01

    Despite wide use of nuclear energy and radiation sources in industry and medicine, there is no centralised dose accounting system in Ukraine; existing dosimetry services operate obsolete manual thermoluminescence dosemeter (TLD) readers and do not meet modern proficiency standards. Currently, dosimetric monitoring is required for approximately 42,000 occupationally exposed workers, including 9100 in medicine, 17,000 employees of nuclear power plants and approximately 16,000 workers dealing with other sources of occupational exposure. This article presents the plan of elaboration of the United System for monitoring and registration of individual doses which has the aim of harmonisation of individual monitoring in Ukraine through securing methodical unity; scientific and methodological guidance of individual dosimetric control; procurement of common technical policy regarding nomenclature and operation of instrumentation; implementation of quality assurance programmes; development and support of information infrastructure, in particular operation of the national registry of individual doses; training and certification of personnel engaged in the system of individual dosimetric monitoring.

  3. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure. PMID:16987919

  4. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  5. Dosimetric investigations on Mars-96 mission.

    PubMed

    Semkova, J; Dachev, T s; Matviichuk, Y u; Koleva, R; Tomov, B; Baynov, P; Petrov, V; Nguyen, V; Siegrist, M; Chene, J; d'Uston, C; Cotin, F

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  6. Eye lens dosimetry: task 2 within the ORAMED project.

    PubMed

    Gualdrini, G; Mariotti, F; Wach, S; Bilski, P; Denoziere, M; Daures, J; Bordy, J-M; Ferrari, P; Monteventi, F; Fantuzzi, E

    2011-03-01

    The ORAMED (Optimization of RAdiation protection for MEDical staff) project is funded by EU-EURATOM within the 7° Framework Programme. Task 2 of the project is devoted to study the dose to the eye lens. The study was subdivided into various topics, starting from a critical revision of the operational quantity H(p)(3), with the corresponding proposal of a cylindrical phantom simulating as best as possible the head in which the eyes are located, the production of a complete set of air kerma to dose equivalent conversion coefficients for photons from 10 keV to 10 MeV, and finally, the optimisation of the design of a personal dosemeter well suited to respond in terms of H(p)(3). The paper presents some preliminary results.

  7. Neutron absorbed dose determination by calculations of recoil energy.

    PubMed

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  8. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT.

  9. History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements.

    PubMed

    Lantos, P; Fuller, N

    2003-01-01

    Measurements during solar particle events with dosemeters flying permanently on-board Concorde are used to develop a semi-empirical model, called SiGLE. The model is intended to calculate, for a given flight plan, the dose equivalent received during a solar particle event observed with ground-based neutron monitors. It is successfully in operation in the SIEVERT computerised system intended to improve monitoring of radiation dose received by aircrews, in application to a European Directive. The semi-empirical model is applied to evaluate, for most exposed routes, the radiation doses corresponding to the GLEs observed since 1942 with ion chambers or neutron monitors. The results for the largest GLEs observed in the past are discussed in terms of radiation risk, and guidelines are suggested concerning possible alerts to the aeroplanes in case of events of exceptional magnitude.

  10. Radiation doses to paediatric patients and comforters undergoing chest X rays.

    PubMed

    Sulieman, A; Vlychou, M; Tsougos, I; Theodorou, K

    2011-09-01

    Pneumonia is an important cause of hospital admission among children in the developed world and it is estimated to be responsible for 3-18 % of all paediatric admissions. Chest X ray is an important examination for pneumonia diagnosis and for evaluation of complications. This study aims to determine the entrance surface dose (ESD), organ, effective doses and propose a local diagnostic reference level. The study was carried out at the university hospital of Larissa, Greece. Patients were divided into three groups: organ and effective doses were estimated using National Radiological Protection Board software. The ESD was determined by thermoluminescent dosemeters for 132 children and 76 comforters. The average ESD value was 55 ± 8 µGy. The effective dose for patients was 11.2 ± 5 µSv. The mean radiation dose for comforter is 22 ± 3 µGy. The radiation dose to the patients is well within dose constraint, in the light of the current practice.

  11. DOSE TO RADIOLOGICAL TECHNOLOGISTS FROM INDUCED RADIONUCLIDES IN CARBON ION RADIOTHERAPY.

    PubMed

    Yonai, S; Spano, V

    2016-09-01

    Radioactive nuclides are induced in irradiation devices and patients during high-energy photon and ion beam radiotherapies. These nuclides potentially become sources of exposure to radiation workers. Radiological technologists (RTs) are often required to enter an irradiation room and approach activated devices and patients. In this study, annual doses to RTs working in a carbon ion radiotherapy facility were estimated based on measurements with the Si-semiconductor personal dosemeter. In addition, the time decay of dose around a patient couch after irradiation was obtained by phantom experiments. The annual Hp(10) values for passive and scanned beams were estimated to be 61 and 2 μSv, respectively, when assuming the number of treatments in 2013. These are much lower than the ICRP recommended dose limit for radiation workers. The time-series data of dose to RTs during their work and the time decay of the dose should be helpful for reducing their dose further. PMID:27179122

  12. Dose response of xylitol and sorbitol for EPR retrospective dosimetry with applications to chewing gum.

    PubMed

    Israelsson, A; Gustafsson, H; Lund, E

    2013-04-01

    The purpose of this investigation was to study the radiation-induced electron paramagnetic resonance signal in sweeteners xylitol and sorbitol for use in retrospective dosimetry. For both sweeteners and chewing gum, the signal changed at an interval of 1-84 d after irradiation with minimal changes after 4-8 d. A dependence on storage conditions was noticed and the exposure of the samples to light and humidity was therefore minimised. Both the xylitol and sorbitol signals showed linearity with dose in the measured dose interval, 0-20 Gy. The dose-response measurements for the chewing gum resulted in a decision threshold of 0.38 Gy and a detection limit of 0.78 Gy. A blind test illustrated the possibility of using chewing gums as a retrospective dosemeter with an uncertainty in the dose determination of 0.17 Gy (1 SD).

  13. Characterisation of neutron fields at Cernavoda NPP.

    PubMed

    Cauwels, Vanessa; Vanhavere, Filip; Dumitrescu, Dorin; Chirosca, Alecsandru; Hager, Luke; Million, Marc; Bartz, James

    2013-04-01

    Near a nuclear reactor or a fuel container, mixed neutron/gamma fields are very common, necessitating routine neutron dosimetry. Accurate neutron dosimetry is complicated by the fact that the neutron effective dose is strongly dependent on the neutron energy and the direction distribution of the neutron fluence. Neutron field characterisation is indispensable if one wants to obtain a reliable estimate for the neutron dose. A measurement campaign at CANDU nuclear power plant located in Cernavoda, Romania, was set up to characterise the neutron fields in four different locations and to investigate the behaviour of different neutron personal dosemeters. This investigation intends to assist in choosing a suitable neutron dosimetry system at this nuclear power plant.

  14. Simulation of response functions of fast neutron sensors and development of thin neutron silicon sensor.

    PubMed

    Takada, Masashi; Nakamura, Takashi; Matsuda, Mikihiko; Nunomiya, Tomoya

    2014-10-01

    On radiation detection using silicon sensor, signals are produced from collected charges in a depletion layer; however, for high-energy particles, this depletion layer is extended due to funnelling phenomenon. The lengths of charge collection were experimentally obtained from proton peak energies in measured pulse-heights. The length is extended with increasing proton energy of up to 6 MeV, and then, is constant over 6 MeV. The response functions of fast neutron sensors were simulated for 5- and 15-MeV monoenergetic and (252)Cf neutron sources using the Monte Carlo N-Particle eXtended code. The simulation results agree well with the experimental ones, including the effect of funnelling phenomenon. In addition, a thin silicon sensor was developed for a new real-time personal neutron dosemeter. Photon sensitivity is vanishingly smaller than neutron one by a factor of 5×10(-4). PMID:24516186

  15. Simulated workplace neutron fields

    NASA Astrophysics Data System (ADS)

    Lacoste, V.; Taylor, G.; Röttger, S.

    2011-12-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields.

  16. The MATROSHKA facility--dose determination during an EVA.

    PubMed

    Reitz, Guenther; Berger, Thomas

    2006-01-01

    On 29 January 2004 the MATROSHKA facility was launched with a Russian Progress to the International Space Station. MATROSHKA is an ESA project, which has been achieved under the direction of the German Aerospace Center (DLR). The project is a cooperation of >16 research institutes from all over the world and is currently the biggest international experiment in radiation dosimetry ever performed in space. The facility simulates, as exact as possible, an astronaut during an extravehicular activity. It was successfully installed outside the Russian segment 'Zvezda' on 26 February 2004 and will remain there for a 1.5 year exposure period. The main task of the facility is to measure particle fluence and energy spectra, dose and dose rates outside and inside--including organ dose determination--in an anthropomorphic phantom mounted on the outside of the Space Station with passive and active dosemeter systems.

  17. A personal neutron monitoring system based on CR-39 recoil proton track detectors: assessment of Hp(10) using image process algorithms.

    PubMed

    Bedogni, R; Fantuzzi, E

    2002-01-01

    At the Individual Monitoring Service (IMS) of the ENEA Institute for Radiation Protection (IRP), the Hp(10) fast neutron dosemeter consists of a CR-39 (PADC, poly allyl diglycol carbonate) recoil protons track detector. The tracks across the detector surface are magnified through a chemical etching procedure and counted by a semi-automated system which consists of a microscope, a camera and a PC. A new analysis system, based on the National Instruments vision tools, was developed. The track area distribution for each reading field is recorded and numerical algorithms were developed in order to correct the energy dependence of the response and to recognise the tracks due to the background. This improves the dose evaluation system in terms of accuracy and discrimination or the background. PMID:12382731

  18. Comparing Geant4 hadronic models for the WENDI-II rem meter response function.

    PubMed

    Vanaudenhove, T; Dubus, A; Pauly, N

    2013-01-01

    The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.

  19. A new electronic neutron dosimeter (END) for reliable personal dosimetry

    NASA Astrophysics Data System (ADS)

    Ing, H.; Cousins, T.; Andrews, H. R.; Machrafi, R.; Voevodskiy, A.; Kovaltchouk, V.; Clifford, E. T. H.; Robins, M.; Larsson, C.; Hugron, R.; Brown, J.

    2008-04-01

    Tests of existing electronic neutron dosimeters by military and civilian groups have revealed significant performance limitations. To meet the operational requirements of emergency response personnel to a radiological/nuclear incident as well as those in the nuclear industry, a new END has been developed. It is patterned after a unique commercial neutron spectral dosemeter known as the N-probe. It uses a pair of small special scintillators on tiny photomultiplier tubes. Special electronics were designed to minimize power consumption to allow for weeks of operation on a single charge. The size, performance, and data analysis for the END have been designed to meet/exceed international standards for electronic neutron dosimeters. Results obtained with the END prototype are presented.

  20. Verification analysis of thermoluminescent albedo neutron dosimetry at MOX fuel facilities.

    PubMed

    Nakagawa, Takahiro; Takada, Chie; Tsujimura, Norio

    2011-07-01

    Radiation workers engaging in the fabrication of MOX fuels at the Japan Atomic Energy Agency-Nuclear Fuel Cycle Engineering Laboratories are exposed to neutrons. Accordingly, thermoluminescent albedo dosemeters (TLADs) are used for individual neutron dosimetry. Because dose estimation using TLADs is susceptible to variation of the neutron energy spectrum, the authors have provided TLADs incorporating solid-state nuclear tracks detectors (SSNTDs) to selected workers who are routinely exposed to neutrons and have continued analysis of the relationship between the SSNTD and the TLAD (T/R(f)) over the past 6 y from 2004 to 2009. Consequently, the T/R(f) value in each year was less than the data during 1991-1993, although the neutron spectra had not changed since then. This decrease of the T/R(f) implies that the ratio of operation time nearby gloveboxes and the total work time has decreased. PMID:21493603

  1. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units.

  2. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  3. Response components of LiF:Mg,Ti around a moderated Am-Be neutron source.

    PubMed

    Méndez, R; Iñiguez, M P; Barquero, R; Mañanes, A; Gallego, E; Lorente, A; Voytchev, M

    2002-01-01

    The responses of TLD-1010, TLD-700 and TLD-600 thermoluminescence dosemeters to the radiation field inside a water tank enclosing an isotopic 241Am-Be neutron source are analysed. Separate contributions coming from thermal neutrons, neutrons with energies above thermal and gamma rays to the total response of the three types of TLD are obtained. This is accomplished by assuming that the gamma responses for materials with different 6Li enrichments are identical and that the neutron response of TLD-700 is negligible compared to TLD-100 and TLD-600. The last assumption is tested by Monte Carlo simulations of the neutron energy spectrum at the points where the TLDs are irradiated.

  4. Simulation of response functions of fast neutron sensors and development of thin neutron silicon sensor.

    PubMed

    Takada, Masashi; Nakamura, Takashi; Matsuda, Mikihiko; Nunomiya, Tomoya

    2014-10-01

    On radiation detection using silicon sensor, signals are produced from collected charges in a depletion layer; however, for high-energy particles, this depletion layer is extended due to funnelling phenomenon. The lengths of charge collection were experimentally obtained from proton peak energies in measured pulse-heights. The length is extended with increasing proton energy of up to 6 MeV, and then, is constant over 6 MeV. The response functions of fast neutron sensors were simulated for 5- and 15-MeV monoenergetic and (252)Cf neutron sources using the Monte Carlo N-Particle eXtended code. The simulation results agree well with the experimental ones, including the effect of funnelling phenomenon. In addition, a thin silicon sensor was developed for a new real-time personal neutron dosemeter. Photon sensitivity is vanishingly smaller than neutron one by a factor of 5×10(-4).

  5. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. PMID:24625545

  6. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  7. Aircrew dosimetry by means of experimental measurements and calculations: results obtained during the year 2003.

    PubMed

    Spurný, F; Bĕgusová, M; Turek, K; Vlcek, B

    2005-01-01

    The results of measurements performed during the year 2003 onboard aircraft, mostly during regular commercial flights of the Czech Airlines (CSA) are presented. The studies were performed during more than 30 individual flights, several dosemeters and equipments were used for both neutron and non-neutron components of the onboard radiation field. CSA colleagues submitted us for all flights with navigation data necessary for the calculation of onboard aircraft crew exposure with transport codes EPCARD and CARI. Direct readings of experimental equipments were corrected on the base of the calibration in CERN high-energy radiation fields. A reasonable agreement of measured and calculated data was observed. During one of the flights, a very deep Forbush decrease occurred. The experimental results confronted with calculation permitted to obtain new view on the influence of such events on aircraft crew exposure.

  8. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  9. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  10. Visible photoluminescence of color centers in LiF crystals for absorbed dose evaluation in clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Villarreal-Barajas, J. E.; Piccinini, M.; Vincenti, M. A.; Bonfigli, F.; Khan, R. F.; Montereali, R. M.

    2015-04-01

    Among insulating materials, lithium fluoride (LiF) has been successfully used as ionizing radiation dosemeter for more than 60 years. Thermoluminescence (TL) has been the most commonly used reading technique to evaluate the absorbed dose. Lately, optically stimulated luminescence (OSL) of visible emitting color centers (CCs) has also been explored in pure and doped LiF. This work focuses on the experimental behaviour of nominally pure LiF crystals dosemeters for 6 MV x rays at low doses based on photoluminescence (PL) of radiation induced CCs. Polished LiF crystals were irradiated using 6 MV x rays produced by a clinical linear accelerator. The doses (absorbed dose to water) covered the 1-100 Gy range. Optical absorption spectra show stable formation of primary F defects up to a maximum concentration of 2×1016 cm-3, while no significant M absorption band at around 450 nm was detected. On the other hand, under Argon laser excitation at 458 nm, PL spectra of the irradiated LiF crystals clearly exhibited the characteristic F2 and F+3 visible broad emission bands. Their sum intensity is linearly proportional to the absorbed dose in the investigated range. PL integrated intensity was also measured using a conventional fluorescence optical microscope under blue lamp illumination. The relationship between the absorbed dose and the integrated F2 and F+3 PL intensities, represented by the net average pixel number in the optical fluorescence images, is also fairly linear. Even at the low point defect densities obtained at the investigated doses, these preliminary experimental results are encouraging for further investigation of CCs PL in LiF crystals for clinical dosimetry.

  11. Angular dependence of a simple accident dosimeter

    SciTech Connect

    Devine, R. T.; Romero, L. L.; Olsher, R. H.

    2004-01-01

    A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

  12. Implementation of standards for individual monitoring in Europe.

    PubMed

    Fantuzzi, E; Alves, J G; Ambrosi, P; Janzekovic, H; Vartiainen, E

    2004-01-01

    A large number of standards are available for radiation protection and individual monitoring purposes. They are published by various organisations, international and national. Moreover, the increasing policy of "Quality" applied to individual monitoring requires the implementation of standards on Quality Assurance (QA) both in technical and management aspects of a dosimetric service. Implementation of standards is not mandatory; therefore, varying degrees of implementation can be found in different European countries. However, for a number of good reasons, a degree of harmonisation within the European Union (EU) of the requirements and procedures for individual monitoring would be desirable. Harmonisation as applied to dosimetric services does not mean that they should all follow exactly the same procedures, but that they should aim to meet the same general requirements, and their results should be comparable. This article aims to compile information on the use of all standards applied within individual monitoring practices, be it on the calibration of dosemeters or on the QA procedures to be applied to the overall dose evaluation process. Both "technical standards" and "quality standards" will be discussed. A list of documents of relevance to subjects such as recommendations and requirements in the field of individual monitoring, whose application could help in the harmonisation of procedures, will also be given. As it is agreed that implementation of quality standards is a relevant framework within which harmonisation can be achieved, guidance on the implementation of quality standards in a dosimetric service is given. Accreditation and approval of dosimetric services will be of relevance in the process of harmonisation of individual monitoring within the EU. In this article, a discussion of various procedures and the meaning of both forms of recognition is also provided. Although most of the text applies to the monitoring of internal and external exposure to

  13. Eye lens dose in interventional cardiology.

    PubMed

    Principi, S; Delgado Soler, C; Ginjaume, M; Beltran Vilagrasa, M; Rovira Escutia, J J; Duch, M A

    2015-07-01

    The ICRP has recently recommended reducing the occupational exposure dose limit for the lens of the eye to 20 mSv y(-1), averaged over a period of 5 y, with no year exceeding 50 mSv, instead of the current 150 mSv y(-1). This reduction will have important implications for interventional cardiology and radiology (IC/IR) personnel. In this work, lens dose received by a staff working in IC is studied in order to determine whether eye lens dose monitoring or/and additional radiological protection measures are required. Eye lens dose exposure was monitored in 10 physicians and 6 nurses. The major IC procedures performed were coronary angiography and percutaneous transluminal coronary angioplasty. The personnel were provided with two thermoluminescent dosemeters (TLDs): one calibrated in terms of Hp(3) located close to the left ear of the operator and a whole-body dosemeter calibrated in terms of Hp(10) and Hp(0.07) positioned on the lead apron. The estimated annual eye lens dose for physicians ranged between 8 and 60 mSv, for a workload of 200 procedures y(-1). Lower doses were collected for nurses, with estimated annual Hp(3) between 2 and 4 mSv y(-1). It was observed that for nurses the Hp(0.07) measurement on the lead apron is a good estimate of eye lens dose. This is not the case for physicians, where the influence of both the position and use of protective devices such as the ceiling shield is very important and produces large differences among doses both at the eyes and on the thorax. For physicians, a good correlation between Hp(3) and dose area product is shown. PMID:25809107

  14. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  15. The use of LiF (TLD-100) as an out-of-field dosimeter.

    PubMed

    Kry, Stephen F; Price, Michael; Followill, David; Mourtada, Firas; Salehpour, Mohammad

    2007-09-24

    The commonly used thermoluminescent dosimeter TLD-100 (Harshaw Chemical Company, Solon, OH) responds not only to photons and electrons, but also to neutrons that are produced during high-energy therapies. As a result, TLD-100 measurements outside of the treatment field are suspect when high-energy radiation is used. Although alternatives such as TLD-700 do not respond to neutrons, specialty dosimeters of this kind are expensive and are not routinely used in most clinics. In the current study, we examined the accuracy of TLD-100 in measuring the out-of-field photon dose as a function of treatment energy. To determine the accuracy of TLD-100 as compared with TLD-700, TLD-100 was irradiated outside of the treatment field by medical accelerators operated at 6, 10, 15, and 18 MV. In an effort to eliminate the response of TLD-100 to neutrons, TLD capsules were encased in varying thicknesses of cadmium foil (0.25 - 0.75 mm) before being irradiated at 18 MV. The out-of-field TLD-100 was found to be accurate at 6 MV and 10 MV, but to be substantially over-responsive at 15 MV and 18 MV (by up to 1063% relative to TLD-700). By wrapping the TLD-100 in up to 0.75 mm of cadmium, it was possible to drastically reduce (down to 39% on average) the over-response of the TLD-100; however, total removal of the over-responsiveness was not possible. Although TLD-100 is well suited for measuring out-of-field dose at energies as high as 10 MV, at higher energies (15 MV or greater), this dosimeter over-responds substantially and should not be used. Although encasing the TLD in cadmium minimized over-response to a degree, the reduction was not sufficient to make TLD-100 viable for measuring out-of-field dose at high treatment energies.

  16. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    SciTech Connect

    Pena, E; Caprile, P; Sanchez-Nieto, B

    2014-06-01

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It was found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.

  17. SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures

    SciTech Connect

    Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V; Lliso-Valverde, F; Candela-Juan, C; Perez-Calatayud, J; Pujades, M; Ballester, F

    2014-06-01

    Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dose that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.

  18. Theoretical and practical implications of the effects of temperature during irradiation and during pre- and post-irradiation storage on the response of thermoluminescence dosimeters

    SciTech Connect

    Gail de Planque, E.

    1984-01-01

    Experiments have been conducted to determine the applicability of the Randall-Wilkins theory for describing the behavior of CaF/sub 2/:Mn thermoluminescence dosimeters (Harshaw TLD-400 chips). Results were obtained for four different conditions: irradiation followed by storage, irradiation after storage, irradiation both preceded and followed by storage, and continuous simultaneous irradiation and storage. The experiments were performed for storage intervals of approximately 1, 2, 3, 5, 6 and 7 days at five different storage temperatures: -25, +20, +65, +150 and +175/sup 0/C. The results indicate fading that is described not by the Randall-Wilkins theory but rather as a linear function of the logarithm of the storage time. While the results suggest that the trapping efficiency is independent of temperature, they do demonstrate a small decrease in TL response with storage time prior to irradiation which is independent of temperature and time (>17 hours) and hence probably not dosimetric in origin but perhaps optically related. Glow curve analyses support the concept of a band of traps rather than a single trap. The overall results are compared to other data available in the literature most of which is for room-temperature storage. These data, for storage periods ranging from minutes to one year, can also be described as a linear function of the logarithm of the storage time and are remarkably consistent when uniformly normalized. Although peripheral experiments revealed problems associated with self-irradiation as well as a decline in sensitivity with use, the stability experiment results verify the highly favorable stability properties of CaF/sub 2/:Mn for widespread application.

  19. Neutron radiation induced degradation of diode characteristics

    NASA Astrophysics Data System (ADS)

    Khanna, S. M.; Pepper, G. T.; Stone, R. E.

    1992-12-01

    Neutron radiation effects on diode current-voltage characteristics have been studied for a variety of diode over 1(10)(exp 13) - 3(10)(exp 15) n/sq cm 1 MeV equivalent neutron fluence range. A classification scheme consisting of three types of neutron effects on diode forward characteristics is proposed here for the first time. For constant forward current I(sub F) higher than that in the generation-recombination regime, the diode voltage V(sub F) either increases with fluence phi (Type 1 diode), on V(sub F) first decreases with phi at lower fluence levels and then increases with phi at higher fluence levels (Type 2 diode), or V(sub F) decreases with phi at all fluence levels used in this work (Type 3 diode). Most of the previous results on p-n junction diodes correspond to Type 1 diode results. Type 2 diode results are rather rare in the literature. Several examples of Type 2 diode results are presented here. Type 3 diode results are reported here for other types of diodes not reported earlier. These results are explained qualitatively in terms of the theories for a p-n junction and for radiation effects on semiconductors. It is shown here that a type 3 diode could be developed as a high neutron fluence monitor with three orders of magnitude higher upper limit than the Harshaw p-i-n diode neutron fluence monitor under evaluation at the US Army Aberdeen Proving Grounds, Aberdeen, Md. The results also suggest a methodology for radiation hard diode development.

  20. Optical modeling of black chrome solar-selective coatings

    SciTech Connect

    Sweet, J.N.; Pettit, R.B.

    1982-07-01

    Various investigations of coating microstructure are reviewed and the results of these studies are used to develop a picture of the microstructure of black chrome films plated from the Harshaw Chromonyx bath. In this model, the black chrome film is composed of roughly spherical particles which may tend to cluster together. These particles in turn are composed of small crystallites of metallic chrome and various oxides of chrome. The film void volume fraction appears to be greater than or equal to 0.6. The microstructural picture has been idealized to facilitate calculations of the spectral reflectance for films deposited onto nickel substrates and for freestanding or stripped films. In the idealized model, the metallic chromium is assumed to be in the form of spherical crystallites with concentric shells of Cr/sub 2/O/sub 3/ and the crystallite volume fraction is assumed to increase with depth into the film. Various experimental data are utilized to define film thickness, average volume fraction of Cr + Cr/sub 2/O/sub 3/, and volume ratio of Cr to Cr + Cr/sub 2/O/sub 3/. Both the Maxwell-Garnett (MG) and the Bruggeman effective medium theories for the dielectric constant of a composite media are reviewed. The extension of the MG theory to high inclusion volume fractions is discussed. Various forms of the MG theory and the Bruggeman theory are then utilized in reflectance calculations for both regular and stripped films.The results indicate that the MG formalism provides the best overall description of the optical response of black chrome films. Both model and experiment show that the solar absorptance initially decreases slowly as the amount of Cr/sub 2/O/sub 3/ increases; however a rapid decrease occurs when the Cr/sub 2/O/sub 3/ content passes 70 vol %.

  1. Free Air CO2 Enrichment (FACE) Research Data from the Aspen FACE Experiment (FACTS II)

    DOE Data Explorer

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOE’s Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. FACTS II, the Aspen FACE Experiment is a multidisciplinary study to assess the effects of increasing tropospheric ozone and carbon dioxide levels on the structure and function of northern forest ecosystems. The Aspen FACE facility is located at the Harshaw Experimental Forest near Rhinelander, Wisconsin. It consists of twelve 30m rings in which the concentrations of carbon dioxide and tropospheric ozone can be controlled. The design provides the ability to assess the effects of these gasses alone, and in combination, on many ecosystem attributes, including growth, leaf development, root characteristics, and soil carbon. Each ring consists of a series of vertical ventpipes which disperse carbon dioxide, ozone or normal air into the center of the ring. This computer controlled system uses signal feedback technology to adjust gas release each second in order to maintain a stable, elevated concentration of carbon dioxide and/or ozone throughout the experimental plot. Because there is no confinement, there is no significant change in the natural, ambient environment other than elevating these trace gas concentrations. [copied from http://aspenface.mtu.edu/index.html] Ring maps, lists of publications, data from the experiments, newsletters, protocol and performance

  2. Past and future application of solid-state detectors in manned spaceflight.

    PubMed

    Reitz, Guenther

    2006-01-01

    The radiation exposure in space missions can be reduced by careful mission planning and appropriate measures, such as provision of a radiation shelter, but it cannot be eliminated. The reason for that is the high penetration capability of the radiation components owing to their high energies. Radiation is therefore an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long-term orbital and interplanetary missions. The radiation environment is a complex mixture of charged particles of solar and galactic origin and of the radiation belts, as well as of secondary particles produced in interactions of the galactic cosmic particles with the nuclei of atmosphere of the earth. The complexity even increases by placing a spacecraft into this environment owing to the interaction of the radiation components with the shielding material. Therefore it is a challenge to provide for appropriate measurements in this radiation field, coping with the limited resources on experiment power and mass. Solid-state dosemeters were already chosen for measurements in the first manned flights. Thermoluminescence dosemeters (TLDs) and plastic nuclear track detectors (PNTD) especially found a preferred application because they are light-weighted, need no power supply and they are tissue-equivalent. Most of the data available until 1996 were gathered by using these passive detectors; this especially holds for heavy ion particle spectra. The systems, supplemented by converter foils or fission detectors and bubble detectors, provide information on dose, particle flux-, energy- and linear energy transfer spectra of the ionising radiation and neutron fluxes and doses. From 1989, silicon detectors were used for dose and flux measurements and later on for particle spectrometry. Silicon detectors were demonstrated as a powerful tool for the description of space radiation environment. Optical simulated luminescence (OSL) detectors have now been introduced as a

  3. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    SciTech Connect

    Farah, J; Trompier, F; Stolarczyk, L; Klodowska, M; Liszka, M; Olko, P; Algranati, C; Fellin, F; Schwarz, M; Domingo, C; Romero-Exposito, M; Dufek, V; Frojdh, E; George, S; Harrison, R; Kubancak, J; Ploc, O; Knezevic, Z; Majer, M; Miljanic, S; and others

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tank phantom with a 10 × 10 × 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45°, 90° and 180° with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ∼60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90° from beam axis, ∼2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.

  4. Personal dose equivalent conversion coefficients for photons to 1 GeV.

    PubMed

    Veinot, K G; Hertel, N E

    2011-04-01

    The personal dose equivalent, H(p)(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk, where personal dosemeters are usually worn, and in this instance a suitable approximation is a 30 × 30 × 15 cm(3) slab-type phantom. For this condition, the personal dose equivalent is denoted as H(p,slab)(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several megaelectronvolts, however, data to higher energies are limited. In this work, conversion coefficients up to 1 GeV have been calculated for H(p,slab)(10) and H(p,slab)(3) both by using the kerma approximation and tracking secondary charged particles. For H(p)(0.07), the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H(p,slab)(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom, conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological

  5. Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

    SciTech Connect

    Veinot, K. G.; Hertel, N. E.

    2010-09-27

    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on

  6. Personal dose equivalent conversion coefficients for photons to 1 GeV.

    PubMed

    Veinot, K G; Hertel, N E

    2011-04-01

    The personal dose equivalent, H(p)(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk, where personal dosemeters are usually worn, and in this instance a suitable approximation is a 30 × 30 × 15 cm(3) slab-type phantom. For this condition, the personal dose equivalent is denoted as H(p,slab)(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several megaelectronvolts, however, data to higher energies are limited. In this work, conversion coefficients up to 1 GeV have been calculated for H(p,slab)(10) and H(p,slab)(3) both by using the kerma approximation and tracking secondary charged particles. For H(p)(0.07), the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H(p,slab)(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom, conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological

  7. Comparison of doses to the rectum derived from treatment planning system with in-vivo dose values in vaginal vault brachytherapy using cylinder applicators

    PubMed Central

    Obed, Rachel Ibhade; Akinlade, Bidemi Idayat; Ntekim, Atara

    2015-01-01

    Purpose In-vivo measurements to determine doses to organs-at-risk can be an essential part of brachytherapy quality assurance (QA). This study compares calculated doses to the rectum with measured dose values as a means of QA in vaginal vault brachytherapy using cylinder applicators. Material and methods At the Department of Radiotherapy, University College Hospital (UCH), Ibadan, Nigeria, intracavitary brachytherapy (ICBT) was delivered by a GyneSource high-dose-rate (HDR) unit with 60Co. Standard 2D treatment plans were created with HDR basic 2.6 software for prescription doses 5-7 Gy at points 5 mm away from the posterior surface of vaginal cylinder applicators (20, 25, and 30 mm diameters). The LiF:Mg, Ti thermoluminescent dosimeter rods (1 x 6 mm) were irradiated to a dose of 7 Gy on Theratron 60Co machine for calibration purpose prior to clinical use. Measurements in each of 34 insertions involving fourteen patients were performed with 5 TLD-100 rods placed along a re-usable rectal marker positioned in the rectum. The dosimeters were read in Harshaw 3500 TLD reader and compared with doses derived from the treatment planning system (TPS) at 1 cm away from the dose prescription points. Results The mean calculated and measured doses ranged from 2.1-3.8 Gy and 1.2-5.6 Gy with averages of 3.0 ± 0.5 Gy and 3.1 ± 1.1 Gy, respectively, for treatment lengths 2-8 cm along the cylinder-applicators. The mean values correspond to 48.9% and 50.8% of the prescribed doses, respectively. The deviations of the mean in-vivo doses from the TPS values ranged from –1.9 to 2.1 Gy with a p-value of 0.427. Conclusions This study was part of efforts to verify rectal dose obtained from the TPS during vaginal vault brachytherapy. There was no significant difference in the dose to the rectum from the two methods of measurements. PMID:26816506

  8. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    SciTech Connect

    Soh, R; Lee, J; Harianto, F

    2014-06-01

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute material for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.

  9. Gafchromic film as a fast visual indicator of radiation exposure of first responders.

    PubMed

    Oren, Unal; Rääf, Christopher L; Mattsson, Sören

    2012-06-01

    Three types of Gafchromic films have been studied to investigate their potential for use as a visually readable dosemeter for persons acting as first responders in connection with radiological or nuclear emergencies. The two most sensitive film types show a pronounced variation in sensitivity by photon energy and are therefore not suitable for use in cases of unknown exposures. The third film type tested (RTQA2), which is intended for quality control in radiation therapy has a sensitivity that is independent of the radiation quality, and is therefore considered as the most optimal for visual reading in situ. Tests carried out on a group of 10 human observers showed that absorbed doses down to 40 mGy can be detected by the eye. Read by a portable densitometer, qualitative absorbed dose estimates down to 9 mGy can be achieved. The colour change is obtained instantaneously, giving first responders immediate information about the presence of beta-, gamma- and X-ray radiation.

  10. Patient and staff exposure during endoscopic retrograde cholangiopancreatography.

    PubMed

    Buls, N; Pages, J; Mana, F; Osteaux, M

    2002-05-01

    Despite a number of efforts being put into the radiological protection of both patient and staff during interventional radiological (IR) procedures during recent years, information about radiation exposure during endoscopic retrograde cholangiopancreatography (ERCP) procedures remains scarce. The purpose of this study was to estimate both patient and staff radiation doses during therapeutic ERCP procedures by direct measurement and to compare these results with data from other IR procedures. For 54 patients, effective dose and skin dose were estimated by measuring the dose-area product. For staff, entrance surface doses to the lens of the eye, thyroid and hands were estimated by thermoluminescent dosemeters. A median effective dose of 7.3 mSv and a median entrance surface dose of 271 mGy per procedure were estimated for patients. The gastroenterologist received a median dose of 0.34 mGy to the lens of the eye, 0.30 mGy to the skin at the level of the thyroid and 0.44 mGy to the skin of the hands, per procedure. When comparing the dosimetric quantities presented in this study with data from other IR procedures, it is clear that patient skin doses and doses to staff are high owing to the use of inappropriate X-ray equipment. ERCP requires the same radiation protection practice as all IR procedures. It should be consistently included in future multicentre IR patient and staff dose survey studies at national or international level.

  11. Evaluation of the effective dose of cone beam CT and multislice CT for temporomandibular joint examinations at optimized exposure levels

    PubMed Central

    Kadesjö, N; Benchimol, D; Falahat, B; Näsström, K

    2015-01-01

    Objectives: To compare the effective dose to patients from temporomandibular joint examinations using a dental CBCT device and a multislice CT (MSCT) device, both before and after dose optimization. Methods: A Promax® 3D (Planmeca, Helsinki, Finland) dental CBCT and a LightSpeed VCT® (GE Healthcare, Little Chalfont, UK) multislice CT were used. Organ doses and effective doses were estimated from thermoluminescent dosemeters at 61 positions inside an anthropomorphic phantom at the exposure settings in clinical use. Optimized exposure protocols were obtained through an optimization study using a dry skull phantom, where four observers rated image quality taken at different exposure levels. The optimal exposure level was obtained when all included criteria were rated as acceptable or better by all observers. Results: The effective dose from a bilateral examination was 184 µSv for Promax 3D and 113 µSv for LightSpeed VCT before optimization. Post optimization, the bilateral effective dose was 92 µSv for Promax 3D and 124 µSv for LightSpeed VCT. Conclusions: At optimized exposure levels, the effective dose from CBCT was comparable to MSCT. PMID:26119344

  12. Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.

    PubMed

    Hranitzky, C; Stadtmann, H

    2007-01-01

    The gamma radiation fields of the reference irradiation facility of the Dosimetry Laboratory Seibersdorf with collimated beam geometry are used for calibrating radiation protection dosemeters. A close-to-reality simulation model of the facility including the complex geometry of a 60Co source was set up using the Monte Carlo code MCNP. The goal of this study is to characterise the radionuclide gamma calibration field and resulting air-kerma distributions inside the measurement hall with a total of 20 m in length. For the whole range of source-detector-distances (SDD) along the central beam axis, simulated and measured relative air-kerma values are within +/-0.6%. Influences on the accuracy of the simulation results are investigated, including e.g., source mass density effects or detector volume dependencies. A constant scatter contribution from the lead ring-collimator of approximately 1% and an increasing scatter contribution from the concrete floor for distances above 7 m are identified, resulting in a total air-kerma scatter contribution below 5%, which is in accordance to the ISO 4037-1 recommendations.

  13. Experimental qualification of a code for optimizing gamma irradiation facilities

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.; Leizier, J. J. M.; Keraron, Y.; Lallemant, T. F.; Perdriau, P. D. M.

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the "Société Générale pour les Techniques Nouvelles" (SGN), a supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. (ERHART, KERARON, 1986) Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the "Laboratoire de Métrologie des Rayonnements Ionisants" (LMRI) of the "Bureau National de Métrologie" (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quantity was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet.

  14. Personal radon dosimetry from eyeglass lenses.

    PubMed

    Fleischer, R L; Meyer, N R; Hadley, S A; MacDonald, J; Cavallo, A

    2001-01-01

    Eyeglass lenses are commonly composed of allyl-diglycol carbonate (CR-39), an alpha-particle detecting plastic, thus making such lenses personal radon dosemeters. Samples of such lenses have been obtained, etched to reveal that radon and radon progeny alpha tracks can be seen in abundance, and sensitivities have been calibrated in radon chambers as a primary calibration, and with a uranium-based source of alpha particles as a convenient secondary standard. With one exception natural, environmental (fossil) track densities ranged from less than 3,000 to nearly 70,000 per cm2 for eyeglasses that had been worn for various times from one to nearly five years. Average radon concentrations to which those wearers were exposed are inferred to be in the range 14 to 130 Bq x m(-3) (0.4 to 3.5 pCi x l(-1)). A protocol for consistent, meaningful readout is derived and used. In the exceptional case the fossil track density was 1,780,000 cm(-2) and the inferred (24 h) average radon concentration was 6500 Bq x m(-3) (175 pCi x l(-1)) for a worker at an inactive uranium mine that is used for therapy.

  15. Seasonal variation of indoor radon-222 levels in dwellings in Ramallah province and East Jerusalem suburbs, Palestine.

    PubMed

    Leghrouz, Amin A; Abu-Samreh, Mohammad M; Shehadeh, Ayah K

    2012-01-01

    This study presents the seasonal variations of indoor radon levels in dwellings located in the Ramallah province and East Jerusalem suburbs, Palestine. The measurements were performed during the summer and winter of the year 2006/2007 using CR-39 solid-state-nuclear-track detectors. The total number of investigated buildings is 75 in summer and 81 in winter. A total number of 142 dosemeters are installed in dwellings for each season for a period of almost 100 d. The radon concentration levels in summer varied from 43 to 192 Bq m(-3) for buildings in the Ramallah province and from 30 to 655 Bq m(-3) for East Jerusalem suburbs. In winter, the radon concentration levels are found to vary from 38 to 375 Bq m(-3) in the Ramallah buildings and from 35 to 984 Bq m(-3) in East Jerusalem suburbs. The obtained results for radon concentration levels in most places are found to be within the accepted international levels.

  16. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  17. Luminescence-based retrospective dosimetry using Al2O3 from mobile phones: a simulation approach to determine the effects of position.

    PubMed

    Eakins, J S; Kouroukla, E

    2015-06-01

    Monte Carlo modelling has been performed in support of efforts to establish emergency dosimetry services based on optically or thermally stimulated luminescence (OSL/TL) of the Al(2)O(3) substrate present on the resistors found in mobile phones, which can act as fortuitous retrospective dosemeters for photon exposures. Specifically, a range of exposure conditions has been modelled to assess the dependence of the dosimetry on factors such as the position of resistors within a phone, the orientation of the phone relative to the source, and the location of the phone relative to its owner. Variations due to the resistors' positions and the phone's orientation were generally found to contribute just a few percent to the uncertainty on the dose assessments, though the electrical contacts surrounding the resistors could potentially enhance these by several 10s of percent. But, the location of the phone was found to impact dosimetry greatly. The largest discrepancies in the results were found for low-energy exposures: for (192)Ir, differences of up to an order-of-magnitude were found between resistor and whole body doses. The outcome of the work was to derive correction / calibration factors that can be applied to estimate whole body doses from OSL/TL readings, the accurate application of which would depend on the knowledge of the exposure geometry and the degree of conservatism acceptable for the dose assessment.

  18. Radiation exposure to nuclear medicine staff involved in PET/CT practice in Serbia.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Todorovic, N; Lucic, S

    2014-12-01

    The purpose of this work is to evaluate the radiation exposure to nuclear medicine (NM) staff in the two positron emission tomography-computed tomography centres in Serbia and to investigate the possibilities for dose reduction. Dose levels in terms of Hp(10) for whole body and Hp(0.07) for hands of NM staff were assessed using thermoluminescence and electronic personal dosemeters. The assessed doses per procedure in terms of Hp(10) were 4.2-7 and 5-6 μSv, in two centres, respectively, whereas the extremity doses in terms of Hp(0.07) in one of the centres was 34-126 μSv procedure(-1). The whole-body doses per unit activity were 17-19 and 21-26 μSv GBq(-1) in two centres, respectively, and the normalised finger dose in one centre was 170-680 μSv GBq(-1). The maximal estimated annual whole-body doses in two centres were 3.4 and 2.0 mSv, while the corresponding extremity dose in the later one was 45 mSv. Improvements as introduction of automatic dispensing system and injection and optimisation of working practice resulted in dose reduction ranging from 12 up to 67 %.

  19. Low-energy x-ray dosimetry studies (6 to 16 keV) at SSRL beamline 1-5

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; Chatterji, S.; Fassò, A.; Kase, K. R.; Seefred, R.; Olko, P.; Bilski, P.; Soares, C.

    1997-07-01

    Synchrotron radiation facilities provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory (SSRL) are described. Polish lithium fluoride thermoluminescent dosemeters (TLDs), MTS-N(LiF:Mg, Ti- 0.4 mm thick), MCP-N (LiF:Mg, Cu, P - 0.4 mm thick) were exposed free in air to monochromatic x-rays (6-16 keV). These exposures were monitored with an SSRL ionization chamber. The responses (counts/Gy) of MTS-N and MCP-N were generally found to increase with increasing energy. The response at 16 keV is about 3 and 4 times higher than the response at 6 keV for MTS-N and MCP-N, respectively. Irradiation at 6 keV indicates a fairly linear dose response for both type of TLDs over a dose range of 0.01 to 0.4 Gy. In addition there appears to be no significant difference in responses between irradiating the TLDs from the front and the back sides. The energy response of the PTW ionization chamber type 23342 relative to the SSRL ionization chamber is within ±4.5% between 6 and 16 keV. Both the TLDs and the PTW ionization chamber can also be used for beam dosimetry.

  20. Radiation protection in fixed PET/CT facilities—design and operation

    PubMed Central

    Peet, D J; Morton, R; Hussein, M; Alsafi, K; Spyrou, N

    2012-01-01

    We describe the design of a fixed positron emission tomography (PET)/CT facility and the use of a simulated instantaneous dose-rate plot to visually highlight areas of potentially high radiation exposure. We also illustrate the practical implementation of basic radiation protection principles based on the use of distance and shielding and the minimisation of time spent in hot areas. Staff whole body doses for 4 years are presented with results of an optimisation study analysing the dose arising from the different phases within each study using direct reading dosemeters. The total whole body dose for all staff for each patient fell from 9.5 μSv in the first full year of operation to 4.8 µSv in 2008. The maximum dose to an individual member of staff per patient decreased over the same period from 3.2 to 0.9 µSv. The optimisation study showed that the highest dose was recorded during the injection phase. PMID:21976626

  1. The effective dose of different scanning protocols using the Sirona GALILEOS® comfort CBCT scanner

    PubMed Central

    Bohay, R; Kaci, L; Barnett, R; Battista, J

    2015-01-01

    Objectives: To determine the effective dose and CT dose index (CTDI) for a range of imaging protocols using the Sirona GALILEOS® Comfort CBCT scanner (Sirona Dental Systems GmbH, Bensheim, Germany). Methods: Calibrated optically stimulated luminescence dosemeters were placed at 26 sites in the head and neck of a modified RANDO® phantom (The Phantom Laboratory, Greenwich, NY). Effective dose was calculated for 12 different scanning protocols. CTDI measurements were also performed to determine the dose–length product (DLP) and the ratio of effective dose to DLP for each scanning protocol. Results: The effective dose for a full maxillomandibular scan at 42 mAs was 102 ± 1 μSv and remained unchanged with varying contrast and resolution settings. This compares with 71 μSv for a maxillary scan and 76 μSv for a mandibular scan with identical milliampere-seconds (mAs) at high contrast and resolution settings. Conclusions: Changes to mAs and beam collimation have a significant influence on effective dose. Effective dose and DLP vary linearly with mAs. A collimated maxillary or mandibular scan decreases effective dose by approximately 29% and 24%, respectively, as compared with a full maxillomandibular scan. Changes to contrast and resolution settings have little influence on effective dose. This study provides data for setting individualized patient exposure protocols to minimize patient dose from ionizing radiation used for diagnostic or treatment planning tasks in dentistry. PMID:25358865

  2. A novel device for automatic withdrawal and accurate calibration of 99m-technetium radiopharmaceuticals to minimise radiation exposure to nuclear medicine staff and patient.

    PubMed

    Nazififard, Mohammad; Mahdizadeh, Simin; Meigooni, A S; Alavi, M; Suh, Kune Y

    2012-09-01

    A Joint Automatic Dispenser Equipment (JADE) has been designed and fabricated for automatic withdrawal and calibration of radiopharmaceutical materials. The thermoluminescent dosemeter procedures have shown a reduction in dose to the technician's hand with this novel dose dispenser system JADE when compared with the manual withdrawal of (99m)Tc. This system helps to increase the precision of calibration and to minimise the radiation dose to the hands and body of the workers. This paper describes the structure of this device, its function and user-friendliness, and its efficacy. The efficacy of this device was determined by measuring the radiation dose delivered to the hands of the nuclear medicine laboratory technician. The user-friendliness of JADE has been examined. The automatic withdrawal and calibration offered by this system reduces the dose to the technician's hand to a level below the maximum permissible dose stipulated by the international protocols. This research will serve as a backbone for future study about the safe use of ionising radiation in medicine.

  3. Thermoluminescence responses of terbium-doped magnesium orthosilicate with different synthesis conditions.

    PubMed

    Wang, Y; Jiang, Y; Chu, X; Xu, J; Townsend, P D

    2014-03-01

    Numerous materials have been proposed for thermoluminescence dosemeter, and the example of highest sensitivity is cited as magnesium orthosilicate doped with terbium (Mg2SiO4:Tb). Nevertheless, the material is currently not commercially attractive because the sensitivity varies greatly with synthesis techniques. This is a multi-parameter problem, and the current work explores some of the conditions required to consistently enhance the response. These new results show that to get a high TL response, Mg2SiO4:Tb should be prepared at a high temperature of at least 1500°C, for sintering times of several hours. In the current example, the optimum time was 6 h. Signals also vary with the terbium activator concentration, and good responses were achieved with a concentration of Tb at 5 wt %. Overall, this suggests that with careful preparation, the potentially high dosimetry performance might be exploited. The inherent problem of concentration quenching is considered, and the potential benefits of processing the powder with pulse laser annealing are reviewed in the light of successful luminescence and laser studies for rare-earth-doped laser materials.

  4. A study of environmental radioactivity measurements in the Samsun province, Turkey.

    PubMed

    Kucukomeroglu, B; Maksutoglu, F; Damla, N; Cevik, U; Celebi, N

    2012-12-01

    This study was concerned with the measurement of natural and artificial radionuclides in soil samples and indoor radon concentrations in the Samsun province, Turkey. In soil samples, the values of individual mean activity of (226)Ra, (232)Th, (40)K and (137)Cs radionuclides were found to be 31, 22, 341 and 16 Bq kg(-1), respectively. The radiological parameters, such as the absorbed dose rate in air, the annual effective dose (AED) and excess lifetime cancer risk, were calculated. Indoor radon measurements were carried out with CR-39-based radon dosemeters at 127 dwellings in the Samsun province. The mean annual (222)Rn activity was found to be 106 Bq m(-3) (equivalent to an AED of 1.88 mSv). The seasonal variation of (222)Rn activity shows that maximum levels are observed in the winter, while minimum levels are observed in the summer. The mean lifetime fatality risk for the studied area was estimated at 1.45×10(-4). The results obtained did not significantly differ from those obtained in other parts of the country.

  5. ACCURATE KAP METER CALIBRATION AS A PREREQUISITE FOR OPTIMISATION IN PROJECTION RADIOGRAPHY.

    PubMed

    Malusek, A; Sandborg, M; Carlsson, G Alm

    2016-06-01

    Modern X-ray units register the air kerma-area product, PKA, with a built-in KAP meter. Some KAP meters show an energy-dependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q0, to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q1, to beam quality, Q Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography.

  6. Strict X-ray beam collimation for facial bones examination can increase lens exposure

    PubMed Central

    Powys, R; Robinson, J; Kench, P L; Ryan, J; Brennan, P C

    2012-01-01

    Objectives It is well accepted that collimation is a cost-effective dose-reducing tool for X-ray examinations. This phantom-based study investigated the impact of X-ray beam collimation on radiation dose to the lenses of the eyes and thyroid along with the effect on image quality in facial bone radiography. Methods A three-view series (occipitomental, occipitomental 30 and lateral) was investigated, and radiation doses to the lenses and thyroid were measured using an Unfors dosemeter. Images were assessed by six experienced observers using a visual grading analysis and a total of 5400 observations were made. Results Strict collimation significantly (p<0.0001) reduced the radiation dose to the lenses of the eyes and thyroid when using a fixed projection-specific exposure. With a variable exposure technique (fixed exit dose, to simulate the behaviour of an automatic exposure control), while strict collimation was again shown to reduce thyroid dose, higher lens doses were demonstrated when compared with larger fields of exposure. Image quality was found to significantly improve using strict collimation, with observer preference being demonstrated using visual grading characteristic curves. Conclusion The complexities of optimising radiographic techniques have been shown and the data presented emphasise the importance of examining dose-reducing strategies in a comprehensive way. PMID:22374279

  7. SECONDARY NEUTRON DOSES IN A PROTON THERAPY CENTRE.

    PubMed

    De Saint-Hubert, M; Saldarriaga Vargas, C; Van Hoey, O; Schoonjans, W; De Smet, V; Mathot, G; Stichelbaut, F; Manessi, G; Dinar, N; Aza, E; Cassell, C; Silari, M; Vanhavere, F

    2016-09-01

    The formation of secondary high-energy neutrons in proton therapy can be a concern for radiation protection of staff. In this joint intercomparative study (CERN, SCK•CEN and IBA/IRISIB/ULB), secondary neutron doses were assessed with different detectors in several positions in the Proton Therapy Centre, Essen (Germany). The ambient dose equivalent H(*)(10) was assessed with Berthold LB 6411, WENDI-2, tissue-equivalent proportional counter (TEPC) and Bonner spheres (BS). The personal dose equivalent Hp(10) was measured with two types of active detectors and with bubble detectors. Using spectral and basic angular information, the reference Hp(10) was estimated. Results concerning staff exposure show H(*)(10) doses between 0.5 and 1 nSv/monitoring unit in a technical room. The LB 6411 showed an underestimation of H(*)(10), while WENDI-2 and TEPC showed good agreement with the BS data. A large overestimation for Hp(10) was observed for the active personal dosemeters, while the bubble detectors showed only a slight overestimation.

  8. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  9. Effective doses from cone beam CT investigation of the jaws

    PubMed Central

    Davies, J; Johnson, B; Drage, NA

    2012-01-01

    Objectives The purpose of the study was to calculate the effective dose delivered to the patient undergoing cone beam (CB) CT of the jaws and maxillofacial complex using the i-CAT Next Generation CBCT scanner (Imaging Sciences International, Hatfield, PA). Methods A RANDO® phantom (The Phantom Laboratory, Salem, NY) containing thermoluminence dosemeters were scanned 10 times for each of the 6 imaging protocols. Effective doses for each protocol were calculated using the 1990 and approved 2007 International Commission on Radiological Protection (ICRP) recommended tissue weighting factors (E1990, E2007). Results The effective dose for E1990 and E2007, respectively, were: full field of view (FOV) of the head, 47 μSv and 78 μSv; 13 cm scan of the jaws, 44 μSv and 77 μSv; 6 cm standard mandible, 35 μSv and 58 μSv; 6 cm high resolution mandible, 69 μSv and 113 μSv; 6 cm standard maxilla, 18 μSv and 32 μSv; and 6 cm high resolution maxilla, 35 μSv and 60 μSv. Conclusions Using the new generation of CBCT scanner, the effective dose is lower than the original generation machine for a similar FOV using the ICRP 2007 tissue weighting factors. PMID:22184626

  10. Radiation damage induced by krypton ions in sintered alpha-Al2O3.

    PubMed

    Dalmasso, C; Iacconi, P; Beauvy, M; Lapraz, D; Balan, E; Calas, G

    2006-01-01

    Alpha-alumina is a useful thermoluminescence (TL) dosemeter. The knowledge of its behaviour under irradiation is thus of primary importance. The purpose of this paper is to characterise the radiation damage produced by swift krypton ions using various experimental methods, namely TL, optical absorption, fluorescence and electron paramagnetic resonance (EPR). After ion irradiation, the TL intensity is shown to decrease, whereas the optical absorption rises in the whole studied wavelength range. These two phenomena seem to be related to one another. Furthermore, optical absorption measurements highlight the appearance of new absorption bands probably owing to oxygen vacancies. Induced defects are also observed in the EPR spectra of irradiated pellets. They are likely related to electronic holes trapped on oxygen ions. The concentration of these defects increases with ion fluence and fluorescence measurements indicate that some pre-existing defects such as F2(2+) centres follow the same trend up to approximately 4.1 x 10(13) ions cm(-2).

  11. Preparation and thermoluminescence properties of aluminium oxide doped with europium.

    PubMed

    Azorín, J; Esparza, A; Falcony, C; Rivera, T; García, M; Martínez, E

    2002-01-01

    There is little information concerning the use of rare earths as dopants of Al2O3. This paper presents the preparation method and the results of studying the thermoluminescence characteristics of Al2O3:Eu exposed to ultraviolet light. Phosphor powder was obtained by the evaporation method. Optimum dopant concentration was 10% at an evaporation temperature of 700 degrees C. The powder obtained was submitted to thermal treatments at high temperatures in order to stabilise the traps. Diffraction patterns showed amorphous powder up to 500 degrees C; as the temperature was raised crystalline phases of Al2O3 appeared. The photoluminescence spectrum induced by 250 nm UV light exhibited four well defined peaks characteristic of the Eu3+ ion. The glow curve exhibited two peaks at 180 and 350 degrees C. The sensitivity of Al2O3:Eu was 10 times lower than Al2O3:C. The thermoluminescence response was linear from 2.4 to 3000 microJ.cm(-2) of spectral irradiance, and the fading 2% in a month. From these results it can be concluded that Al2O3:Eu has potential as an UV dosemeter. PMID:12382877

  12. Microdosemeter instrument (MIDN) for assessing risk in space.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Cucinotta, F A; Zaider, M; Rosenfeld, A B; Rusek, A; Sivertz, M; Dicello, J F

    2011-02-01

    Radiation in space generally produces higher dose rates than that on the Earth's surface, and contributions from primary galactic and solar events increase with altitude within the magnetosphere. Presently, no personnel monitor is available to astronauts for real-time monitoring of dose, radiation quality and regulatory risk. This group is developing a prototypic instrument for use in an unknown, time-varying radiation field. This microdosemeter-dosemeter nucleon instrument is for use in a spacesuit, spacecraft, remote rover and other applications. It provides absorbed dose, dose rate and dose equivalent in real time so that action can be taken to reduce exposure. Such a system has applications in health physics, anti-terrorism and radiation-hardening of electronics as well. The space system is described and results of ground-based studies are presented and compared with predictions of transport codes. An early prototype in 2007 was successfully launched, the only solid-state microdosemeter to have flown in space. PMID:21199825

  13. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    PubMed

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  14. Comparison between direct measurements and modeled estimates of external radiation exposure among school children 18 to 30 months after the Fukushima nuclear accident in Japan.

    PubMed

    Nomura, Shuhei; Tsubokura, Masaharu; Hayano, Ryugo; Furutani, Tomoyuki; Yoneoka, Daisuke; Kami, Masahiro; Kanazawa, Yukio; Oikawa, Tomoyoshi

    2015-01-20

    After a major radioactive incident, accurate dose reconstruction is important for evaluating health risks and appropriate radiation protection policies. After the 2011 Japan Fukushima nuclear incident, we assessed the level of agreement between the modeled and directly measured dose and estimated the uncertainties. The study population comprised 520 school children from Minamisoma city, located 20 km north of the nuclear plant. The annual dose 18–30 months after the incident was assessed using two approaches: estimation using the model proposed by the Japanese government and direct measurement by radiation dosemeters. The ratio of the average of modeled and measured doses was 3.0 (standard deviation (SD): 2.0). The reduction coefficient, an index for radiation attenuation properties, was 0.3 (SD: 0.1) on average, whereas the value used in the government model was 0.6. After adjusting for covariates, the coefficient had a significant negative correlation with the air dose rate in the dwelling location (p < 0.001), indicating that stronger building shielding effects are valuable in areas with higher air contamination levels. The present study demonstrated that some overestimation may have been related to uncertainties in radiation reduction effects, and that the air contamination level might provide a more important indicator of these effects.

  15. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  16. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  17. Monitoring the eye lens: how do the international organisations react?

    PubMed

    Behrens, R

    2015-04-01

    The International Commission on Radiological Protection (ICRP) has recommended to lower the limit of the dose to the eye lens for occupationally exposed persons to a mean value of 20 mSv y(-1) (averaged over 5 y, with a maximum of 50 mSv y(-1)); already in the autumn of 2011, both the European Commission and the International Atomic Energy Agency : IAEA) took over this reduction in their respective draft basic safety standards. Even prior to this (and since then, increasingly so), several international activities were started (among other things, the following ones): (1) the ICRP adopted a stylised model of the eye to calculate dose conversion coefficients for its report ICRP 116; (2) the European Commission has funded the ORAMED project dealing with radiation protection in medicine; (3) in its standard IEC 62387 on passive dosimetry systems, the International Electrotechnical Commission (IEC) has laid down requirements for Hp(3) eye dosemeters; (4) the International Organization for Standardization (ISO) and the IAEA provide a range of practical advice in the standard ISO 15382 (still a draft) and in a technical document IAEA TecDoc on both radiation protection and on dosimetry; (5) for most cases, the International Commission on Radiation Units and Measurements (ICRU) recommends both phantoms (the slab and the cylinder). In short: most national procedures can orientate themselves on international ones; some questions, however, remain open.

  18. Extremity exposure in nuclear medicine: preliminary results of a European study.

    PubMed

    Sans Merce, M; Ruiz, N; Barth, I; Carnicer, A; Donadille, L; Ferrari, P; Fulop, M; Ginjaume, M; Gualdrini, G; Krim, S; Mariotti, F; Ortega, X; Rimpler, A; Vanhavere, F; Baechler, S

    2011-03-01

    The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: (99m)Tc and (18)F. For therapeutic treatments, Zevalin(®) and DOTATOC (both labelled with (90)Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin doses.

  19. The MATROSHKA Facility - History and science overview

    NASA Astrophysics Data System (ADS)

    Reitz, G.; Berger, T.

    The ESA MATROSHKA facility was realized through the German Aerospace Center DLR Cologne as main contractor On the 29th of January 2004 the facility was launched with a Russian PROGRESS vehicle to the International Space Station It was installed outside the Russian segment Zvezda on the 26th February 2004 and remained there until August 2005 and simulates as exact as possible an astronaut during an extravehicular activity EVA The MATROSHKA facility basically consists of a human phantom a Base Structure and a Container The container as well as the phantom is mounted to the base structure which serves as a footprint for the human phantom The container is a Carbon Fiber structure and forms with the Base Structure a closed volume that contains a dry oxygen atmosphere and protects the phantom against e g space vacuum space debris solar UV and material off-gassing It acts also as a simulation of the space suit The phantom body is made of commercial phantom parts well introduced in the field of radiotherapy It consists of 33 slices composed of natural bones embedded in tissue equivalent plastic of different density for tissue and lung The Phantom slices are equipped with channels and cut-outs to allow the accommodation of active and passive dosemeters temperature and pressure sensors The radiation experiments accommodated in the facility are performed under leadership of DLR in a cooperation of more than 15 research institutes from all over the world The MATROSHKA experiments represent therefore the currently biggest international

  20. 41Ca - a possible neutron specific biomarker in tooth enamel

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Arazi, A.; Faestermann, T.; Knie, K.; Korschinek, G.; Maier, H. J.; Nakamura, N.; Rühm, W.; Rugel, G.

    2004-08-01

    The measurement of long-lived radionuclides, produced by neutrons originating from the atomic-bomb explosions, offers the possibility to reconstruct neutron fluences to which survivors in Hiroshima and Nagasaki were exposed. The long-lived radionuclide, 41Ca (T1/2=103 000 years), is suggested here as a means for a retrospective determination of thermal neutron fluences, directly within the human body of a survivor. As proper material tooth enamel is proposed. The 41Ca signal in tooth enamel may be correlated with the exposure to A-bomb induced thermal neutron fluences, provided the natural background level of 41Ca/Ca is significantly lower. Therefore, tooth samples of unexposed survivors of the A-bomb explosions have been examined by means of accelerator mass spectrometry, in order to quantify the natural background level of 41Ca/Ca. Measured 41Ca/Ca ratios were confirmed to be as low as about 2 × 10-15. Thus, the A-bomb induced additional signal should be detectable for survivors at epidemiological relevant distances. Since tooth enamel had already been used as a dosemeter for gamma radiation from the A-bomb explosion, the detection of 41Ca in tooth enamel would allow, for the first time, an assessment of both, γ-ray and neutron exposures in the same biological material.

  1. Monte Carlo simulations and dosimetric studies of an irradiation facility

    NASA Astrophysics Data System (ADS)

    Belchior, A.; Botelho, M. L.; Vaz, P.

    2007-09-01

    There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool—MCNPX—in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.

  2. a Solution for Dosimetry and Quality Assurance in Imrt and Hadrontherapy:. the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Coda, S.; Nastasi, U.; Belletti, S.; Ghedi, B.; Boriano, A.; Cirio, R.; Luparia, A.; Marchetto, F.; Peroni, C.; Sanz Freire, C. J.; Donetti, M.; Madon, E.; Trevisiol, E.; Urgesi, A.

    2002-11-01

    The new radiotherapy techniques require new detectors to monitor and measure the clinical field. The Intensity Modulated Radiation Therapy (IMRT) techniques like step and shoot, sliding window, dynamic wedge or scanning beam add the time variable to the treatment field. In this case the water phantom with a single ionization chamber moving inside the field needs very long measurement time. Linear arrays of ionization chambers or diodes measure the field only along a line. 2D detectors like radiographic or gafchromic film are not suitable to be used as on line detectors. We have developed, built and tested an ionization chamber segmented in pixels that measure the dose in a plane at several points. Every channel has a dedicated electronic chain that digitizes the collected charge and data from all the channels are sent to the computer that performs the data acquisition. One read out cycle is very fast allowing to measure in real time the fluency and the shape of the field. The chamber can be used in two different ways, as monitor chamber and as relative dosemeter. A description of the detector, the electronics, and test results with both photon and hadron beams will be reported.

  3. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom

    PubMed Central

    Davies, J; Horner, K; Theodorakou, C

    2015-01-01

    Objectives: The purpose of the study is to evaluate the effectiveness of thyroid shielding in dental CBCT examinations using a paediatric anthropomorphic phantom. Methods: An ATOM® 706-C anthropomorphic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA) representing a 10-year-old child was loaded with six thermoluminescent dosemeters positioned at the level of the thyroid gland. Absorbed doses to the thyroid were measured for five commercially available thyroid shields using a large field of view (FOV). Results: A statistically significant thyroid gland dose reduction was found using thyroid shielding for paediatric CBCT examinations for a large FOV. In addition, a statistically significant difference in thyroid gland doses was found depending on the position of the thyroid gland. There was little difference in the effectiveness of thyroid shielding when using a lead vs a lead-equivalent thyroid shield. Similar dose reduction was found using 0.25- and 0.50-mm lead-equivalent thyroid shields. Conclusions: Thyroid shields are to be recommended when undertaking large FOV CBCT examinations on young patients. PMID:25411710

  4. Study of the dosimetric characteristics of cosmic radiation at civil aviation altitudes.

    PubMed

    Ferrari, A; Pellicioni, M; Rancati, T

    2002-01-01

    The dependence of the doses on solar activity for intermediate levels of the solar modulation parameter has been studied by means of simulations carried out by the Monte Carlo transport code FLUKA. The vertical cut-off rigidities investigated lie between 0.4 and 6.1 GV. The calculated results show that the linear dependence proposed in a previous work, for the effective dose rate as a function of the solar modulation parameter, can be considered as an acceptable approximation. In addition, some dosimetric characteristics of cosmic radiation and some properties of the dosemeters in use for monitoring in the cosmic ray environment have been analysed with a view to simplifying measurements. The depth-dose curves in the ICRU sphere and the response of a tissue-equivalent ionisation chamber have been determined by the FLUKA code for a number of cosmic ray spectra On the basis of the calculated results, it is concluded that a value of the depth. d, which would make the ambient dose equivalent a conservative predictor of the effective dose, cannot be specified for cosmic radiation. However, the operational quantity can be useful in order to verify the predictions of Monte Carlo calculations. It is demonstrated that a crude approximation of the ambient dose equivalent could be obtained by multiplying by 2 the absorbed dose measured by a tissue-equivalent ionisation chamber with wall thickness of 10 mm.

  5. Thermoluminescence properties of Li2CO3-K2CO3-H3BO3glass system co-doped with CuO and MgO.

    PubMed

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Kadni, Taiman

    2013-06-01

    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry. PMID:23193136

  6. Luminescence-based retrospective dosimetry using Al2O3 from mobile phones: a simulation approach to determine the effects of position.

    PubMed

    Eakins, J S; Kouroukla, E

    2015-06-01

    Monte Carlo modelling has been performed in support of efforts to establish emergency dosimetry services based on optically or thermally stimulated luminescence (OSL/TL) of the Al(2)O(3) substrate present on the resistors found in mobile phones, which can act as fortuitous retrospective dosemeters for photon exposures. Specifically, a range of exposure conditions has been modelled to assess the dependence of the dosimetry on factors such as the position of resistors within a phone, the orientation of the phone relative to the source, and the location of the phone relative to its owner. Variations due to the resistors' positions and the phone's orientation were generally found to contribute just a few percent to the uncertainty on the dose assessments, though the electrical contacts surrounding the resistors could potentially enhance these by several 10s of percent. But, the location of the phone was found to impact dosimetry greatly. The largest discrepancies in the results were found for low-energy exposures: for (192)Ir, differences of up to an order-of-magnitude were found between resistor and whole body doses. The outcome of the work was to derive correction / calibration factors that can be applied to estimate whole body doses from OSL/TL readings, the accurate application of which would depend on the knowledge of the exposure geometry and the degree of conservatism acceptable for the dose assessment. PMID:25884152

  7. Evaluation of a real-time display for skin dose map in cardiac catheterisation procedures.

    PubMed

    Sanchez, Roberto M; Vano, Eliseo; Fernandez, Jose M; Escaned, Javier

    2015-07-01

    The purpose of this work was to validate a prototype designed to display skin dose maps in real time for clinicians that perform interventional cardiology procedures. Measurements using copper absorbers and three kinds of dosemeters (solid-state, radiochromic film and optically stimulated luminescence) were performed in a catheterisation laboratory. Some clinical results are also discussed. The system provides patient skin doses with acceptable accuracy, taking into account couch shifts, wedge compensation filters and collimation. The greatest source of uncertainty is that resulting from patient shape modelling. From a set of 374 patients recorded, it can be concluded that the peak skin dose (PSD) for patients with the same cumulative air kerma at the patient entrance reference point can be rather different. This real-time skin dose calculator has resulted easier to manage for measuring patient PSDs than other methods based on films or CR plates. As well as an improvement for patient safety, it could prove a useful training tool for clinicians.

  8. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  9. Quality assurance of environmental gamma radiation monitoring in Slovenia.

    PubMed

    Stuhec, M; Zorko, B; Mitić, D; Miljanić, S; Ranogajec-Komor, M

    2006-01-01

    Environmental gamma radiation monitoring established in Slovenia consists of a network of multifunctional gamma monitors (MFMs) based on pairs of Geiger-Müller counters and a network of measuring sites with high-sensitive thermoluminiscence dosemeters. The measuring points are evenly spread across Slovenia, located at the meteorological stations and more densely on additional locations around the Krsko NPP. The MFM network has a 2-fold function with one sensor used for the purpose of early warning system in near surroundings of the NPP and the other, more sensitive, for natural radiation monitoring. The paper summarises activities to establish quality assurance of the environmental gamma radiation measurements in Slovenia, with a critical view of the results in comparison with the international standards and recommendations. While the results of linearity and energy dependence tests were satisfying, on-field intercomparison showed that the inherent signal of one of the monitors (MFM) has to be taken into account in the range of environmental background radiation.

  10. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    PubMed

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed. PMID:21715410

  11. Dosimetric study of mandible examinations performed with three cone-beam computed tomography scanners.

    PubMed

    Khoury, Helen J; Andrade, Marcos E; Araujo, Max Well; Brasileiro, Izabela V; Kramer, Richard; Huda, Amir

    2015-07-01

    The objective of this work was to evaluate the air kerma-area product (PKA) and the skin absorbed dose in the region of the eyes, salivary glands and thyroid of the patient from mandible examinations performed with three cone-beam computed tomography (CBCT) scanners, i.e. i-CAT classic, Gendex CB-500 and PreXion 3D. For the dosimetric evaluation, an anthropomorphic head phantom (model RS-250) was used to simulate an adult patient. The CBCT examinations were performed using standard and high-resolution protocols for mandible acquisitions for adult patients. During the phantom's exposure, the PKA was measured using an ionising chamber and the absorbed doses to the skin in the region of the eyes, thyroid and salivary glands were estimated using thermoluminescence dosemeters (TLDs) positioned on the phantom's surface. The PKA values estimated with the CBCT scanners varied from 26 to 138 µGy m(2). Skin absorbed doses in the region of the eyes varied from 0.07 to 0.34 mGy; at the parotid glands, from 1.31 to 5.93 mGy; at the submandibular glands, from 1.41 to 6.86 mGy; and at the thyroid, from 0.18 to 2.45 mGy. PKA and absorbed doses showed the highest values for the PreXion 3D scanner due to the use of the continuous exposure mode and a high current-time product.

  12. Measurement of potential alpha energy exposure and potential alpha energy concentration and estimating radiation dose of radon in Sari city in the north region of Iran.

    PubMed

    Rahimi, Seyed Ali; Nikpour, Behzad

    2014-12-01

    In dwellings in Sari city in the northern region of Iran, the potential alpha energy exposure (PAEE) and potential alpha energy concentration (PAEC) have been measured and the radiation dose due to radon and its progenies has been estimated. In this study, the dosemeters DOSEman and SARAD GmbH (Germany), which are sensitive to alpha particles, were used. The population of the city of Sari is 495,369 people and the density of population is 116.5 people per km(2). A percentage of the total household population of Sari in areas of geographically different samples was selected. The PAEE, PAEC and radon concentration in four different seasons in a year in homes for sampling were measured. The mean PAEE due to indoor radon in homes of four cities in Sari city was estimated to be 28.23 Bq m(-3) and the mean PAEC was estimated to be 27.11 Bq m(-3). Also the mean indoor radon level was found to be 29.95 Bq m(-3). The annual dose equivalent is ∼0.0151 μSv y(-1). Measurement results show that the average PAEE, PAEC and radon concentration are higher in winter than in other seasons. This difference could be due to stillness and lack of air movement indoors in winter.

  13. Radiation Exposure to Patient and Staff in Hepatic Chemoembolization: Risk Estimation of Cancer and Deterministic Effects

    SciTech Connect

    Hidajat, Nico Wust, Peter; Felix, Roland; Schroeder, Ralf Juergen

    2006-10-15

    The purpose of the study was to determine the risks of radiation-induced cancer and deterministic effects for the patient and staff in transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). Sixty-five patients with HCC underwent the first cycle of TACE. Thermoluminescence dosemeters and conversion factors were used to measure surface doses and to calculate organ doses and effective dose. For the patient, the risk of fatal cancer and severe genetic defect was in the magnitude of 10{sup -4} and 10{sup -5}, respectively. Five patients showed surface doses over the first lumbar vertebra exceeding 2000 mSv and 45 patients showed doses over the spine or the liver region above 500 mSv. The risk of fatal cancer and severe genetic defect for the radiologist and assistant was in the magnitude of 10{sup -7} to 10{sup -8}. They could exceed the threshold for lens opacity in the case of more than 490 and 1613 TACE yearly for a period of many years, respectively. Radiation dose could lead to local transient erythema and/or local depression of hematopoiesis in many patients after TACE. For the radiologist and assistant, risk of fatal cancer and genetic defect and lens opacity might arise when they perform interventions such as TACE intensively.

  14. Thermoluminescence properties of Li2CO3-K2CO3-H3BO3glass system co-doped with CuO and MgO.

    PubMed

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Kadni, Taiman

    2013-06-01

    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.

  15. Thermoluminescence in CVD diamond films: application to actinometric dosimetry.

    PubMed

    Barboza-Flores, M; Meléndrez, R; Chernov, V; Castañeda, B; Pedroza-Montero, M; Gan, B; Ahn, J; Zhang, Q; Yoon, S F

    2002-01-01

    Diamond is considered a tissue-equivalent material since its atomic number (Z =6) is close to the effective atomic number of biological tissue (Z =7.42). Such a situation makes it suitable for radiation detection purposes in medical applications. In the present work the analysis is reported of the thermoluminescence (TL) and dosimetric features of chemically vapour deposited (CVD) diamond film samples subjected to ultraviolet (UV) irradiation in the actinometric region. The TL glow curve shows peaks at 120, 220), 320 and 370 degrees C. The 120 and 370 degrees C peaks are too weak and the first one fades away in a few seconds after exposure. The overall room temperature fading shows a 50% TL decay 30 min after exposure. The 320 degrees C glow peak is considered to be the most adequate for dosimetric applications due to its low fading and linear TL behaviour as a function of UV dose in the 180-260 nm range. The TL excitation spectrum presents a broad band with at least two overlapped components around 205 and 220 nm. The results indicate that the TL behaviour of CVD diamond film can be a good alternative to the currently available dosemeter and detector in the actinometric region as well as in clinical and medical applications. PMID:12382917

  16. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    NASA Astrophysics Data System (ADS)

    Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  17. Reliability in individual monitoring service.

    PubMed

    Mod Ali, N

    2011-03-01

    As a laboratory certified to ISO 9001:2008 and accredited to ISO/IEC 17025, the Secondary Standard Dosimetry Laboratory (SSDL)-Nuclear Malaysia has incorporated an overall comprehensive system for technical and quality management in promoting a reliable individual monitoring service (IMS). Faster identification and resolution of issues regarding dosemeter preparation and issuing of reports, personnel enhancement, improved customer satisfaction and overall efficiency of laboratory activities are all results of the implementation of an effective quality system. Review of these measures and responses to observed trends provide continuous improvement of the system. By having these mechanisms, reliability of the IMS can be assured in the promotion of safe behaviour at all levels of the workforce utilising ionising radiation facilities. Upgradation of in the reporting program through a web-based e-SSDL marks a major improvement in Nuclear Malaysia's IMS reliability on the whole. The system is a vital step in providing a user friendly and effective occupational exposure evaluation program in the country. It provides a higher level of confidence in the results generated for occupational dose monitoring of the IMS, thus, enhances the status of the radiation protection framework of the country.

  18. Dose reduction in a paediatric X-ray department following optimization of radiographic technique.

    PubMed

    Mooney, R; Thomas, P S

    1998-08-01

    A survey of radiation doses to children from diagnostic radiography has been carried out in a dedicated paediatric X-ray room. Entrance surface dose (ESD) and dose-area product (DAP) per radiograph were simultaneously measured with thermoluminescent dosemeters (TLDs) and a DAP meter to provide mean dose values for separate age ranges. Results of ESD and DAP were lower than the mean values from other UK studies for all ages and radiographs, except for the infant pelvis AP radiograph. Comparison of ESD and radiographic technique with CEC quality criteria highlighted a need for reduction of dose to infants and implied an increase in tube filtration might overcome the limitations of the room's three-phase, 12-pulse generator, allowing higher tube potentials to be used on infants. Additional tube filtration of 3 mmA1 was installed following assessment of dose reduction and image quality with test objects and phantoms, and confirmation from the paediatric radiologist that clinical image quality was not-significantly altered. The tube potential was increased from 50 to 56 kVp for the infant pelvis AP radiograph. The resulting ESD and effective dose fell by 51% and 38%, respectively. The CEC quality criteria have proved useful as a benchmark against which technique in X-ray departments can be compared, and as such are a useful tool for optimizing radiographic technique and reducing patient dose.

  19. Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.

    PubMed

    Manai, K; Trabelsi, A

    2013-11-01

    In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved.

  20. Bubble-detector measurements in the Russian segment of the International Space Station during 2009-12.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2015-01-01

    Measurements using bubble detectors have been performed in order to characterise the neutron dose and energy spectrum in the Russian segment of the International Space Station (ISS). Experiments using bubble dosemeters and a bubble-detector spectrometer, a set of six detectors with different energy thresholds that is used to determine the neutron spectrum, were performed during the ISS-22 (2009) to ISS-33 (2012) missions. The spectrometric measurements are in good agreement with earlier data, exhibiting expected features of the neutron energy spectrum in space. Experiments using a hydrogenous radiation shield show that the neutron dose can be reduced by shielding, with a reduction similar to that determined in earlier measurements using bubble detectors. The bubble-detector data are compared with measurements performed on the ISS using other instruments and are correlated with potential influencing factors such as the ISS altitude and the solar activity. Surprisingly, these influences do not seem to have a strong effect on the neutron dose or energy spectrum inside the ISS.

  1. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    SciTech Connect

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.

  2. Personnel radiation dose considerations in the use of an integrated PET-CT scanner for radiotherapy treatment planning.

    PubMed

    Carson, K J; Young, V A L; Cosgrove, V P; Jarritt, P H; Hounsell, A R

    2009-11-01

    The acquisition of radiotherapy planning scans on positron emission tomography (PET)-CT scanners requires the involvement of radiotherapy radiographers. This study assessed the radiation dose received by these radiographers during this process. Radiotherapy planning (18)F-fluorodeoxyglucose ((18)F-FDG) PET-CT scans were acquired for 28 non-small cell lung cancer patients. In order to minimise the radiation dose received, a two-stage process was used in which the most time-consuming part of the set-up was performed before the patient received their (18)F-FDG injection. Throughout this process, the radiographers wore electronic personal dosemeters and recorded the doses received at different stages of the process. The mean total radiation dose received by a radiotherapy radiographer was 5.1+/-2.6 microSv per patient. The use of the two-stage process reduced the time spent in close proximity to the patient by approximately a factor of four. The two-stage process was effective in keeping radiation dose to a minimum. The use of a pre-injection set-up session reduces the radiation dose to the radiotherapy radiographers because of their involvement in PET-CT radiotherapy treatment planning scans by approximately a factor of three. PMID:19332513

  3. ACCURATE KAP METER CALIBRATION AS A PREREQUISITE FOR OPTIMISATION IN PROJECTION RADIOGRAPHY.

    PubMed

    Malusek, A; Sandborg, M; Carlsson, G Alm

    2016-06-01

    Modern X-ray units register the air kerma-area product, PKA, with a built-in KAP meter. Some KAP meters show an energy-dependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q0, to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q1, to beam quality, Q Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography. PMID:26743261

  4. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    PubMed

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose. PMID:20364264

  5. Reliability in individual monitoring service.

    PubMed

    Mod Ali, N

    2011-03-01

    As a laboratory certified to ISO 9001:2008 and accredited to ISO/IEC 17025, the Secondary Standard Dosimetry Laboratory (SSDL)-Nuclear Malaysia has incorporated an overall comprehensive system for technical and quality management in promoting a reliable individual monitoring service (IMS). Faster identification and resolution of issues regarding dosemeter preparation and issuing of reports, personnel enhancement, improved customer satisfaction and overall efficiency of laboratory activities are all results of the implementation of an effective quality system. Review of these measures and responses to observed trends provide continuous improvement of the system. By having these mechanisms, reliability of the IMS can be assured in the promotion of safe behaviour at all levels of the workforce utilising ionising radiation facilities. Upgradation of in the reporting program through a web-based e-SSDL marks a major improvement in Nuclear Malaysia's IMS reliability on the whole. The system is a vital step in providing a user friendly and effective occupational exposure evaluation program in the country. It provides a higher level of confidence in the results generated for occupational dose monitoring of the IMS, thus, enhances the status of the radiation protection framework of the country. PMID:21147789

  6. Evaluation of patient exposure in computerised tomogram in Poland.

    PubMed

    Staniszewska, M A

    2002-01-01

    The increasing number of computerised tomography (CT) procedures performed in Poland in recent years has resulted in a growing contribution of these examinations to the whole exposure of the population to ionising radiation from medical sources. (The number of CT examinations in Poland was 170,000 in 1995 and 460,000 in 1999.) An evaluation is presented of doses to patients in CT examinations performed with different types of CT unit. To evaluate the exposure to patients dose linear product (DLP) was measured using a NOMEX dosemeter with a pencil chamber (PTW, Frieburg) and the cylindrical PMMA phantoms 'head' and 'body'. CTDI values were evaluated according to current methodology as described in European Guidelines (EUR 16262). The measurements were performed for seven types of CT unit made by different companies. The CTDI values were also compared to reference levels recommended by IAEA. In conclusion it was found that the value of collective effective dose (2200 man.Sv), has increased in Poland nearly 4 times in comparison to 1995, whereas the number of CT examinations increased nearly 3 times in this period. For most of the 'controlled' CT scanners the values of CTDI in head procedures are near to or higher than the IAEA Reference Level (50 mGy); this can result from the protocols, which are chosen without a dose analysis. PMID:12120672

  7. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  8. Experimental simulation of personal dosimetry in production of medical radioisotopes by research reactor.

    PubMed

    Mossadegh, N; Karimian, A; Shahhosseini, E; Mohammadzadeh, A; Sheibani, Sh

    2011-09-01

    Due to their work conditions, research reactor personnel are exposed to ionising nuclear radiations. Because the absorbed dose values are different for different tissues due to variations in sensitivity, in this work personal dosimetry has been performed under normal working conditions at anatomical locations relevant to more sensitive tissues as well as for the whole body by employing a Rando phantom and thermoluminescent dosemeters (TLDs). Fifty-two TLDs-100H were positioned at high-risk organ locations such as the thyroid, eyes as well as the left breast, which was used to assess the whole-body dose in order to study the absorbed doses originating from selected locations in the vicinity of the reactor. The results have employed the tissue weighting factors based on International Commission on Radiological Protection ICRP 103 and ICRP 60 and the measured results were below the dose limits recommended by ICRP. The mean effective dose rates calculated from ICRP 103 were the following: whole body, 30.64-6.44 µSv h(-1); thyroid, 1.22-0.23 µSv h(-1); prostate, 0.085-0.045 µSv h(-1); gonads, 1.00-0.51 µSv h(-1); breast, 3.68-0.77 µSv h(-1); and eyes, 33.74-7.01 µSv h(-1). PMID:21862507

  9. Bubble-detector measurements in the Russian segment of the International Space Station during 2009-12.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2015-01-01

    Measurements using bubble detectors have been performed in order to characterise the neutron dose and energy spectrum in the Russian segment of the International Space Station (ISS). Experiments using bubble dosemeters and a bubble-detector spectrometer, a set of six detectors with different energy thresholds that is used to determine the neutron spectrum, were performed during the ISS-22 (2009) to ISS-33 (2012) missions. The spectrometric measurements are in good agreement with earlier data, exhibiting expected features of the neutron energy spectrum in space. Experiments using a hydrogenous radiation shield show that the neutron dose can be reduced by shielding, with a reduction similar to that determined in earlier measurements using bubble detectors. The bubble-detector data are compared with measurements performed on the ISS using other instruments and are correlated with potential influencing factors such as the ISS altitude and the solar activity. Surprisingly, these influences do not seem to have a strong effect on the neutron dose or energy spectrum inside the ISS. PMID:24714114

  10. Natural radioactivity measurements in beach-rock samples of south-east coast of Tamilnadu, India.

    PubMed

    Ramasamy, V; Dheenathayalu, M; Ravisankar, R; Ponnusamy, V; Rajamanickkam, G Victor; Sahayam, DajKumar; Meenakshisundram, V; Gajendran, V

    2004-01-01

    The concentration of primordial radionuclides in beach-rock samples of the south-east coast of Tamilnadu, India has been measured using gamma ray spectrum of rock. The mean activities of 232Th, 238U and 40K are 144.18, 29.25 and 267.48 Bq kg(-1) respectively. In situ measurements were also carried out using environmental radiation dosemeter. The linear correlation coefficient was obtained. The average activity of concentration of 232Th in the present study is 2.5 times higher than the world median value while the activity of 238U and 40K were found to be lower. This may be due to the heavy minerals present in the study area. In the present study, the calculated activity ratio (Th/U) is higher than the crustal rocks. This may be due to changes in the crustal composition through time (mafic to felsic) that are reflected by a change in the Th and U abundances in sedimentary rocks, and also increase in carbon content with time resulted in the decrease in U content and increase in Th/U ratio.

  11. Radiation-induced chromosome damage in human lymphocytes

    PubMed Central

    Lloyd, D. C.; Dolphin, G. W.

    1977-01-01

    ABSTRACT Analysis for chromosome aberrations in human peripheral blood lymphocytes has been developed as an indicator of dose from ionising radiation. This paper outlines the mechanism of production of aberrations, the technique for their analysis and the dose-effect relationships for various types of radiation. During the past ten years the National Radiological Protection Board has developed a service for the UK in which estimates of dose from chromosome aberration analysis are made on people known or suspected of being accidentally over-exposed. This service can provide estimates where no physical dosemeter was worn and is frequently able to resolve anomalous or disputed data from routine film badges. Several problems in the interpretation of chromosome aberration yields are reviewed. These include the effects of partial body irradiation and the response to variations in dose rate and the intermittent nature of some exposures. The dosimetry service is supported by a research programme which includes surveys of groups of patients irradiated for medical purposes. Two surveys are described. In the first, lymphocyte aberrations were examined in rheumatiod arthritis patients receiving intra-articular injections of colloidal radiogold or radioyttrium. A proportion of the nuclide leaked from the joint into the regional lymphatic system. In the second survey a comparison was made between the cytogenetic and physical estimates of whole body dose in patients receiving iodine 131 for thyroid carcinoma. Images PMID:338021

  12. Eye lens dosimetry in interventional cardiology: results of staff dose measurements and link to patient dose levels.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Rehani, M; Aleksandric, S; Arandjic, D; Ostojic, M

    2013-01-01

    Workers involved in interventional cardiology procedures receive high eye lens dose if protection is not used. Currently, there is no suitable method for routine use for the measurement of eye dose. Since most angiography machines are equipped with suitable patient dosemeters, deriving factors linking staff eye doses to the patient doses can be helpful. In this study the patient kerma-area product, cumulative dose at an interventional reference point and eye dose in terms of Hp(3) of the cardiologists, nurses and radiographers for interventional cardiology procedures have been measured. Correlations between the patient dose and the staff eye dose were obtained. The mean eye dose was 121 µSv for the first operator, 33 µSv for the second operator/nurse and 12 µSv for radiographer. Normalised eye lens doses per unit kerma-area product were 0.94 µSv Gy⁻¹ cm⁻² for the first operator, 0.33 µSv Gy⁻¹ cm⁻² for the second operator/nurse and 0.16 µSv Gy⁻¹ cm⁻² for radiographers. Statistical analysis indicated that there is a weak but significant (p < 0.01) correlation between the eye dose and the kerma-area product for all three staff categories. These values are based on a local practice and may provide useful reference for other studies for validation and for wider utilisation in assessing the eye dose using patient dose values. PMID:23152146

  13. Track-etched detectors for the dosimetry of the radiation of cosmic origin.

    PubMed

    Spurný, F; Turek, K

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations.

  14. Novel shielding materials for space and air travel.

    PubMed

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  15. NOTE: Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams

    NASA Astrophysics Data System (ADS)

    Bruggmoser, G.; Saum, R.; Schmachtenberg, A.; Schmid, F.; Schüle, E.

    2007-01-01

    It has been shown from an evaluation of the inverse reading of the dosemeter (1/M) against the inverse of the polarizing voltage (1/V), obtained with a number of commercially available ionization chambers, using dose per pulse values between 0.16 and 5 mGy, that a linear relationship between the recombination correction factor kS and dose per pulse (DPP) can be found. At dose per pulse values above 1 mGy the method of a general equation with coefficients dependent on the chamber type gives more accurate results than the Boag method. This method was already proposed by Burns and McEwen (1998, Phys. Med. Biol. 43 2033) and avoids comprehensive and time-consuming measurements of Jaffé plots which are a prerequisite for the application of the multi-voltage analysis (MVA) or the two-voltage analysis (TVA). We evaluated and verified the response of ionization chambers on the recombination effect in pulsed accelerator beams for both photons and electrons. Our main conclusions are: (1) The correction factor kS depends only on the DPP and the chamber type. There is no influence of radiation type and energy. (2) For all the chambers investigated there is a linear relationship between kS and DPP up to 5 mGy/pulse, and for two chambers we could show linearity up to 40 mGy/pulse. (3) A general formalism, such as that of Boag, characterizes chambers exclusively by the distance of the electrodes and gives a trend for the correction factor, and therefore (4) a general formalism has to reflect the influence of the chamber construction on the recombination by the introduction of chamber-type dependent coefficients.

  16. Concentrations of radon and its daughter products in and around Bangalore city.

    PubMed

    Ningappa, C; Sannappa, J; Chandrashekara, M S; Paramesh, L

    2008-01-01

    Indoor radon and its progeny levels were measured during 2005-06 in Bangalore rural district and in Bangalore City by using Solid State Nuclear Track Detector (SSNTD)-based twin cup dosemeters, and the activity of radium present in soils and rocks was measured by using HPGe detector. Fifty dwellings of different types were chosen for the measurement. The dosimeters containing the detector (LR-115 Type II Film) used in each house were fixed 2 m above the floor. After an exposure time of 90 days, films were etched to reveal tracks. From the track density, the concentrations of radon were evaluated. The value of radon concentration in the indoor air near granite quarries varies from 55 to 300 Bq.m(-3) with a median of 155 Bq.m(-3) and its progeny varies from 0.24 to 19.6 mWL with a median of 8.4 mWL. In Bangalore City, the concentration of radon varies from 18.4 to 110 Bq.m(-3) with a median of 45 Bq.m(-3) and its progeny varies from 1.62 to 11.24 mWL with a median of 4.15 mWL. Higher concentrations of radon and its progeny were observed in granite quarries compared with Bangalore City. The main reason for the higher indoor radon and its progeny concentration is due to the mining activity and the types of the bedrock. The concentration of radon mainly depends on the activity of radium present in soils and rocks and the types of building materials used. The activity of radium varies in granitic regions of Bangalore rural district from 42.0 to 163.6 Bq.kg(-1) with a median of 112.8 Bq.kg(-1). The concentrations of indoor radon and its daughter products and equivalent effective dose are discussed.

  17. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation

    PubMed Central

    Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-01-01

    Objective: To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume–dose model. Methods: Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. Results: For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Conclusion: Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. Advances in knowledge: The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position. PMID:25189417

  18. Comparison of effective dose and lifetime risk of cancer incidence of CT attenuation correction acquisitions and radiopharmaceutical administration for myocardial perfusion imaging

    PubMed Central

    Szczepura, K; Hogg, P

    2014-01-01

    Objective: To measure the organ dose and calculate effective dose from CT attenuation correction (CTAC) acquisitions from four commonly used gamma camera single photon emission CT/CT systems. Methods: CTAC dosimetry data was collected using thermoluminescent dosemeters on GE Healthcare's Infinia™ Hawkeye™ (GE Healthcare, Buckinghamshire, UK) four- and single-slice systems, Siemens Symbia™ T6 (Siemens Healthcare, Erlangen, Germany) and the Philips Precedence (Philips Healthcare, Amsterdam, Netherlands). Organ and effective dose from the administration of 99mTc-tetrofosmin and 99mTc-sestamibi were calculated using International Commission of Radiological Protection reports 80 and 106. Using these data, the lifetime biological risk was calculated. Results: The Siemens Symbia gave the lowest CTAC dose (1.8 mSv) followed by the GE Infinia Hawkeye single-slice (1.9 mSv), GE Infinia Hawkeye four-slice (2.5 mSv) and Philips Precedence v. 3.0. Doses were significantly lower than the calculated doses from radiopharmaceutical administration (11 and 14 mSv for 99mTc-tetrofosmin and 99mTc-sestamibi, respectively). Overall lifetime biological risks were lower, which suggests that using CTAC data posed minimal risk to the patient. Comparison of data for breast tissue demonstrated a higher risk than that from the radiopharmaceutical administration. Conclusion: CTAC doses were confirmed to be much lower than those from radiopharmaceutical administration. The localized nature of the CTAC exposure compared to the radiopharmaceutical biological distribution indicated dose and risk to the breast to be higher. Advances in knowledge: This research proved that CTAC is a comparatively low-dose acquisition. However, it has been shown that there is increased risk for breast tissue especially in the younger patients. As per legislation, justification is required and CTAC should only be used in situations that demonstrate sufficient net benefit. PMID:24998249

  19. Depth dose distributions measured with thermoluminescence detectors inside the anthropomorphic torso of the MATROSHKA experiment inside and outside the ISS

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Reitz, Guenther; Hajek, Michael; Bergmann, Robert; Bilski, Pawel; Puchalska, Msc. Monika

    The ESA MATROSHKA (MTR) facility was realized through the German Aerospace Center, DLR, Cologne, as main contractor, aiming for the determination of skin and organ doses within a simulated human upper torso. MTR simulates, by applying an anthropomorphic upper torso, as exact as possible an astronaut performing either an extravehicular activity (EVA) (MTR Phase 1) or an astronaut working inside the International Space Station (MTR Phase 2A). It consists of a human phantom, a Base Structure and a Carbon fibre container - simulating the astronaut‘s space suit. The phantom itself is made up of 33 slices composed of natural bones, embedded in tissue equivalent plastic of different density for tissue and lung. The Phantom slices are equipped with channels and cut-outs to allow the accommodation of active and passive dosemeters, temperature and pressure sensors. Over 4800 passive detectors (thermoluminescence detectors (TLDs) and plastic nuclear track detectors) constitute the radiation experiments which are beside inside the phantom also located on top the head of the phantom, in front of the belly and around the body as part of a Poncho and a Hood. In its 1st exposure phase (MTR 1: 2004 - 2005) MTR measured the depth dose distribution of an astronaut performing an EVA - mounted outside the Zvezda Module. In its 2nd exposure phase the phantom was positioned inside the ISS to monitor the radiation environment and measure the depth dose distribution in dependence on the inside shielding configurations. The majority of the TLDs provided for the determination of the depth dose distribution was provided by IFJ-PAN, ATI and DLR. Data of "combined" depth dose distribution of the three different groups will be shown for the MTR-1 exposure (outside the ISS) and the MTR-2A (inside the ISS). The discussion will focus on the difference in depth dose as well as skin dose distribution based on the different shielding thickness provided by the two experimental phases.

  20. Small field of view cone beam CT temporomandibular joint imaging dosimetry

    PubMed Central

    Lukat, T D; Wong, J C M; Lam, E W N

    2013-01-01

    Objectives: Cone beam CT (CBCT) is generally accepted as the imaging modality of choice for visualisation of the osseous structures of the temporomandibular joint (TMJ). The purpose of this study was to compare the radiation dose of a protocol for CBCT TMJ imaging using a large field of view Hitachi CB MercuRay™ unit (Hitachi Medical Systems, Tokyo, Japan) with an alternative approach that utilizes two CBCT acquisitions of the right and left TMJs using the Kodak 9000® 3D system (Carestream, Rochester, NY). Methods: 25 optically stimulated luminescence dosemeters were placed in various locations of an anthropomorphic RANDO® Man phantom (Alderson Research Laboratories, Stanford, CT). Dosimetric measurements were performed for each technique, and effective doses were calculated using the 2007 International Commission on Radiological Protection tissue weighting factor recommendations for all protocols. Results: The radiation effective dose for the CB MercuRay technique was 223.6 ± 1.1 μSv compared with 9.7 ± 0.1 μSv (child), 13.5 ± 0.9 μSv (adolescent/small adult) and 20.5 ± 1.3 μSv (adult) for the bilateral Kodak acquisitions. Conclusions: Acquisitions of individual right and left TMJ volumes using the Kodak 9000 3D CBCT imaging system resulted in a more than ten-fold reduction in the effective dose compared with the larger single field acquisition with the Hitachi CB MercuRay. This decrease is made even more significant when lower tube potential and tube current settings are used. PMID:24048693

  1. Influence of lead apron shielding on absorbed doses from panoramic radiography

    PubMed Central

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. Methods: A RANDO® full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA® three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax® 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. Results: A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = −0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. Conclusions: In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding. PMID:24174012

  2. Monte Carlo design study for thick gas electron multiplier-based multi-element microdosimetric detector

    NASA Astrophysics Data System (ADS)

    Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2014-09-01

    To accomplish enhanced neutron dose response with high detection efficiency, a set of multi-element microdosimetric detectors were designed using THick Gas Electron Multiplier (THGEM). THGEM generates a strong electric field within microholes of a sub-millimeter thick insulator, which makes electron multiplication possible without the traditional anode wire electrodes. Owing to the absence of wire electrodes, the newly designed neutron dosemeters offer flexible and convenient fabrication in contrast to the traditional multi-element tissue-equivalent proportional counters. In order to investigate the dependence of the neutron dosimetric response and detection efficiency on detector design, five designs with a different number of gas cavities and an identical outer diameter of 5 cm were created. For each design, a Monte Carlo simulation was developed using the Geant4 code to calculate the deposited energy spectrum in the gas cavities for mono-energetic neutron beams ranging from 10 keV to 2 MeV. From the simulation results, the microdosimetric and the absorbed dose responses of each multi-element design were consistent with the responses of the conventional single cavity detector. The quality factor and the dose equivalent responses were subsequently obtained and showed reasonable agreement with the ideal values for neutron energies above 300 keV while underestimating in the lower energy region. The neutron detection efficiency of each design was analyzed in terms of the neutron counts per incident fluence and the counts per dose equivalent. As the number of the multi-element cavities increased, both efficiencies increased greatly. The efficiency of the highest cavity density with 61×9 multi-elements was on average 5.6 times higher than that of the single cavity design. The 37×7 design could be chosen as a reasonable compromise between the two conflicting requirements, high efficiency and convenience in fabrication.

  3. Replacement tissue-equivalent proportional counter for the International Space Station.

    PubMed

    Perez-Nunez, D; Braby, L A

    2011-02-01

    The tissue-equivalent proportional counter (TEPC)-based dosemeters used on the International Space Station have exceeded their planned useful lives, and are scheduled to be replaced with the new units taking advantage of improved technology. The original TEPC detectors used cylindrical geometry with field tubes to achieve good energy resolution and minimum sensitivity to noise created by vibration. The inside diameter of these detectors is 5.1 cm. The new detectors developed for this application produce the resolution and vibration resistance of the cylindrical detector with the isotropic response and compact size of a spherical detector. The cathode structure consists of conductive tissue-equivalent plastic A-150 layers separated by thin polyethylene layers perpendicular to the anode. Each conductive layer is held at the electrical potential needed to produce uniform electric field strength along the anode wire, and thus the same gas gain for electrons produced in different portions of the spherical volume. The new design contains the whole preamplifier inside the vacuum chamber to reduce electronic noise. Also the vacuum chamber has a novel design with a 0.020-inch-thick aluminium wall to allow a total wall thickness of 0.5 g cm(-2), which is typical of the shielding provided by a space suit. This feature will allow measuring the dose on the astronauts' skin due to low-energy electrons and protons produced during solar events. The vacuum chamber has a new bayonet clamping system that reduces the total detector weight to less than half that of the old TEPC. PMID:21115447

  4. A single plan solution to chest wall radiotherapy with bolus?

    PubMed Central

    Ordonez-Sanz, C; Bowles, S; Hirst, A

    2014-01-01

    Objective: Radiotherapy treatments of post-mastectomy chest walls are complex, requiring treatment close to skin, necessitating bolus use. Commonly used 5- and 10-mm-thick boluses develop full skin dose, needing removal for the latter half of treatment and requiring two treatment plans to be generated. Can a thinner bolus be used for all treatment fractions, requiring only one plan? Methods: Investigation of doses received using (A) a half-time 10-mm-thick Vaseline® bolus (current situation); (B) a brass mesh (Whiting & Davis, Attleboro Falls, MA) and (C) 3- and 5-mm Superflab™ (Mick Radio-Nuclear Instruments, Mount Vernon, NY) for 6 and 15 MV. Dosimetric measurements in Barts WT1 solid water and an anthropomorphic phantom, using ionization chambers and thermoluminescent dosemeters, were used to study the effect of different bolus regimes on the photon depth–dose curves (DDCs) and skin doses. Results: Measured skin doses for the current 10-mm-thick Vaseline bolus, brass mesh and 3-mm bolus were compared (5 mm bolus has been rejected). The brass mesh has the least effect on the DDC, with changes <0.7% for depths greater than dmax. Brass mesh conforms superiorly to skin surfaces. Measurements on an anthropomorphic phantom demonstrate an increased skin dose compared with our current treatment protocol. Conclusion: Brass mesh has the smallest effect on the DDC, whilst sufficiently increasing surface dose. It can be removed at any fraction, based on a clinical decision, without the need for generating a new plan. Treating with one plan significantly reduces planning times. Advances in knowledge: Quantification of skin doses required and achieved from wax-on/wax-off treatment compared with alternative available breast boluses. PMID:24646288

  5. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.

    PubMed

    Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther

    2014-11-01

    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably. PMID:25119442

  6. Peripheral dose measurements for 6 and 18 MV photon beams on a linear accelerator with multileaf collimator

    SciTech Connect

    Mazonakis, Michalis; Zacharopoulou, Fotini; Varveris, Haralambos; Damilakis, John

    2008-10-15

    Peripheral dose (PD) to critical structures outside treatment volume is of clinical importance. The aim of the current study was to estimate PD on a linear accelerator equipped with multileaf collimator (MLC). Dose measurements were carried out using an ionization chamber embedded in a water phantom for 6 and 18 MV photon beams. PD values were acquired for field sizes from 5x5 to 20x20 cm{sup 2} in increments of 5 cm at distances up to 24 cm from the field edge. Dose data were obtained at two collimator orientations where the measurement points are shielded by MLC and jaws. The variation of PD with the source to skin distance (SSD), depth, and lateral displacement of the measurement point was evaluated. To examine the dependence of PD upon the tissue thickness at the entrance point of the beam, scattered dose was measured using thermoluminescent dosemeters placed on three anthropomorphic phantoms simulating 5- and 10-year-old children and an average adult patient. PD from 6 MV photons varied from 0.13% to 6.75% of the central-axis maximum dose depending upon the collimator orientation, extent of irradiated area, and distance from the treatment field. The corresponding dose range from 18 MV x rays was 0.09% to 5.61%. The variation of PD with depth and with lateral displacements up to 80% of the field dimension was very small. The scattered dose from both photon beams increased with the increase of SSD or tissue thickness along beam axis. The presented dosimetric data set allows the estimation of scattered dose outside the primary beam.

  7. Evolution of the CaF2:Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams

    NASA Astrophysics Data System (ADS)

    Muñoz, I. D.; Avila, O.; Gamboa-deBuen, I.; Brandan, M. E.

    2015-03-01

    We study the high- to low- temperature signal ratio (HLTR) of the CaF2:Tm glow curve as a function of beam quality for low-energy photon beams with effective energy between 15.2 and 33.6 keV, generated with W, Mo and Rh anodes. CaF2:Tm dosemeters (TLD-300) were exposed to x-rays and 60Co gamma-rays. Glow curves were deconvoluted into 7 peaks, using computerized glow curve deconvolution and HLTR was evaluated. Air kerma and dose in water were between 2.1-15.0 mGy and 49.8-373.8 mGy, respectively. All peaks in the glow curve showed a linear response with respect to air kerma and dose in water. HLTR values decreased monotonically between 1.029  ±  0.010 (at 15.2 keV) and 0.821  ±  0.011 (33.6 keV), and no effects due to the use of different anode/filter combinations were observed. The results indicate a relatively high value of HLTR (about 1 for 17 keV effective energy, or 3 keV μm-1 track-average LET) and a measurable dependence on the photon beam quality. Comparison of these photon data with HLTR for ions shows good quantitative agreement. The reported evolution of the CaF2:Tm glow curve could facilitate the estimation of the effective energy of unknown photon fields by this technique.

  8. Evolution of the CaF₂:Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams.

    PubMed

    Muñoz, I D; Avila, O; Gamboa-deBuen, I; Brandan, M E

    2015-03-21

    We study the high- to low- temperature signal ratio (HLTR) of the CaF2:Tm glow curve as a function of beam quality for low-energy photon beams with effective energy between 15.2 and 33.6 keV, generated with W, Mo and Rh anodes. CaF2:Tm dosemeters (TLD-300) were exposed to x-rays and (60)Co gamma-rays. Glow curves were deconvoluted into 7 peaks, using computerized glow curve deconvolution and HLTR was evaluated. Air kerma and dose in water were between 2.1-15.0 mGy and 49.8-373.8 mGy, respectively. All peaks in the glow curve showed a linear response with respect to air kerma and dose in water. HLTR values decreased monotonically between 1.029  ±  0.010 (at 15.2 keV) and 0.821  ±  0.011 (33.6 keV), and no effects due to the use of different anode/filter combinations were observed. The results indicate a relatively high value of HLTR (about 1 for 17 keV effective energy, or 3 keV μm(-1) track-average LET) and a measurable dependence on the photon beam quality. Comparison of these photon data with HLTR for ions shows good quantitative agreement. The reported evolution of the CaF2:Tm glow curve could facilitate the estimation of the effective energy of unknown photon fields by this technique. PMID:25683355

  9. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.

    PubMed

    Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther

    2014-11-01

    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.

  10. Study on radionuclides in granite quarries of Bangalore rural district, Karnataka, India.

    PubMed

    Ningappa, C; Sannappa, J; Karunakara, N

    2008-01-01

    Studies on natural radiation levels and radionuclides were carried out extensively in the environment of granite quarries of Kanakapura, Ramanagara Taluks and Bidadi Hobli in Bangalore rural District and Bangalore city. The indoor and outdoor gamma exposure rate in air was measured using an environmental dosemeter, and it is converted into absorbed dose using suitable conversion factor. The activity concentrations of natural radionuclides in rock samples and also in soil samples were measured using an HPGe gamma-ray spectrometer. The results reveal that the activity concentrations of (226)Ra, (232)Th and (40)K in rocks are found to be vary from 32.2 to 163.6, 128.3 to 548.6 and 757.4 to 1418.4 Bq kg(-1), respectively, with corresponding arithmetic mean values of 93.2, 306.2 and 1074.4 Bq kg(-1). Activity concentrations of (226)Ra, (232)Th and (40)K in soil samples were found to vary from 32.4 to 55.2, 39.9 to 214.3 and 485.4 to 1150.2 Bq kg(-1), respectively, with corresponding arithmetic mean values of 40.7, 93.1 and 750.4 Bq kg(-1). The average activity levels of all these radionuclides are above the global average. This is consistent with the geological and geo-chemical significance of the rocks of the area under investigation. The results of these systematic investigations are discussed in detail and compared with the literature values represented for other environments.

  11. Environmental gamma dosimetry with OSL of alpha-Al(2)O(3):C for in situ sediment measurements.

    PubMed

    Richter, D; Dombrowski, H; Neumaier, S; Guibert, P; Zink, A C

    2010-09-01

    The physical properties of alpha-Al(2)O(3):C are very similar to that of quartz, which make it an attractive dosimetric material for geological and archaeological dating applications. Storage experiments in an ultra-low-radiation underground environment (UDO at PTB) and gamma-ray spectrometry show that the optically stimulated luminescence (OSL) signal of this material does neither suffer from a significant inherent background caused by traces of radionuclides (<6 microGy a(-1)) nor from fading. After having performed a simple calibration procedure, gamma dosimetry based on alpha-Al(2)O(3):C detectors, which were exposed in a brick block and a lead castle for different periods of time, provided concordant results with dose values derived from independent gamma-ray spectrometric measurements using high-purity germanium and NaI:Tl detectors. These investigations indirectly confirm both the absence of a significant inherent background and fading of the detector material. Small doses of a few micro gray accumulated in short exposure times to environmental radiation can be accurately measured, even when doses (i.e. transport dose) much larger than the actual environmental dose have to be subtracted. It is shown that the OSL signal caused by small transport doses can be easily and reproducibly reset even under difficult field conditions by illuminating the dosemeters with the blue light from Luxeon LEDs. Summarised, alpha-Al(2)O(3):C appears to be the material of choice for dosimetric dating applications of quartz or related materials, when analysed by using OSL. PMID:20534630

  12. Comparative dosimetry study of three UK centres implementing total skin electron treatment through external audit

    PubMed Central

    Gonzalez, R; McGovern, M; Greener, A

    2015-01-01

    Objective: This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Methods: Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Results: Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth–dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of −1.6% and −6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. Conclusion: This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. Advances in knowledge: TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation. PMID:25761213

  13. External and internal irradiation of a rural Bryansk (Russia) population from 1990 to 2000, following high deposition of radioactive caesium from the Chernobyl accident.

    PubMed

    Thornberg, C; Vesanen, R; Wallström, E; Zvonova, I; Jesko, T; Balonov, M; Mattsson, S

    2005-10-01

    In 1990, a joint Nordic-Russian project was initiated in order to make independent estimations of the effective dose to selected groups of inhabitants in a highly contaminated area around the city of Novozybkov in the western Bryansk region of Russia. The inhabitants were living in six villages with initial contamination levels of (137)Cs between 0.9 and 2.7 MBq m(-2). Some villages had been decontaminated, others not. Both school children and adults participated in the study. The external irradiation of 100-130 inhabitants was determined during 1 month in September-October each year from 1990 to 2000 (except 1999), using individual thermoluminescent dosemeters. The body burden of (137,134)Cs was determined by in vivo measurements in about 500 inhabitants annually from 1991 to 2000, and for a subgroup also with analysis of the (137)Cs concentration in urine. The mean effective dose (E) from external and internal irradiation due to (137,134)Cs deposition varied between 2.5 and 1.2 mSv per year between 1990 and 2000. The total mean E decreased, on average, by 9% per year, while the mean external dose decreased by 16% per year. The dose rate from internal radiation decreased more slowly than the dose rate from external radiation, and also showed an irregular time variation. The contribution from the internal dose to the total E was 30-50%, depending on the village. Predictions for the long-term changes in the effective dose to people living in the areas are presented. The cumulated E for the 70 years following the accident was estimated to be about 90 mSv with the assumption that both internal and external dose decrease by 2% per year after year 2000. The highest E during a life-time received by single individuals living in the area may amount to around 500 mSv considering the individual variations in E.

  14. Long-term external radiation exposure of inhabitants in the western Bryansk region of Russia as a consequence of the Chernobyl accident.

    PubMed

    Thornberg, C; Vesanen, R; Wallström, E; Zvonova, I; Jesko, T; Albinsson, J; Börjesson, J; Mattsson, S

    2001-12-01

    The western Bryansk region in south-western Russia was highly contaminated with 137Cs and 134Cs due to the Chernobyl accident in 1986. In 1990, a joint Nordic-Russian project was initiated in order to make measurements and estimates of the absorbed doses to selected groups of inhabitants in this area. The participating individuals were living in small villages with contamination levels between 0.9 and 2.7 MBq m(-2). Only some villages had been decontaminated. Both school-children and adults participated in the study and the number of persons was between 100 and 130 each year, residing in 5 villages. Every year in September-October, from 1990 to 1998. we performed individual measurements of external absorbed doses, assessed with thermoluminescent (TL) dosemeters (LiF). The mean effective dose per year from external irradiation due to the Chernobyl accident of the inhabitants in the villages ranged between 0.8 and 2.9 mSv during the study period and decreased with an apparent half-time of 3.7-8.2 years, depending on village and group. The highest individual doses within one village were, on average higher by a factor of 3 than the mean value for that village. Under the conservative assumption of a decrease rate in the external effective dose of 2% per year after 1998, individuals in the most highly exposed village are assumed to receive a life-time effective dose of about 75 mSv (between 1986 and 2056) from external exposure to caesium radionuclides. The mean value for the villages under study was estimated to be around 65 mSv using the assumed rate of decrease.

  15. EXTERNAL AND INTERNAL EXPOSURE TO FUKUSHIMA RESIDENTS.

    PubMed

    Kamiya, K; Ishikawa, T; Yasumura, S; Sakai, A; Ohira, T; Takahashi, H; Ohtsuru, A; Suzuki, S; Hosoya, M; Maeda, M; Yabe, H; Fujimori, K; Yamashita, S; Ohto, H; Abe, Masafumi

    2016-09-01

    The Great East Japan Earthquake of 11 March 2011, caused the Fukushima Daiichi Nuclear Power Plant Accident, which resulted in the release of a large amount of radioactive materials into the environment, and there is a serious concern about the radiation effects on the health of residents living in the affected areas. The evaluation of exposure dose is fundamental for the estimation of health effects, and whenever possible, the exposure dose should be evaluated by actual measurements as opposed to estimations. Here, the outline of the exposure doses of residents estimated from surveys or obtained by measurements is described. Fukushima Health Management Survey reported the results for 460 408 residents during the first 4 months after the accident; 66.3% received doses <1 mSv, 94.9% received <2 mSv, 99.7% received <5 mSv and the maximum dose was 25 mSv. Thus, it was demonstrated that the results from personal dosemeter measurements were comparable to the estimations. The dose assessment of internal exposure of 184 205 residents conducted by Fukushima Prefecture by using whole body counter showed that 99.986% received <1 mSv, with the maximum dose being 3 mSv. Regarding exposure of the thyroid, there is not enough data for the Fukushima accident, but it is presumed that thyroid doses are much lower than those from Chernobyl. The outline of exposure doses of residents in result of the accident is still being clarified, questions and uncertainties in dose assessment remain and further efforts for more accurate dosimetry are required continuously. PMID:27473698

  16. The effect of 6 and 15 MV on intensity-modulated radiation therapy prostate cancer treatment: plan evaluation, tumour control probability and normal tissue complication probability analysis, and the theoretical risk of secondary induced malignancies

    PubMed Central

    Hussein, M; Aldridge, S; Guerrero Urbano, T; Nisbet, A

    2012-01-01

    Objective The aim of this study was to investigate the effect of 6 and 15-MV photon energies on intensity-modulated radiation therapy (IMRT) prostate cancer treatment plan outcome and to compare the theoretical risks of secondary induced malignancies. Methods Separate prostate cancer IMRT plans were prepared for 6 and 15-MV beams. Organ-equivalent doses were obtained through thermoluminescent dosemeter measurements in an anthropomorphic Aldersen radiation therapy human phantom. The neutron dose contribution at 15 MV was measured using polyallyl-diglycol-carbonate neutron track etch detectors. Risk coefficients from the International Commission on Radiological Protection Report 103 were used to compare the risk of fatal secondary induced malignancies in out-of-field organs and tissues for 6 and 15 MV. For the bladder and the rectum, a comparative evaluation of the risk using three separate models was carried out. Dose–volume parameters for the rectum, bladder and prostate planning target volume were evaluated, as well as normal tissue complication probability (NTCP) and tumour control probability calculations. Results There is a small increased theoretical risk of developing a fatal cancer from 6 MV compared with 15 MV, taking into account all the organs. Dose–volume parameters for the rectum and bladder show that 15 MV results in better volume sparing in the regions below 70 Gy, but the volume exposed increases slightly beyond this in comparison with 6 MV, resulting in a higher NTCP for the rectum of 3.6% vs 3.0% (p=0.166). Conclusion The choice to treat using IMRT at 15 MV should not be excluded, but should be based on risk vs benefit while considering the age and life expectancy of the patient together with the relative risk of radiation-induced cancer and NTCPs. PMID:22010028

  17. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose.

  18. SU-E-I-04: A Mammography Phantom to Measure Mean Glandular Dose and Image Quality

    SciTech Connect

    Lopez-Pineda, E; Ruiz-Trejo, C; E, Brandan M

    2014-06-01

    Purpose: To evaluate mean glandular dose (MGD) and image quality in a selection of mammography systems using a novel phantom based on thermoluminescent dosemeters and the ACR wax insert. Methods: The phantom consists of two acrylic, 19 cm diameter, 4.5 cm thick, semicircular modules, used in sequence. The image quality module contains the ACR insert and is used to obtain a quality control image under automatic exposure conditions. The dosimetric module carries 15 TLD-100 chips, some under Al foils, to determine air kerma and half-value-layer. TL readings take place at our laboratory under controlled conditions. Calibration was performed using an ionization chamber and a Senographe 2000D unit for a variety of beam qualities, from 24 to 40 kV, Mo and Rh anodes and filters. Phantom MGD values agree, on the average, within 3% with ionization chamber data, and their precision is better than 10% (k=1). Results: MGD and image quality have been evaluated in a selection of mammography units currently used in Mexican health services. The sample includes analogic (screen/film), flexible digital (CR), and full-field digital image receptors. The highest MDG are associated to the CR technology. The most common image quality failure is due to artifacts (dust, intensifying screen scratches, and processor marks for film/screen, laser reader defects for CR). Conclusion: The developed phantom permits the MGD measurement without the need of a calibrated ionization chamber at the mammography site and can be used by a technician without the presence of a medical physicist. The results indicate the urgent need to establish quality control programs for mammography.

  19. Measurements of long-term external and internal radiation exposure of inhabitants of some villages of the Bryansk region of Russia after the Chernobyl accident.

    PubMed

    Bernhardsson, C; Zvonova, I; Rääf, C; Mattsson, S

    2011-10-15

    A Nordic-Soviet programme was initiated in 1990 to evaluate the external and internal radiation exposure of the inhabitants of several villages in the Bryansk region of Russia. This area was one of the number of areas particularly affected by the nuclear accident at the Chernobyl Nuclear Power Plant in 1986. Measurements were carried out yearly until 1998 and after that more irregularly; in 2000, 2006 and 2008 respectively. The effective dose estimates were based on individual thermoluminescent dosemeters and on in vivo measurements of the whole body content of (137)Cs (and (134)Cs during the first years of the programme). The decrease in total effective dose during the almost 2 decade follow-up was due to a continuous decrease in the dominating external exposure and a less decreasing but highly variable exposure from internal irradiation. In 2008, the observed average effective dose (i.e. the sum of external and internal exposure) from Chernobyl (137)Cs to the residents was estimated to be 0.3mSv y(-1). This corresponds to 8% of the estimated annual dose in 1990 and to 1% of the estimated annual dose in 1986. As a mean for the population group and for the period of the present study (2006-2008), the average yearly effective dose from Chernobyl cesium was comparable to the absorbed dose obtained annually from external exposure to cosmic radiation plus internal exposure to naturally occurring radionuclides in the human body. Our data indicate that the effective dose from internal exposure is becoming increasingly important as the body burdens of Chernobyl (137)Cs are decreasing more slowly than the external exposure. However, over the years there have been large individual variations in both the external and internal effective doses, as well as differences between the villages investigated. These variations and differences are presented and discussed in this paper.

  20. EXTERNAL AND INTERNAL EXPOSURE TO FUKUSHIMA RESIDENTS.

    PubMed

    Kamiya, K; Ishikawa, T; Yasumura, S; Sakai, A; Ohira, T; Takahashi, H; Ohtsuru, A; Suzuki, S; Hosoya, M; Maeda, M; Yabe, H; Fujimori, K; Yamashita, S; Ohto, H; Abe, Masafumi

    2016-09-01

    The Great East Japan Earthquake of 11 March 2011, caused the Fukushima Daiichi Nuclear Power Plant Accident, which resulted in the release of a large amount of radioactive materials into the environment, and there is a serious concern about the radiation effects on the health of residents living in the affected areas. The evaluation of exposure dose is fundamental for the estimation of health effects, and whenever possible, the exposure dose should be evaluated by actual measurements as opposed to estimations. Here, the outline of the exposure doses of residents estimated from surveys or obtained by measurements is described. Fukushima Health Management Survey reported the results for 460 408 residents during the first 4 months after the accident; 66.3% received doses <1 mSv, 94.9% received <2 mSv, 99.7% received <5 mSv and the maximum dose was 25 mSv. Thus, it was demonstrated that the results from personal dosemeter measurements were comparable to the estimations. The dose assessment of internal exposure of 184 205 residents conducted by Fukushima Prefecture by using whole body counter showed that 99.986% received <1 mSv, with the maximum dose being 3 mSv. Regarding exposure of the thyroid, there is not enough data for the Fukushima accident, but it is presumed that thyroid doses are much lower than those from Chernobyl. The outline of exposure doses of residents in result of the accident is still being clarified, questions and uncertainties in dose assessment remain and further efforts for more accurate dosimetry are required continuously.

  1. The reduction of dose in paediatric panoramic radiography: the impact of collimator height and programme selection

    PubMed Central

    Safi, H; Maddison, S M

    2015-01-01

    Objectives: The aim of this work was to estimate the doses to radiosensitive organs in the head of a young child undergoing panoramic radiography and to establish the effectiveness of a short collimator in reducing dose. Methods: Thermoluminescent dosemeters were used in a paediatric head phantom to simulate an examination on a 5-year-old child. The panoramic system used was an Instrumentarium OP200 D (Instrumentarium Dental, Tuusula, Finland). The collimator height options were 110 and 140 mm. Organ doses were measured using exposure programmes intended for use with adult and child size heads. The performance of the automatic exposure control (AEC) system was also assessed. Results: The short collimator reduced the dose to the brain and the eyes by 57% and 41%, respectively. The dose to the submandibular and sublingual glands increased by 32% and 20%, respectively, when using a programme with a narrower focal trough intended for a small jaw. The effective dose measured with the short collimator and paediatric programme was 7.7 μSv. The dose to the lens of the eye was 17 μGy. When used, the AEC system produced some asymmetry in the dose distribution across the head. Conclusions: Panoramic systems when used to frequently image children should have programmes specifically designed for imaging small heads. There should be a shorter collimator available and programmes that deliver a reduced exposure time and allow reduction of tube current. Programme selection should also provide flexibility for focal trough size, shape and position to match the smaller head size. PMID:25352427

  2. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    SciTech Connect

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-15

    LiF:Mg,Ti TLDs and the EPR lithium formate dosimeters was, however, statistically significant and in agreement with the difference in relative detector responses found for the two detector systems by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] and by Adolfsson et al.[Med. Phys. 37, 4946-4959 (2010)]. Conclusions: When calibrated in {sup 60}Co or MV photon beams, correction for the linear energy transfer (LET) dependence of LiF:Mg,Ti detector response will be needed as to measure absorbed doses to water in a {sup 192}Ir beam with highest accuracy. Such corrections will depend on the manufacturing process (MTS-N Poland or Harshaw TLD-100) and details of the annealing and read-out schemes used.

  3. Assessment of GeB doped SiO2 optical fiber for the application of remote radiation sensing system

    NASA Astrophysics Data System (ADS)

    Alawiah, A.; Fadhli, M. M.; Bauk, S.; Abdul-Rashid, H. A.; Maah, M. J.

    2013-12-01

    The research and development efforts on the silica (SiO2) optical fiber for application in radiation sensing and other dosimetry field have become quite active. The widely used LiF based dosimeter (TLD) has shown a relatively low reproducibility and there is a time delay in dose assessment which loses its capability as direct real-time dose assessment dosimeters unlike diodes. The macroscopic size of the optical fiber generally does not allow direct in vivo dose sensing in the inner organ for radiotherapy and medical imaging. A flat optical fiber (FF) with nominal dimensions of (0.08 x10 x 10) mm3 of pure silica SiO2 and GeO2 with Boron doped silica fiber SiO2 was selected for this research. The Germanium was used a dopant to enhance the flat optical fiber to reach much higher responsiveness and dose sensitivity in high energy and high dose irradiation. Together with this combination, both TLD dimension and dose assessment issues was hoped to be overcome. The research conducted by comparing the response of pure silica SiO2 flat optical fiber with a GeO2 with Boron doped silica SiO2 flat optical fiber. The FF sample was annealed at 400°C for one hour before irradiated. Kinetic parameters and dosimetric glow curve of TL response and sensitivity were studied with respect to the electron beam of high dose of micro beam irradiation of 1.0 kGy, 5.0 kGy, 10.0 kGy, 50.0 kGy, 100.0 kGy, 500.0 kGy, and 1.0 MGy using Singapore Synchrotron Light Source's (PCIT) beamline. The PCIT operates at 500mA current with real time current range from 90-100mA, dose rate of 3.03 MGy/hour and energy at 8.9KeV. The source to Source Surface Distance (SSD) was at 6.0 cm, with a field size of 20mm × 8mm diameter of a half circle. The TL response was measured using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader was obtained to a preheat temperature of 150 °C for 5 s, the output signal being acquired at a temperature ramprate of 35 °Cs-1, acquisition time of

  4. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    NASA Astrophysics Data System (ADS)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  5. Shielding effect of thyroid collar for digital panoramic radiography

    PubMed Central

    Han, G-S; Cheng, J-G; Li, G

    2013-01-01

    Objectives: To evaluate the shielding effect of thyroid collar for digital panoramic radiography. Methods: 4 machines [Orthopantomograph® OP200 (Instrumentarium Dental, Tuusula, Finland), Orthophos CD (Sirona Dental Systems GmbH, Bensheim, Germany), Orthophos XG Plus (Sirona Dental Systems GmbH) and ProMax® (Planmeca Oy, Helsinki, Finland)] were used in this study. Average tissue-absorbed doses were measured using thermoluminescent dosemeter chips in an anthropomorphic phantom. Effective organ and total effective doses were derived according to the International Commission of Radiological Protection 2007 recommendations. The shielding effect of one collar in front and two collars both in front and at the back of the neck was measured. Results: The effective organ doses of the thyroid gland obtained from the 4 panoramic machines were 1.12 μSv for OP200, 2.71 μSv for Orthophos CD, 2.18 μSv for Orthophos XG plus and 2.20 μSv for ProMax, when no thyroid collar was used. When 1 collar was used in front of the neck, the effective organ doses of the thyroid gland were 1.01 μSv (9.8% reduction), 2.45 μSv (9.6% reduction), 1.76 μSv (19.3% reduction) and 1.70 μSv (22.7% reduction), respectively. Significant differences in dose reduction were found for Orthophos XG Plus and ProMax. When two collars were used, the effective organ doses of the thyroid gland were also significantly reduced for the two machines Orthophos XG Plus and ProMax. The same trend was observed in the total effective doses for the four machines. Conclusions: Wearing a thyroid collar was helpful when the direct digital panoramic imaging systems were in use, whereas for the indirect digital panoramic imaging systems, the thyroid collar did not have an extra protective effect on the thyroid gland and whole body. PMID:24005060

  6. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom.

    PubMed

    Sharma, Reena; Sharma, Sunil Dutt; Mayya, Y S; Chourasiya, G

    2012-08-01

    Phantom-based measurements in mammography are well-established for quality assurance (QA) and quality control (QC) procedures involving equipment performance and comparisons of X-ray machines. Polymethyl methacrylate (PMMA) is among the best suitable materials for simulation of the breast. For carrying out QA/QC exercises in India, a mammographic PMMA phantom with engraved slots for keeping thermoluminescence dosemeters (TLD) has been developed. The radiation transmission property of the developed phantom was compared with the commercially available phantoms for verifying its suitability for mammography dosimetry. The breast entrance exposure (BEE), mean glandular dose (MGD), percentage depth dose (PDD), percentage surface dose distribution (PSDD), calibration testing of automatic exposure control (AEC) and density control function of a mammography machine were measured using this phantom. MGD was derived from the measured BEE following two different methodologies and the results were compared. The PDD and PSDD measurements were carried out using LiF: Mg, Cu, P chips. The in-house phantom was found comparable with the commercially available phantoms. The difference in the MGD values derived using two different methods were found in the range of 17.5-32.6 %. Measured depth ranges in the phantom lie between 0.32 and 0.40 cm for 75 % depth dose, 0.73 and 0.92 cm for 50 % depth dose, and 1.54 and 1.78 cm for 25 % depth dose. Higher PSDD value was observed towards chest wall edge side of the phantom, which is due to the orientation of cathode-anode axis along the chest wall to the nipple direction. Results obtained for AEC configuration testing shows that the observed mean optical density (O.D) of the phantom image was 1.59 and O.D difference for every successive increase in thickness of the phantom was within±0.15 O.D. Under density control function testing, at -2 and -1 density settings, the variation in film image O.D was within±0.15 O.D of the normal density

  7. Simultaneous measurements of radon and thoron, and their progeny levels in dwellings on anticlinal structures of Assam, India.

    PubMed

    Barooah, Debajyoti; Barman, Simi; Phukan, Sarat

    2014-06-01

    Radon and thoron, and their progeny concentrations along with equilibrium factors for gas progeny and radiological risks to the residents have been measured in dwellings of Digboi and Mashimpur areas located on anticlines during the winter season. In this present investigation, twin-cup dosemeters fitted with LR-115 (II) nuclear detectors have been employed. The present work has shown that there exist considerable house-to-house variations in values with maximum values in mud houses and minimum values in assam type (AT) houses. It has been found that mean (and geometric standard deviations (GSD)) radon concentrations are 83.8 (1.3), 113.5 (1.1) and 157.2 (1.2) Bq m(-3) in AT, reinforced cement concrete (RCC) and mud houses in Digboi area and 63.0 (1.1), 87.1 (1.4) and 182.1 (1.2) Bq m(-3) in AT, RCC and mud houses in Mashimpur area, respectively. The overall mean radon concentrations in Digboi and Mashimpur are estimated to be 114.4 (1.4) and 100.0 (1.7) Bq m(-3). The mean radon concentrations are found to be less than the lower reference level of 200 Bq m(-3) of the International Commission on Radiological Protection (ICRP 2007). The thoron concentrations in Digboi area are estimated to be 31.1 (1.3), 50.8 (1.4) and 67.0 (1.6) Bq m(-3) in AT, RCC and mud houses, respectively, whereas in Mashimpur area, the thoron concentrations are estimated to be 26.4 (1.3), 44.4 (1.3) and 77.7 (1.3) Bq m(-3) in AT, RCC and mud houses, respectively. The mean annual effective doses in Digboi area are found to be 1.9 (1.3), 2.7 (1.2) and 4.1 (1.4) mSv y(-1) in AT, RCC and mud houses, respectively, while in the case of Mashimpur area, the mean annual effective doses are found to be 1.5 (1.4), 2.2 (1.2) and 4.9 (1.3) mSv y(-1) in AT, RCC and mud houses, respectively. Nevertheless, the obtained results are much lower than the upper reference level of 10 mSv (ICRP 2007). PMID:24469015

  8. Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager

    SciTech Connect

    Budgell, G.J.; Zhang, Q.; Trouncer, R.J.; Mackay, R.I.

    2005-11-15

    An amorphous silicon electronic portal imaging device (EPID) has been investigated to determine its usefulness and efficiency for performing linear accelerator quality control checks specific to step and shoot intensity modulated radiation therapy (IMRT). Several dosimetric parameters were measured using the EPID: dose linearity and segment to segment reproducibility of low dose segments, and delivery accuracy of fractions of monitor units. Results were compared to ion chamber measurements. Low dose beam flatness and symmetry were tested by overlaying low dose beam profiles onto the profile from a stable high-dose exposure and visually checking for differences. Beam flatness and symmetry were also calculated and plotted against dose. Start-up reproducibility was tested by overlaying profiles from twenty successive two monitor unit segments. A method for checking the MLC leaf calibration was also tested, designed to be used on a daily or weekly basis, which consisted of summing the images from a series of matched fields. Daily images were co-registered with, then subtracted from, a reference image. A threshold image showing dose differences corresponding to >0.5 mm positional errors was generated and the number of pixels with such dose differences used as numerical parameter to which a tolerance can be applied. The EPID was found to be a sensitive relative dosemeter, able to resolve dose differences of 0.01 cGy. However, at low absolute doses a reproducible dosimetric nonlinearity of up to 7% due to image lag/ghosting effects was measured. It was concluded that although the EPID is suitable to measure segment to segment reproducibility and fractional monitor unit delivery accuracy, it is still less useful than an ion chamber as a tool for dosimetric checks. The symmetry/flatness test proved to be an efficient method of checking low dose profiles, much faster than any of the alternative methods. The MLC test was found to be extremely sensitive to sudden changes in

  9. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    PubMed

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  10. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    NASA Astrophysics Data System (ADS)

    Talbot, Lee

    1999-03-01

    -year period. Professor O'Sullivan said that the NRPB used TLDs for low and high LET radiations and PADC for neutrons. The investigation of dosemeter response was carried out using Monte Carlo codes. The active instruments used for measurements were the tissue equivalent proportional counter (TEPC) and a Bonnersphere spectrometer using eight spheres. The instrumentation used was calibrated in the CERN-CEC reference field. In summary, it was found that the shape of the neutron spectrum does not change with altitudes and that the maximum dose rate was found to be under the seats of the aircraft. Dr Lindbourg of the Swedish Radiation Protection Institute gave a short talk on the importance of using the TEPC for cosmic ray measurements, as it is the only means of reading directly absorbed dose to tissue and the radiation quality (in terms of lineal energy). Dr Schewe from PTB, Germany, gave the next talk on reference fields and calibration procedures. The speaker highlighted the difficulties in measuring radiation fields onboard aircraft, as the calibration fields used are often vastly different to the radiation field the instrumentation is being exposed to. The speaker said that this could lead to errors in the measurements in excess of 50%. One way around this is to use realistic reference fields, which produce similar particle compositions and particle fluences as those present in the cosmic radiation at aircraft altitudes. For this work the reference field facility in one of the secondary beams lines of the CERN Super Proton Synchrotron was used. In summary it was shown that the TEPC could be used as a reference instrument for evaluating ambient dose equivalent in aircraft. The next speaker was Dr Tommasino of the ANPA, Rome, who talked about in-flight measurement of radiation fields and doses. He stated that the problem of radiation dose assessment has been developed within the multinational research programmes of the Commission of the European Communities. The speaker talked